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Calculation of nonleptonic kaon decay amplitudes fromK\p matrix elements
in quenched domain-wall QCD
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We explore the application of the domain wall fermion formalism of lattice QCD to calculate theK→pp
decay amplitudes in terms of theK1→p1 andK0→0 hadronic matrix elements through relations derived in
chiral perturbation theory. Numerical simulations are carried out in quenched QCD using the domain-wall
fermion action for quarks and a renormalization group-improved gauge action for gluons on a 163332316
and 243332316 lattice atb52.6 corresponding to the lattice spacing 1/a'2 GeV. Quark loop contractions
which appear in Penguin diagrams are calculated by the random noise method, and theDI 51/2 matrix
elements which require subtractions with the quark loop contractions are obtained with a statistical accuracy of
about 10%. We investigate the chiral properties required of theK1→p1 matrix elements. Matching the lattice
matrix elements to those in the continuum atm51/a using the perturbative renormalization factor to one loop
order, and running to the scalem5mc51.3 GeV with the renormalization group forNf53 flavors, we calcu-
late all the matrix elements needed for the decay amplitudes. With these matrix elements, theDI 53/2 decay
amplitude ReA2 shows a good agreement with experiment after an extrapolation to the chiral limit. TheDI
51/2 amplitude ReA0, on the other hand, is about 50–60 % of the experimental one even after chiral
extrapolation. In view of the insufficient enhancement of theDI 51/2 contribution, we employ the experimen-
tal values for the real parts of the decay amplitudes in our calculation of«8/«. The central values of our result
indicate that theDI 53/2 contribution is larger than theDI 51/2 contribution so that«8/« is negative and has
a magnitude of order 1024. We discuss in detail possible systematic uncertainties, which seem too large for a
definite conclusion on the value of«8/«.
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I. INTRODUCTION

Understanding nonleptonic weak processes of the kao
particular, theK→pp decay, represents one of the keys
establishing the standard model and probing the physics
yond it. This decay exhibits two significant phenomen
namely, theDI 51/2 rule, which is a large enhancement
the decay mode withDI 51/2 relative to that withDI
53/2, and directCP violation @1,2#, which is naturally built
in the model for three or more families of quarks@3#. While
both of these phenomena are well established by experim
theoretical calculations with sufficient reliability that allo
examinations of the standard model predictions against
experimental results are yet to be made. The main reaso
this status is the difficulty in calculating the hadronic mat

*Present address: RIKEN BNL Research Center, Brookhaven
tional Laboratory, Upton, NY 11973, USA.

†Present address: Universitaet Bielefeld, Fakultat fuer Phy
Universitaetsstrasse 25, 33615 Bielefeld, Germany.

‡Present address: NIC/DESY Zeuthen, Platanenallee 6, D-15
Zeuthen, Germany.
0556-2821/2003/68~1!/014501~36!/$20.00 68 0145
in

e-
:

nt,

e
for

elements of local operators which appear in the effect
weak Hamiltonian for the decay amplitudes. At the ene
scales relevant for these operators, analytic treatments
as the 1/Nc expansion are not sufficiently powerful to rel
ably evaluate the effect of the strong interactions in the m
trix elements. In fact, theDI 51/2 rule, which is supposed to
arise from QCD effects, has not been quantitatively e
plained by analytic methods so far. With these backgroun
Monte Carlo simulations of lattice QCD provide a hopef
method for the calculation of the decay amplitudes.

A natural framework for theoretical calculations of th
decay amplitudes is provided by the effective weak Ham
tonianHW , which follows from an operator product expan
sion ~OPE! of weak currents@4#:

HW5
GF

A2
VusVud* (

i
Wi~m!Qi~m!. ~1.1!

Here the Wilson coefficientsWi contain the effects of the
energy scales higher thanm so that they can be calculate
perturbatively. Nonperturbative QCD effects are contained

a-

k,

38
©2003 The American Physical Society01-1



a

es
ice

al

r
e

-
tio

t
uf
m
a

y

n,

n
e
tw

he
s a

ys
on

e
us
or
c
p

he
ment

s for
c-
n

ard
nt
on

ice
o-
n-
ex-

oint

at
n

l-
on
lved

of
ich
n-
de-
ed.
ere

he

e
ver
-

rge
of

the
f
a-

f
ies
lat-
-

sm
p-
ll

-

NOAKI et al. PHYSICAL REVIEW D 68, 014501 ~2003!
the matrix elements of the local operatorsQi , and the cal-
culation of these matrix elements, often called hadronic m
trix elements~HME!, is the task of lattice QCD@5–8#. Our
aim in this paper is to report on our attempt to obtain th
matrix elements through numerical simulations of latt
QCD using the domain wall formalism@9–11# for quarks.

The amplitudes forK→pp decay withDI 51/2 and 3/2
are written as the matrix elements ofHW ,

^~pp! I uHWuK0&[AIe
id I, ~1.2!

where the subscriptI 50 or 2 denotes the isospin of the fin
state corresponding toDI 51/2 or 3/2, andd I is the phase
shift from final state interactionspp→pp caused by QCD
effects. TheDI 51/2 rule, which is one of the focuses of ou
calculation, is described by the ratio of isospin amplitud
AI :

v21[
ReA0

ReA2
'22.2. ~1.3!

Another focus is the parameter«8/« of directCP violation in
the standard model. The recent experimental results are

«8

«
[

v

A2u«u
F Im A2

ReA2
2

Im A0

ReA0
G

5H ~20.762.8!31024 ~KTeV!@1#,

~15.362.6!31024 ~NA48!@2#.
~1.4!

In the numerical simulation of lattice QCD, matrix ele
ments are generally extracted from Euclidean correla
functions of the relevant operators and those which create
initial and final states in their lowest energy levels. For s
ficiently large Euclidean time distances, excited states da
out and the matrix elements of the lowest energy states
left. In fact, the kaonB parameterBK has been successfull
obtained from the three-point correlation function ofK0 and
K̄0 and an insertion of theDS52 weak Hamiltonian@12#.
However, in the calculation of the four-point functio
^p(t2)p(t1)HW(tH)K(tK)&, necessary for theK→pp de-
cay, there is a severe limitation as pointed out by Maiani a
Testa@13#. They have shown that it is difficult to obtain th
matrix elements unless the momentum of each of the
pions in the final state is set to zero.

One of the ways to overcome the difficulty pursued in t
past is to calculate the matrix elements with the two pion
rest, allowing a nonzero energy transferDE52mp2mK at
the weak operator. This generally causes mixings of unph
cal lower dimension operators through renormalizati
which has to be removed.~See Ref.@8# and references
therein.! Furthermore, the unphysical amplitudes obtain
with DEÞ0 need to be extrapolated to physical ones by
of some effective theories such as chiral perturbation the
Due to these problems and numerical difficulties of extra
ing reasonable signals from four-point functions, this a
proach has not been successful for theDI 51/2 amplitude
despite many efforts over the years@14#. For theDI 53/2
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amplitude for which the operator mixing is absent, on t
other hand, a recent study has obtained a result in agree
with experiment@16#.

Several proposals have been presented over the year
extracting the physical amplitude from the four-point fun
tions @17–19#. Feasibility studies for implementing them i
practical simulations are yet to come, however.

In this paper we explore a method proposed by Bern
et al. @15# which is alternative to calculating the three-poi
function. In this method, which we shall call as reducti
method, chiral perturbation theory (xPT) is used to relate the
matrix elements forK→pp to those forK→p and K→0
~vacuum!, and the latter amplitudes are calculated in latt
QCD. Since this calculation involves only three- and tw
point correlation functions, the Maiani-Testa problem me
tioned above is avoided. Statistical fluctuations are also
pected to be diminished compared with the case of four-p
correlation functions.

Early attempts with this method@14# encountered large
statistical fluctuations in the correlation functions so th
meaningful results were difficult to obtain. For the Wilso
fermion action or itsO(a) improved version, there is an
added difficulty that the mixing of operators of wrong chira
ity caused by explicit chiral symmetry breaking of the acti
has to be removed. The mixing problem has been reso
only for theDI 53/2 operators so far@20–22#.

The first results on theDI 51/2 rule and«8/« calculated
with this method were recently reported@23# using the stag-
gered fermion action which keeps theU(1) subgroup of chi-
ral symmetry. In this work, however, a large dependence
the DI 53/2 amplitude on the meson mass was seen, wh
made the chiral extrapolation difficult. Moreover, large u
certainties due to perturbative renormalization factors
pending on the value of the matching point were report
Hence clear statements on the viability of the method w
difficult to make from this work.

In this paper we report on our attempt to apply t
domain-wall fermion formalism of lattice QCD@9–11# to the
calculation ofK→pp decay amplitudes in the context of th
reduction method. A major advantage of this approach o
the conventional fermion formalisms is that full chiral sym
metry can be expected to be realized for sufficiently la
lattice sizes in the fifth dimension. Good chiral property
one of theK→p matrix elements, equivalent to the kaonB
parameter, was observed in the pioneering application of
formalism@24#. Detailed investigations into the realization o
the chiral limit have been made in the quenched approxim
tion for the plaquette and a renormalization group~RG!-
improved gluon action@25–27#. It was found that the use o
RG-improved action leads to much better chiral propert
compared to the case of the plaquette action for similar
tice spacings@26#. This prompts us to adopt the RG
improved action in our simulation.

Another possible advantage of the domain wall formali
is O(a2) scaling violation from the fermion sector as o
posed toO(a) for the Wilson case. Indeed our domain wa
fermion calculation ofBK @28# exhibits only a small scaling
violation. The magnitude of violation is much smaller com
pared to the staggered fermion case@29# which is also ex-
1-2
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pected to beO(a2). An improved scaling behavior may b
enhanced with the use of the RG-improved gluon action

This paper is organized as follows. In Sec. II, we summ
rize the main points of thexPT reduction method. For th
construction of the formulas which relate the matrix e
ments forK→p and theK→pp decay amplitudes, the re
lations between the four quark operatorsQi andxPT opera-
tors are considered at tree level on the basis of ch
transformation properties. The necessity of chiral symme
on the lattice is emphasized. In Sec. III we summarize
details of our numerical simulation procedure. We disc
the form of lattice actions and the choice of an optimal se
simulation parameters from the point of view of chiral pro
erties. Some of the technical issues are also explained inc
ing renormalization of the four-quark operators and R
running of the matrix elements to the relevant energy sc
The numerical results are reported in Secs. IV and V. T
former contains results of hadronic matrix elements. In p
ticular, we show that the subset ofK→p matrix elements
which are expected to vanish in the chiral limit satisfy th
requirement. We then present the physical matrix eleme
and combine them with the Wilson coefficients, which a
already calculated perturbatively. This leads us to results
theDI 51/2 rule and«8/«. Our conclusions are given in Se
VI.

A preliminary report of the present work was presented
Ref. @30#. We refer to Refs.@31,32# for a similar attempt, and
Refs.@33,8# for reviews.

II. CHIRAL PERTURBATION THEORY
REDUCTION METHOD

A. Local operators

We carry out our analyses choosing the energy scalem in
the OPE for the weak Hamiltonian~1.1! equal to the charm
quark massmc51.3 GeV. In this case onlyu,d, and s
quarks appear in the local four-quark operators. Convent
ally these operators are written as

Q15@ s̄agm~12g5!ub#@ ūbgm~12g5!da#, ~2.1!

Q25@ s̄agm~12g5!ua#@ ūbgm~12g5!db#, ~2.2!

Q35@ s̄agm~12g5!da#(
q

@ q̄bgm~12g5!qb#, ~2.3!

Q45@ s̄agm~12g5!db#(
q

@ q̄bgm~12g5!qa#, ~2.4!

Q55@ s̄agm~12g5!da#(
q

@ q̄bgm~11g5!qb#, ~2.5!

Q65@ s̄agm~12g5!db#(
q

@ q̄bgm~11g5!qa#, ~2.6!

Q75
3

2
@ s̄agm~12g5!da#(

q
eq@ q̄bgm~11g5!qb#, ~2.7!
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Q85
3

2
@ s̄agm~12g5!db#(

q
eq@ q̄bgm~11g5!qa#, ~2.8!

Q95
3

2
@ s̄agm~12g5!da#(

q
eq@ q̄bgm~12g5!qb#, ~2.9!

Q105
3

2
@ s̄agm~12g5!db#(

q
eq@ q̄bgm~12g5!qa#, ~2.10!

where the indicesa,b denote color, and the summation ov
q appearing inQ3 to Q10 runs over the three light flavors
q5u,d,s, with the chargeeu52/3 anded5es521/3.

With the use of Fierz rearrangements, one can derive
relations,

Q45Q21Q32Q1 , ~2.11!

Q95
3

2
Q12

1

2
Q3 , ~2.12!

Q105
3

2
Q22

1

2
Q45Q22

1

2
Q31

1

2
Q1 . ~2.13!

HenceQ4 , Q9, andQ10 are not independent operators. W
emphasize that these relations do not hold in gen
d-dimensions where Fierz rearrangements cannot be use

In terms of the irreducible representations of the chi
SU(3)L ^ SU(3)R group,Qi ’s are classified as

Q1 ,Q2 ,Q9 ,Q10: ~27L,1R! % ~8L,1R!, ~2.14!

Q3 ,Q4 ,Q5 ,Q6: ~8L,1R!, ~2.15!

Q7 ,Q8: ~8L,8R!. ~2.16!

The operatorsQi( i 51, . . .,10) are invariant underCPS
symmetry, i.e., the product ofCP transformation andd↔s
interchange. A basis of operators which are irreducible un
chiral symmetry and invariant underCPSis given by

~8L,1R!:X15~ s̄d!L~ ūu!L2~ s̄u!L~ ūd!L , ~2.17!

~8L,1R!:X25~ s̄d!L@~ ūu!L12~ d̄d!L12~ s̄s!L#

1~ s̄u!L~ ūd!L , ~2.18!

~27L,1R!:X35~ s̄d!L@2~ ūu!L2~ d̄d!L2~ s̄s!L#

12~ s̄u!L~ ūd!L , ~2.19!

~8L,1R!:Y15~ s̄d!L@~ ūu!R1~ d̄d!R1~ s̄s!R#, Y1
c,
~2.20!

~8L,8R!:Y25~ s̄d!L@2~ ūu!R2~ d̄d!R2~ s̄s!R#, Y2
c,
~2.21!

where (s̄d)L5 s̄gm(12g5)d and (s̄d)R5 s̄gm(11g5)d. The
color and spinor indices are summed within each curr
except forYi

c for which the color summation is taken acro
1-3
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the two currents. WhileXi ’s have the Lorentz structure o
L ^ L, Yi ’s have that ofL ^ R. All the independent local op
erators are written as linear combinations of these opera

Q15
1

2
X11

1

10
X21

1

5
X3 , ~2.22!

Q252
1

2
X11

1

10
X21

1

5
X3 , ~2.23!

Q35
1

2
X11

1

2
X2 , ~2.24!

Q55Y1 , ~2.25!

Q65Y1
c, ~2.26!

Q75
1

2
Y2 , ~2.27!

Q85
1

2
Y2

c . ~2.28!

The expressions for the dependent operatorsQ4,9,10are easily
derived using Eqs.~2.11!–~2.13!.

The final states in theK→pp decay can have either isos
pin I 50 or 2, i.e.,DI 51/2 or 3/2. HenceQi ’s are decom-
posed as

Qi5Qi
(0)1Qi

(2) . ~2.29!

This decomposition is accomplished by constructing ano
basis of irreducible representations with the intrinsic isos
I. The details are described in Appendix A.

B. Chiral perturbation theory

In the low energy region of strong interactions, the oc
of pseudoscalar mesonsp0,p6,K0,K̄0,K6,h play a princi-
pal role as the Nambu-Goldstone bosons of spontaneo
broken chiral symmetrySU(3)L ^ SU(3)R→SU(3)V . In
chiral perturbation theory (xPT) as a low energy effective
theory of QCD, these Nambu-Goldstone boson fields
used to parametrize the broken axial symmetry, and we
lect them in a 333 matrix,

S5~eiF/ f !, ~2.30!

