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Abstract

We investigate effects of action improvement on the light hadron spec-

trum and the static quark potential in two-flavor QCD for a−1 ≈ 1 GeV

and mPS/mV = 0.7–0.9. We compare a renormalization group improved ac-

tion with the plaquette action for gluons, and the SW-clover action with the

Wilson action for quarks. We find a significant improvement in the hadron

spectrum by improving the quark action, while the gluon improvement is cru-

cial for a rotationally invariant static potential. We also explore the region of

light quark masses corresponding to mPS/mV ≥ 0.4 on a 2.7 fm lattice using

the improved gauge and quark action. A flattening of the potential is not

observed up to 2 fm.

PACS number(s): 11.15.Ha, 12.38.Gc, 12.39.Pn, 14.20.-c, 14.40.-n
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I. INTRODUCTION

With the progress over the last few years of quenched simulations of QCD, it has become
increasingly clear that the quenched hadron spectrum shows deviations from the experiment
if examined at a precision better than 5–10%. For light hadrons the first indication was
that the strange quark mass cannot be set consistently from pseudo scalar and vector meson
channels in quenched QCD [1–3]. For heavy quark systems calculations both with relativistic
[4] and non-relativistic [5] quark actions have shown that the fine structure of quarkonium
spectra can not be reproduced on quenched gluon configurations. Most recently an extensive
calculation by the CP-PACS collaboration found a systematic departure of both the light
meson and baryon spectra from experiment [6]. These results raise the question as to
whether the discrepancies can be accounted for by the inclusion of dynamical sea quarks. It
is therefore timely to study more thoroughly the effects of full QCD in order to answer this
question.

Full QCD simulations are, however, computationally much more expensive than those
of quenched QCD. Simple scaling estimates coupled with past experience place a hundred-
fold or more increase in the amount of computations for full QCD compared to that of
quenched QCD with current algorithms. Since 323×64 is a typical maximal lattice size for
quenched QCD which can be simulated with high statistics on computers with a speed in
the 10 GFLOPS range [2,7], reliable full QCD results are difficult to obtain on lattice sizes
exceeding 323×64 even with TFLOPS-class computers such as CP-PACS [8] and QCDSP
[9]. Recalling that a physical lattice size of L ≈ 2.5–3.0 fm is needed to avoid finite-size
effects [7,10,11], the smallest lattice spacing one can reasonably reach at present is therefore
a−1 ≈ 2 GeV. Hence lattice discretization errors have to be controlled through simulations
carried out at inverse lattice spacings below this value, e.g. in the range a−1 ≈ 1−2 GeV. It
is, however, known that with the standard plaquette and Wilson quark actions discretization
errors are already of order 10% even for a−1 ≈ 2 GeV. These observations suggest the use
of improved actions for simulations of full QCD.

Studies of improved actions have been widely pursued in the last few years. Detailed
tests of improvement for the hadron spectrum, however, have been carried out mostly within
quenched QCD [12–19] with only a few full QCD attempts [20–22]. In particular, a system-
atic investigation of how gauge and quark action improvement, taken separately, affects light
hadron observables has not been carried out in full QCD. Prior to embarking on a large scale
simulation, we examine this question as the first subject of the full QCD program on the
CP-PACS computer.

For a systematic comparison of action improvement we employ four possible types of
action combinations, the standard plaquette or a renormalization-group improved action
[23] for the gauge part, and the standard Wilson or the improvement of Sheikholeslami and
Wohlert [24] for the quark part. Since effects of improvement are clearer to discern at coarser
lattice spacings, we carry out simulations at an inverse lattice spacing of a−1 ≈ 1 GeV with
quark masses in the range corresponding to mPS/mV ≈ 0.7–0.9. Results for the four action
combinations are used for comparative tests of improvement on the light hadron spectrum
and the static quark potential.

Another limiting factor for full QCD simulations is how close one can approach the
chiral limit with present computing power. To investigate this question we take the action
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in which both gauge and quark parts are improved, and carry out simulations down to a
quark mass corresponding to mPS/mV ≈ 0.4. In addition to exploring the chiral behavior
of hadron masses, this simulation allows an examination of signs of string breaking in the
static quark-antiquark potential.

In this article we present results of our study on the two questions discussed above,
expounding on the preliminary accounts reported in Refs. [25,26]. We begin with discussions
on our choice of actions for our comparative studies in Sec. II. Details of the full QCD
configuration generation procedure and measurements of hadron masses and potential are
described in Sec. III. Results for the hadron masses are discussed in Sec. IV where, after a
description of the chiral extrapolation or interpolation of our data, we examine the effects
of action improvement for the scaling behavior of hadron mass ratios. In Sec. V we turn
to discuss the static potential. The influence of action improvement on the restoration of
rotational symmetry of the potential is examined, and the consistency of the lattice spacing
determined from the vector meson mass and the string tension is discussed. In Sec. VI we
report on our effort to approach the chiral limit, where our attempt to observe a flattening
of the potential at large distances due to string breaking is also presented. We end with a
brief conclusion in Sec. VII. Detailed numerical results on run performances, hadron masses
and string tensions are collected at the end in Appendices A, B and C.

II. CHOICE OF ACTION

The discretization error of the standard plaquette gauge action is O(a2) while that of
the Wilson quark action is O(a). In principle one would only need to improve the quark
action to the same order as the gauge action. On the other hand, violations of rotational
invariance have been found to be strong for the plaquette gauge action at coarse lattice
spacings [27,28]. Hence improving the gauge action is still advantageous for coarse lattices.
In this spirit we employ (besides the standard actions) improved actions both in the gauge
and quark sectors in the forms specified below.

Let us denote the standard plaquette gauge action by P. Improving this action requires
the addition of Wilson loops with a perimeter of six links or more. The number, the precise
form and the coefficients of the added terms differ depending on the principle one follows
for the improvement [29]. In this study we test the action determined by an approximate
block-spin renormalization group analysis of Wilson loops, denoted by R in the pursuant,
which is given by [23]

SR

g =
β

6

(

c0
∑

W1×1 + c1
∑

W1×2

)

, (1)

where the 1 × 2 rectangular shaped Wilson loop W1×2 has the coefficient c1 = −0.331 and
from the normalization condition defining the bare coupling β = 6/g2

0 follows c0 = 1−8c1 =
3.648.

The discretization error of the R action is still O(a2). The coefficients of O(a2) terms in
physical quantities, however, are expected to be reduced from those of the plaquette action.
Indeed, the quenched static quark potential calculated with this action was found to exhibit
good rotational symmetry and scaling already at a−1 ≈ 1 GeV [30], and so does the scaling
of the ratio Tc/

√
σ of the critical temperature of the pure gauge deconfining phase transition
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and the string tension σ [30]. The degree of improvement is similar to those observed for
tadpole-improved and fixed point actions [27,28].

