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Effects of short-range correlations on the Coulomb screening, the phonons, and the pairing
interactions are examined in electron-phonon systems. First, we derive a model Hamiltonian
of Coulomb interactions which includes both the long-range part vq and the short-range part
U . It is found from the expression of the dielectric function that the strong on-site correlations
weaken the Coulomb screening. Secondly, we examine the screened phonons and the interaction
mediated by phonons. In a consistent picture, we derive an expression of the effective interac-
tion which includes (1) the screened Coulomb interactions, (2) the pairing interactions mediated
by phonons, and (3) the effective interactions mediated by spin and charge fluctuations. It is
rewritten in a form of a summation of (a) the effective interactions of the pure Hubbard model
without the long-range Coulomb interactions, and (b) the phonon-mediated interactions plus
screened Coulomb interactions with corrections due to both U and vq . Thirdly, we derive an
effective Hamiltonian analogous to the BCS Hamiltonian. Fourthly, for some typical values of
parameters, we obtain the ground state phase diagrams. It is found that spin-triplet supercon-
ductivity mediated by phonons occurs when the short-range electron correlations are sufficiently
strong, and the Coulomb screening is sufficiently weak. We estimate the orders of the transition
temperatures when the triplet superconductivity occurs. The obtained values are realistic for
existing candidates of the triplet superconductors as the order of the magnitudes. The possible
relevance of the phonon-mediated interactions to the heavy fermion superconductor UPt3 and
the layered superconductors such (TMTSF)2X and Sr2RuO4 are briefly discussed.
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1. Introduction

It is widely known that overscreening of the repulsive
Coulomb interactions between electrons by ions gives rise
to attractive interactions for low frequencies |ω| . ωD.1

This dynamical effect is considered to be the origin of the
pairing interactions mediated by phonons, which induce
the superconductivity in metals. At the same time, the
long-range Coulomb interactions are screened into short-
range interactions, and consequently the energies of the
optical phonons of short wavelengths are reduced into
the accoustic type ωq ∼ |q|.

On the other hand, the screening of electronic and ionic
charges influences the momentum dependence of the at-
tractive interactions through the dielectric function. If
there were not the screening, the coupling constant be-
tween electrons and optical phonons diverges as |q| → 0
due to the long-range nature of the Coulomb interactions.
However, in actuality, such divergence is suppressed by
the screening, but the coupling constant remains momen-
tum dependent.

Owing to such momentum dependences of the
electron-phonon coupling constant and the phonon en-
ergy, the resultant pairing interaction mediated by

phonons depends on the momentum transfer. Hence, it
includes the anisotropic components, when it is expanded
in terms of appropriate basis functions. Usually, such
anisotropic components are ignored, because they are
considered to be much smaller than the isotropic com-
ponent in most cases. In fact, the superconductivity in
the ordinary metals, which are probably mediated by
phonons, are considered to be of s-wave pairing.

However, as Foulkes and Gyorffy pointed out,2 when
the short-range Coulomb interactions are strong enough
to suppress isotropic pairing, anisotropic pairing can
be induced by the subdominant anisotropic interaction.
They have examined possibility of spin-triplet supercon-
ductivity by this mechanism in metals such as Rh, W,
and Pd.

Abrikosov discussed high-Tc cuprates, and proposed
that such momentum dependence of the phonon-
mediated pairing interaction could give rise to ex-
tended s-wave superconductivity,3 although it seems
from some experiments that the cuprates are d-wave su-
perconductors. Following his theory, Bouvier and Bok
calculated the superconducting gap function and ob-
tained anisotropic momentum dependence.4 Friedel and

1
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Kohmoto, and Chang, Friedel and Kohmoto examined
the d-wave pairing interactions mediated by phonons in
the cuprates.5, 6 The present author and Kohmoto have
proposed7 that in the presence of coexisting ferromag-
netic long-range order, a subdominant triplet state oc-
curs after the singlet states are suppressed by the strong
exchange field. We have discussed a possibility of this
mechanism in UGe2.