F5(
a

lafa

53
1

A2
p01

1

A6
h0 p1 K1

p2
2

1

A2
p01

1

A6
h0 K0

K2 K0 2
2

A6
h0

4 ,

~2.31!
01450
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wherela are Gell-Mann matrices, andf is the decay con-
stant. Under SU(3)L ^ SU(3)R chiral transformation,S
PSU(3) transforms as

S→gRSgL
† , S†→gLS†gR

† . ~2.32!

The chiral Lagrangian to the lowest order, with the addition
mass term, is given by

Lx5
f 2

4
tr~]mS†]mS!2

f 2

4
tr@M ~S†1S!#, ~2.33!

whereM5(2B0)•diag@mu ,md ,ms# denotes the quark mas
matrix andB0 is a parameter. In terms ofS, the left- and
right-handed currents are given by

~Lm! j
i 5

i

2
f 2~]mS†

•S! i
j , ~Rm! j

i 5
i

2
f 2~]mS•S†! i

j , ~2.34!

respectively.
The idea of thexPT reduction method by Bernardet al.

@15# is to relate the hadronic matrix elements forK→pp
decays to those forK→p andK→0 ~vacuum! usingxPT,
and calculate the latter through numerical simulations of
tice QCD. As the first step of thexPT reduction method, we
construct operators inxPT which correspond toXi ’s andYi ’s
in QCD, i.e., those which transform under the same irred
ible representations ofSU(3)L ^ SU(3)R and invariant under
CPS symmetry. In the following, we discuss the case
$(27L,1R),(8L,1R)% and (8L,8R) representations separately.

C. Reduction method for „27L ,1R… and „8L ,1R… operators

For the irreducible representations (27L,1R) and (8L,1R),
which coverQ1 , . . . ,Q6 ,Q9 and Q10, the product of left-
handed currents (Lm) j

i (Lm) l
k is one of the candidates for th

operator to the lowest order inxPT. An explicit form of the
operators, which are alsoCPSinvariant, is given by

~8L,1R!:A5~Lm!3
i ~Lm! i

2 , ~2.35!

~27L,1R!:C53~Lm!3
2~Lm!1

112~Lm!3
1~Lm!1

2 , ~2.36!

whereA corresponds toX1 or X2, while C is the counterpart
of X3. The latter is decomposed into two parts withI 50 and
2 in the same way asX3 ~see Appendix A!:

C5
1

3
C(0)1

5

3
C(2), ~2.37!

where

C(0)5~Lm!1
1~Lm!3

21~Lm!1
2~Lm!3

112~Lm!2
2~Lm!3

2

23~Lm!3
3~Lm!3

2 , ~2.38!

C(2)5~Lm!1
1~Lm!3

21~Lm!1
2~Lm!3

12~Lm!2
2~Lm!3

2 . ~2.39!

In addition to the operators above, there is anot
(8L,1R) operator which is allowed fromCPSinvariance:
1-4
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~8L,1R! : B5~SM1MS†!3
2

5B0~ms1md!~S1S†!3
2

2B0~ms2md!~S2S†!3
2

52 i
4

f 2
]mFms1md

ms2md
~Vm!3

22
ms2md

ms1md
~Am!3

2G ,
~2.40!

whereVm5(Rm1Lm)/2 andAm5(Rm2Lm)/2 are vector and
axial vector currents withLm andRm defined in Eq.~2.34!.
The equation of motion forS is used to derive the third line
from the second line in Eq.~2.40!.

The counterpart of this operator for QCD can be obtain
easily bySU(3)L ^ SU(3)R andCPSsymmetry,

Qsub5~ms1md!s̄d2~ms2md!s̄g5d

5]mFms1md

ms2md
s̄gmd2

ms2md

ms1md
s̄gmg5dG , ~2.41!

where the equation of motion fors andd quark fields is used
For physicalK→pp processes,Qsub, and henceB, do

not contribute since these operators are a total derivativ
local operators and the energy-momentum injected at
weak operator vanishes. However, for the unphysical p
cesses such asK→p andK→0 ~vacuum! which we are to
calculate on the lattice, the matrix elements ofQsub or B do
not vanish due to a finite energy-momentum transfer forms
Þmd . Therefore a mixing betweenQi ’s andQsub in K→p
matrix elements exists which should be removed. We sho
also note that this mixing inevitably arises in the case
md5ms , as is often chosen in numerical simulations on
lattice, sinceQsub is not a total divergence for this case.

We assume that there are linear relations in the sens
matrix elements between the local operators$Qi( i
51, . . .,6,9,10),Qsub% and $A,B,C% which belong to the
same representations, i.e.,$(27L,1R),(8L,1R)%:

Qi
(0)5aiA1biB1ci

(0)C(0), ~2.42!

Qsub5rB, ~2.43!

Qi
(2)5ci

(2)C(2), ~2.44!

where the coefficientsai ,bi ,ci
(I ) , andr are unknown param

eters. Taking the matrix elements of the two sides of E
~2.42!, ~2.43! and ~2.44! for K0→0, K1→p1, and K0

→p1p2, one obtains

^0uQi
(0)2a iQsubuK0&50, ~2.45!

^p1uQi
(0)2a iQsubuK1&5

2pK•pp

f 2
~ai2ci

(0)!1O~p4!,

~2.46!
01450
d
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e
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^p1uQi
(2)uK1&52

2pK•pp

f 2
ci

(2)1O~p4!, ~2.47!

^p1p2uQi
(0)uK0&5

A2

f 3
~mK

2 2mp
2 !~ai2ci

(0)!1O~p4!,

~2.48!

^p1p2uQi
(2)uK0&52

A2

f 3
~mK

2 2mp
2 !ci

(2)1O~p4!,

~2.49!

wherea i[bi /r in Eqs.~2.45! and~2.46!, pK andpp are the
momenta of kaon and pion, respectively, andp denotes either
of them. In Eqs.~2.48! and~2.49!, mK andmp are the physi-
cal meson masses. After eliminatingai2ci

(0) from Eqs.
~2.46! and ~2.48!, we arrive at the relation betwee
^p1p2uQi

(0)uK0& and ^p1uQi
(0)uK1& in the I 50 case:

^p1p2uQi
(0)uK0&5

~mK
2 2mp

2 !

A2 f ~pK•pp!
^p1uQi

(0)2a iQsubuK1&

1O~p2!, ~2.50!

a i5
^0uQi

(0)uK0&

^0uQsubuK0&
, i 51, . . .,6,9,10.

~2.51!

TheK→0 ~vacuum! matrix elements are used only to dete
mine thea i ’s which govern the subtraction of unphysic
contributions originating fromQsub. The relation for theI
52 case is derived in the same way from Eqs.~2.47! and
~2.49!:

^p1p2uQi
(2)uK0&5

~mK
2 2mp

2 !

A2 f ~pK•pp!
^p1uQi

(2)uK1&

1O~p2!, i 51, . . .,6,9,10.

~2.52!

Let us note that the essential point of the reduct
method is a calculation of the parametersai2ci

(0) and ci
(2)

from K→p three-point correlation functions in numeric
simulations of lattice QCD. Since these parameters appea
Eqs. ~2.46! and ~2.47! as the coefficients ofpK•pp , their
values are sensitive to the chiral properties of theK→p
matrix elements on the left-hand side of these equatio
HenceSU(3)L ^ SU(3)R chiral symmetry on the lattice is a
indispensable requirement for a successful calculation u
this method.

D. Reduction method for „8L ,8R… operators

In order to construct (8L,8R) operators inxPT, we ob-
serve that (S) j

i (S†) l
k transforms as (8R,8L) @34–36# where

( j ,k) and (l ,i ) correspond to 8L and 8R , respectively. One
finds aCPSinvariant operator
1-5
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D53S3
1~S†!1

2 ~2.53!

as the counterpart ofY2. The decomposition into theI 50
and 2 part is given by

D5D(0)1D(2), ~2.54!

D(0)52S3
1~S†!1

22S3
2~S†!1

11S3
2~S†!2

2 , ~2.55!

D(2)5S3
1~S†!1

21S3
2~S†!1

12S3
2~S†!2

2 . ~2.56!

Assuming linear relations between$Q7
(I ) ,Q8

(I )% andD(I )’s,

Qi
(0)5di

(0)D(0), Qi
(2)5di

(2)D(2) ~ i 57,8!, ~2.57!

with the unknown parametersdi
(I )’s, we take the matrix ele-

ments of the two sides forK→pp andK→p to obtain

^p1uQi
(0)uK1&54di

(0)/ f 21O~p2!,

^p1p2uQi
(0)uK0&522A2di

(0)/ f 31O~p2!, ~2.58!

^p1uQi
(2)uK1&52di

(2)/ f 21O~p2!,

^p1p2uQi
(2)uK0&52A2di

(2)/ f 31O~p2!. ~2.59!

These relations lead to the reduction formulas for (8L,8R)
operators, namely,

^p1p2uQi
(I )uK0&52

1

A2 f
^p1uQi

(I )uK1&1O~p2!, i 57,8

~2.60!

which is common for theI 50 and 2 components.

III. DETAILS OF SIMULATIONS

A. Lattice actions

The RG-improved gauge action we use is defined by

Sgluon5
1

g2 H c0 (
plaquette

Tr Upl1c1 (
132 rectangle

Tr U rtgJ ,

~3.1!

where the coefficients of the plaquette and 132 Wilson loop
terms take the valuesc053.648 andc1520.331@37#. This
action is expected to lead to a faster approach of phys
observables to the continuum limit than with the unimprov
plaquette gauge action.

In order to satisfy the requirement of chiral symmetry
the lattice, we use the domain-wall formalism@9# for the
quark action. Adopting the Shamir’s formulation@10,11#, the
action is written as

SF52 (
xy,st

c̄s~x!Dst
DW~x,y!c t~y!, ~3.2!

DDW5DW1D5, ~3.3!
01450
al
d

Dst
W~x,y!5(

m
F r 2gm

2a
Um~x!d~x1m̂2y!

1
r 1gm

2a
Um

† ~x2m̂ !d~x2m̂2y!Gdst

1
M24r

a
d~x2y!dst , ~3.4!

Dst
5 ~x,y!5F12g5

2a5
ds11,t1

11g5

2a5
ds21,tGd~x2y!

2
1

a5
d~x2y!dst , ~3.5!

whereDW is the ordinary Wilson-Dirac operator in four d
mensions,M is the domain-wall height which has to be a
justed to ensure the existence of chiral modes, e.g., 0,M
,2 at tree level, andr is the Wilson parameter which w
choose to be unity. The operatorD5 is the extended part in
the fifth direction in which the coordinate is bounded by
<s,t<N5.

Using the chirality projection operators

PL5
12g5

2
, PR5

11g5

2
, ~3.6!

quark fields are defined by

q~x!5PLc1~x!1PRcN5
~x!, ~3.7!

q̄~x!5c̄N5
~x!PL1c̄1~x!PR , ~3.8!

and their massmf is introduced as a parameter in the boun
ary condition in the fifth direction:

cN511~x!5mfac1~x!, c0~x!5mfacN5
~x!. ~3.9!

The operatorsQi and Qsub in our numerical simulation are
constructed fromq andq̄ only, by identifyingu, d, ands with
qu , qd , andqs .

Axial vector transformations in five dimensions are d
fined as

dcs~x!5 iQ~s!laes
a~x!cs~x!,

dc̄s~x!52 i c̄s~x!Q~s!laes
a~x!, ~3.10!

whereQ(s)5sign(2N52s11) andes
a(x) is an infinitesimal

parameter. This definition leads to the variation

dq~x!5 ig5laea~x!q~x!, ~3.11!

dq̄~x!5 i q̄~x!g5laea~x!, ~3.12!

in terms of quark fields, and the axial-vector current takes
form
1-6
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FIG. 1. ~Left! Anomalous quark massm5q as a function ofN5 in the mfa→0 limit for the RG-improved action. Filled~empty! circles
represent data at (b,M )5(2.2,1.7) on a 163(123)324 lattice. Filled squares are those at (b,M )5(2.6,1.8) on a 163332 lattice. For the
latter, data at four largerN5 are used for fits with the functionsae2jN5 ~dotted line! and c1ae2jN5 ~solid line!. ~Right! Same for the
plaquette action at (b,M )5(5.65,1.7) and~6.0, 1.8!.
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a ~x![(

s51

N5

Q~s!
1

2
@c̄s~x!~12gm!Um~x!lacs~x1m̂ !

1c̄s~x1m̂ !~11gm!Um
† ~x!lacs~x!#. ~3.13!

Taking the divergence ofAm
a , one obtains

¹mAm
a ~x!52J5q

a ~x!12mfaPa ~3.14!

with

J5q
a ~x!5c̄N5/2~x!PLlacN5/211~x!

2c̄N5/211~x!PRlacN5/2~x! ~3.15!

and

Pa5q̄~x!lag5q~x!. ~3.16!

The axial vector currentAm
a does not conserve automatical

even in the chiral limitmf→0 due to the first termJ5q on the
right-hand side. Effects of this breaking term, however,
expected to vanish asN5→`. In practice it is necessary t
determine the value ofN5 for a given set of lattice param
eters and a type of gluon action, so that the chiral break
effect due to this term is acceptably small.

In Refs. @26,27#, the chiral property of the domain-wa
fermion was investigated in detail in the quenched numer
simulation. Defining an anomalous quark mass by@26#

m5qa[

^0u(
x

J5q
a ~x,t !Pb~0!u0&

^0u(
x

Pa~x,t !Pb~0!u0&

, ~3.17!
01450
e

g

al

the axial Ward-Takahashi identity~3.14! yields

¹mK (
x

Am
a ~x!Pb~0!L 52a~mf1m5q!K (

x
Pa~x!Pb~0!L .

~3.18!

In Fig. 1, we quote results ofm5q as a function ofN5 from
Refs. @25,26#. In the right panel data from the standa
plaquette gluon action fora21'1 GeV ~circles, b55.65)
and a21'2 GeV ~squares,b56.0) are summarized with
two types of exponential fits. The counterparts from the R
improved gluon action are found in the left panel, whereb
52.2 and 2.6 correspond toa21'1 and 2 GeV, respectively
The anomalous quark mass for the RG-improved action is
order of magnitude smaller than that for the plaquette ac
for both a21'1 and 2 GeV. This clearly demonstrates t
advantage of the use of RG-improved gluon action, wh
we therefore adopt in our work.

B. Simulation parameters

Our numerical simulations are carried out in the quench
approximation at the inverse gauge coupling ofb52.6.
From the string tensionAs5440 MeV @38–40#, this value
of b corresponds to

1/a51.94~7! GeV, ~3.19!

which we adopt in our analyses. If we use other quantit
such as the rho meson mass or the pion decay consta
determine the scale, the lattice spacing is different from
above value, due to the quenched ambiguity as well as
scaling violation. We do not include such an ambiguity ofa
in the systematic uncertainty of our results.
1-7
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Denoting the five-dimensional lattice size asNs
33Nt

3N5, we choose the fifth-dimensional length to beN5516
and the domain wall height of the quark action to beM
51.8. For these parameter choices the anomalous q
mass atb52.6 is given bym5q50.283(42) MeV@26#. We
expect this magnitude to be sufficiently small for viability
the xPT reduction formulas. Chiral properties of matrix el
ments will be discussed in detail in Sec. IV A.

To investigate the effect of finite spatial volumeV5Ns
3 ,

two sizes of lattices given byNs516 and 24 are examined
in both cases using the temporal sizeNt532.

We work with degenerate quark masses foru,d, and s
quarks, and denote the common bare quark mass asmf
5mu5md5ms . Matrix elements are evaluated for the ba
quark massesmfa50.02,0.03,0.04,0.05, and 0.06. Mass
and decay constants of the pseudoscalar meson calculat
the lattice, which are common for pion and kaon, are deno
asmM and f M .

