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Calculation of K → π matrix elements in quenched domain-wall QCD ∗
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We explore the possibility for an evaluation of non-leptonic ∆S = 1 K decay amplitudes through the calculation

of K → π matrix elements using domain-wall QCD. The relation between the physical K → ππ matrix elements

and K → π matrix elements deduced from chiral perturbation theory is recapitulated. Quenched numerical

simulations are performed on an 163
× 32 × 16 lattice at a lattice spacing a

−1
≈ 2GeV for both the standard

plaquette gauge action and a renormalization-group improved gauge action, and reasonable signals for K → π

matrix elements are obtained. Preliminary results are reported on the K → ππ matrix elements, and results from

two actions are compared.

1. INTRODUCTION

Despite extensive efforts over the years, lattice
QCD calculation of the matrix elements relevant
for understanding the K → ππ decays, includ-
ing the ∆I = 1/2 rule and the direct CP viola-
tion parameter ε′/ε, have achieved only limited
success to the present[1]. One reason behind the
slow progress is lack of full chiral symmetry in the
Kogut-Susskind[2] and Wilson[3] formulation for
lattice fermions employed in the past attempts.
The domain wall fermion formalism [4,5] offers a
possibility of resolving this problem. In this arti-
cle we report on our study of the K → ππ ampli-
tudes in quenched QCD using this formalism[6].

The framework of our study is the reduc-
tion formulae[7] derived from chiral perturba-
tion theory(χPT), which relate K → π ampli-
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tudes to the physical K → ππ amplitudes. We
briefly review these formulae to expose some lim-
itations[8,9].

Chiral property of domain wall QCD has been
examined in detail recently [10,11]. We have
shown in particular [10] that the residual chiral
symmetry breaking due to finite fifth-dimensional
size is significantly reduced for a renormalization-
group improved gluon action as compared to the
standard plaquette action. We therefore calculate
the K → π matrix elements for the two gluon ac-
tions in parallel.

2. χPT REDUCTION FORMULAE

The effective Hamiltonian HW for ∆S = 1 K
meson decays is written as

H
(eff)
W =

GF√
2

VudV
∗
us

10
∑

i=1

W (µ)iQi(µ), (1)

where W (µ)i are Wilson coefficients. The basis

four-quark operators Qi are decomposed as Q
(0)
i +

Q
(2)
i corresponding to iso-spin in the final state
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I = 0 and 2.
Under SU(3)L⊗SU(3)R chiral transformation,

the basis operators Qi transform as (27, 1)⊕(8, 1)
for i = 1, . . . , 4, 9, 10, (8, 1) for i = 5, 6 and (8, 8)
for i = 7, 8. To leading order in χPT the op-
erators that transform according to these flavor
representations are given by[7–9]

(8, 1) : A = (∂µΣ†∂µΣ)23, (2)

B = (Σ†M + M †Σ)23 (3)

(27, 1) : C = 3(Σ†∂µΣ)23(Σ
†∂µΣ)11

+2(Σ†∂µΣ)13(Σ
†∂µΣ)21 (4)

(8, 8) : D = Σ†
21Σ13, (5)

where we consider (8, 8) operator only at O(p0)
order due to the reason explained later.

Using unknown parameters, a, b, c, d . . ., one
may write the Qi’s in terms of the χPT opera-
tors according to

Qi = aiA + biB + ciC (i = 1, . . . , 6, 9, 10) (6)

Qi = diD (i = 7, 8) (7)

for the case of I = 0 and 2 separately.
For Qi in (6), K+ → π+ matrix elements are

proportional to ai+bi−2ci, whereas K0 → π+π−

matrix elements to ai − 2ci. To eliminate bi one
has to introduce an operator

Qsub = (ms + md)s̄d − (ms − md)s̄γ5d = bsubB (8)

and construct Qi − αiQsub, where αi = bi/bsub

can be determined by K0 → 0 matrix elements
(See (11)). One then obtains the reduction for-
mula, (9) below, relating the K → ππ and K → π
amplitudes originally given by Bernard et.al[7].

In (7) there would appear too many unknown
parameters to invalidate the reduction relation,
if all (8, 8) operators up to O(p2) order were
included as in the case of other representation.
To exclude contributions from these operators at
O(p2), we take the chiral limit where the reduced
relation is justified. In this limit, the matrix ele-
ments for K → ππ are obtained in proportion to
those for K → π[8,9].

It should be stressed that it is only in the chi-
ral limit that one can obtain a complete set of
reduction formulae at the lowest order of χPT.

Table 1
Simulation parameters. Scale a−1 is fixed from
string tension

√
σ = 440 MeV.

gauge action plaquette RG-improved

β 6.0 2.6
a−1 2.0 GeV 1.94 GeV

lattice size 163 × 32 × 16
DW height M 1.8

mf 0.01 − 0.06 in steps of 0.01
#config. 111 110

m5q[10] 2.96(34) MeV 0.283(42) MeV

3. NUMERICAL SIMULATION

Parameters of our numerical simulation are
summarized in Table. 1. Calculations are car-
ried out, assuming degenerate bare quark mass
mf = mu = md = ms, on a 163 × 32 × 16 lat-
tice at a coupling constant corresponding to a lat-
tice spacing of a−1 ≈ 2 GeV. With these parame-
ters the anomalous quark mass m5q representing
residual chiral symmetry breaking is similar to u-
d quark mass for the plaquette action and quite
small for the RG-improved action. We set the
scale from measurement of the string tension as-
suming

√
σ = 440 MeV[10].