To improve the quark action we adopt the clover improvement proposed by Sheik-
holeslami and Wohlert [24], denoted by C in the following and defined by

DC

xy = DW

xy − δxycSWK
∑

µ<ν

σµνFµν , (2)

where DW

xy is the standard Wilson quark matrix given by

DW

xy = δxy −K
∑

µ

{(1 − γµ)Ux,µδx+µ̂,y + (1 + γµ)U
†
x,µδx,y+µ̂} (3)

and Fµν is the lattice discretization of the field strength,

Fµν =
1

8i
(fµν − f †

µν), (4)

where fµν is the standard clover-shaped combination of gauge links.
The complete removal of O(a) errors requires a non-perturbative tuning of the clover

coefficient cSW. This has been carried out for the plaquette gauge action in both quenched
[31,32] and two-flavor full QCD [33]. A similar analysis for the R gauge action is yet to be
made, however. In this study we compare three different choices:

(a) The tree level value cSW = 1.

(b) The mean-field (MF) improved value [34] cSW = P−3/4 with P the self-consistently
determined plaquette average.

(c) A perturbative mean-field (pMF) improved value cSW = P−3/4 with the plaquette P
calculated in one-loop perturbation theory. For the R gauge action P = 1−0.8412·β−1

[23].

For all three choices the leading discretization error in physical quantities is O(g2
0a). The

magnitude of the coefficients of this term should be reduced in the cases of (b) and (c)
as compared to (a). The one-loop value of cSW has been recently reported to be cSW =
1 + 0.678(18)/β [35]. This value is close to the pMF value cpMF

SW = 1 + 0.631/β + · · ·. We
also find that the one-loop value of P reproduces the measured values from simulations
within 10% for the R action. Hence the pMF value of the clover coefficient is similar to the
MF value employed in (b). The advantage of the pMF choice is that it does not require a
self-consistent tuning of cSW for each choice of β and K.

We carry out simulations employing either the plaquette (P) or rectangular action (R)
for gluons, combining it with either the Wilson (W) or clover action (C) for quarks.

III. SIMULATIONS

A. choice of simulation parameters

We choose the coupling constant β so that it gives an inverse lattice spacing of a−1 ≈
1 GeV. For each action combination we choose at least two values of β to allow us to
interpolate (or extrapolate) to a desired common lattice spacing.
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Simulations are generally carried out at three values of the hopping parameter K corre-
sponding to mPS/mV ≈ 0.7–0.9. The lattice size employed is 123×32.

In Table I we give an overview of the calculations performed for the action comparison.
Details of the simulation parameters at each run are collated in Appendix A. Our procedure
for estimating the critical hopping parameter Kc, and the physical scale of lattice spacing
either from the ρ meson mass (aρ) or the string tension (aσ) will be discussed in Sec. IVA
and Sec. VC.

We take the RCpMF action at β = 1.9 to explore how close one can take the calculation
towards the chiral limit. For this study we employ two lattice sizes 123×32 and 163×32.
In Table II we list the main features of these two runs whereas details can be found in
Appendix A.

B. configuration generation and matrix inversion

Simulations are carried out for two flavors of dynamical quarks using the hybrid Monte
Carlo (HMC) algorithm. The integration of molecular dynamics (MD) equations is made
with the standard leapfrog scheme and with a step size ∆τ chosen to yield an acceptance
ratio of 70–90% for trajectories of unit length. The actual values chosen for ∆τ in each case
and the measured acceptance are given in Appendix A.

For the inversion of the fermion matrix we employed the minimal residue (MR) algorithm
for our early simulations but switched later to BiCGStab [36]. In both cases we use an even-
odd preconditioning of the quark matrix D. D can be decomposed into

D(K) = M −K(Deo +Doe), (5)

where M is only defined on single sites and the remaining connects neighboring sites. For
the Wilson quark action M is a unit matrix, whereas for the clover action it is non-trivial
in color and Dirac space. The even-odd preconditioning consists of solving the equation
AGe = B′

e where A = 1 −K2M−1
e DeoM

−1
o Doe and B′

e = M−1
e (Be +KDeoM

−1
o Bo) instead

of the equation D(K)G = B. As an initial guess for the solution vector on even sites, the
right-hand-side vector Ge = B′

e is used. The preconditioning requires the inversion of the
local matrix M , which is trivial for the Wilson quark action. For the clover quark action we
precalculate M−1 and store it before the solver starts.

As a stopping condition for the matrix inversion during the fermionic force evaluation
we generally use, on the 123×32 lattice, the criterion

r1 = ||DG− B||2 ≤ 10−10 (6)

which we found to be approximately equivalent to the condition

r2 = ||DG−B||/||G|| ≤ 10−8. (7)

The actual stopping conditions chosen for each run and the number of iterations needed to
reach this condition are listed in Appendix A. For the evaluation of the Hamiltonian we
choose stricter stopping criteria for r1 between 10−14 and 10−18.

A necessary condition for the validity of the HMC algorithm is the reversibility of the
MD evolution [37]. The CP-PACS computer, on which the present work is made, employs
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64 bit arithmetic for floating point operations. Flipping the sign of momenta after a unit
trajectory, with the stopping condition (7) above, we checked that, (i) the gauge link and
conjugate momenta variables return to the starting values within a relative error of less than
10−7 on the average, and (ii) the relative error in the evaluation of the Hamiltonian is less
than 10−10 (absolute error better than 10−4 for the 163×32 lattice where the check was
made) so that the effects in the accept/reject procedure are far below the level of statistical
fluctuations.

At each simulated parameter we first run for 100–200 HMC trajectories of unit length for
thermalization and then generate 500–1500 trajectories for measurements. Hadron propaga-
tors are measured on configurations separated by 5 trajectories. The static quark potential
is measured on a subset of the configurations separated by either 5 or 10 trajectories. The
detailed numbers are again given in Appendix A.

C. hadron mass measurement

We calculate quark propagators for the hopping parameter equal to that for the dynam-
ical quarks used in the configuration generation. Two quark propagators are prepared for
each configuration, one with the point source and the other with an exponentially smeared
source with the smearing function ψ(r) = A exp(−Br). For the latter we fix the gauge
configuration to the Coulomb gauge. The choice of the smearing parameters A and B is
guided by previous quenched results for the pion wave function [38], readjusted by hand so
that hadron effective masses reach a plateau as soon as possible.

Hadron propagators are constructed by combining quark propagators for the point (P) or
the smeared (S) sources in various ways, but always adopting the point sink. For example,
PS represents a meson propagator calculated with the point source for quark and the smeared
source for antiquark. In Fig. 1 we show a typical example of effective masses for a variety
of source combinations.

In most cases the effective masses for the SS (SSS for baryons) propagators comes from
below, show the best plateau behavior, and have the smallest statistical errors estimated with
the jackknife procedure. We therefore determine hadron masses with a fit to SS (SSS) hadron
propagators, supplementing results for other source combinations as a guide in choosing the
fit range.