Gauge configurations are generated by combining
sweep of the five-hit pseudo heat bath algorithm and f
overrelaxation sweeps, which we call an iteration. We s
200 iterations between configurations for measurements
Table I, the numbers of configurations used in our analy
are given.

We emphasize thatwe generate gauge configurations i
dependently for each value of mfa. This is practically fea-
sible since most of the computer time in our runs is spen
calculating quark propagators. A clear advantage is a
moval of correlations between data at different values ofmf ,
and hence a more reliable control of the chiral extrapolat
as a function ofmf or meson mass squaredmM

2 on the basis
of x2 fitting of data. For error analyses at eachmf a single
elimination jackknife estimation is employed throughout t
present work.

Table II showsmM
2 for both sizes of 163332 and 243

332. The intercepts inmf andmM
2 are obtained by taking a

linear extrapolation. Values ofmf in the limit of mM
2 →0 are

0.95~62! MeV and 1.09~31! MeV on 163332 and 243332
lattices, respectively. These values are larger than the v
m5q50.283(42) MeV atmf50. As pointed out in Ref.@26#,
the discrepancy between the direct measurement ofm5q and
the estimate from the pion mass is largely explained by fin
spatial size effects on the pion mass. We usemM

2 as a vari-
able in our chiral extrapolation throughout this paper. W
have checked that our results remain identical within e
mated statistical errors ifmf is used in chiral fits.

TABLE I. Number of gauge configurations, independently ge
erated for each value ofmfa, in our numerical simulation.

mfa 163332 243332

0.02 407 432
0.03 406 200
0.04 406 200
0.05 432 200
0.06 435 200
01450
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C. Calculation of matrix elements

In Fig. 2 we display the quark line diagrams of three- a
two-point correlation functions needed for our simulatio
Filled squares represent the weak operatorQi

(I ) or Qsub lo-
cated at the site (x,t). Crosses are meson operators. We
gauge configurations to the Coulomb gauge. A wall sou
for pion is placed att50 and that for kaon att5T[Nt
21. Quark propagators are solved by the conjugate grad
algorithm, imposing the Dirichlet boundary condition in tim
and the periodic boundary condition in space. The stopp
condition is given by

uu~D1m!•x2buu2,1029uubuu2, ~3.20!

whereb is the source vector,x is the solution vector, andD is
the lattice fermion operator. With this stopping condition
precision of better than 0.1% is achieved for arbitrary e
ments of three-point correlation functions.

The three-point correlation functions forK→p matrix el-
ements have the contractions of Figs. 2~a!, 2~b!, and 2~d!.
For calculating theI 50 amplitudeŝ p1uQi

(0)uK1&, both the
figure-eight contraction of 2~a! and the eye contraction o
2~b! are needed, while for the I 52 amplitudes
^p1uQi

(2)uK1& only the figure-eight contributes. Writing
O(t)5 1/V (xO(x,t), we extract the matrix elements from
calculation of the ratio of form

^0up1~T!Qi
(I )~ t !~K1!†~0!u0&

^0up1~T!A4~ t !u0&^0uA4~ t !~K1!†~0!u0&

.
T@t@1 ^p1uQi

(I )uK1&

^p1uA4u0&^0uA4uK1&
~3.21!

5
1

2mM
2 f M

2
3^p1uQi

(I )uK1&. ~3.22!

We note that a local currentAm(x)5q̄(x)gmg5q(x) is em-
ployed in the denominator rather than the conserved cur

- TABLE II. Lattice pseudoscalar meson mass squa
mM

2 @GeV2# at eachmfa. The x and y intercepts are obtained
through a linear chiral extrapolation. Physical scale of lattice sp
ing equals 1/a51.94 GeV determined byAs5440 MeV.

163332 243332

mfa mM
2 @GeV2# mfa mM

2 @GeV2#

20.00049~32! 0.00 20.00056~16! 0.00
0.00 0.0059~37! 0.00 0.0066~19!

0.02 0.2434~26! 0.02 0.2445~11!

0.03 0.3568~29! 0.03 0.3534~17!

0.04 0.4741~28! 0.04 0.4714~19!

0.05 0.5932~29! 0.05 0.5957~19!

0.06 0.7134~30! 0.06 0.7158~20!
1-8
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FIG. 2. Types of contractions needed for our calculation. Solid lines represent quark propagators on a background gauge field
represent points where meson sources are placed, while filled squares denote four quark operators or the subtraction operator.~a! ‘‘figure-
eight,’’ ~b! ‘‘eye’’ which contributes only for matrix elements ofQi

(0) , ~c! ‘‘annihilation’’ with a quark mass derivative in the external lin
~type 1! or in the quark loop~type 2!, ~d! ‘‘subtraction,’’ and~e! ‘‘two-point.’’
f

y

o
fin

Fig.
is
given in Eq.~3.13! in order to match with the local form o
the four-quark operator in the numerator.

The contractions in Fig. 2~c! show theK0→0 ~vacuum!
annihilation matrix elements from which the parametersa i
in thexPT reduction formulas~2.50! are obtained. Ifd ands
quarks are nondegenerate, these parameters are easil
tained from the ratio of propagators:

^0uQi
(0)~ t !~K0!†~0!u0&

^0uQsub~ t !~K0!†~0!u0&
.

t→`^0uQi
(0)uK0&

^0uQsubuK0&
5a i . ~3.23!

In the limit of degenerate quark masses, which applies to
numerical simulation, some care is needed. From the de
tion of Qsub ~2.41! and the fact thatCPS symmetry gives
^0uQi uK0&ums5md

50, we derive
01450
ob-

ur
i-

a i52 lim
ms→md

^0uQi
(0)uK0&ums.md

~ms2md!^0us̄g5duK0&
~3.24!

52

d

dms
^0uQi

(0)uK0&ums5md

^0us̄g5duK0&
. ~3.25!

The derivative acts both on the operatorQi
(0) and on the

kaon, and hence there are two contributions as shown in
2~c!. The necessary derivative of the quark propagator
obtained through

dG~x,y!

dm
52(

z
G~x,z!G~z,y!. ~3.26!
1-9
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FIG. 3. Time dependence of the propagator ratio defined by Eq.~3.22! for Q2
(0) ~upper! andQ6

(0) ~lower! for mfa50.03. Left and right
columns are for the lattice size 163332 and 243332, respectively.
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To calculate the quark loops that appear in the eye
annihilation contractions, we employ the randomU(1) noise
method. We generatez ( j )(x)5eiu(x)( j 51, . . . ,N) from a
uniform random numberu(x) in the interval 0<u,2p. In
the limit N→`, we have

1

N (
i 51

N

z ( i )* ~x!z ( i )~y! →
N→`

d~x2y!. ~3.27!

Therefore, calculating quark propagators withz ( i )(x) as the
source,

h ( i )~x![(
x8

~D1m!21~x,x8!z ( i )~x8!, ~3.28!

we find

1

N (
i 51

N

h ( i )~x!z ( i )* ~x! →
N→`

~D1m!21~x,x! ~3.29!

as the quark loop amplitude for each gauge configuratio
01450
d In our calculation, we generate two noises foreach spinor
and color degree of freedom, i.e., 23(No. color)
3(No. spinor)524 noises for each configuration. In Figs.
and 4 we show propagator ratios for theQ2

(0) and Q6
(0) op-

erators, and those fora2 anda6. The horizontal lines indi-
cate the values extracted from a constant fit overt510–21
and the one standard deviation error band. Here correlat
between different time slices are not taken into account
the fit. Instead errors are estimated by the jackknife meth
We observe reasonable signals, which show that 24 no
for each configuration we employ is sufficient to evaluate
quark loop amplitude. From Eq.~3.22!, the xPT reduction
formulas derived in Secs. II C and II D are converted to t
following forms at the lowest order ofxPT:

For i 51, . . .,6,9,10:

^p1p2uQi
(0)uK0&5A2 f p~mK

2 2mp
2 !

3
^p1uQi

(0)2a iQsubuK1&

^p1uA4u0&^0uA4uK1&
,

~3.30!
1-10
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FIG. 4. Time dependence of the propagator ratio defined by Eq.~3.25! to calculate the parametera23a2 ~upper! anda23a6 ~lower! at
mfa50.03. Left and right columns are for the lattice size 163332 and 243332, respectively.
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^p1p2uQi
(2)uK0&5A2 f p~mK

2 2mp
2 !

3
^p1uQi

(2)uK1&

^p1uA4u0&^0uA4uK1&
, ~3.31!

for i 57,8 (I 50,2):

^p1p2uQi
(I )uK0&52A2 f pmM

2 3
^p1uQi

(I )uK1&

^p1uA4u0&^0uA4uK1&
,

~3.32!

where we setpK5( imM ,0W ) and pp5(2 imM ,0W ) for K1

→p1 matrix elements on the right-hand side. We ident
f M with f, and assign to it the physical value off p , sincef M
agrees withf p in the chiral limit. On the other hand, th
meson massesmK

2 andmp
2 in Eqs.~3.30! and~3.31! represent

the experimental values since they arise from the phys
K→pp matrix elements. All of the experimental value
used in our calculation are summarized in Appendix B.
emphasize that these formulas are valid to the lowest orde
01450
al

e
in

xPT. If higher order corrections are small, the right-ha
sides of Eqs.~3.30!–~3.32! should depend only weakly on
the lattice meson massmM

2 .
The two-pion states in the isospin basis are decompo

as

u~pp!0&5A2

3
up1p2&1A1

3
up0p0&, ~3.33!

u~pp!2&5A1

3
up1p2&2A2

3
up0p0&.

~3.34!

Therefore, matrix elements in this basis are given
^p1p2uQi

(I )uK0& times constants:

^~pp!0uQi uK0&5A3

2
^p1p2uQi

(0)uK0&; ~3.35!

^~pp!2uQi uK0&5A3^p1p2uQi
(2)uK0&. ~3.36!

We use a shorthand notation
1-11
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FIG. 5. Effect of subtractions illustrated forQ2
(0) ~upper! and Q6

(0) ~lower! as a function ofmM
2 . The original matrix element

^p1uQi
(0)uK1& ~circles! and the subtraction term2a i^p

1uQsubuK1& ~diamonds! are added to obtain the physical matrix element~squares!.
Values are multiplied with a factorA2 f p(mK

2 2mp
2 )/^p1uA4u0&^0uA4uK1& so that the vertical axis has dimension@GeV3#. Left and right

columns are for the lattice sizes 163332 and 243332, respectively.
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^Qi& I[^~pp! I uQi uK0&, I 50,2 ~3.37!

for the matrix elements in the isospin basis hereafter.

D. Subtractions in DIÄ1Õ2 matrix elements

According to Eq.~3.30! the contribution of the unphysica
operatorQsub has to be subtracted for calculating theDI
51/2 matrix elements. Figure 5 shows the original mat
element ^p1uQi

(0)uK1& ~circles!, the subtraction term
2a i^p

1uQsubuK1& ~diamonds!, and their sum~squares!,
multiplied with a factor A2 f p(mK

2 2mp
2 )/^p1uA4u0&

^0uA4uK1& for conversion to theK→pp matrix elements
@see Eq.~3.30!#. The left and right columns correspond to th
spatial sizes 163 and 243, respectively, and the upper an
lower rows exhibit the data forQ2

(0) and Q6
(0) as typical
01450
examples. These matrix elements play a dominant role in
DI 51/2 rule and«8/« as we see in later sections. The n
merical details of subtractions for all of the relevant ope
tors Qi

(0) for i 51,2,3,5,6 are collected in Table III.
We observe that the subtraction term represents a cru

contribution in the physical matrix element. In the case
Q2

(0) the subtraction term is twice larger than the origin
matrix element and opposite in sign. Thus the physical m
trix element is similar in magnitude but flipped in sign com
pared to the original matrix element.

For the case ofQ6
(0) the subtraction term almost cance

the original matrix element so that the physical matrix e
ment is an order of magnitude reduced in size. Nonethel
as one can see from inspection of Table III, the physi
matrix elements are well determined with errors of 10–20
1-12
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TABLE III. Subtraction inK→p matrix element̂ p1uQi
(0)uK1& for i 51,2,3,5,6 multiplied with a factor

A2 f p(mK
2 2mp

2 )/^p1uA4u0&^0uA4uK1&. The values of theK1→p1 matrix element~first!, the subtraction
term 2a i^p

1uQsubuK1& ~subtraction!, and their sum~total! are given in units of GeV3.

163332 243332

mfa first subtraction total first subtraction total

Q1
(0) 0.02 20.0135~44! 20.0134~25! 20.0269~56! 20.0028~23! 20.0164~12! 20.0192~28!

0.03 20.0084~29! 20.0133~20! 20.0217~39! 20.0052~24! 20.0115~14! 20.0167~30!

0.04 20.0091~21! 20.0107~16! 20.0198~30! 20.0082~14! 20.0092~10! 20.0174~21!

0.05 20.0096~16! 20.0085~13! 20.0181~24! 20.0056~12! 20.0076~10! 20.0131~18!

0.06 20.0071~14! 20.0073~12! 20.0144~20! 20.0085~11! 20.00752~82! 20.0160~16!

Q2
(0) 0.02 20.0410~40! 0.0825~25! 0.0415~46! 20.0500~19! 0.0875~13! 0.0375~23!

0.03 20.0419~24! 0.0755~21! 0.0336~29! 20.0450~19! 0.0823~16! 0.0373~22!

0.04 20.0392~18! 0.0752~18! 0.0361~22! 20.0434~18! 0.0743~14! 0.0309~16!

0.05 20.0375~15! 0.0659~14! 0.0284~16! 20.0394~13! 0.0680~12! 0.0286~13!

0.06 20.0346~13! 0.0627~13! 0.0281~14! 20.0354~11! 0.0636~11! 0.02821~94!

Q3
(0) 0.02 20.130~17! 0.1253~90! 20.005~21! 20.1151~81! 0.1256~46! 0.010~10!

0.03 20.118~10! 0.1107~81! 20.007~14! 20.1140~84! 0.1311~53! 0.017~11!

0.04 20.1137~76! 0.1179~61! 0.004~11! 20.1198~61! 0.1206~42! 0.0008~80!

0.05 20.1132~65! 0.1055~50! 20.0077~86! 20.1052~46! 0.1146~43! 0.0094~66!

0.06 20.1000~50! 0.1031~47! 0.0032~75! 20.1049~44! 0.1051~35! 0.0002~55!

Q5
(0) 0.02 1.719~45! 21.743~36! 20.024~24! 1.832~24! 21.853~185! 20.022~11!

0.03 1.608~37! 21.657~32! 20.048~15! 1.731~31! 21.768~261! 20.036~11!

0.04 1.591~33! 21.633~30! 20.042~11! 1.593~27! 21.635~249! 20.0420~80!

0.05 1.438~26! 21.482~25! 20.0444~82! 1.521~25! 21.553~224! 20.0321~67!

0.06 1.430~26! 21.465~23! 20.0359~71! 1.412~23! 21.448~205! 20.0361~53!

Q6
(0) 0.02 4.98~13! 25.01~10! 20.025~51! 5.264~67! 25.350~54! 20.086~22!

0.03 4.66~10! 24.792~91! 20.129~26! 4.960~88! 25.110~76! 20.150~20!

0.04 4.632~97! 24.721~86! 20.089~19! 4.595~80! 24.732~71! 20.137~14!

0.05 4.155~78! 24.287~71! 20.132~12! 4.385~72! 24.496~65! 20.111~11!

0.06 4.121~73! 24.234~67! 20.1129~95! 4.087~65! 24.183~60! 20.0957~88!
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These results show that the subtraction plays a crucial
in calculations with the reduction method. Numerically th
procedure is well controlled in our case.

E. Renormalization and RG-running

Throughout this paper, the renormalization of the ope
tors and the RG-running of the matrix elements are car
out within the perturbation theory in modified minimal su
traction MS scheme with naive dimensional reductio
~NDR!.