8, 9

It is easily verified that the momentum dependence
of the interaction is stronger for weaker screening. For
example, in the Thomas-Fermi approximation, the cou-
pling constant has a peak with the width of the inverse
screening length in the momentum space. Therefore, in
the interactions, the ratios of the anisotropic compo-
nents to the isotropic component increase10 when the
screening becomes weaker. There are some possible fac-
tors which weaken the screening effect, such as crystal
structures, low density of charge carriers, and low den-
sity of states. The present author and Kohmoto have ex-
amined layer structures as the weakening mechanism,11

because some candidates of the triplet superconductors
have layer structures as we shall discuss below. It was
found that when the layer interval increases, the screen-
ing becomes weaker, and subdominant triplet pairing
interaction could more easily overcome the dominant
s-wave pairing interaction with an asist of the on-site
Coulomb repulsion.

It should be noted7, 11 that the on-site Coulomb in-
teraction is specific to the electron systems in solid, and
does not appear in the electron gas model in the contin-
uum space. The magnitude of the on-site Coulomb en-
ergy U depends on the profile of the Wannier functions.
Since such an on-site interaction is constant in the crys-
tal momentum space, it only suppresses isotropic pair-
ing, and consequently it favors subdominant anisotropic
pairing.11

With respect to application, we are motivated by
recently discovered exotic superconductors, such as
Sr2RuO4, organic superconductors, and heavy fermion
superconductors. In the Sr2RuO4 superconductor, spin-
triplet pairing has been suggested by a Knight shift mea-
surement12 and a µSR experiment.13 Many theories have
been proposed on this material, and there are some con-
troversies especially on the momentum dependence of the
superconducting gap function.14 Particularly, some non-
phonon mechanisms have been considered,14 but there
has not been any evidence at present. On the other hand,
the Sr2RuO4 superconductor exhibited the isotope effect
coefficients with unusual dependence on the impurity (or
oxygen defect) concentration and a reverse isotope effect
in clean samples.15 The formar can be explained by as-
suming internal transition of superconductivity,16 if the
phonon-mediated pairing interaction exists. For the lat-
ter result, it has been shown17 that within the weak cou-
pling theory, the reverse isotope effect indicates that the
Coulomb interaction between electrons, in total effect,
works as repulsive interactions against the superconduc-

tivity, unless the system is in the very vicinity of any
magnetic instability. At present, any pure nonphonon
theory could not explain these experimental facts of the
isotope effect.

Another candidate of the present mechanism of
triplet superconductivity is the family of (TMTSF)2X
compounds. From the experimental results at the
early stage after the discovery of superconductivity in
these compounds, including nuclear magnetic resonance
(NMR)18, 19 and the phase diagrams,20 d-wave supercon-
ductivity mediated by antiferromagnetic spin fluctuation
has been studied in these compounds.21, 22 However, re-
cent experimental studies suggest spin-triplet supercon-
ductivity in (TMTSF)2PF6

23 and (TMTSF)2ClO4,
24, 25

although some of the experimental results have not been
explained by triplet pairing.26 We will examine this prob-
lem in a separate paper in details, applying the present
mechanism of triplet pairing to these compounds.27 Only
by the phonon mechanism, it might be difficult to re-
produce the pressure dependence of the superconduct-
ing transition temperature Tc observed in these com-
pounds.20 The pressure dependence may be explained
by taking into account the contribution from the spin
fluctuations to the pairing interactions. The pairing in-
teractions mediated by the spin fluctuations include the
attractive triplet components.22, 28

We also consider the heavy fermion superconductors,
such as UPt3,

29, 30 as candidates in which the pairing in-
teractions mediated by phonons may contribute to spin-
triplet pairing. Since the width of the effective band is
extremely narrow, s-wave state could not avoid the on-
site Coulomb repulsion by the retardation effect. If one
use the Thomas-Fermi approximation in the estimation
of the screening length, it becomes much smaller than
the lattice constant. However, it is not justified for a
phenomena of such a small length scale. In actuality, the
dipole field due to the charge distributions in the unit
cell could not decay so rapidly within the scale of the
lattice constant. Hence, the electron-ion interaction is
not necessarily limited on the each lattice site. There-
fore, it may contribute to the anisotropic pairing inter-
actions. Whatever the pairing mechanism is, since the
heavy mass renormalization significantly reduces the ef-
fective coupling constant of the pairing interaction, the
bare pairing interaction needs to be very large for the
observed Tc to be reproduced.