Hadron masses are extracted from propagators by employing a single hyperbolic cosine fit
for mesons and a single exponential fit for baryons. We use uncorrelated fits and determine
the error with the jackknife method. While our runs of at most 1500 HMC trajectories
are not really long enough to carry out detailed autocorrelation analysis, examining the bin
size dependence of the estimated error indicates a bin size of 5 configurations or 25 HMC
trajectories to be a reasonable choice, which we adopt for all of our error analyses.

The hadron mass results for all our runs are collected in Appendix B.

D. potential measurement

We measure Wilson loops W (r, t) both in the on- and off-axis directions in space. The
spatial paths of W (r, t) are formed by connecting one of the following spatial vectors repeat-
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edly,

(1, 0, 0), (1, 1, 0), (2, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1). (8)

We measure W (r, t) up to r ≤ 6 and t ≤ 8 on the 123×32 lattice, while we enlarge the
largest spatial size to r ≤ 4

√
3 on the 163 ×32 lattice in order to investigate the large

distance behavior of the potential. The smearing procedure of Ref. [39] is applied to the
link variables, up to 6 times on the 123×32 lattice and up to 8 times on the 163×32 lattice,
respectively. The Wilson loop is measured at every smearing step in order to choose the
optimal smearing number for each value of r.

We extract the potential V (r) and the overlap function C(r) by a fully correlated fit of
the Wilson loop to the form

W (r, t) = C(r) exp [−V (r)t] . (9)

The optimum smearing number at each r is determined by the condition that the overlap
C(r) takes the largest value smaller than 1.

Typical results for the effective mass defined by

meff = ln [W (r, t)/W (r, t+ 1)] , (10)

are shown in Fig. 2. We find that noise generally dominates over the signal for t > 4.
Thus we set the upper limit of the fitting range to tmax = 4. Since choosing the lower limit
tmin = 1 leads to an increase of χ2/d.o.f by 3–10 times compared to the choice tmin = 2 for
most values of r and simulation parameters, we fix the fitting range to be t = 2–4.

The statistical error of V (r) is estimated by the jackknife method. We find that a bin
size of 30 HMC trajectories is generally sufficient to ensure stability of errors against bin
size. We therefore adopt this bin size for all of our error estimates with potential data.

IV. HADRON SPECTRUM

A. chiral fits

A basic parameter characterizing the chiral behavior of hadron masses is the critical
hopping parameter Kc at which the pseudo scalar meson mass mPSa vanishes. Results
for (mPSa)

2 exhibit deviations from a linear function in 1/K, and hence we extract Kc by
assuming

(mPSa)
2 = BPS

(

1

K
− 1

Kc

)

+ CPS

(

1

K
− 1

Kc

)2

. (11)

The fitted values of the critical hopping parameter are listed in Table I and II.
Another important parameter is the vector meson mass mVa in the chiral limit mPSa = 0,

which allows us to set the physical lattice spacing. We determine this quantity by a chiral
fit of the vector meson mass in terms of the pseudo scalar meson mass, both of which are
measured quantities. Our results for this relation show curvature (see Fig. 8 in Sec. VIA
for an example), and hence for the fitting function we employ
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mVa = AV +BV(mPSa)
2 + CV(mPSa)

3, (12)

where the cubic term is inspired by chiral perturbation theory.
A practical problem with this fit is that we have only three data points for most of our

runs. We estimate systematic uncertainties in the extrapolation by repeating the fit without
the cubic term to the two points of data for lighter quark masses. Results for the vector
meson mass in the chiral limit, translated into the lattice spacing through aρ = AV/768MeV,
are listed in Table I and II.

Results for the nucleon and ∆ also show curvature in terms of mPSa. We therefore fit
them employing a cubic polynomial without the linear term (12) as for the vector meson
mass.

B. scaling of mass ratios

We show in Fig. 3 a compilation of our hadron mass results for the four action combi-
nations in terms of the mass ratios mN/mV and m∆/mV as a function of (mPS/mV)2. In
order to avoid overcluttering of points, we include results for only two values of β per action
combination. Furthermore, for the PC action combination the results with cSW = MF are
displayed whereas for the RC action results for cSW = pMF are shown.

We observe two features in this figure. In the first instance, for each action combination
the baryon to vector meson mass ratio decreases as the coupling decreases. This is a well-
known trend of scaling violation for Wilson-type quark actions. Secondly, the magnitude of
scaling violation, measured by the distance from the phenomenological curve (solid line in
Fig. 3) [40] has an order where PW > RW > PC > RC. In particular the results for the
PC and RC cases show a significant improvement over those for the PW and RW cases in
that they lie close to the phenomenological curve even though the lattice spacing is as large
as a−1

ρ ≈ 1–1.3 GeV (see Tables I and II).
A point of caution, however, is that the lattice spacings for the data sets displayed

in Fig. 3 do not exactly coincide. In order to disentangle effects associated with action
improvement from those of a finer lattice spacing for each action, we need to plot results at
the same lattice spacing.

One way to make such a comparison is to take a cross section of Fig. 3 at a fixed value
of mPS/mV and plot the resulting value of mN,∆/mV as a function of mVa at that value of
mPS/mV. This requires an interpolation of hadron mass results, for which we employ the
cubic chiral fits described in Sec. IVA and the jackknife method for error estimation.

In Fig. 4 we show results of this analysis for mN/mV and m∆/mV at mPS/mV = 0.8. It
is interesting to observe that the PW and RW results lie almost on a single curve, while the
PC and RC results, respectively using the MF and pMF value of cSW, fall on a different,
much flatter curve. This clearly shows that the improvement of the gauge action has little
effect on decreasing the scaling violation in the baryon masses. The improvement is due to
the use of the clover quark action for the PC and RC cases. An apparently better behavior
of RW results in Fig. 3 compared to those for the PW case is merely an effect of the finer
lattice spacing of the former.

We have commented in Sec. II that the values of cSW for the MF and pMF cases are
similar. This would explain why results for the PC action with the MF value of cSW and
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those for the RC action with the pMF value of cSW lie almost on a single curve. For both
MF and pMF choices, the magnitude of cSW is significantly larger than the tree-level value
cSW = 1. As is shown in Fig. 4 with open symbols, the degree of improvement with the
tree-level cSW is substantially less than those for the MF and pMF choices.

V. STATIC QUARK POTENTIAL

A. restoration of rotational symmetry

In Fig. 5, we plot our potential data for the four action combinations at a quark mass
corresponding to mPS/mV ≈ 0.8 and a−1 ≈ 1 GeV. We find a sizable violation of rotational
symmetry in the PW case at this coarse lattice spacing. Looking at the potential for the
PC case, we cannot observe any noticeable restoration of the symmetry. In contrast, a
remarkable restoration of rotational symmetry is apparent in the RW and RC cases.