The physicalK→pp amplitudes in the isospin basisAI
are given by

AI5
GF

A2
VusVud* (

i 51

10

Wi~m!^Qi& I
MS~m!, ~3.38!

where we setd I50 since our calculation at the tree level
xPT does not incorporate the effect of the final state inter
tion; this effect begins from the next to leading order ofxPT.
The Wilson coefficient functions have a form
01450
le

-
d

c-

Wi~m!5zi~m!1t•yi~m! ~3.39!

where yi are nonvanishing only fori 53, . . . ,10 andt[
2(Vts* Vtd)/(Vus* Vud) is a complex constant. With our choic
of scalem5mc51.3 GeV, the functionszi(mc) are negligi-
bly small for i 53, . . . ,10@41#.

The coefficient functionsyi(m) and zi(m) at mc
51.3 GeV have been calculated for several values of
QCD parameterLMS

(4) @41#. We employLMS
(4)

5325 MeV for
our main results, and also considerLMS

(4)
5215 and 435 MeV

to examine the magnitude of the systematic error. The cho
of the central value is motivated by recent phenomenolog
compilations of the strong coupling constant, e.g., Ref.@42#

quotes LMS
(4)

5296244
146 MeV corresponding to aS

MS(MZ0)
50.1184(31). We list the values of coefficient functions w
use in Table IV. The experimental parameters are sum
rized in Appendix B.

To calculate the renormalized matrix elements in theMS
schemê Qi& I

MS(m), we first translate the lattice values int
the renormalized ones at a matching scaleq* :
1-13



NOAKI et al. PHYSICAL REVIEW D 68, 014501 ~2003!
TABLE IV. Wilson coefficient functions@41#.

LMS
(4) z1 z2 y3 y4 y5 y6 y7 /a y8 /a y9 /a y10/a

215 MeV 20.346 1.172 0.023 20.048 0.007 20.068 20.031 0.103 21.423 0.451
325 MeV 20.415 1.216 0.029 20.057 0.005 20.089 20.030 0.136 21.479 0.547
435 MeV 20.490 1.265 0.036 20.068 0.001 20.118 20.029 0.179 21.548 0.664
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^Qi& I
MS~q* !5Zi j ~q* a!^Qj& I

latt~1/a!. ~3.40!

This step is carried out using the renormalization factor c
culated to one-loop order of perturbation theory@43–46#.
The detailed form of the one-loop terms and explicit nume
cal values forq* 51/a in quenched QCD, appropriate for ou
case, are given in Appendix C.

The next step is to evolve the renormalized matrix e
ments from the scaleq* 51/a to m5mc using the renormal-
ization group, and combine them with the Wilson coefficie
functionsWi(m). The RG-evolution of the matrix elemen
^Qi& I

MS(m) is inverse to that of the coefficient function
Wi(m), i.e.,

Wi~m1!5U~m1 ,m2! i j Wj~m2!, ~3.41!

^Qi& I
MS~m1!5@U21~m1 ,m2!T# i j ^Qj& I

MS~m2!. ~3.42!

Perturbative calculations ofU(mc ,q* ) at the next-to-leading
order are available@41#. In Appendix C we adapt the know
results to calculate the numerical values of the evolution m
trix for our case in whichm15mc51.3 GeV andm251/a
51.94 GeV. The evolution may be made either f
quenched QCD or forNf53 flavors corresponding tou, d,
and s quarks, depending on the view if the matching atm
51/a is made to the quenched theory or to theNf53 theory
in the continuum space-time. This is an uncertainty inher
in quenched lattice QCD, and we choose theNf53 evolu-
tion in our calculation. We have also tested the evolut
with quenched QCD, and found that the results for hadro
matrix elements do not change beyond a 10–20 % level

For the coupling constant in ourNf53 evolution, we em-
ploy the two-loop form

aS
MS~m!5

4p

b0ln
m2

LMS
2

F 12
b1

b0
2

ln ln
m2

LMS
2

ln
m2

LMS
2

G , ~3.43!

with LMS
(3)

5372 MeV, which corresponds to LMS
(4)

5325 MeV. In order to check systematic errors associa
with this choice, we also make calculations forLMS

(3)

5259 MeV (LMS
(4)

5215 MeV) andLMS
(3)

5478 MeV (LMS
(4)

5435 MeV).
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IV. RESULTS OF HADRONIC MATRIX ELEMENTS

A. Chiral properties of K\p matrix elements

As we mentioned in Sec. III B, the RG-improved gau
action provides the advantage that the measure of resi
chiral symmetry breakingm5q due to finiteN5 is small at
a21.2 GeV. It is nonetheless desirable to check the size
the chiral symmetry breaking effect directly for theK→p
matrix elements.

Explicit chiral symmetry breaking, if present, causes m
ing of the I 50 four-quark operatorsQi

(0) with the lower

dimensional operators̄d without quark mass suppression, s
that K→p matrix elements atmd5ms5mf behave as

^p1uQi
(0)2a iQsubuK1&5

2mM
2

f 2
~ai2ci

(0)!1S b i

a3
1

g i

a2
mf D

3^p1us̄duK1&1O~mM
4 ! ~4.1!

for (8L ,1R) operators, and

^p1uQi
(0)uK1&5

4

f 2
di

(0)1
d i

a3
^p1us̄duK1&1O~mM

2 ! ~4.2!

for (8L ,8R) operators. Hereb i ,g i , andd i are dimensionless
quantities which represent magnitudes of residual ch
symmetry breaking, and hence are proportional toe2cN5

with some constantc. The matrix element̂p1us̄duK1& stays
nonzero in the chiral limit. Motivated by Eqs.~2.41! and
~3.14!, one may consider modifications of the subtracti
operator such as

Qsub→~ms1md12m5q!s̄d2~ms2md!s̄g5d. ~4.3!

Such modifications, however, will not ensure the compl
removal of residual chiral symmetry breaking from the m
trix elements.

The I 52 operatorsQ1,2
(2) do not mix with thes̄d operator.

Their matrix elements can have constant terms in the ch
limit, however, due to mixings with dimension 6 operato
such asQ7,8

(2) in the presence of chiral symmetry breakin
Hence we also consider the chiral behavior of these ma
elements.

Of the ten operatorsQi , we recall thatQ4,9,10 are depen-
dent operators as shown in Eqs.~2.11!–~2.13!. Furthermore,
there is an identityQ1

(2)5Q2
(2) which follows from Eqs.

~2.22!, ~2.23!, and theI 52 component is absent in theQ3,5,6
operators. Thus we only need to examine the matrix elem
of Q1,2,3,5,6

(0) andQ1
(2) .
1-14
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FIG. 6. Ratio of matrix elementŝp1uXi
(I )uK1&/^p1uA4u0&^0uA4uK1&3mM

2 a2 as a function ofmM
2 @GeV2# for i 51,2,3,5,6 (I 50) and

i 51 (I 52) from top to bottom. Left and right columns are for the lattice sizes 163332 and 243332, respectively. Solid lines represent th
chiral extrapolation tomM

2 →0 with a quadratic function ofmM
2 , while dashed lines are with a cubic function as described in the text
014501-15
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FIG. 6. ~Continued!.
of ^p1uXi
(I )uK1&

^p1uA4u0&^0uA4uK1&
3mM

2 a25
a2

2 f M
2 ^p1uXi

(I )uK1&.

~4.4!
Figure 6 shows these matrix elements as functions
mM

2 (GeV2) for the two spatial volumesV5163 ~left col-
umn! andV5243 ~right column!, adopting the normalization
defined by
014501-16
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TABLE V. Fit parameters for the chiral extrapolation of theK→p matrix elements defined by Eq.~4.4! which should vanish in the
chiral limit. The parameters (a0 ,a1 ,a2) are determined by the fit functiona01a1mM

2 1a2(mM
2 )2.

163332 243332

a0 a1@GeV22# a2@GeV24# x2/dof a0 a1@GeV22# a2@GeV24# x2/dof

Q1
(0) 20.007~38! 20.09~17! 0.04~17! 0.63 0.017~24! 20.10~11! 0.01~12! 1.88

2a1Qsub 0.004~25! 20.17~12! 0.15~13! 0.19 20.041~15! 0.037~74! 20.064~81! 0.06
Q1

(0)2a1Qsub 20.007~51! 20.24~24! 0.17~24! 0.12 20.024~31! 20.06~15! 20.06~16! 1.16

Q2
(0) 0.021~34! 20.51~15! 0.25~15! 0.07 20.002~23! 20.50~11! 0.26~12! 0.35

2a2Qsub 0.000~26! 0.82~13! 20.37~13! 2.43 0.017~18! 0.802~92! 20.37~10! 0.71
Q2

(0)2a2Qsub 0.019~40! 0.31~18! 20.13~18! 2.09 0.024~25! 0.26~11! 20.06~12! 1.40

Q3
(0) 0.02~15! 21.36~64! 0.59~65! 0.42 0.063~90! 21.43~44! 0.58~47! 0.92

2a3Qsub 0.0014~95! 1.12~46! 20.31~49! 0.89 20.089~59! 1.71~30! 20.92~33! 0.34
Q3

(0)2a3Qsub 0.02~19! 20.19~86! 0.23~89! 0.58 20.02~11! 0.27~56! 20.32~60! 0.87

Q5
(0) 0.37~48! 14.7~2.3! 23.7~2.5! 2.56 0.27~34! 16.8~1.7! 26.4~1.9! 0.48

2a5Qsub 20.15~42! 216.1~2.0! 4.7~2.2! 2.56 20.11~29! 217.8~1.5! 7.0~1.7! 0.40
Q5

(0)2a5Qsub 0.020~20! 21.27~90! 0.95~92! 0.17 0.13~12! 20.85~57! 0.51~61! 0.48

Q6
(0) 0.8~1.4! 44.1~6.6! 212.4~7.1! 2.96 0.86~97! 47.6~5.0! 217.2~5.6! 0.31

2a6Qsub 20.1~1.2! 247.8~5.8! 14.8~6.3! 2.61 20.19~85! 252.1~4.5! 21.0~5.0! 0.42
Q6

(0)2a6Qsub 0.053~38! 23.0~1.6! 1.7~1.6! 2.27 0.59~22! 24.0~1.0! 3.3~1.1! 0.62

Q1
(2) 20.0023~13! 0.0727~64! 0.0178~68! 0.19 20.00264~65! 0.0751~33! 0.0140~37! 0.28

b0 b1@GeV22# b2 @GeV24# x2/dof b0 b1 @GeV22# b2 @GeV24# x2/dof

s̄d 2170~11! 116~46! 264~45! 2.21 2186.2~4.0! 151~19! 282~19! 3.72
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For theI 50 channel, three data sets are plotted, correspo
ing to the original matrix elementXi

(I )5Qi
(I ) ~circles!, the

subtraction term2a iQsub ~diamonds!, and the subtracted
matrix elementQi

(I )2a iQsub ~squares!. For the I 52 chan-
nel, subtractions are absent and henceXi

(I )5Qi
(I ) .

The denominator of Eq.~4.4! behaves as

^p1uA4u0&^0uA4uK1&52 f M
2 mM

2 , ~4.5!

irrespective of whether chiral symmetry holds exactly or n
The advantage of our normalization is that the coefficien
the mM

2 term of the ratio is directly related to theK0

→p1p2 matrix elements. An alternative normalization
provided by the ratio

^p1uXi
(I )uK1&

^p1uPu0&^0uPuK1&
, ~4.6!

where P5q̄g5q is the pseudoscalar density. This meth
avoids the use of measured values of pion mass, but it lo
the straightforward relation to the physical matrix elemen
We use the normalization~4.4! in our analyses. We hav
checked, however, that the conclusion remains unchan
even if Eq.~4.6! is employed instead.

For chiral extrapolation we consider an expansion of
form
01450
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a2

2 f M
2 ^p1uXi

(I )uK1&5a01a1mM
2 1a2~mM

2 !21a3~mM
2 !2

3 ln mM
2 1a4~mM

2 !31•••. ~4.7!

Chiral extrapolations using the first three terms are indica
by the solid line in each panel of Fig. 6. The fit paramet
are summarized in Table V. The results for the intercepta0 in
the chiral limit are consistent with zero within the fittin
errors except for theI 52 operatorQ1

(2) for the volumesV
5163(1.8s) and 243(4s), the I 50 subtracted operato
Q6

(0)2a6Qsubfor V5163(1.4s) and 243(2.7s), and the sub-
traction term for the i 51 operator 2a1Qsub for V
5243(2.8s). Since no systematic tendency that the int
cepts become larger for smaller volume is observed, i
unlikely that the nonzero intercepts of these matrix eleme
are caused by the finite spatial size effect. Indeed even
opposite tendency that the intercept becomes larger for la
spatial volumes is observed.

The absence of a systematic trend in our data suggest
possibility that nonzero intercepts observed for some of
matrix elements are artifacts of the long extrapolation
mM

2 . To test this point, we attempt a fit with a cubic polyn
mial of form a1mM

2 1a2(mM
2 )21a4(mM

2 )3 and a form with
chiral logarithm given by a1mM

2 1a2(mM
2 )2

1a3(mM
2 )2ln mM

2 , both having a built-in chiral behavior o
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TABLE VI. Same as Table V for the fit functiona1mM
2 1a2(mM

2 )21a4(mM
2 )3.

163332 243332

a1@GeV22# a2@GeV24# a4@GeV26# x2/dof a1@GeV22# a2@GeV24# a4@GeV26# x2/dof

Q1
(0) 20.10~11! 0.01~44! 0.06~41! 0.64 0.004~67! 20.18~28! 0.10~27! 2.07

2a1Qsub 20.159~72! 0.14~30! 20.01~29! 0.20 20.271~40! 0.64~18! 20.49~18! 0.12
Q1

(0)2a1Qsub 20.28~15! 0.21~60! 0.00~57! 0.13 20.257~87! 0.42~37! 20.36~36! 0.98

Q2
(0) 20.37~10! 20.06~39! 0.21~37! 0.10 20.499~63! 0.23~27! 0.02~28! 0.35

2a2Qsub 0.826~75! 20.39~31! 0.02~30! 2.43 0.942~47! 20.72~21! 0.26~22! 0.43
Q2

(0)2a2Qsub 0.46~12! 20.46~45! 0.23~42! 2.07 0.461~67! 20.56~28! 0.37~27! 0.98

Q3
(0) 21.09~43! 20.2~1.7! 0.6~1.6! 0.35 21.00~25! 20.3~1.0! 0.6~1.0! 1.02

2a3Qsub 1.20~27! 20.4~1.1! 0.1~1.1! 0.90 1.07~16! 0.51~71! 20.97~71! 0.57
Q3

(0)2a3Qsub 0.05~55! 20.4~2.2! 0.5~2.1! 0.55 0.10~32! 0.1~1.3! 20.3~1.3! 0.87

Q5
(0) 17.7~1.4! 211.1~5.7! 5.6~5.6! 2.36 18.82~88! 211.0~4.0! 3.3~4.1! 0.50

2a5Qsub 217.5~1.2! 8.5~5.0! 23.0~5.0! 2.44 218.68~76! 9.2~3.5! 21.6~3.7! 0.38
Q5

(0)2a5Qsub 0.08~59! 21.9~2.3! 1.9~2.2! 0.23 0.03~34! 21.3~1.4! 1.2~1.4! 0.68

Q6
(0) 50.9~3.9! 229~16! 13~16! 2.80 54.0~2.5! 232~12! 10~12! 0.34

2a6Qsub 249.6~3.4! 21~14! 26~14! 2.54 253.6~2.2! 25~10! 22.8~1.1! 0.41
Q6

(0)2a6Qsub 0.6~1.1! 25.9~4.1! 5.0~3.8! 2.36 0.04~63! 25.3~2.6! 5.7~2.5! 1.54

Q1
(2) 0.0555~38! 0.057~16! 20.027~15! 0.18 0.0557~17! 0.0573~77! 20.0299~79! 1.50
y
V
in
fit.
le

er
vanishing atmM
2 50. We show the former fit curves b

dashed lines in Fig. 6 and the fitted parameters in Table
Numerical results of the chiral logarithm fit are given
Table VII. The fit curves are similar to those of the cubic
Both functions provide good fit of data with reasonab
x2/dof.
01450
I.
Let us try to analyze the chiral behavior ofI 50 matrix

elements in terms of mixing with thes̄d operator as given in
Eq. ~4.1!. The existence of the constantb i can be detected
from the chiral limit of the matrix elements. On the oth
hand, separating the contribution ofg i andd i from the physi-
cal ones would require results at differentN5. We leave such
TABLE VII. Same as Table V for the fit functiona1mM
2 1a2(mM

2 )21a3(mM
2 )2ln mM

2 including a chiral logarithm term.