In general, it is reasonable that the phonon-mediated
pairing interaction could contribute to superconductivity
to some extent in most cases, even when the resultant gap
function is anisotropic. In fact, in almost all superconduc-
tors including exotic ones, non-vanishing isotope effects
have been observed. It is reasonable to take them due
to attractive contributions from phonons to the pairing
interactions. It is likely that the momentum average like
〈γ∗(k)Vph(k − k′)γ(k′)〉 is negative, since the phonon-
mediated pairing interaction Vph(q) have a negative peak
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around q = 0 and |γ(k)|2 > 0, where γ(k) denotes the
function that expresses the momentum dependence of
the gap function ∆(k) ∝ γ(k). Further, it is likely that
the isotropic component is dominant, and the second and
third-dominant ones are anisotropic and of odd and even
parities in the momentum space, respectively.

In particular, in the spin-triplet superconductors, the
phonon-mediated pairing interaction can be the main
mechanism of the anisotropic superconductivity, al-
though another mechanism might assist it at the same
time.31 By an analogy to the superfluidity in liquid
3He,32 the paramagnon mechanism is sometimes consid-
ered to be responsible for the spin-triplet superconduc-
tivity. However, the situation is very different from the
electron systems in the solids. The liquid 3He does not
have lattice vibrations, and its transition temperature is
of the order of 1mK.33 Therefore, we should be careful
when we use the analogy.

In the anisotropic singlet superconductors, the third-
dominant component of the phonon-mediated interaction
may contribute to the superconductivity to some extent.
However, we presume that it could not be the only ori-
gin of the pairing interaction. If the pairing interaction
of nonphonon origin is negligible, the system should un-
dergo a transition to triplet superconductivity at a higher
temperature, since the third-dominant even-parity (spin-
singlet) component is smaller than the second-dominant
odd-parity (spin-triplet) component.

In this paper, we examine the effects of the short-
range (on-site) correlations on the Coulomb screening,
phonons, and the pairing interactions, taking into ac-
count the long-range Coulomb interactions at the same
time. The main purpose of this paper is to devolop a
general theory, although we are motivated by the su-
perconductors discussed above. In particular, we derive
a general effective Hamiltonian in a unified framework
in which the short-range and long-range parts of the
Coulomb interactions are treated consistently. The effec-
tive Hamiltonian includes (1) the screened Coulomb in-
teractions, (2) the phonon-mediated interactions by the
screened electron-phonon interactions, and (3) the effec-
tive interactions mediated by spin and charge fluctua-
tions. In appropriate limits, it is reduced to the effective
Hamiltonians examined by many authors so far.3–7, 11 In
particular, in our previous papers, the on-site Coulomb
energy U has been treated as a parameter independent
of the phonon-mediated pairing interaction, but in prac-
tice it also modifies the pairing interactions. We will also
clarify it in this paper.

In §2, we examine the model of the electron-phonon
system. Starting from a basic model of the electron-
phonon system, we derive a Hamiltonian which includes
both the short-range part U and the long-range part vq

of the Coulomb interactions. In §3, we apply the random
phase approximation (RPA) to the Hamiltonian obtained
in §2, and examine the screening effects on the Coulomb
interactions and phonons. The approximation is reduced

to that in the electron gas model if we put U = 0 and
vq 6= 0, while that in the pure Hubbard model if we put
U 6= 0 and vq = 0. In §4, we examine the two-particle
vertex part which contributes to superconductivity. We
derive the general form which includes corrections due
to U as mentioned above. In §5, we derive an effective
interaction within the weak coupling theory from the re-
sults of §4. We examine anisotropic superconductivity on
the basis of the effective interaction. Expressions of the
transition temperature and the isotope effect coefficient
are derived. In §6, we apply the effective model to some
typical cases to clarify essential aspects of the present
mechanism. The phase diagrams and the transition tem-
peratures are obtained. The last section §7 is devoted to
summary and discussion.