In order to quantify the violation of rotational symmetry and its improvement depending
on the action choice, we consider the difference between the on-axis and off-axis potential
at a distance r = 3 defined by

∆V =
V (r=(3, 0, 0)) − V (r=(2, 2, 1))

V (r=(3, 0, 0)) + V (r=(2, 2, 1))
. (13)

We find that the value of ∆V monotonously decreases as the sea quark mass decreases for
most cases. We ascribe this trend to the fact that one effect of dynamical sea quarks is to
renormalize the coupling toward a smaller value, and hence reduces violation of rotational
symmetry.

In order to make a comparison at the same quark mass, we estimate ∆V atmPS/mV = 0.8
by an interpolation as a linear function of (mPSa)

2. In Fig. 6 we plot results for ∆V
obtained in this way against the value of mVa at mPS/mV = 0.8. This figure confirms the
qualitative impression from Fig. 5. Rotational symmetry is badly violated for the PW and
PC cases, which is significantly improved by changing the gauge action as demonstrated by
the small values of ∆V for the RW and RC results. In contrast the effect of quark action
improvement on the restoration of rotational symmetry appears to be small. This may
not be surprising since dynamical quarks affect the static potential only indirectly through
vacuum polarization effects.

B. string tension

The static potential in full QCD is expected to flatten at large distances due to string
breaking. None of our potential data, which typically extends up to the distance of r ≈ 1 fm,
show signs of such a behavior, but rather increase linearly. As we discuss in more detail in
Sec. VI this is probably due to a poor overlap of the Wilson loop operator with the state of
a broken string. This suggests that we can extract the string tension from the present data
for the potential V (r) by assuming the form

V (r) = V0 −
α

r
+ σr. (14)
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In practice we find that the Coulomb coefficient α is difficult to determine from the fit,
even if we introduce the tree-level correction term corresponding to the one lattice gluon
exchange diagram. This may be due to the fact that our potential data taken at coarse
lattice spacings do not have enough points at short distance to constrain the Coulomb term.
As an alternative we test a two-parameter fitting with a fixed Coulomb term coefficient
αfixed = 0.1, 0.125, ..., 0.475, and 0.5, using the fitting range rmin–rmax with rmin = 1,

√
2,√

3 and rmax = 5–6. We find that the value of χ2/d.o.f takes its minimum value around
αfixed = 0.3–0.4 for most fitting ranges and simulation parameters.

Based on this result, we extract the string tension by fitting the potential at large dis-
tances, where a linear behavior dominates, to the form (14) with a fixed Coulomb coefficient
αfixed = 0.35. The shift of the fitted σ over the range α = 0.3–0.4 is taken into estimates of
the systematic error.

The result for the string tension σ with this two-parameter fit is quite stable against
variations of rmax. It does depend more on rmin, however. This leads us to repeat the two-
parameter fit with αfixed = 0.35 over the interval of rmin listed in Appendix C, and determine
the central value of σ by the weighted average of the results over the ranges. The variance
over the ranges are included into the systematic error of σ. We collate the final results for
the string tension σ in Appendix C.

C. consistency in lattice spacings

The scaling violation in the ratio mρ/
√
σ leads to an inconsistency in the lattice spacings

determined from the ρ meson mass aρ and the string tension aσ in the chiral limit. Thus,
examination of this consistency provides another test of effectiveness of improved actions.
For the physical value we use mρ = 768 MeV and

√
σ = 440 MeV. We should note that the

latter value is uncertain by about 5–10% since the string tension is not a directly measurable
quantity by experiment.

The chiral extrapolation of the vector meson mass was already discussed in Sec. IVA.
We follow a similar procedure for the chiral extrapolation of the string tension. Namely we
fit results to a form

σa2 = Aσ +Bσ·(mPSa)
2 + Cσ·(mPSa)

3. (15)

In most cases we find a quadratic ansatz (Cσ = 0) to be sufficient, which we then adopt
for all data sets. Results for the string tension in the chiral limit, converted to the physical
scale of lattice spacing aσ, are listed in Table I and II.

In Fig. 7 we plot mVa/768MeV and
√
σa/440MeV as a function of (mPSa)

2 for the four
action combinations with a similar lattice spacing a−1

ρ ≈ 1–1.3 GeV determined from the
vector meson mass. A distinctive difference between the results for the Wilson and the clover
quark action is clear; while results for mV and

√
σ cross each other at heavy quark masses

where mPS/mV ≈ 0.75–0.8 for the PW and RW cases, leading to a mismatch of aρ and aσ

in the chiral limit, the two sets of physical scales converge well toward the chiral limit for
the PC and RC cases.

We expect the large discrepancy for the Wilson quark action to disappear closer to the
continuum limit. This is supported by the results obtained at β = 5.5 with a−1 ≈ 2 GeV in
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Ref. [41]. Our results show that the clover term helps to improve the consistency between
aρ and aσ already at a−1 ≈ 1 GeV.

VI. APPROACHING THE CHIRAL LIMIT

The analyses presented so far show that the RC action has the best scaling behavior
for hadron masses and static quark potential among the four action combinations we have
examined. We then take this action and attempt to lower the quark mass as much as
possible.

Two runs are made at β = 1.9, one on a 123×32 lattice down to mPS/mV ≈ 0.5, and
the other on a 163×32 lattice down to mPS/mV ≈ 0.4. We discuss results from these runs
below.

A. hadrons with small quark masses

In Fig. 8 we plot the results of hadron masses as functions of (mPSa)
2. The existence of a

curvature is observed, necessitating a cubic ansatz for extrapolation to the chiral limit. The
lattice spacing determined from mρ = 768 MeV equals aρ = 0.20(2) fm using mass results
from the larger lattice. Hence the spatial size equals 2.4 fm (123×32) and 3.2 fm (163×32)
for the two lattice sizes employed.

Finite-size effects are an important issue for precision determinations of the hadron mass
spectrum. Our results in Fig. 8 do not show clear signs of such effects down to the second
lightest mass, which corresponds to mPS/mV ≈ 0.5. We feel, however, that it is premature
to draw conclusions with the present low statistics of approximately 1000 trajectories.

The results for mass ratios are plotted in Fig. 9. While errors are large, and may even be
underestimated because of the shortness of the runs, we find it encouraging that the ratios
exhibit a trend of following the phenomenological curve toward the experimental points as
the quark mass decreases. If we use the chiral extrapolation described above for the results
on the 163×32 lattice, we obtain mN/mV = 1.342(25) and m∆/mV = 1.700(33) at the
physical ratio mPS/mV = 0.1757, which are less than 10% off the experimentally observed
ratios of 1.223 and 1.603, respectively, despite the coarse lattice spacing of a ≈ 0.2 fm.

B. static potential at large distances

We have mentioned in Sec. V that our results for the static potential do not show signs
of flattening, indicative of string breaking up to the distance of r ≈ 1 fm. Similar results
have been reported by other groups [42]. A possible reason for these results is that potential
data do not extend to large enough distances where string breaking becomes energetically
favorable. Another related possibility is that the dynamical quark masses, which in most
cases correspond to mPS/mV = 0.7–0.9, are too heavy. With our runs on the 163×32 lattice
we can examine these points up to the distance of r ≈ 2 fm and for quark masses down to
mPS/mV ≈ 0.4.