163332 243332

a1@GeV22# a2@GeV24# a3@GeV24# x2/dof a1@GeV22# a2@GeV24# a3@GeV24# x2/dof

Q1
(0) 20.11~20! 0.07~14! 0.02~39! 0.65 0.04~12! 20.110~84! 0.13~25! 2.01

2a1Qsub 20.15~13! 0.128~90! 0.01~27! 0.20 20.369~74! 0.268~49! 20.46~16! 0.06
Q1

(0)2a1Qsub 20.29~27! 0.21~19! 20.03~54! 0.13 20.32~16! 0.15~11! 20.31~34! 1.05

Q2
(0) 20.32~18! 0.09~13! 0.20~35! 0.09 20.50~12! 0.259~77! 0.01~25! 0.35

2a2Qsub 0.83~13! 20.376~93! 0.01~28! 2.43 0.987~88! 20.515~56! 0.23~20! 0.52
Q2

(0)2a2Qsub 0.50~21! 20.29~15! 0.21~41! 2.08 0.53~12! 20.276~85! 0.33~25! 1.11

Q3
(0) 21.01~76! 0.32~56! 0.5~1.5! 0.38 20.85~45! 0.10~31! 0.59~97! 0.98

2a3Qsub 1.22~49! 20.40~34! 0.1~1.0! 0.89 0.86~29! 20.21~19! 20.93~66! 0.49
Q3

(0)2a3Qsub 0.12~98! 20.01~71! 0.4~2.0! 0.56 0.05~58! 20.14~39! 20.2~1.2! 0.87

Q5
(0) 18.7~2.4! 26.8~1.7! 4.8~5.2! 2.44 19.5~1.7! 28.6~1.0! 3.1~3.8! 0.48

2a5Qsub 217.9~2.1! 6.1~1.4! 22.4~4.6! 2.49 219.0~1.4! 7.99~88! 21.4~3.4! 0.38
Q5

(0)2a5Qsub 0.5~1.1! 20.54~77! 1.9~2.1! 0.21 0.32~61! 20.46~42! 1.2~1.3! 0.61

Q6
(0) 52.9~7.1! 219.5~4.9! 11~15! 2.87 56.1~4.8! 224.2~3.0! 10~11! 0.32

2a6Qsub 250.1~6.1! 16.5~4.1! 24~13! 2.58 254.1~4.2! 22.6~2.5! 22.5~9.7! 0.42
Q6

(0)2a6Qsub 1.8~1.9! 22.2~1.5! 5.0~3.7! 2.35 1.4~1.1! 21.16~80! 5.7~2.3! 1.21

Q1
(2) 0.0498~68! 0.0364~47! 20.026~15! 0.15 0.0494~32! 0.0351~20! 20.0285~73! 0.99
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TABLE VIII. 1/2 f M
2 a ^p1us̄duK1& as a function ofmfa.

mfa 0.02 0.03 0.04 0.05 0.06

163332 2145.0~3.1! 2135.1~2.5! 2132.6~2.3! 2120.9~1.9! 2120.2~1.8!
243332 2154.7~1.6! 2142.1~2.1! 2131.9~1.9! 2127.4~1.7! 2119.3~1.6!
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an investigation for future studies, and assume that the la
contributions are negligible. We also ignore mixings with t
dimension five operatorss̄smnFmnd since their contributions
are subleading in 1/a.

We estimateb i from the values ofa0 obtained in the
chiral fit of the matrix elements for the subtracted opera
Qi

(0)2a iQsub given in Table V. For this purpose, we repe

the calculation of Eq.~4.4! for Xi
(I )5 s̄d, and extract

^p1us̄duK1&a

^p1uA4u0&^0uA4uK1&a4
3mM

2 a25
1

2 f M
2 a

^p1us̄duK1&,

~4.8!

where powers ofa are supplied to absorb dimensions of m
trix elements. We then fit the results to a quadratic poly
mial b01b1mM

2 1b2(mM
2 )2. The numerical values of Eq

~4.8! are given in Table VIII, and the results forbi are given
in Table V. Normalizing withm5q50.283 MeV to take into
account thee2cN5 dependence expected forb i , one has

b i

m5qa
5

a0

b0

1

m5qa
. ~4.9!

In the case ofV5243, the results areb i /(m5qa)50.9(1.1)
for i 51, 20.91(87) for i 52, 0.8(4.2) for i 53,
24.7(4.4) fori 55, and221.6(8.1) fori 56. Except for the
i 56 operator for which the coefficient is exceptionally larg
we find values consistent with zero within the errors.

The analyses described here do not show strong evid
for the effect of residual chiral symmetry breaking in theK
→p matrix elements. Although more data at smaller qu
masses will be needed for the definite conclusion, we c
clude here that our results for the matrix elements are c
sistent with the expected chiral behavior within the statisti
precision of our data. Therefore, for the chiral extrapolat
in the rest of this paper, we employ the cubic polynom
without a constant term for the central value and use
form with a chiral logarithm to estimate the systematic u
certainty. Since nonzero intercepts beyond statistical er
cannot be excluded for some of the matrix elements,
examine possible effects of the residual chiral symme
breaking to the physical matrix elements in Sec. V.

Let us also make a comment on the comparison of lat
data with predictions of quenched chiral perturbation theo
For theI 50 channel, data for more values ofmf are required
for such a comparison because of the presence of a num
of unknown parameters as well as a new term of fo
b1mM

2 ln mM
2 in the predicted matrix elements@47#. On the

other hand, quenched chiral logarithm terms are absen
the I 52 matrix elements governed by the (27L,1R) operator,
and the ratioa3 /a1 for Q1

(2) is predicted to bea3 /a15
01450
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or

26/(16p2f p
2 )522.180 GeV22. We observe in Table VII

that the fitted value agrees in sign but is 3 to 4 times sma
in magnitude than the prediction, e.g.,a3 /a15
20.58(10) GeV22 on a 243332 lattice.

Quenched chiral perturbation theory makes the same
diction for the coefficient of the logarithm term of the chir
expansion ofBK as it is governed by the same operator
xPT. For this case, similar discrepancies of lattice res
from the prediction are found for the case of the stagge
fermion action@29# as well as for the domain wall fermion
action@28#. A possible explanation for these large discrepa
cies is that higher order corrections in~quenched! xPT are
non-negligible at quark masses employed in the curr
simulation. Indeed we have confirmed that data forQ1

(2) can-
not be fitted by the forma1mM

2 1a2(mM
2 )21a3(mM

2 )2ln mM
2

1a4(mM
2 )3 with a3 /a1522.180 GeV22 fixed. The complete

form in xPT to this order,

a1mM
2 1a2~mM

2 !21a3~mM
2 !2ln mM

2 1a4~mM
2 !3

1a5~mM
2 !3ln mM

2 1a6~mM
2 !3~ ln mM

2 !2,

unfortunately, cannot be employed for our data calcula
only at five values of quark masses. Understanding the sm
value ofa3 /a1 for Q1

(2) requires further studies.

B. Physical values of hadronic matrix elements

We tabulate the values of all theK→pp matrix elements
in Tables IX ~for 163332) and X~for 243332). The upper
half of each table lists the bare lattice values,^Qi& I

latt , and
the lower half the physical values,^Qi& I

MS, obtained through
matching at the scaleq* 51/a followed by an RG-evolution
to m5mc . Note that^Q326&2

MS become nonzero due to th
RG-evolution which breaks the isospin symmetry in t
presence of the QED interaction. The two sets of numbers
not differ beyond a 10–20 % level except for^Q5,6,7,8&0, for
which the difference amounts to 30–40 %. The latter sit
tion arises from a larger magnitude of mixing of ord
5–10 % among theQ5,6,7,8

(0) operators compared to the oth
operators which are typically less than 5%. In the followin
the superscriptMS will be omitted unless confusion ma
arise.

In Table XI we illustrate the magnitude of uncertainty d
to the choice ofq* by comparing the values of physica
hadronic matrix elementŝQi& I(mc) for the choicesq*
51/a and q* 5p/a at mf50.02 on a 243 spatial volume.
One finds that the difference is at most 20–30 %.

In Fig. 7 we plot the physical matrix elements for th
DI 51/2 amplitudeŝ Qi&0 ( i 51, . . .,6,9,10) as a function
of mM

2 . These eight matrix elements involve the subtract
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TABLE IX. Hadronic matrix elementŝQi&0 and^Qi&2 ( i 51, . . .,10) in units of GeV3 at eachmfa on a 163332 lattice. The upper half
of the table lists the bare values. The lower half are those renormalized in theMS scheme atm51/a and run tom51.3 GeV forNf53 using
LMS

(3)
5372 MeV, which corresponds toLMS

(4)
5325 MeV.

mfa 0.02 0.03 0.04 0.05 0.06

bare ^Q1&0 20.0329~69! 20.0266~48! 20.0242~37! 20.0222~29! 20.0176~25!

@GeV3# ^Q2&0 0.0508~57! 0.0412~35! 0.0442~27! 0.0347~20! 0.0345~17!

^Q3&0 20.006~26! 20.008~18! 0.005~13! 20.009~10! 0.0039~91!

^Q4&0 0.078~24! 0.059~16! 0.074~12! 0.0475~93! 0.0560~82!

^Q5&0 20.030~29! 20.059~18! 20.051~13! 20.054~10! 20.0439~88!

^Q6&0 20.031~62! 20.157~31! 20.109~23! 20.161~15! 20.138~12!

^Q7&0 1.635~30! 2.043~33! 2.574~42! 2.835~43! 3.328~49!

^Q8&0 5.012~91! 6.25~10! 7.90~13! 8.66~13! 10.18~15!

^Q9&0 20.0464~58! 20.0357~35! 20.0389~28! 20.0285~20! 20.0284~18!

^Q10&0 0.0372~69! 0.0321~48! 0.0294~38! 0.0284~30! 0.0237~25!

^Q1&2 0.01314~15! 0.01402~12! 0.01487~11! 0.015399~98! 0.015957~90!

^Q2&2 0.01314~15! 0.01402~12! 0.01487~11! 0.015399~98! 0.015957~90!

^Q7&2 0.4110~42! 0.4292~34! 0.4656~28! 0.4863~27! 0.5264~24!

^Q8&2 1.238~13! 1.261~11! 1.3357~87! 1.3639~77! 1.4451~70!

^Q9&2 0.01971~23! 0.02103~18! 0.02231~16! 0.02310~15! 0.02393~13!

^Q10&2 0.01971~23! 0.02103~18! 0.02231~16! 0.02310~15! 0.02393~13!

mfa 0.02 0.03 0.04 0.05 0.06

renormalized ^Q1&0 20.0291~68! 20.0234~47! 20.0206~37! 20.0191~29! 20.0144~25!

at 1.3 GeV ^Q2&0 0.0510~69! 0.0360~43! 0.0415~33! 0.0291~24! 0.0301~20!

@GeV3# ^Q3&0 0.004~28! 20.012~20! 0.007~14! 20.015~11! 0.0002~99!

^Q4&0 0.082~27! 0.049~18! 0.069~13! 0.035~10! 0.0460~92!

^Q5&0 20.026~26! 20.032~16! 20.033~12! 20.0253~94! 20.0187~82!

^Q6&0 20.012~48! 20.111~24! 20.071~18! 20.115~12! 20.0960~90!

^Q7&0 0.797~17! 1.021~18! 1.269~21! 1.417~21! 1.640~23!

^Q8&0 3.428~69! 4.374~73! 5.469~86! 6.046~87! 7.024~94!

^Q9&0 20.0453~70! 20.0287~43! 20.0341~34! 20.0205~24! 20.0212~21!

^Q10&0 0.0347~68! 0.0306~48! 0.0278~37! 0.0275~29! 0.0231~25!

^Q1&2 0.01345~16! 0.01436~13! 0.01524~11! 0.01578~10! 0.016361~91!

^Q2&2 0.01328~16! 0.01417~12! 0.01504~11! 0.015571~99! 0.016137~91!

^Q3&2 20.00002740~31! 20.00003058~27! 20.00003395~25! 20.00003677~24! 20.00004007~23!

^Q4&2 20.0002198~36! 20.0002349~30! 20.0002521~25! 20.0002652~21! 20.0002830~20!

^Q5&2 0.0002056~37! 0.0002196~31! 0.0002357~25! 0.0002483~22! 0.0002656~20!

^Q6&2 0.000758~14! 0.000789~11! 0.0008274~91! 0.0008517~77! 0.0008913~70!

^Q7&2 0.2045~36! 0.2243~30! 0.2466~25! 0.2655~22! 0.2897~21!

^Q8&2 0.846~16! 0.880~13! 0.922~10! 0.9488~86! 0.9922~79!

^Q9&2 0.02026~24! 0.02161~19! 0.02295~16! 0.02376~15! 0.02464~14!

^Q10&2 0.02006~24! 0.02141~19! 0.02272~16! 0.02353~15! 0.02439~14!
at
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of unphysical effects. The empty and filled symbols indic
the data fromV5163 and 243 volumes, respectively. Within
the statistical errors at eachmf and the fluctuation for differ-
ent values ofmf , both of which are larger for the smalle
spatial size 163, the data from the two spatial volumes do n
show indications of the presence of finite size effects.

The remaining matrix elementŝQ7,8&0 for the DI 51/2
amplitude, which do not require the subtraction, are show
Fig. 8. These matrix elements are well determined and
hibit clearmM

2 dependences.
The matrix elements for theDI 53/2 channel given by

^Q1&25^Q2&2 and^Q7,8&2 are plotted in Fig. 9. Their statis
01450
e

t

in
x-

tical quality andmM
2 dependence are similar to those f

^Q7,8&0.
As discussed in Sec. IV A, for extracting the values in t

chiral limit, we adopt a quadratic polynomial form

^Qi& I5j01j1mM
2 1j3mM

4 . ~4.10!

In addition we also employ the chiral logarithm form

^Qi& I5j01j1mM
2 1j2mM

2 ln mM
2 . ~4.11!
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TABLE X. Same as Table IX for the 243332 lattice.

mfa 0.02 0.03 0.04 0.05 0.06

bare ^Q1&0 20.0235~34! 20.0205~37! 20.0217~25! 20.0161~22! 20.0196~19!

@GeV3# ^Q2&0 0.0460~28! 0.0457~27! 0.0378~19! 0.0351~16! 0.0345~11!

^Q3&0 0.013~12! 0.021~13! 0.0010~98! 0.0116~81! 0.0003~68!

^Q4&0 0.082~11! 0.087~12! 0.0600~91! 0.0627~74! 0.0544~58!

^Q5&0 20.027~14! 20.044~13! 20.0515~97! 20.0393~82! 20.0442~65!

^Q6&0 20.105~26! 20.183~24! 20.167~17! 20.136~14! 20.117~11!

^Q7&0 1.697~15! 2.157~29! 2.563~35! 2.990~40! 3.295~44!

^Q8&0 5.211~44! 6.584~85! 7.84~11! 9.13~12! 10.08~13!

^Q9&0 20.0417~28! 20.0412~28! 20.0324~20! 20.0299~17! 20.0295~12!

^Q10&0 0.0278~34! 0.0250~38! 0.0267~26! 0.0212~22! 0.0246~19!

^Q1&2 0.013154~43! 0.014163~52! 0.014781~48! 0.015335~45! 0.015853~43!

^Q2&2 0.013154~43! 0.014163~52! 0.014781~48! 0.015335~45! 0.015853~43!