2. A Model of the Electron-Phonon System

In this section, we derive a model that we will exam-
ine in this paper. We start with the general form of the
coupled electron-phonon Hamiltonian

H = H0 +He-ph +HC (2.1)

with

H0 =
∑

kσ

ǫkc
†
kσckσ +

∑

qλ

Ωqλb
†
qλbqλ (2.2)

He-ph =
∑

kqσλ

Mkqλc
†
k+qσckσ(bqλ + b†−qλ) (2.3)

HC =
1

2

∑

k1···k4

σσ′

V σσ′

k1k2k3k4
c†k1σck2σc

†
k3σ′ck4σ′ . (2.4)

Here, ckσ denotes the electron operator of the Bloch state
with the crystal momentum k and the spin σ in the rel-
evant electron band, while bqλ donotes the bare phonon
operator of the phonon with the momentum q and the
phonon-mode λ. Since we consider the longitudinal op-
tical phonons in this paper, we omit the phonon-mode
suffix λ and the summation over it for simplicity. Thus,
we put Ωqλ = Ωp, where Ωp denotes the ionic plasma
frequency. We consider the positive background charge
of the atoms within the jellium model.1 Therefore, we
put the matrix element of the electron-phonon interac-
tion Mkqλ = Mq which satisfies

2M2
q

~Ωp
=

4πe2

Vcellq2
, (2.5)

where Vcell denotes the unit cell volume. The present
model might not be very accurate, but since we need an
order estimation at most for our purpose, we use this
model in this paper for simplicity.
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The coupling constant V σσ′

k1k2k3k4
is expressed as

V σσ′

k1k2k3k4
=

∫

d3r d3r′ ψ∗
k1σ(r)ψk2σ(r)

× e2

|r − r′|ψ
∗
k3σ′(r′)ψk4σ′ (r′)

(2.6)

in terms of the Bloch wave functions

ψk(r) = eik·ruk(r), (2.7)

where uk(r) satisfies the periodicity condition uk(r +
R) = uk(r) for any lattice vector R, according to the
Bloch’s theorem.

2.1 An expression in the tight-binding model

Now, we rewrite the Coulomb interaction HC in the
tight-binding model. When the tight-binding approxima-
tion is valid and the electron wave function has a large
amplitude only near the atomic site, we may assume that

ψk(r) =
1√
N

∑

R

eik·Rφ(r − R), (2.8)

where φ(r − R) denotes a localized orbital wave func-
tion near the atomic site at R. This approximation is
equivalent to putting

uk(r) =
1√
N

∑

R

e−ik·(r−R)φ(r − R). (2.9)

Since we may put r ≈ R in eq. (2.9), it is equivalent also
to uk(r) ≈ N−1/2

∑

R φ(r−R). If we define the Wannier
function

w(r − R) =
1√
N

∑

k

e−ik·Rψk(r), (2.10)

we obtain w(r) = φ(r) from eq. (2.8).
Within this approximation, we obtain

V σσ′

k1k2k3k4
=

1

N2

∑

RR′

∫

d3r d3r′ |φ(r − R)|2

×
∣

∣φ(r′ − R′)
∣

∣

2
e−i(k1−k2)·R e2

|r − r′|e
−i(k3−k4)·R

′

,

(2.11)

where we have omitted terms including the factor of the
form φ(r−R1)φ(r−R2) with R1 6= R2, since it is small
from the assumption mentioned above. In the integrand
of eq. (2.11), we could replace r and r′ in e2/|r − r′|
with R and R′, respectively, due to the factors of |φ(r−
R)|2|φ(r′ − R′)|2, except when R = R′. We could not
make this replacement when R = R′, because e2/|r−r′|
diverges when r → r′. Therefore, we obtain

V σσ′

k1k2k3k4
= (Uδ̄σσ′ + vk1−k2

)δk1−k2,k3−k4
, (2.12)

with δ̄σσ′ = 1 − δσσ′ , where we have defined

U =

∫

d3rd3r′ |φ(r)|2 e2

|r − r′| |φ(r′)|2, (2.13)

and

vq =
∑

ρ6=0

e2

|ρ|e
−iq·ρ (2.14)

for q 6= 0. It is obvious that the on-site Coulomb energy
U depends on the profile of the Wannier function, which
expresses the charge distribution near the atomic site.
Here, we put vq=0 = 0, taking into account the charge
neutrality in the present jellium model. We call the on-
site U and the inter-site vq the short-range and long-
range parts of the Coulomb interaction, respectively. If
we put vq = 0, the present model is reduced to the pure
Hubbard model on a lattice, while if we put U = 0, it is
reduced to the electron gas model in the continuum space
except that the momenta are replaced with the crystal
momenta.