In Fig. 10 we plot our potential data obtained on the 163×32 lattice at the lightest sea
quark mass corresponding to mPS/mV ≈ 0.4. We find that the potential increases linearly
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up to r ≈ 2 fm, without any clear signal of flattening. The situation is similar for our data
at heavier sea quark masses.

An interesting and crucial question here is whether the Wilson loop operator has sufficient
overlap with the ground state at large r so that the potential in that state is reliably measured
there [43]. In Fig. 11 we compare results for the overlap function C(r) for the full QCD
run at mPS/mV ≈ 0.4 with that obtained in a quenched run with the R gauge action on a
93×18 lattice at β = 2.1508 (a−1 ≈ 1 GeV) [30]. For the quenched run the overlap C(r)
of the smeared Wilson loop operator with the ground string state is effectively 100 % at
all distances. For full QCD, on the other hand, C(r) significantly decreases as r increases.
Such a behavior of C(r) is observed in all of our data including those taken with action
choices other than RC. These results may be taken as a tantalizing hint that the Wilson
loop operator develops mixings with states other than a single string, possibly a pair of
static-light mesons in full QCD. We leave further investigations of this interesting question
for future studies.

C. computer time

An important practical information in full QCD is the computer time needed for the
approach to the chiral limit. In Table III we assemble the relevant numbers for our runs on
the 163×32 lattice. These runs have been performed on a partition of 256 nodes, which is
1/8 of the CP-PACS computer. For a partition of this size, our full QCD program, written
in FORTRAN with the matrix multiplication in the quark solver hand-optimized in the
assembly language, sustains about 37% of the peak speed of 75 GFLOPS. Adding the CPU
time per trajectory of Table III, we find that accumulating 5000 trajectories for each of the
6 hopping parameters for this lattice size would take about 160 days with the full use of the
CP-PACS computer. Carrying out such a simulation is certainly feasible. For larger lattice
sizes such as 243×48, however, we would have to stop at mPS/mV ≈ 0.5 since the run at
mPS/mV ≈ 0.4 alone increases the computer time by a factor two. Let us add that the CPU
time for a unit of HMC trajectory increases roughly proportional to (1/K − 1/Kc)

−1.6 for
the 4 smallest quark masses.

VII. CONCLUSIONS

In this paper we have presented a detailed investigation of the effect of improving the
gauge and the quark action in full QCD. We have found that the consequence of improving
either of the actions is different depending on the observable examined.

For the light hadron spectrum the clover quark action with a mean-field improved coeffi-
cient drastically improves the scaling of hadron mass ratios. Improving the gauge action, on
the other hand, has almost no influence in this aspect. The SW-clover action also has the
good property that the physical scale determined from the vector meson mass and the string
tension in the chiral limit of the sea quark are consistent already at scales a−1 ≈ 1 GeV,
which is not the case with the Wilson quark action.

We have also confirmed that the use of improved gauge actions leads to a significant
decrease of the breaking of rotational symmetry of the static quark potential.
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Finally, we have made an exploratory simulation toward the chiral limit employing a
renormalization group improved gauge and clover improved quark actions.

The results obtained in the present study suggest that a significant step toward a sys-
tematic full QCD simulation can be made with the present computing power using improved
gauge and quark actions at relatively coarse lattice spacings of a−1 ≈ 1–2 GeV.
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[30] Y. Iwasaki, K. Kanaya, T. Kaneko and T. Yoshié, Phys. Rev. D56 (1997) 151.
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TABLES

TABLE I. Overview of the simulations on the 123×32 lattice for the action comparison.

action β cSW mPS/mV Kc aρ [fm] aσ [fm]

PW 4.8 – 0.83,0.77,0.70 0.19286(14) 0.197(2) –

PW 5.0 – 0.85,0.79,0.71 0.18291(7) 0.174+8
−22 0.2501(62)

RW 1.9 – 0.90,0.80,0.69 0.17398(7) 0.162+11
−15 –

RW 2.0 – 0.90,0.83,0.74 0.16726(8) 0.144+7
−13 0.1747(27)

PCtree 5.0 1.0 0.83,0.79,0.71 0.16631(18) 0.2157(4) –

PCMF 5.0 1.805–1.855 0.81,0.76,0.71 0.14927(28) 0.238(1) 0.241(12)

PCMF 5.2 1.64–1.69 0.84,0.79,0.72 0.14298(6) 0.141+15
−24 0.1370(83)

PCMF 5.25 1.61–1.637 0.84,0.76 0.14252(4) 0.133(3) 0.1161(89)

RCpMF 1.9 1.55 0.85,0.78,0.69 0.14446(6) 0.199+14
−27 0.2050(40)

RCtree 2.0 1.0 0.88,0.83,0.71 0.15045(10) 0.160+10
−18 0.1638(42)

RCMF 2.0 1.515–1.54 0.90,0.86,0.79,0.70 0.14083(4) 0.146(3) 0.152(3)

RCpMF 2.0 1.505 0.91,0.79,0.71 0.14058(7) 0.146+35
−22 –

TABLE II. Overview of the simulations exploring the chiral limit of full QCD.

size β cSW mPS/mV Kc aρ [fm] aσ [fm]

123×32 1.9 1.55 0.85,0.78,0.69,0.60,0.54 0.144432(18) 0.171(3) –

163×32 1.9 1.55 0.84,0.78,0.69,0.61,0.54,0.41 0.144434(10) 0.166(2) 0.1817(28)

TABLE III. CPU time per HMC trajectory for the run at β = 1.9 on the 163×32 lattice carried

out on CP-PACS with 256 nodes (75 GFLOPS peak).

K (1/K − 1/Kc)/2 mPS/mV ∆τ accept. stop Ninv CPU-time

0.1370 0.1879(2) 0.8446(15) 0.0075 0.86 10−11 30 6.4 min.

0.1400 0.1096(2) 0.7793(19) 0.0075 0.80 10−11 46 8.2 min.

0.1420 0.0593(2) 0.6899(33) 0.00625 0.77 10−11 74 14.2 min.

0.1430 0.0347(2) 0.6110(44) 0.004 0.77 10−11 116 32.3 min.

0.1435 0.0225(2) 0.5445(50) 0.0025 0.81 10−12 181 77.6 min.

0.1440 0.0104(2) 0.4115(96) 0.0015 0.66 10−12 344 230.4 min.
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APPENDIX A: RUN PARAMETERS

In this appendix we assemble information about our runs. An overview of the runs has
been given in Table I. For the inversion of the quark matrix either the MR algorithm (M) or
the BiCGStab algorithm (B) is used with the stopping condition r1 ≤ stop defined through
Eq.(6). During the HMC update D†D has to be inverted. We do this in two steps, first
inverting D† and then D. In the tables we quote the number of iterations Ninv needed for the
first inversion D†. Finally we also quote the statistics, giving the number of configurations for
spectrum and potential measurements separately. Configurations for the hadron spectrum
are separated by 5 HMC trajectories, whereas for the potential the separation is either 5 or
10 trajectories. Unless stated otherwise the lattice size is 123×32.