^Q7&2 0.3996~15! 0.4222~18! 0.4559~15! 0.4900~14! 0.5184~13!

^Q8&2 1.2119~48! 1.2444~55! 1.3128~45! 1.3783~41! 1.4271~40!

^Q9&2 0.019730~65! 0.021244~78! 0.022172~72! 0.023003~67! 0.023779~65!

^Q10&2 0.019730~65! 0.021244~78! 0.022172~72! 0.023003~67! 0.023779~65!

mfa 0.02 0.03 0.04 0.05 0.06

renormalized ^Q1&0 20.0203~34! 20.0173~36! 20.0182~25! 20.0130~21! 20.0163~19!

at 1.3 GeV ^Q2&0 0.0433~33! 0.0401~34! 0.0322~23! 0.0309~19! 0.0310~14!

@GeV3# ^Q3&0 0.015~14! 0.017~14! 20.004~11! 0.0084~88! 20.0014~73!

^Q4&0 0.078~13! 0.076~14! 0.048~10! 0.0535~84! 0.0466~65!

^Q5&0 20.008~12! 20.011~11! 20.0214~90! 20.0144~74! 20.0231~57!

^Q6&0 20.072~20! 20.132~19! 20.120~14! 20.095~11! 20.0790~84!

^Q7&0 0.8415~80! 1.072~15! 1.271~17! 1.488~19! 1.637~21!

^Q8&0 3.631~33! 4.566~60! 5.434~70! 6.352~79! 7.002~86!

^Q9&0 20.0376~33! 20.0338~34! 20.0247~24! 20.0233~20! 20.0231~14!

^Q10&0 0.0259~34! 0.0234~37! 0.0256~26! 0.0205~21! 0.0239~19!

^Q1&2 0.013469~44! 0.014499~53! 0.015140~49! 0.015717~46! 0.016253~44!

^Q2&2 0.013295~44! 0.014317~53! 0.014944~49! 0.015507~45! 0.016031~43!

^Q3&2 20.00002694~11! 20.00003018~14! 20.00003331~13! 20.00003662~13! 20.00003960~13!

^Q4&2 20.0002180~15! 20.0002301~17! 20.0002476~15! 20.0002660~13! 20.0002807~13!

^Q5&2 0.0002037~15! 0.0002142~17! 0.0002312~15! 0.0002492~13! 0.0002634~13!

^Q6&2 0.0007562~57! 0.0007728~63! 0.0008144~54! 0.0008575~48! 0.0008866~46!

^Q7&2 0.2010~15! 0.2180~17! 0.2409~15! 0.2658~14! 0.2866~14!

^Q8&2 0.8440~64! 0.8618~70! 0.9078~60! 0.9552~53! 0.9872~51!

^Q9&2 0.020281~66! 0.021830~80! 0.022796~74! 0.023666~69! 0.024474~66!

^Q10&2 0.020083~66! 0.021623~80! 0.022575~73! 0.023431~68! 0.024228~66!
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In Tables XII and XIII, results from these chiral extrap
lations are summarized with the values ofx2/dof. The dif-
ferences between two types of fits should be taken as a m
sure of systematic error. For^Q6&0, one observes in Fig. 7 a
exceptional behavior of the data atmf50.02. An additional
chiral extrapolation excluding this quark mass is hence a
made for comparison and the fit lines indicated in the figu
are obtained.

C. B parameters

We convert renormalized hadronic matrix elements am
5mc51.3 GeV intoB parameters defined by@41#
01450
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s

B1
(1/2)52

9

X
^Q1&0 , ~4.12!

B2
(1/2)5

9

5X
^Q2&0 , ~4.13!

B3
(1/2)5

3

X
^Q3&0 , ~4.14!

B5
(1/2)5

3

Y
^Q5&0 , ~4.15!
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B6
(1/2)5

1

Y
^Q6&0 , ~4.16!

B7
(1/2)52

^Q7&0

1

6
Y~k11!2

1

2
X

, ~4.17!

B8
(1/2)52

^Q8&0

1

2
Y~k11!2

1

6
X

, ~4.18!

B1
(3/2)5

9

4A2X
^Q1&2 , ~4.19!

B7
(3/2)52

^Q7&2

k

6A2
Y1

1

A2
X

, ~4.20!

B8
(3/2)52

^Q8&2

k

2A2
Y1

A2

6
X

, ~4.21!

where

k5
f p

f K2 f p
, X5A3 f p~mK

2 2mp
2 !,

Y524A3F mK
2

ms1md
G2 f p

k
. ~4.22!

TABLE XI. Renormalized hadronic matrix elements atm
51.3 GeV in units of GeV3 from different matching pointsq*
51/a ~left column! and p/a ~right column!. Values are taken a
mfa50.02 on a 243332 lattice.

q* 51/a q* 5p/a

^Q1&0 20.0203~34! 20.0152~33!

^Q2&0 0.0433~33! 0.0424~33!

^Q3&0 0.015~14! 0.019~14!

^Q4&0 0.078~13! 0.076~13!

^Q5&0 20.008~12! 20.005~12!

^Q6&0 20.072~20! 20.050~16!

^Q7&0 0.8415~80! 0.7986~77!

^Q8&0 3.631~33! 2.873~26!

^Q9&0 20.0376~33! 20.0317~33!

^Q10&0 0.0259~34! 0.0257~34!

^Q1&2 0.013469~44! 0.014314~46!

^Q2&2 0.013295~44! 0.013760~45!

^Q7&2 0.2010~15! 0.1912~14!

^Q8&2 0.8440~64! 0.6678~51!

^Q9&2 0.020281~66! 0.021754~70!

^Q10&2 0.020083~66! 0.021149~69!
01450
We summarize the values ofB parameters in the chiral limi
obtained by the fit with quadratic polynomial or chiral log
rithm in Table XIV. Quark masses and other parameters u
in the calculations are given in Appendix B.

Let us compare our values ofB parameters with typica
ones quoted in phenomenology~see, e.g.,@41#!. For theB
parameters important for theDI 51/2 rule, the experimenta
value of ReA2 indicates B1,NDR

(3/2) (mc)50.453 with LMS
(4)

5325 MeV, with which our valueB1
(3/2)(mc)'0.4 to 0.5 is

consistent. On the other hand, our resultsB1
(1/2)(mc)'8 to 9

andB2
(1/2)(mc)'3 to 4 are smaller thanB1

(1/2)(mc).15 and
B2,NDR

(1/2) (mc)56.6 needed to explain the experimental value
ReA0. For the parameterB6

(1/2) relevant for the directCP
violation, the largest of our estimateB6

(1/2)(mc)'0.3 from
the four-point fit of the data from the 243 spatial volume is
still much smaller thanB6

(1/2)51 in the 1/Nc approach, while
B8

(3/2)(mc)'0.9 is comparable toB8
(3/2)51 again in the 1/Nc

approach. In general theB parameters forI 50 are smaller
than the usual estimates.

Previous studies gave B7
(3/2) (m52 GeV,NDR)

50.58(7) and B8
(3/2)(m52 GeV,NDR)50.81(4) @20#,

B7
(3/2) (m52 GeV,RI(MOM))50.38(11) and B8

(3/2)(m
52 GeV,RI(MOM))50.77(9) @21#, B7

(3/2) (m
52 GeV,NDR)50.58(9) and B8

(3/2)(m52 GeV,NDR)
50.80(9) @22#, from quenched lattice QCD, andB7

(3/2)(m
52 GeV,NDR)50.55(12) and B8

(3/2)(m52 GeV,NDR)
51.11(28) from dispersive sum rules wherems1md

5100 MeV is used @48#. Our values are B7
(3/2)(m

51.3 GeV,NDR)50.62(3) and B8
(3/2)(m51.3 GeV,NDR)

50.92(4) on a 243332 lattice in broad agreement with th
above. Note that the scalem is different between our result
and those of other studies.

V. PHYSICAL RESULTS

A. DIÄ1Õ2 rule

The real part ofAI relevant for theDI 51/2 rule is written
as

ReAI5
GF

A2
uVudu•uVusuF (

i 51,2
zi~mc!^Qi& I~mc!

1~Ret!(
i 53

10

yi~mc!^Qi& I~mc!G . ~5.1!

In Table XV, we list the values of ReA0 , ReA2, andv21

5ReA0 /ReA2 for each value ofmf and spatial volume, and
for the three choices of theL parameterLMS

(4)
5325, 215, and

435 MeV.
Figure 10 plots ReA2 ~left panel! and ReA0 ~right panel!

as functions ofmM
2 for LMS

(4)
5325 MeV. In both panels,

empty and filled symbols denote the results from the volu
V5163 and 243, respectively. Signals for ReA2 are quite
clean, while those for ReA0 exhibit more fluctuations. Since
both amplitudes show a variation withmM

2 , we need to ex-
trapolate them to the chiral limit to extract the physical p
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FIG. 7. Physical hadronic matrix elements^Qi&0 for i 51,2,3,4,5,6,9, and 10 as a function ofmM
2 from top to bottom. These matrix

elements involve subtractions of unphysical effects. Empty and filled symbols are from the spatial volumeV5163 and 243, respectively.
Chiral extrapolations with a quadratic polynomial are shown by solid (V5243) and dashed (V5163) lines. Fit error in the chiral limit is
added for the former.
014501-23
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FIG. 8. Physical hadronic matrix elements^Q7,8&0 as a function ofmM
2 . The organization of each panel is the same as that in Fig. 7
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diction. Following the analysis in Sec. IV A, we examin
two types of fit functions given by

ReAI

5H j01j1mM
2 1j3~mM

2 !2 ~quadratic polynomial!,

j01j1mM
2 1j2mM

2 ln mM
2 ~chiral logarithm!.

~5.2!

Chiral extrapolations from the quadratic fit are indicated
solid lines, and those from the chiral logarithm fit by dash
lines in Fig. 10.

For theDI 53/2 amplitude plotted on the left, the extrap
lated values show good agreement with the experime
value ReA251.5031028 GeV indicated by the horizonta
arrow. On the other hand, theDI 51/2 amplitude ReA0 is
small at measured values of quark masses, and only amo
to about 50–60 % of the experimental value 33
31028 GeV even after the chiral extrapolation.

A breakdown of the amplitudes into contributions fro
the ten operatorsQi with i 51, . . . ,10 isillustrated in Fig. 11
for mfa50.03. The histograms for theV5163 and 243 cases
are shown by dashed and solid lines, respectively. The h
zontal lines with statistical errors indicate the total amp
tude, the dashed and solid lines corresponds toV5163 and
243. An apparent absence of contributions from the opera
with i 53, . . . ,10 is due to thesmall value of the paramete
Ret'0.002; the real part of the decay amplitudes is de
mined by the matrix elementŝQ1& I and ^Q2& I , with the
latter providing the dominant part.

The ratio v215ReA0 /ReA2 is shown in Fig. 12. Re-
flecting an insufficient enhancement of theDI 51/2 ampli-
tude, it only rises to about half of the experimental val
v21'22. The situation hardly changes forLMS

(4)
5215 or 435

MeV, for which the amplitudes shift by about 5–10 %~see
Table XV!. We collect chiral fit parameters for the case
larger spatial volumeV5243 in Table XVI.

Altogether we find

ReA0516.5~2.2!~14.2!~10.7!~ 21.6
10.8!31028 @GeV#,

~5.3!
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ReA251.531~26!~2178!~24!~ 238
170!31028 @GeV#,

~5.4!

v2159.5~1.1!~12.8!~0.6!~ 21.3
10.7!. ~5.5!

The central values are taken from the result on a 243332
lattice from the quadratic polynomial fit withLMS

(4)

5325 MeV. The first error is statistical, the second one is
estimate of uncertainty of chiral extrapolation using the c
ral logarithm fit, the third one is finite-size variation es
mated by the change of value for theV5163 lattice, and the
fourth one, associated with renormalization, is estimated
the largest variation under changes ofLMS

(4) , q* , and the
RG-running. If the chiral symmetry breaking termj21 /mM

2

is included in the chiral fit~5.2!, a nonzero value ofj21
beyond the statistical error is obtained only for ReA2, result-
ing in a 60% increase of the value of ReA2. The disagree-
ment from experiment becomes worse in this case. The s
ing violation and the quenching error, which cannot
estimated in our calculation, are not included in our syste
atic uncertainty. In particular, the physical scale of latti
spacing set by the string tension in this paper may differ
about 10–20 % from scales determined by other phys
quantities due to the quenched approximation. This un
tainty is not included in the above error estimate.

B. Direct CP violation „«8Õ«…

The formula~1.4! for «8/« can be rewritten as

«8/«5Im~Vts* Vtd!@P(1/2)2P(3/2)#, ~5.6!

P(1/2)5r(
i

yi~m!^Qi&0~m!~12Vh1h8!, ~5.7!

P(3/2)5
r

v (
i

yi~m!^Qi&2~m!, ~5.8!

where
1-24
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r[
GFv

2u«uReA0
~5.9!

and the parameterVh1h850.25(5) reflects the isospin
breaking. Since theDI 51/2 rule is only partially reproduced
with our data, we employ the experimental values for ReA0 ,
v, and« as input.

In Fig. 13 our data forP(3/2) ~left panel! andP(1/2) ~right
panel! calculated withLMS

(4)
5325 MeV are plotted as a func

FIG. 9. Physical hadronic matrix elements^Q1&2 and^Q7,8&2 as
a function ofmM

2 . The organization of each panel is the same
that in Fig. 7.
01450
tion of mM
2 . Results for«8/« are shown in Fig. 14. Since

P(1/2) is smaller thanP(3/2) in our data,«8/« tends to be
negative.

A breakdown ofP(3/2) and P(1/2) into contributions from
the operatorsQi( i 53, . . .,10) is displayed for the case o
mfa50.03 in Fig. 15, where dashed and solid lines den
data fromV5163 and 243, respectively. This figure demon
strates that̂ Q8&2 and ^Q6&0 are, respectively, dominant in
P(3/2) and P(1/2) as usually considered. However, the mat
element of^Q6&0 is too small; if the experimental value o
«8/« is to be reproduced by a change of this matrix eleme
it has to be increased by about a factor of 5.

Numerical values ofP(1/2),P(3/2), and «8/« for eachmf
are summarized in Table XVII. In addition to the features
the data discussed above, we observe that changing thL
parameter fromLMS

(4)
5325 to 215 MeV decreasesP(1/2) by

20% andP(3/2) by 25%. EmployingLMS
(4)

5435 MeV leads to
an increase by similar percentages for the two functio
Therefore the trend toward a negative value of«8/« is not
altered.

If we make a quadratic chiral extrapolation we find«8/«
527.7(2.0)31024 with x2/dof51.75 on a 243332 lattice.
Including the chiral symmetry breaking termj21 /mM

2 in the
fit changes this value to130(20)31024 with x2/dof
50.0015. The smallx2 indicates that more data points, i
particular data at smaller masses, are necessary to cons

s

TABLE XII. Hadronic matrix elements in units of GeV3 in the
chiral limit mM

2 →0 on a 163332 lattice. The columns named ‘‘qua
dratic,’’ ‘‘chiral log.’’ correspond to two types of fit forms describe
in the text. Chiral extrapolations are made using data at allmfa
50.02–0.06~5 points! except for an alternative extrapolation o
^Q6&0 excluding the point atmfa50.02 ~4 points!.

quadratic x2/dof chiral log. x2/dof

^Q1&0 20.034~20! 0.14 20.035~36! 0.14
^Q2&0 0.070~19! 3.03 0.083~34! 3.05
^Q3&0 0.033~82! 0.91 0.06~15! 0.94
^Q4&0 0.131~78! 1.68 0.17~14! 1.71
^Q5&0 20.008~72! 0.03 0.03~13! 0.02
^Q6&0 0.08~12! 2.64 0.20~21! 2.63
^Q6&0 ~4 pts.! 20.04~17! 4.32 20.02~31! 4.38
^Q7&0 0.247~78! 1.78 0.11~15! 1.69
^Q8&0 1.07~32! 2.87 0.48~60! 2.77
^Q9&0 20.067~19! 3.32 20.082~35! 3.35
^Q10&0 0.037~21! 0.17 0.037~37! 0.17
^Q1&2 0.01102~54! 0.34 0.00990~98! 0.29
^Q2&2 0.01087~54! 0.33 0.00975~97! 0.28
^Q3&2 20.0000203~12! 0.49 20.0000195~21! 0.46
^Q4&2 20.000188~12! 0.33 20.000187~22! 0.37
^Q5&2 0.000177~12! 0.33 0.000179~23! 0.34
^Q6&2 0.000694~46! 0.31 0.000694~83! 0.31
^Q7&2 0.164~12! 0.36 0.167~23! 0.38
^Q8&2 0.776~51! 0.30 0.775~92! 0.31
^Q9&2 0.01660~81! 0.34 0.0149~15! 0.29
^Q10&2 0.01642~81! 0.33 0.0147~15! 0.29
1-25
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the fit parameters well. The existence of large uncertain
associated with the possible presence of the chiral brea
term, and also a subtle quenching effect mentioned be
make it difficult to draw a conclusive estimate of«8/«.