It is convenient to write eq. (2.4) with matrices as

HC =
1

2N

∑

qσσ′

nqσ

[

vqσ̂0 + (vq + U)σ̂1

]

σσ′

nqσ′

=
1

2N

∑

q

(

nq↑ nq↓

)

V̂q

(

nq↑

nq↓

)

,

(2.15)

where we have introduced the Pauli matrices and the
unit matrix, σ̂1, σ̂2, σ̂3, and σ̂0, respectively. Here, we
have defined nqσ =

∑

k c
†
kσck+qσ and

V̂q ≡
(

vq vq + U
vq + U vq

)

. (2.16)

We could also rewrite eq. (2.4) as

HC =
1

N

∑

q

[1

2
(vq +

U

2
)nqn−q − USz

qS
z
−q

]

(2.17)

with nq = nq↑ + nq↓ and Sz
q = (nq↑ − nq↓)/2.

2.2 Approximation for the long-range part

Now, we examine the long-range parts vq in detail. For
small q 6= 0, we could approximate vq by

vq ≈
∫

e2

|ρ|e
−iq·ρ d3ρ

Vcell
=

4πe2

Vcell|q|2
. (2.18)

Here, we note that a periodicity relation vq+K = vq holds
in the original expression eq. (2.14), where K denotes
any reciprocal lattice vector, whereas it does not hold in
the approximate expression eq. (2.18). Therefore, if one
uses eq. (2.18) in calculating the gap function ∆(k), the
reciprocal lattice periodicity ∆(k) = ∆(k + K) of the
gap function is broken.

Therefore, we note that the original expression of vq,
eq. (2.14), is large near q = K, not only near q = 0, for
the lattice periodicity. In the gap equation, the momen-
tum q corresponds to the momentum transfer k − k′,
where k and k′ denote the electron momenta near the
Fermi surface. Even when k and k′ are in the first
Brillouin zone, q − K = k − k

′ − K can be small,
for example when the Fermi surface is open. For such
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Fig. 1. Estimation of the nearest neighbor Coulomb interaction
va calculated with the approximate equation (2.19) in the finite
size system with the linear dimension Nsx. The broken line is the
guide for eyes. The thin solid line shows the exact value va = 1.

k and k′, we should use the approximate expression
vq = 4πe2/Vcell|q − K|2, which is very different from
eq. (2.18) near q = K. Therefore, a more appropriate
expression of eq. (2.14) is

vq ≈ max
K

[ 4πe2

Vcell|q − K|2
]

(2.19)

rather than eq. (2.18). This expression is appropriate not
only near q = 0, but also near q = K. Near the Brillouin
zone boundary of q, the derivative of the right-hand-side
of eq. (2.19) jumps, but since vq is very small there, it
does not cause any difficulty in practice.

Let us examine the error of the above approximation.
Since eq. (2.19) becomes exact relation for long wave-
lengths, it is expected that the error of eq. (2.19) is
larger for shorter wavelengths. Hence, the nearest neigh-
bor Coulomb interaction

va = N−1
∑

q

vqeiqxa (2.20)

would have the largest error, where a = (a, 0, 0) de-
notes one of the unit lattice vectors, since the on-site
Coulomb interaction U is not included in the definition
of vq, eq. (2.14). Figure 1 shows the result of eq. (2.20)
calculated with the approximate equation (2.19) in the
electron system on the cubic lattice with the number of
the lattice sites N = N3

sx, where Nsx denotes the num-
ber of the lattice sites in one direction. It is found that
as the system size increases, the value of va estimated by
eq. (2.19) approach a value ≈ 1.05 × e2/a, which is only
5% larger than the exact value. Therefore, the present ap-
proximation does not cost major error even in the short
wavelength behavior.