TABLE IV. Simulation parameters for the PW and RW action combination.

action β K ∆τ accept. inverter stop Ninv #conf #conf×sep

spect. pot.

PW 4.8 0.1846 0.01 0.78 M 10−10 100 222 –

0.1874 0.005 0.88 M 10−10 150 200 –

0.1891 0.005 0.83 M 10−10 199 200 –

5.0 0.1779 0.01 0.79 M 10−10 101 300 89 × 5

0.1798 0.005 0.94 M 10−10 147 301 100 × 5

0.1811 0.005 0.88 M 10−10 212 301 100 × 5

RW 1.9 0.1632 0.0125 0.82 M 10−10 73 200 –

0.1688 0.01 0.78 M 10−10 136 200 100 × 5

0.1713 0.008 0.71 M 10−10 234 200 –

2.0 0.1583 0.0125 0.79 M 10−10 77 300 100 × 5

0.1623 0.01 0.84 M 10−10 128 300 100 × 5

0.1644 0.008 0.82 M 10−10 212 305 96 × 5
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TABLE V. Simulation parameters for the PC action combination.

β K cSW ∆τ accept. inverter stop Ninv #conf #conf×sep

spect. pot.

5.0 0.1590 1.0 0.01 0.82 B 10−10 37 100 –

0.1610 1.0 0.008 0.83 B 10−10 44 100 –

0.1630 1.0 0.00625 0.80 B 10−10 67 101 –

5.0 0.1415 1.855 0.01 0.73 B 10−10 30 200 100 × 10

0.1441 1.825 0.008 0.75 B 10−10 42 200 100 × 10

0.1455 1.805 0.00625 0.77 B 10−10 55 200 100 × 10

5.2 0.1390 1.69 0.01 0.81 M 10−10 72 248 104 × 5

0.1410 1.655 0.008 0.83 M 10−10 117 232 100 × 5

0.1420 1.64 0.008 0.73 M 10−10 203 200 100 × 5

5.25 0.1390 1.637 0.008 0.88 M 10−10 88 198 69 × 5

0.1410 1.61 0.00667 0.84 M 10−10 183 194 101 × 5
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TABLE VI. Simulation parameters for the RC action combination. The run marked with (*)

is on the 163×32 lattice.

β K cSW ∆τ accept. inv. stop Ninv #conf #conf×sep

spect. pot.

1.9∗ 0.1370 1.55 0.0075 0.86 B 10−11 30 203 –

0.1400 1.55 0.0075 0.80 B 10−11 46 198 –

0.1420 1.55 0.00625 0.77 B 10−11 74 202 92 × 10

0.1430 1.55 0.004 0.77 B 10−11 116 212 102 × 10

0.1435 1.55 0.0025 0.81 B 10−12 181 263 –

0.1440 1.55 0.0015 0.66 B 10−12 344 79 79 × 10

1.9 0.1370 1.55 0.01 0.82 B 10−10 28 267 127 × 10

0.1400 1.55 0.01 0.78 B 10−10 41 214 104 × 10

0.1420 1.55 0.008 0.72 B 10−10 66 324 148 × 10

0.1430 1.55 0.005 0.77 B 10−10 102 302 –

0.1435 1.55 0.00333 0.79 B 10−11 159 170 –

2.0 0.1420 1.0 0.01 0.87 B 10−10 29 100 50 × 10

0.1450 1.0 0.008 0.91 B 10−10 42 100 50 × 10

0.1480 1.0 0.00625 0.86 B 10−10 81 100 50 × 10

2.0 0.1300 1.505 0.01 0.90 B 10−10 21 100 –

0.1370 1.505 0.008 0.86 B 10−10 47 90 –

0.1388 1.505 0.008 0.78 B 10−10 79 90 –

2.0 0.1300 1.54 0.008 0.93 M 10−10 42 201 100 × 5

0.1340 1.529 0.008 0.90 M 10−10 62 200 100 × 10

0.1370 1.52 0.008 0.87 M/B 10−10 102/50 200 102 × 5

0.1388 1.515 0.00625 0.84 M/B 10−10 181/84 200 105 × 5
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APPENDIX B: HADRON MASSES

In this appendix we assemble the results of our hadron mass measurements. We quote
numbers for pseudo scalar and vector mesons, nucleons and ∆ baryons together with mass
ratios against vector mesons. Additionally we quote numbers for the bare quark mass based
on the axial Ward identity defined by

mqa = −mPSa lim
t→∞

∑

~x〈A4(~x, t)P 〉
∑

~x〈P (~x, t)P 〉 , (B1)

where A4 is the local axial current and P is the pseudo scalar density. Masses are extracted
with an uncorrelated fit to the propagator and the errors are determined with the jackknife
method with bin size 5.

TABLE VII. PW action combination: AWI quark mass and meson masses.

β K mqa mPSa mVa mPS/mV

4.8 0.1846 0.13400(68) 0.9350(9) 1.1276(18) 0.8291(12)

0.1874 0.09269(80) 0.7918(13) 1.0263(25) 0.7715(17)

0.1891 0.06523(70) 0.6716(16) 0.9559(45) 0.7026(32)

5.0 0.1779 0.13464(91) 0.9182(10) 1.0859(17) 0.8456(12)

0.1798 0.09652(88) 0.7829(14) 0.9863(23) 0.7938(18)

0.1811 0.0610(12) 0.6254(32) 0.8753(38) 0.7145(42)

TABLE VIII. RW action combination: AWI quark mass and meson masses.

β K mqa mPSa mVa mPS/mV

1.9 0.1632 0.1972(15) 1.0557(11) 1.1743(16) 0.8990(9)

0.1688 0.0977(13) 0.7525(19) 0.9377(35) 0.8025(26)

0.1713 0.05281(84) 0.5469(21) 0.7935(52) 0.6892(43)

2.0 0.1583 0.1761(11) 0.9551(12) 1.0631(17) 0.8984(90)

0.1623 0.10021(88) 0.7177(14) 0.8671(27) 0.8277(20)

0.1644 0.06010(61) 0.5475(16) 0.7406(27) 0.7394(26)
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TABLE IX. PC action combination: AWI quark mass and meson masses.