Recently, Golterman and Pallante pointed out that the
lation betweenK→p andK→pp matrix elements in chira

TABLE XIII. Same as Table XII for the 243332 lattice.

quadratic x2/dof chiral log. x2/dof

^Q1&0 20.031~12! 0.98 20.039~21! 1.04
^Q2&0 0.066~11! 0.36 0.082~20! 0.43
^Q3&0 0.032~48! 0.83 0.044~86! 0.82
^Q4&0 0.124~45! 0.69 0.155~82! 0.69
^Q5&0 0.001~40! 0.44 0.003~73! 0.43
^Q6&0 0.014~66! 1.53 0.16~12! 1.20
^Q6&0~4 pts.! 20.19~13! 0.10 20.18~25! 0.10
^Q7&0 0.252~53! 0.43 0.07~11! 0.45
^Q8&0 1.23~22! 0.27 0.58~43! 0.35
^Q9&0 20.063~11! 0.45 20.082~20! 0.53
^Q10&0 0.034~12! 1.09 0.039~22! 1.14
^Q1&2 0.01104~19! 4.55 0.00979~36! 2.99
^Q2&2 0.01089~19! 4.79 0.00964~35! 3.16
^Q3&2 20.00001942~50! 0.25 20.00001832~96! 0.18
^Q4&2 20.0001848~59! 1.28 20.000187~11! 1.25
^Q5&2 0.0001737~61! 1.67 0.000179~11! 1.57
^Q6&2 0.000691~22! 2.08 0.000708~42! 1.98
^Q7&2 0.1580~60! 1.27 0.163~11! 1.18
^Q8&2 0.772~25! 2.09 0.792~47! 1.99
^Q9&2 0.01663~28! 4.48 0.01476~54! 2.94
^Q10&2 0.01646~28! 4.66 0.01458~53! 3.07

TABLE XIV. B parameters in the chiral limit with the chira
logarithm fit.

163332 243332

quadratic chiral log. quadratic chiral log

B1
(1/2) 8.3~5.0! 8.6~8.9! 7.7~2.9! 9.6~5.2!

B2
(1/2) 3.43~95! 4.1~1.7! 3.23~55! 4.04~98!

B3
(1/2) 2.7~6.7! 5~12! 2.6~3.9! 3.6~7.1!

B4
(1/2) 3.6~2.1! 4.5~3.8! 3.4~1.2! 4.3~2.3!

B5
(1/2) 0.04~40! 20.15~71! 0.01~22! 20.02~41!

B6
(1/2) 20.14~22! 20.38~38! 20.03~12! 20.29~22!

B6
(1/2)~4 pts.! 0.07~31! 0.03~58! 0.35~25! 0.34~47!

B7
(1/2) 0.49~15! 0.22~29! 0.50~10! 0.14~21!

B8
(1/2) 0.73~22! 0.32~41! 0.83~15! 0.39~29!

B9
(1/2) 5.5~1.6! 6.8~2.8! 5.19~92! 6.7~1.7!

B10
(1/2) 3.0~1.7! 3.0~3.0! 2.78~98! 3.2~1.8!

B1
(3/2) 0.480~24! 0.431~43! 0.4809~82! 0.426~16!

B2
(3/2) 0.473~23! 0.425~42! 0.4745~81! 0.420~15!

B7
(3/2) 0.640~49! 0.651~88! 0.616~23! 0.634~44!

B8
(3/2) 0.924~61! 0.92~11! 0.920~30! 0.944~55!

B9
(3/2) 0.482~24! 0.433~43! 0.4830~82! 0.429~16!

B10
(3/2) 0.477~24! 0.428~43! 0.4779~82! 0.423~15!
01450
s
ng
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perturbation theory should be modified in the quench
theory @49#. We have applied the modified relation to th
Q5,6

(0) matrix elements and found that the effect is large, ra
ing between 20% and 100% in magnitude. For examp
the renormalized̂ Q6&0 on a 243332 lattice increases in
magnitude to 20.154(17), 20.182(16), 20.144(11),
20.1238(90), and20.0969(72) atmf50.02, 0.03, 0.04,
0.05, and 0.06, respectively.~This modification has been
tested also in the case of the staggered fermion@50#, and an
increase of̂ Q6&0 of a similar magnitude has been observe!
In terms of «8/«, the modified relation leads to
21.70(53), 20.53(51), 21.48(32), 22.09(26), and
22.85(19) forLMS

(4)
5325 MeV. The modification increase

the value of«8/«, but it is still negative. A complete analysi
still remains to be made both in the theoretical analyses
the relation in quenched chiral perturbation theory and
numerical simulations.

VI. CONCLUSIONS

In this paper we have presented results of our invest
tion into the reduction method in the framework of chir
perturbation theory at the lowest order to calculate theK
→pp decay amplitudes. TheK→p andK→0 hadronic ma-
trix elements of four-quark operators were calculated in
quenched numerical simulation using domain-wall fermi
action for quarks and an RG-improved gauge action for g
ons to satisfy the requirements of chiral symmetry on
lattice. We have seen that the calculation of quark loop c
tractions which appear in Penguin diagrams by the rand
noise method works successfully. As a result theDI 51/2
amplitudes which require subtractions with the quark lo
contractions were obtained with a statistical accuracy
about 10%. We have investigated the chiral properties
quired for theK→p matrix elements. If we leave asid
Q6

(0) , we have found no strong sign for the existence of
chiral symmetry breaking effect within the statistical pre
sion of our data in the range of quark masses employe
our simulations. However,Q6

(0) appears to show an excep
tionally large chiral symmetry breaking effect compared
other channels. It is not clear to us if this is an effect beyo
statistical fluctuation. For the definite conclusion on th
point, more data, particularly at smaller quark masses,
be needed. Matching the lattice matrix elements to thos
the continuum atm51/a with the perturbative renormaliza
tion factor to one loop order, and running to the scalem
5mc51.3 GeV with the renormalization group, we obtain
all the matrix elements needed for the decay amplitudes.
fortunately the physical amplitudes thus calculated show
satisfactory features.

One of the pathologies of our results is a poor enhan
ment of theDI 51/2 decay amplitude; the value of ReA0 is
about 50–60 % of the experimental one in contrast to ReA2
which reaches the expected value in the chiral limit. Anoth
deficiency is a small value of theDI 51/2 contribution to
«8/«; if we assume that theDI 53/2 contribution has a cor
rect order of magnitude, theDI 51/2 contribution is too
small by about a factor of 5 to explain the experimental va
.231023.
1-26
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TABLE XV. Values of ReA0 , ReA2, andv21 obtained at eachmfa for both lattice sizes, withLMS
(4)

5325, 215, and 435 MeV.

163332 243332

ReA0@1028GeV# ReA2@1028GeV# v21 ReA0@1028GeV# ReA2@1028GeV# v21

LMS
(4)

5325 MeV

0.02 13.1~1.4! 1.867~22! 7.01~78! 10.80~69! 1.8689~62! 5.78~37!

0.03 9.45~84! 1.992~17! 4.75~43! 9.90~69! 2.0129~74! 4.92~35!

0.04 10.42~68! 2.114~15! 4.93~33! 8.26~45! 2.1006~68! 3.93~22!

0.05 7.66~49! 2.188~14! 3.50~22! 7.61~38! 2.1792~64! 3.49~17!

0.06 7.52~40! 2.267~13! 3.32~17! 7.86~28! 2.2527~61! 3.49~12!

LMS
(4)

5215 MeV

0.02 12.5~1.4! 1.911~23! 6.55~72! 10.40~66! 1.9130~63! 5.43~34!

0.03 9.12~81! 2.039~18! 4.47~40! 9.59~66! 2.0602~76! 4.66~32!

0.04 10.04~64! 2.164~16! 4.64~31! 8.01~43! 2.1500~70! 3.72~20!

0.05 7.41~47! 2.240~14! 3.31~21! 7.38~36! 2.2306~65! 3.31~16!

0.06 7.30~38! 2.321~13! 3.15~16! 7.60~26! 2.3058~63! 3.29~12!

LMS
(4)

5435 MeV

0.02 13.7~1.5! 1.821~22! 7.52~84! 11.20~72! 1.8228~60! 6.14~40!

0.03 9.78~89! 1.943~17! 5.03~46! 10.18~73! 1.9635~72! 5.19~38!

0.04 10.80~71! 2.062~15! 5.24~35! 8.50~48! 2.0489~67! 4.15~23!

0.05 7.87~51! 2.134~14! 3.69~24! 7.82~40! 2.1254~62! 3.68~19!

0.06 7.74~42! 2.211~12! 3.50~19! 8.11~29! 2.1970~60! 3.69~13!
r
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nts.
n
hat
na
The hadronic matrix elements forDI 51/2 involve signifi-
cant subtractions. For some of the matrix elements, this
sults in flips of sign and a reduction in the magnitude. Hen
insufficient choices of lattice parameters in simulations m
lead to sizable systematic errors in these matrix eleme
Possible origins of the errors are~i! finite fifth-dimensional
size N5 of the domain wall fermion,~ii ! finite spatial size
01450
e-
e
y
ts.

Ns , ~iii ! finite lattice spacinga, ~iv! quenching effects, and
~v! the neglect of the charm quark. Our use of~vi! renormal-
ization factors in one-loop order of perturbation theory
another source of error in the renormalized matrix eleme
Finally ~vii ! higher order corrections in chiral perturbatio
theory is also a possible source of error. It may well be t
the origin of the deficiency resides in physical phenome
spatial

FIG. 10. ReA2 ~left! and ReA0 ~right! in units of GeV as a function ofmM

2 . For chiral extrapolation, quadratic~solid! and chiral
logarithm ~dashed! forms are used. For the former, fit errors are shown in the chiral limit. Filled and empty symbols are for the
volume 243 and 163, respectively.
1-27
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FIG. 11. Breakdown of ReA2 ~left! and ReA0 ~right! into contributions from the operatorsQi( i 51, . . .,10) atmfa50.03. Data points
placed on horizontal lines show total values and errors. The solid and dashed lines are for the spatial volume 243 and 163, respectively.
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such as the effect ofs resonance which are difficult to tak
into account once the reduction toK→p matrix elements is
made.
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APPENDIX A: DECOMPOSITION OF Qi ’s INTO DIÄ1Õ2
AND DIÄ3Õ2 PARTS

Four-quark operators which transform under the irred
ible representations ofSU(3)L ^ SU(3)R chiral group and
having definite isospinI 50 or 2 are given by

X27,1
(2) 5~ s̄d!L@~ ūu!L2~ d̄d!L#1~ s̄u!L~ ūd!L , ~A1!

X27,1
(0) 5~ s̄d!L@~ ūu!L12~ d̄d!L23~ s̄s!L#

1~ s̄u!L~ ūd!L , ~A2!

X8,1
(0)5~ s̄d!L~ ūu!L2~ s̄u!L~ ūd!L , ~A3!

X̃8,1
(0)5~ s̄d!L@~ ūu!L12~ d̄d!L12~ s̄s!L#

1~ s̄u!L~ ūd!L , ~A4!

Y8,1
(0)5~ s̄d!L@~ ūu!R1~ d̄d!R1~ s̄s!R#, Y8,1

(0)c , ~A5!

Y8,8
(0)5~ s̄d!L@~ ūu!R2~ s̄s!R#

2~ s̄u!L~ ūd!R , Y8,8
(0)c , ~A6!

Y8,8
(2)5~ s̄d!L@~ ūu!R2~ d̄d!R#

1~ s̄u!L~ ūd!R , Y8,8
(2)c , ~A7!

where we use the notation ofX’s and Y’s for the Lorentz
structureL ^ L andL ^ R. The subscripts ‘‘i,j ’’ stand for the
representation (i L , j R) of the operator and the superscript (0
or (2) denotes the isospin. A shorthand notation, e
1-28
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TABLE XVI. Fit parameters for ReA0 , ReA2, andv21 with j01j1mM
2 1j3(mM

2 )2 ~quadratic fit! and
j01j1mM

2 1j2mM
2 ln mM

2 ~chiral logarithm fit!. Results on a 243332 lattice withLMS
(4)

5325 MeV are shown.

243332 j0 j1 j2 j3 x2/dof

quadratic ReA0@1028GeV# 16.5~2.2! 227.7~9.2! 21.8~8.8! 0.34
ReA2@1028GeV# 1.531~26! 1.62~12! 20.86~13! 4.91

v21 9.5~1.1! 218.2~4.6! 13.7~4.3! 0.13

chiral log. ReA0@1028GeV# 20.7~4.0! 211.4~2.8! 20.1~8.3! 0.50
ReA2@1028GeV# 1.353~50! 0.977~31! 20.82~11! 3.25

v21 12.3~2.0! 28.0~1.5! 12.9~4.1! 0.26
o
d

( s̄d)L5 s̄gm(12g5)d, is employed as in Eqs.~2.17!–~2.21!,
and Yi,j

(I )c equalsYi,j
(I ) with its color summation changed t

cross the two currents. In terms of these operators the in
pendent local operators are rewritten as

Q15
1

2
X8,1

(0)1
1

10
X̃8,1

(0)1
1

15
X27,1

(0) 1
1

3
X27,1

(2) , ~A8!

Q252
1

2
X8,1

(0)1
1

10
X̃8,1

(0)1
1

15
X27,1

(0) 1
1

3
X27,1

(2) ,

~A9!

Q35
1

2
X8,1

(0)1
1

10
X̃8,1

(0) , ~A10!

Q55Y8,1
(0) , ~A11!

Q65Y8,1
(0)c , ~A12!

Q75
1

2
@Y8,8

(0)1Y8,8
(2)#, ~A13!
01450
e-

Q85
1

2
@Y8,8

(0)c1Y8,8
(2)c#. ~A14!

Therefore the decomposition of the local operators intoDI
51/2 andDI 53/2 parts is summarized as follows:

DI 51/2:

Q1
(0)5

1

3
@2~ s̄adb!L~ ūbua!L12~ s̄aub!L~ ūbda!L

1~ s̄adb!L~ d̄bda!L#, ~A15!

Q2
(0)5

1

3
@2~ s̄d!L~ ūu!L12~ s̄u!L~ ūd!L

1~ s̄d!L~ d̄d!L#, ~A16!

Q3
(0)5~ s̄d!L@~ ūu!L1~ d̄d!L1~ s̄s!L#, ~A17!

Q4
(0)5~ s̄adb!L@~ ūbua!L1~ d̄adb!L1~ s̄bsa!L#,

~A18!

Q5
(0)5~ s̄d!L@~ ūu!R1~ d̄d!R1~ s̄s!R#, ~A19!
FIG. 13. P(3/2) ~left! andP(1/2) ~right! as a function ofmM
2 . Empty and filled symbols are for the spatial volume 163 and 243, respectively.
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Q6
(0)5~ s̄adb!L@~ ūbua!R1~ d̄adb!R1~ s̄bsa!R#, ~A20!