To evaluate quark loops in some types of con-
tractions, we employ the random noise method
with the number of noises taken to be 2. This
number is decided from a numerical test.

We calculate the K → π matrix elements using
the wall source and dividing by the normalization
factor 〈π+ |A4| 0〉 〈0 |A4|K+〉. In this convention,
χPT reduction formulae for i = 1, . . . , 6, 9, 10
take the form,
〈

π+π−
∣

∣

∣
Q

(I)
i

∣

∣

∣
K0

〉

=
√

2fπ(m2
K − m2

π)

×

〈

π+
∣

∣

∣
Q

(I)
i − αiQsub

∣

∣

∣
K+

〉

〈π+ |A4| 0〉 〈0 |A4|K+〉 , (9)

and for i = 7, 8,
〈

π+π−
∣

∣

∣
Q

(I)
i

∣

∣

∣
K0

〉

=

−
√

2fπ×m2
M

〈

π+
∣

∣

∣
Q

(I)
i

∣

∣

∣
K+

〉

〈π+ |A4| 0〉 〈0 |A4|K+〉 ,(10)

where mM is the meson mass on the lattice, while
the experimental values are to be substituted in
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Figure 1. Propagators relevant to Q
(0)
6 with

mf = 0.03 for (a) plaquette and (b) RG-improved
gauge actions. Fit ranges and jack knife errors are
represented by horizontal lines.

fπ, mπ, mK . In (9) the subtraction term αiQsub

appears only for I = 0. The parameter αi is
written as

αi = −
d

dms

〈

0
∣

∣

∣
Q

(0)
i

∣

∣

∣
K0

〉

|ms=md

〈0 |s̄γ5d|K0〉 , (11)

where the differentiation by ms is implemented
by a double inversion of the Dirac operator.

4. RESULTS

For limitation of space we concentrate on the

matrix elements of Q
(0)
6 and Q

(2)
8 , which represent

the main contributions to ε′/ε.

Examples of propagator ratios for Q
(0)
6 which

appears on the right hand-side of (9) are shown
in Fig. 1 for (a) plaquette and (b) RG-improved
gauge actions. In each figure, the upper panel
is for the K → π matrix element and the lower
for α6 defined in (11). Although both propaga-
tors contain quark loops, which have been known
to make signals worse, reasonable signals are ob-
tained at the level of propagator ratios. This also
justifies our choice of 2 random noises to evaluate
the quark loops.

A constant fitting, as shown in Fig. 1, yields the
matrix element, which we plot as a function of mf

in Fig. 2. Circles and diamonds show the contri-
bution of the K → π matrix element and the sub-
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(a)  plaquette

total
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(0)
|K>

subtraction term

0.01 0.02 0.03 0.04 0.05 0.06
mf

(b) RG improved

Figure 2. Q
(0)
6 calculated by the χPT reduction

formula (9). Original matrix element (circles),
subtraction term (diamonds) and the total value
(squares) are separately plotted. Lines are guide
to eyes.

traction term to the K → ππ matrix element of
Q

(0)
6 as given in the reduction formula (9). There

is a severe cancellation between the two contribu-
tions, leading to the total value of the K → ππ
matrix element (squares) which is more than an
order of magnitude smaller than the individual
contributions. Nonetheless, the enlarged plots in
Fig. 3(a) and (b) show that the total values have
a reasonable signal.

There is no subtraction term for Q
(2)
8 . We ob-

tain clear signals for this operator using the re-
duction formula (10) as shown in Fig. 4.

The remaining procedure is to make a linear
fitting, as shown in Figs. 3 and 4, to take the
chiral limit mf → 0 where both of the reduc-
tion formulae (9) and (10) are valid to estimate
the physical matrix element, and to convert the
values to continuum theory renormalized in the
MS scheme with NDR. For the latter, we employ
the renormalization factors calculated in pertur-
bation theory at one-loop level[12] with mean field
improvement.

Prior to this final step, we are currently increas-
ing the statistics to reduce the errors further. We
are also performing a new simulation with a larger
lattice volume to investigate finite size effect in
the matrix elements.



4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
mf

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

[G
eV

3 ]
(a) plaquette

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
mf

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

[G
eV

3 ]

 

(b) RG improved

Figure 3. K → ππ matrix element of Q
(0)
6 and linear extrapolation to the limit mf → 0 for the plaquette

and RG-improved gauge action.
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Figure 4. Counterpart of Fig. 3 for the operator Q
(2)
8 .

5. OUTLOOK

We have presented our preliminary results for
the K → ππ decay amplitudes based on the
χPT reduction formulae and domain wall QCD.
Matrix elements of reasonable statistical quality
are obtained from about a hundred gauge config-
urations in our quenched numerical simulation.
Values for the matrix elements from plaquette
and RG-improved gauge actions seems consistent
within the errors. These results make us hopeful
that the present approach yields precise informa-
tion about the ∆I = 1/2 rule and direct CP vio-
lation in the standard model with more statistics
and detailed analysis.
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