β K mqa mPSa mVa mPS/mV

5.0tree 0.1590 0.2029(17) 1.1105(10) 1.3452(36) 0.8256(21)

0.1610 0.1509(17) 0.9641(28) 1.2193(69) 0.7907(38)

0.1630 0.0956(20) 0.7740(22) 1.0865(81) 0.7124(60)

5.0MF 0.1415 0.2211(17) 1.1970(18) 1.4769(44) 0.8104(26)

0.1441 0.1574(15) 0.9961(19) 1.3156(65) 0.7571(36)

0.1455 0.1176(15) 0.8588(42) 1.2024(99) 0.7143(44)

5.2 0.1390 0.1855(24) 1.0161(27) 1.2100(48) 0.8398(20)

0.1410 0.1160(17) 0.7662(43) 0.9654(72) 0.7937(30)

0.1420 0.0646(24) 0.5553(55) 0.7674(93) 0.7236(76)

5.25 0.1390 0.1435(19) 0.8479(30) 1.0155(42) 0.8350(26)

0.1410 0.0731(17) 0.5532(42) 0.7296(91) 0.7581(57)
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TABLE X. RC action combination: AWI quark mass and meson masses. The run marked

with (*) is on the 163×32 lattice.

β K mqa mPSa mVa mPS/mV

1.9∗ 0.1370 0.2428(10) 1.1926(11) 1.4121(31) 0.8446(15)

0.1400 0.1517(10) 0.9321(11) 1.1961(36) 0.7793(19)

0.1420 0.08834(88) 0.6992(19) 1.0134(60) 0.6899(33)

0.1430 0.05530(62) 0.5414(18) 0.8861(71) 0.6110(44)

0.1435 0.03484(75) 0.4338(20) 0.7967(68) 0.5445(50)

0.1440 0.0156(15) 0.2906(41) 0.706(15) 0.4115(96)

1.9 0.1370 0.2440(13) 1.1918(12) 1.4091(28) 0.8458(17)

0.1400 0.1547(10) 0.9334(17) 1.2033(39) 0.7757(18)

0.1420 0.08975(96) 0.6983(18) 1.0149(45) 0.6880(31)

0.1430 0.05278(77) 0.5337(24) 0.8902(53) 0.5995(38)

0.1435 0.0374(17) 0.4368(30) 0.802(10) 0.5448(82)

2.0tree 0.1420 0.2303(14) 1.0888(22) 1.2403(33) 0.8779(15)

0.1450 0.1519(13) 0.8645(28) 1.0415(44) 0.8300(21)

0.1480 0.0713(16) 0.5730(24) 0.8064(79) 0.7105(59)

2.0pMF 0.1300 0.3313(18) 1.3358(21) 1.4682(33) 0.9098(11)

0.1370 0.1305(10) 0.7784(25) 0.9801(47) 0.7942(31)

0.1388 0.0665(13) 0.5489(38) 0.773(11) 0.7098(77)

2.0MF 0.1300 0.3158(10) 1.2971(11) 1.4377(22) 0.9022(11)

0.1340 0.2079(10) 1.0137(17) 1.1759(27) 0.8620(16)

0.1370 0.1190(10) 0.7435(17) 0.9400(44) 0.7910(32)

0.1388 0.0671(10) 0.5416(24) 0.7741(71) 0.6997(56)

TABLE XI. PW action combination: baryon masses.

β K mNa m∆a mN/mV m∆/mV

4.8 0.1846 2.009(12) 2.074(15) 1.782(11) 1.839(13)

0.1874 1.817(18) 1.912(23) 1.771(18) 1.863(23)

0.1891 1.647(20) 1.848(32) 1.723(22) 1.933(36)

5.0 0.1779 1.894(12) 1.976(17) 1.744(11) 1.819(16)

0.1798 1.668(15) 1.775(13) 1.691(14) 1.799(12)

0.1811 1.437(17) 1.559(18) 1.642(20) 1.781(19)
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TABLE XII. RW action combination: baryon masses.

β K mNa m∆a mN/mV m∆/mV

1.9 0.1632 1.997(14) 2.044(15) 1.700(12) 1.740(13)

0.1688 1.548(15) 1.650(21) 1.651(13) 1.760(20)

0.1713 1.2643(88) 1.417(17) 1.593(12) 1.786(19)

2.0 0.1583 1.7589(57) 1.8150(77) 1.6545(48) 1.7073(62)

0.1623 1.4214(77) 1.5008(90) 1.6392(80) 1.7308(84)

0.1644 1.1752(80) 1.281(11) 1.587(10) 1.729(14)

TABLE XIII. PC action combination: baryon masses.

β K mNa m∆a mN/mV m∆/mV

5.0tree 0.1590 2.203(25) 2.358(30) 1.638(20) 1.753(23)

0.1610 1.982(24) 2.110(30) 1.625(13) 1.730(18)

0.1630 1.748(22) 1.868(44) 1.609(21) 1.719(40)

5.0MF 0.1415 2.343(24) 2.501(28) 1.586(16) 1.693(17)

0.1441 2.041(20) 2.243(27) 1.551(14) 1.705(18)

0.1455 1.851(21) 1.994(31) 1.539(15) 1.659(24)

5.2 0.1390 1.864(13) 1.980(16) 1.5408(88) 1.637(10)

0.1410 1.481(12) 1.582(17) 1.5341(95) 1.639(12)

0.1420 1.163(17) 1.241(21) 1.515(16) 1.617(16)

5.25 0.1390 1.5509(98) 1.638(14) 1.5273(65) 1.6134(93)

0.1410 1.111(13) 1.212(19) 1.5221(97) 1.661(17)
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TABLE XIV. RC action combination: baryon masses. The run marked with (*) is on the

163×32 lattice.

β K mNa m∆a mN/mV m∆/mV

1.9∗ 0.1370 2.195(10) 2.296(15) 1.5547(66) 1.6263(97)

0.1400 1.845(10) 1.978(13) 1.5428(64) 1.6541(92)

0.1420 1.494(12) 1.662(17) 1.474(11) 1.640(17)

0.1430 1.283(13) 1.501(17) 1.448(15) 1.694(19)

0.1435 1.154(12) 1.368(24) 1.448(19) 1.717(28)

0.1440 0.972(25) 1.171(32) 1.376(29) 1.658(33)

1.9 0.1370 2.2172(91) 2.358(20) 1.5735(61) 1.673(14)

0.1400 1.8573(95) 2.009(12) 1.5434(77) 1.670(11)

0.1420 1.5195(78) 1.712(11) 1.4972(76) 1.687(11)

0.1430 1.274(11) 1.486(13) 1.431(13) 1.669(14)

0.1435 1.173(22) 1.406(39) 1.463(28) 1.754(43)

2.0tree 0.1420 1.9605(86) 2.0646(90) 1.5807(67) 1.6647(60)

0.1450 1.6293(87) 1.733(13) 1.5644(60) 1.6644(91)

0.1480 1.197(15) 1.382(25) 1.485(18) 1.714(28)

2.0pMF 0.1300 2.286(10) 2.353(12) 1.5569(48) 1.6029(61)

0.1370 1.4918(78) 1.622(14) 1.5220(77) 1.655(10)

0.1388 1.150(16) 1.302(26) 1.487(22) 1.684(32)

2.0MF 0.1300 2.2242(46) 2.3057(61) 1.5471(27) 1.6038(37)

0.1340 1.8185(53) 1.929(12) 1.5465(42) 1.6405(92)

0.1370 1.419(10) 1.521(15) 1.5096(95) 1.618(13)

0.1388 1.153(12) 1.308(19) 1.489(15) 1.689(20)
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APPENDIX C: STRING TENSION

TABLE XV. Results of string tension σ in lattice units. The quoted error of σ includes the

estimate of the systematic error described in Sec.V B. We also show the fitting range rmin–rmax.