Q7
(0)5

1

2
@~ s̄d!L~ ūu!R2~ s̄u!L~ ūd!R2~ s̄d!L~ s̄s!R#,

~A21!

Q8
(0)5

1

2
@~ s̄adb!L~ ūbua!R2~ s̄aub!L~ ūbda!R

2~ s̄adb!L~ s̄bsa!R#, ~A22!

Q9
(0)5

1

2
@~ s̄d!L~ ūu!L2~ s̄u!L~ ūd!L2~ s̄d!L~ s̄s!L#,

~A23!

FIG. 14. «8/« as a function ofmM
2 . Empty and filled symbols

are for the spatial volume 163 and 243, respectively. Experimenta
values quoted in Eq.~1.4! are also shown.

FIG. 15. Breakdown ofP(3/2) ~left! and P(1/2) ~right! into con-
tributions from the operatorsQi( i 53, . . .,10) atmfa50.03. Data
points placed on horizontal lines show total values and errors.
solid and dashed lines are for the spatial volume 243 and 163,
respectively.
01450
Q10
(0)5

1

2
@~ s̄adb!L~ ūbua!L2~ s̄aub!L~ ūbda!L

2~ s̄adb!L~ s̄bsa!L#, ~A24!

DI 53/2:

Q1
(2)5Q2

(2)5
1

3
@~ s̄d!L~ ūu!L1~ s̄u!L~ ūd!L2~ s̄d!L~ d̄d!L#,

~A25!

Q3
(2)5Q4

(2)5Q5
(2)5Q6

(2)50, ~A26!

Q7
(2)5

1

2
@~ s̄d!L~ ūu!R1~ s̄u!L~ ūd!R2~ s̄d!L~ d̄d!R#,

~A27!

Q8
(2)5

1

2
@~ s̄adb!L~ ūbua!R1~ s̄aub!L~ ūbda!R

2~ s̄adb!L~ d̄bda!R#, ~A28!

Q9
(2)5Q10

(2)5
3

2
Q1

(2) , ~A29!

where color indices are understood within each current in
operators with two color traces. The equivalence betw
Q1

(2) and Q2
(2) is valid due to Fierz rearrangement, hen

Q9
(2)5Q10

(2) follows.

APPENDIX B: EXPERIMENTAL INPUT PARAMETERS

We collect the input parameters which were used in
numerical calculation@51,52#.

Quark mass: mu55 MeV, md58 MeV, ~B1!

ms5120 MeV, mc51.3 GeV, ~B2!

mb54.2 GeV, mt5170 GeV. ~B3!

Meson mass: mp5139.6 MeV, mK5497.7 MeV.
~B4!

Decay constant: f p592.4 MeV, f K5113.1 MeV.
~B5!

Coupling constant: a[e2/~4p!51/129 ~at m5mW!,
~B6!

GF[
A2g2

2

8mW
2

51.16631025 GeV22 ~B7!

~mW580.2 GeV!.

e
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TABLE XVII. Values of P(1/2), P(3/2), and«8/« at eachmfa for both lattice volumes, withLMS
(4)

5325,
215, and 435 MeV.

163332 243332

P(1/2) P(3/2) «8/«@1024# P(1/2) P(3/2) «8/«@1024#

LMS
(4)

5325 MeV

0.02 0.1~1.2! 4.93~11! 26.3~1.5! 1.69~50! 4.923~45! 24.21~64!

0.03 2.97~61! 5.084~88! 22.74~78! 3.36~47! 4.944~49! 22.06~60!

0.04 2.19~44! 5.291~70! 24.03~56! 3.50~33! 5.200~41! 22.21~41!

0.05 3.65~29! 5.416~59! 22.30~37! 3.19~26! 5.470~37! 22.96~33!

0.06 3.42~22! 5.657~53! 22.90~28! 3.01~19! 5.632~35! 23.41~24!

LMS
(4)

5215 MeV

0.02 0.06~94! 3.713~87! 24.7~1.2! 1.34~41! 3.707~36! 23.07~52!

0.03 2.38~50! 3.815~70! 21.86~63! 2.70~38! 3.701~39! 21.31~49!

0.04 1.74~36! 3.962~56! 22.89~45! 2.81~26! 3.892~33! 21.40~33!

0.05 2.93~24! 4.049~47! 21.45~30! 2.56~21! 4.094~27! 21.99~27!

0.06 2.75~18! 4.228~42! 21.92~22! 2.41~16! 4.211~28! 22.34~19!

LMS
(4)

5435 MeV

0.02 0.1~1.4! 6.16~13! 27.8~1.8! 2.05~61! 6.150~54! 25.33~78!

0.03 3.63~75! 6.36~11! 23.56~95! 4.09~58! 6.197~58! 22.74~73!

0.04 2.67~54! 6.629~84! 25.15~68! 4.26~40! 6.518~50! 22.93~50!

0.05 4.43~36! 6.790~71! 23.06~46! 3.88~32! 6.853~44! 23.87~40!

0.06 4.16~27! 7.091~64! 23.82~34! 3.65~24! 7.059~42! 24.43~29!
ac
er
p

ce
tor
n
x

Quantities relevant

to Kaon decays: ReA0533.331028 GeV, ~B8!

ReA251.5031028 GeV, ~B9!

uvu50.045, ~B10!

Vh1h850.25, ~B11!

u«u52.28031023, ~B12!

CKM elements: uVusu50.22, uVudu50.974, ~B13!

Im~Vts* Vtd!51.331024, ~B14!

Ret52ReS Vts* Vtd

Vus* Vud
D 50.002. ~B15!

APPENDIX C: RENORMALIZATION FACTORS AND
RG-EVOLUTION MATRIX

In this appendix, we summarize the renormalization f
tors and the RG-evolution matrix, and calculate their num
cal values for our choice of parameters. Throughout this
per, we employ the perturbative calculation inMS scheme
with NDR.
01450
-
i-
a-

The renormalization formula has the form

^Qi&
MS~q* !5Z i j

g ~q* a!^Qj
latt&~1/a!

1Z i
pen~q* a!^Qpen

latt&~1/a!, ~C1!

where

Qpen
latt[Q41Q62

~Q31Q5!

Nc
~Nc53: No. of color!

~C2!

is the sum of contributions from penguin operators. Sin
our matrix elements are obtained in the form of propaga
ratios, Z g and Z pen are also ratios of the renormalizatio
factors Zi j

g and Zi
pen calculated from corresponding verte

functions and that of the local axial currentZA @43#:

Z i j
g 5

Zi j
g

ZA
2

, Z i
pen5

Zi
pen

ZA
2

. ~C3!

The diagonal partsZii
g are given by
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Zii
g 55

11
g2

16p2 F 3

Nc
ln~q* a!21

z11z2

2 G , i 51,2,3,4,9,10,

11
g2

16p2 F2
3

Nc
ln~q* a!21z12v21G , i 55,7,

2 2

~C4!

NOAKI et al. PHYSICAL REVIEW D 68, 014501 ~2003!
11
g

16p2 F3~Nc21!

Nc
ln~q* a!21z21v21G , i 56,8,

while for off-diagonal parts, one has

Zi j
g 5

¦

g2

16p2 F2
3

Nc
ln~q* a!21

z12z2

2 G , ~ i , j !5~1,2!,~2,1!,~3,4!,

~4,3!,~9,10!,~10,9!,

g2

16p2 F3 ln~q* a!21
z22z11v212v12

Nc
G , i 5~5,6!,~7,8!,

2
g2

16p2
Ncv21, i 5~6,5!,~8,7!,

0, others.

~C5!
-

-
no
en
Similarly the contributions from the penguin operators@45#
are given by

Zi
pen5

g2

16p2

Ci

3
@2 ln~q* a!21zi

pen#, ~C6!

where C251,C352,C45C65Nf ,C85C105Nu2Nd/2,C9
521, andCi50 for otheri with Nf ,Nu ,Nd being the num-
ber of flavors, up-like quarks, and down-like quarks inQi ’s,
and zi

pen are constants. In our calculation, we should setNf

53,Nu51, andNd52. Finally the axial vector renormaliza
tion constant has the form

ZA511
g2

12p2
zA . ~C7!

In the abovez6 ,z1 ,z2 ,v12,v21, andzA are constants de
pending on the choices of simulation parameters and re
malization scheme. With the use of mean field improvem
at one-loop level, we obtain the following values@46# at b
52.6 andM51.8 for the RG-improved gauge action:

g2[gMS
2

~1/a!52.273, ~C8!
01450
r-
t

M̃51.419 79, ~C9!

zA524.6930, ~C10!

z15213.612, z25210.319, ~C11!

z15210.063, z25216.125, ~C12!

v1258, v2151, ~C13!

zi
pen5H 4.494 ~ for i 52,3,5,7,9!

3.494 ~ for i 54,6,8,10!.
~C14!

From the definition ofQpen, Zi
pen can be written in the form

of a 10310 matrix Ẑpen, defined as Ẑi3
pen5Ẑi5

pen5

2zi
pen/Nc ,Ẑi4

pen5Ẑi6
pen5zi

pen, and Ẑi j
pen50 for other j. The

renormalization factor can then be summarized as a 10310
matrix given by
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Z g1Ẑ pen

5

l

0.9997 20.0350 0 0 0 0 0 0 0 0

20.0350 0.9997 20.0106 0.0318 20.0106 0.0318 0 0 0 0

0 0 0.9785 0.0287 20.0212 0.0636 0 0 0 0

0 0 20.0597 1.0739 20.0247 0.0742 0 0 0 0

0 0 0 0 1.0154 20.0924 0 0 0 0

0 0 20.0247 0.0742 20.0884 1.0190 0 0 0 0

0 0 0 0 0 0 1.0154 20.0924 0 0

0 0 0 0 0 0 20.0637 0.9448 0 0

0 0 0.0106 20.0318 0.0106 20.0318 0 0 0.9997 20.0350

0 0 0 0 0 0 0 0 20.0350 0.9997

m
.

~C15!
rt

e

For the derivation of the RG-evolution matrix, we sta
with constructing the renormalization group equation~RGE!
of Wi(m)’s, and hence ofU(m,1/a)’s. If we write the renor-
malization of Qi as Qi

(0)5Zi j Qj where the superscript~0!
indicates the value at tree level, RGE forQi ’s are readily
obtained as

d

d ln m
Qi52g i j Qj , g[S Z21

d

d ln m
ZD . ~C16!

On the other hand, interpretingWi ’s as coupling constants in
the effective Hamiltonian, renormalization ofWi ’s is pos-
sible, Wi

(0)5Zi j
c Wj , in place of that ofQi ’s. From the

equivalence of these renormalizations,Zc5(Z21)T follows.
Therefore using Eq.~C16! we obtain

d

d ln m
Wi5g i j

T Wj ,

hence

d

d ln m
Ui j ~m,1/a!5~gT! ikUk j~m,1/a!. ~C17!

Using the 10310 anomalous dimension matrixg, defined in
Eq. ~C16!, the RGE forU(m,1/a) has been solved for th
QCD b function and anomalous dimensiong calculated at
next to leading order@53,54#:

b~g!52b0

g3

16p2
2b1

g5

~16p2!2
, ~C18!
01450
b05
11Nc22Nf

3
,

b15
34

3
Nc

22
10

3
NcNf22CFNf ,

~C19!

g~aS ,a!5gS~g2!1
a

4p
G~g2!, ~C20!

gS~g2!5gS
(0) aS

4p
1gS

(1)S aS

4p D 2

, ~C21!

G~g2!5ge
(0)1

aS

4p
gse

(1) . ~C22!

The solution at this order is written as

U~m1 ,m2 ,a!5U~m1 ,m2!1
a

4p
R~m1 ,m2!. ~C23!

Using the matrixV that diagonalizes thegS
(0)T , we obtain

diag@gDi
(0)#5V21g (0)TV andG5V21g (1)TV. Then,

U~m1 ,m2!5U (0)~m1 ,m2!1
aS~m1!

4p
JU(0)~m1 ,m2!

2U (0)~m1 ,m2!
aS~m2!

4p
J, ~C24!
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U (0)~m1 ,m2!5VS aS~m2!

aS~m1! D
gD

(0)/2b0

V21, ~C25!

J5VHV21, ~C26!

Hi j 5d i j gDi
(0) b1

2b0
2

2
Gi j

2b01gDi
(0)2gD j

(0)
.

~C27!

Moreover, withM (0)[V21ge
(0)TV,

R~m1 ,m2!52
2p

b0
VFK (0)~m1 ,m2!

1
1

4p (
i 51

3

Ki
(1)~m1 ,m2!GV21, ~C28!

K (0)~m1 ,m2! i j 5
2b0Mi j

(0)

gDi
(0)2gD j

(0)22b0

3F S aS~m2!

aS~m1! D
gD j

(0)/2b0 1

aS~m1!

2S aS~m2!

aS~m1! D
gDi

(0)/2b0 1

aS~m2!
G , ~C29!
01450
K1
(1)~m1 ,m2! i j 5

2b0Mi j
(1)

gDi
(0)2gD j

(0) F S aS~m2!

aS~m1! D
gD j

(0)/2b0

2S aS~m2!

aS~m1! D
gDi

(0)/2b0G , ~C30!

M (1)5V21S gse
(1)T2

b1

b0
ge

(0)T1@ge
(0)T ,J# DV,

~C31!

K2
(1)~m1 ,m2!52aS~m2!K (0)~m1 ,m2!H, ~C32!

K3
(1)~m1 ,m2!5aS~m1!HK (0)~m1 ,m2!, ~C33!

wherem15mc51.3 GeV, andm251/a.
Using the value of the strong coupling consta

aS
MS(1/a)50.301 71 and aS

MS(1.3 GeV)50.396 01 with
LMS

(3)
5372 MeV, together withg functions presented in Ref

@41#, we obtain the matrixU(mc,1/a,a) given in Eq.~C23!
and the RG-evolution matrix:
@U21~mc,1/a!#T

5

l

0.9738 0.0730 0.0035 20.0003 20.0033 20.0002 0.0005 0 0.0005 0.0001

0.0731 0.9736 20.0024 0.0149 20.0053 0.0116 0.0002 0 0.0001 0.0001

0 0 0.9794 0.1043 20.0212 0.0247 20.0002 0 20.0006 20.0001

0 0 0.0731 1.0105 20.0186 0.0306 20.0005 0 20.0004 0

0 0 20.0083 20.0065 1.0465 20.0996 0.0005 0 0 0

0 0 20.0090 0.0228 20.0421 0.7878 0 0.0007 0 0

0 0 0 0 0.0002 0 1.0349 20.0929 0.0008 0

0 0 0 0 0 0.0004 20.0367 0.7602 0.0001 20.0001

0 0 0.0021 20.0149 0.0053 20.0116 0.0009 0.0001 0.9750 0.0731

0 0 20.0035 20.0001 0.0032 0.0002 0.0006 0 0.0736 0.9740

m
.

~C34!
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In order to check the systematic error associated with
matching procedure above, we also employ an alterna
procedure in which the RG-evolution is carried out in t
quenchedtheory fromm25q* to m15mc51.3 GeV where
matching to theNf53 theory is made. For the quenche
RG-evolution, the two-loop anomalous dimension mat
gS

(1) is modified according to@54#

@gS
(1)#quenched5@gS

(1)# full2DgS
(1) , ~C35!

whereDgS
(1)5diag@G1 ,G2 ,G3 ,G4 ,G5# with the 232 matri-

cesG i , which are given by
le

h
th
00

e

,

n
,

e,

s.

01450
e
e

G15G25G55F 2
2Nf

3Nc

2Nf

3

2Nf

3
2

2Nf

3Nc

G , ~C36!

G35G45F 2
22Nf

3Nc

22Nf

3

4Nf
20CFNf

3
2

4Nf

Nc

G . ~C37!

Note thatNf53 in this case. For the gauge coupling in th
quenched theory, we employaS

MS(1/a)50.180 891 from Eq.
~C8!, and aS

MS(1.3 GeV)50.204 39 obtained by the two
loop running withNf50.
a,

.

ty,

s.
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