3. Coulomb Screening

In this section, we examine the screening effects on
the Coulomb interactions between two electrons, the
electron-phonon interactions, and the phonon propaga-
tors. For convenience, we define appropriately scaled
functions of the charge and spin fluctuations in the pure
Hubbard model i.e., the model with U 6= 0 and vq = 0,
in the RPA by

χ(0)
c (q) =

2χ0(q)

1 + Uχ0(q)

χ(0)
s (q) =

1

2

χ0(q)

1 − Uχ0(q)
,

(3.1)

where we have defined

χ0(q) = −T
∑

n

N−1
∑

k

G(0)
σ (k + q)G(0)

σ (k)

= N−1
∑

k

f(ξk) − f(ξk+q)

iνm + ξk+q − ξk

(3.2)

with the unperturbed Green’s function G
(0)
σ . Here, we

have introduced the four-momentum notation such as
q = (q, iνm) and k = (k, iωn).

3.1 Fluctuations and Screened Coulomb Interactions

In this subsection, we derive an expression of the
screened Coulomb interactions in the presence of both
the short and long-range parts of the Coulomb interac-
tions, U and vq .

First, we consider the ring diagrams by the RPA as
depicted in Fig. 3, where the momenta and spins are
assigned as shown in Fig. 2. Since the dashed lines of
the Coulomb interactions have the same momentum q

in those diagrams, they become divergently large at the
same time for small |q|. Therefore, this series gives a
major contribution for long wavelengths.

The vertex due to the ring diagrams is obtained as

Γ̂ring(k, k′, q) = V̂q

[

σ̂0 + χ0(q) V̂q

]−1

(3.3)

in the matrix form in the spin space. Equation (3.3) is
rewritten as

Γ̂ring(k, k′, q) =
1

2

2vq + U

1 + (2vq + U)χ0(q)

(

1 1
1 1

)

+
1

2

−U
1 − Uχ0(q)

(

1 −1
−1 1

)

,

(3.4)

and we could put the elements in the form

Γring
σσ′ (k, k

′, q) = Γc(q) + Γzz
s (q)σσ′. (3.5)

In the static approximation iνm = 0, we have the effective
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interaction by the ring diagrams

Hring
C =

1

N

∑

q

[1

2

vq + U/2

1 + 2(vq + U/2)χ0(q, 0)
nqn−q

− U

1 − Uχ0(q, 0)
Sz

qS
z
−q

]

.

(3.6)

Here, we note that the rotational symmetry in the spin
space is not retained if we take only the ring diagrams.34

In order to recover the rotational invariance, we need
to take the particle-hole ladder diagrams depicted in
Fig. 4, with respect to U . The second term in the braket
of eq. (3.6) becomes divergently large for the momentum
q near the nesting vector Q, when the Fermi surface
has a good nesting condition, as known in the Hubbard
model.35, 36 It is also known that the contribution from
the ladder diagrams in Fig. 4 is of the same order as that
from the ring diagrams.

In contrast, in the RPA in the pure electron gas model
with U = 0, the ladder diagrams are ignored. Since the
momentum of the interaction lines do not always coin-
cide as those in the ring diagrams, the contribution from
the ladder diagrams is smaller than that from the ring
diagrams. Hence, we omit vq in the ladder diagrams also
in the present model.

Thus, the contribution from the ladder diagrams is
obtained as

Γlad
σσ′ (k, k′, q) =

−U
1 − Uχ0(k − k′ − q)

(1 − δσσ′ ). (3.7)

In the static approximation, we have

H lad
C = − 1

2N

∑

q

U

1 − Uχ0(q, 0)
(S+

q S
−
−q + S−

q S
+
−q),

(3.8)

where we have defined

S+
q =

∑

k

c†k↑ck+q↓

and S−
q = (S+

q )†. Adding eqs. (3.6) and (3.8), we obtain
a rotationally invariant effective interaction

H̃C =
1

N

∑

q

[1

2

vq + U/2

1 + 2(vq + U/2)χ0(q, 0)
nqn−q

− U

1 − Uχ0(q, 0)
Sq · S−q − Unq↑n−q↓

]

,

(3.9)

where the last term subtracts the double counted con-
tribution of the first order diagrams in Figs. 3 and 4.
From eq. (3.9), one could reproduce the vertex parts by
the RPA both in the electron gas model and in the Hub-
bard model by taking appropriate limits, U → 0 and
vq → 0, respectively. When we use the effective Hamil-
tonian of eq. (3.9) in the electron self-energy, we should
subtract another double counted contribution from the
second terms in Figs. 3 and 4.36

Within the same approximation, the propagators for

the charge and spin fluctuations are obtained as

χc(q) =
2χ0(q)

1 + (2vq + U)χ0(q)

χs(q) =
1

2

χ0(q)

1 − Uχ0(q)
= χ(0)

s (q).