The run marked with (*) is on the 163×32 lattice.

action β K σ rmin rmax

PW 5.0 0.1779 0.324(38) 2
√

2–2
√

3 5

0.1798 0.307(27) 2
√

2–2
√

3 5

0.1811 0.335(11) 2
√

2–2
√

3 5

RW 1.9 0.1688 0.2980(53) 2
√

2–2
√

3 6

2.0 0.1583 0.2678(60) 2
√

2–2
√

3 6

0.1623 0.2143(42) 2
√

2–2
√

3 6

0.1644 0.1864(42)) 2
√

2–2
√

3 6

PCMF 5.0 0.1415 0.338(54)
√

6–3 5

0.1441 0.317(35)
√

6–3 5

0.1455 0.323(37)
√

6–3 5

5.2 0.1390 0.2192(90) 2
√

2–2
√

3 6

0.1410 0.1588(50) 2
√

2–2
√

3 6

0.1420 0.1255(39) 2
√

2–2
√

3 6

5.25 0.1390 0.1453(59) 2
√

2–2
√

3 6

0.1410 0.0969(34) 2
√

2–2
√

3 6

RCpMF 1.9 0.1370 0.3243(87) 2
√

2–3 5

0.1400 0.2750(75) 2
√

2–3 5

0.1420 0.2465(46) 2
√

2–3 5

RCpMF 1.9∗ 0.1420 0.2375(60) 2
√

2–2
√

3 8

0.1430 0.2094(51) 2
√

2–2
√

3 8

0.1440 0.1755(57) 2
√

2–2
√

3 3
√

5

RCtree 2.0 0.1420 0.2583(81) 2
√

2–2
√

3 6

0.1450 0.2097(47) 2
√

2–2
√

3 6

0.1480 0.1642(53) 2
√

2–2
√

3 6

RCMF 2.0 0.1300 0.2147(57) 2
√

2–2
√

3 6

0.1340 0.1832(48) 2
√

2–2
√

3 6

0.1370 0.1506(38) 2
√

2–2
√

3 6

0.1370 0.1251(35) 2
√

2–2
√

3 6
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FIG. 1. Example of effective mass plots for pseudo scalar, vector, nucleon and ∆ on a 123×32

lattice. Circles are effective masses where all quark propagators have point sources (PP or PPP).

For squares all quark propagators have smeared sources (SS or SSS) and triangles are for mixed

combinations of sources (PS, PPS or PSS). Solid lines denote the results from mass fits to SS or

SSS correlators. Dashed lines show the one standard deviation error band determined by jackknife

analysis.
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FIG. 2. Effective masses of the static quark potential for the optimum smearing at r = 3a for

four action combinations.
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Ω(1672)/φ(1020).

28



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
mVa  (@ mPS/mV=0.8)

1.5

1.6

1.7

1.8

m
N
/m

V
  (

@
 m

P
S
/m

V
=

0.
8)

Ono formula
PW 
RW 
PC CSW=MF
PC CSW=1.0
RC CSW=MF
RC CSW=pMF
RC CSW=pMF 16

3

RC CSW=1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
mVa  (@ mPS/mV=0.8)

1.6

1.7

1.8

m
∆/

m
V
  (

@
 m

P
S
/m

V
=

0.
8)

Ono formula
PW 
RW 
PC CSW=MF
PC CSW=1.0
RC CSW=MF
RC CSW=pMF
RC CSW=pMF 16

3

RC CSW=1.0

FIG. 4. Scaling behavior of mN/mV and m∆/mV at fixed mPS/mV = 0.8 as function of mVa.

29



0.0 2.0 4.0 6.0 8.0
r  [GeV

−1
]

0.0

1.0

2.0

3.0

V
(r

) 
 [G

eV
]

PW,  12
3
x32,  β=5.0,  K=0.1798

(1,0,0)
(1,1,0)
(2,1,0)
(1,1,1)
(2,1,1)
(2,2,1)

0.0 2.0 4.0 6.0 8.0
r  [GeV

−1
]

0.0

1.0

2.0

3.0

V
(r

) 
 [G

eV
]

RW,  12
3
x32,  β=2.0,  K=0.1688

(1,0,0)
(1,1,0)
(2,1,0)
(1,1,1)
(2,1,1)
(2,2,1)

0.0 2.0 4.0 6.0 8.0
r  [GeV

−1
]

0.0

1.0

2.0

3.0

V
(r

) 
 [G

eV
]

PCMF,  12
3
x32,  β=5.0,  K=0.1441

(1,0,0)
(1,1,0)
(2,1,0)
(1,1,1)
(2,1,1)
(2,2,1)

0.0 2.0 4.0 6.0 8.0
r  [GeV

−1
]

0.0

1.0

2.0

3.0

V
(r

) 
 [G

eV
]

RCpMF,  12
3
x32,  β=1.9,  K=0.1400

(1,0,0)
(1,1,0)
(2,1,0)
(1,1,1)
(2,1,1)
(2,2,1)

FIG. 5. Static quark potential for the four action combinations at mPS/mV ≃ 0.8 on the

123×32 lattice with a lattice spacing a ≈ 1GeV−1. Scales are set by the lattice spacing determined

from the string tension. Different symbols correspond to the potential data measured in different

spatial directions along the vector indicated in the figure.
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FIG. 8. Chiral extrapolation of hadron masses as function of (mPSa)2 for the RCpMF action

at β = 1.9. Open symbols are results obtained on the 123×32 lattice whereas filled symbols are

from the 163×32 lattice. Lines are fits to the results for the larger volume.
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FIG. 9. mN/mV and m∆/mV as function of (mPS/mV)2 for the two runs with the RCpMF

action at β = 1.9.
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FIG. 10. Static quark potential on the 163 × 32 lattice at the lightest sea quark mass

mPS/mV ≈ 0.4. The scale is set by aρ in the chiral limit.

34



0.0 1.0 2.0
r  [fm]

0.0

0.5

1.0

C
(r

) 

quenched QCD
full QCD

FIG. 11. Overlap function C(R) for full and quenched QCD as a function of r. Filled symbols

are the data in full QCD on the 163×32 lattice with the RCpMF action at β = 1.9 and K = 0.1440.

Open symbols represent data in quenched QCD on a 93×18 lattice with the RG improved gauge

action at β = 2.1508 (a−1 ≈ 1 GeV).
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