(3.10)

Hence, we can rewrite eq. (3.9) as

H̃C = HC +Hcf +Hsf , (3.11)

where

Hcf = − 1

2N

∑

q 6=0

(vq +
U

2
)2χc(q, 0)nqn−q

Hsf = − 1

2N

∑

q 6=0

4U2χs(q, 0)Sq · S−q.

(3.12)

The terms Hcf and Hsf can be regarded as the inter-
actions mediated by the charge and spin fluctuations,
respectively.

3.2 Dielectric function and the screening length

The first terms of eqs. (3.4) and (3.9) are the interac-
tions between the charge degrees of freedom of electrons.
Hence, we obtain an expression of the dielectric function

κ(q) = 1 + 2(vq +
U

2
)χ0(q). (3.13)

In the long wavelength limit q → 0, since vq ≫ U , we
obtain Thomas-Fermi dielectric constant

κ(q) = 1 +
q2TF

q2
≡ κTF(q) (3.14)

with qTF
2 = 8πe2N(0)/Vcell, where λTF = 1/qTF and

N(0) denote the Thomas-Fermi screening length and the
electron density of states at the Fermi energy per a spin
and a site. For the short wavelength |q| ≫ qs, we can
omit vq compared to U ,

κ(q) = 1 + Uχ0(q) ≡ κU (q), (3.15)

which is the result in the Hubbard model.
Equation (3.13) is written in the form,

κ(q) = κU (q)κ̃v(q), (3.16)

where

κ̃v(q) = 1 + vqχ
(0)
c (q) = 1 +

q̃2s
q2

q̃2s = q2TF

χ
(0)
c (q)

2N(0)
=

q2s
κU (q)

q2s = q2TF

χ0(q)

N(0)

(3.17)

with χ
(0)
c defined in eq. (3.1). In the absence of U , in

the system with the spherical Fermi surface, eq. (3.16)
is reduced to the Lindhard’s result of the RPA in the
electron gas model.
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k,σ

k–q,σ

k’,σ ’

k’+q,σ ’

Fig. 2. Assignment of the momenta and spins in the two body
vertex part Γ(k, k′, q).

+

+

+ 

Fig. 3. Summation of the ring diagrams. The solid and broken
lines denote the electron Green’s function and the Coulomb in-
teraction eq. (2.12).

For long wavelengths and in the static approximation,
we have χ0(q) ≈ N(0) and κU (q) ≈ 1 + UN(0). Hence,
we obtain the screening length

λ̃scr = λTF

√

κU (0) = λTF

√

1 + µC (3.18)

from eq. (3.17), where we have put

µC = UN(0). (3.19)

Therefore, it is found that the screening length is length-
ened by a correlation effect due to the on-site Coulomb
repulsion in comparison to the Thomas-Fermi screening
length λTF. It is plausible that the local electron density
less easily deviates from the uniform value in the presence
of strong correlations. In other words, the charge fluctu-

ations are reduced ([χ
(0)
c ]U 6=0 < [χ

(0)
c ]U=0) and κU > 1,

when U > 0. It is interesting that the short-range part of
the Coulomb interactions affects the long-range behavior
through a many body effect.

3.3 Corrections to the electron-phonon interactions

Now, let us examine renormalization of the electron-
phonon interaction due to the Coulomb screening effect
as depicted in Fig. 5. As the screened Coulomb interac-
tion, we take the series of the ring diagrams shown in
Fig. 3. However, if we apply the ladder diagrams in thick
dashed line in Fig. 5, the ring part consists of many elec-
tron lines. In such a ring, the integrand could be large
only in a very small part of the phase space of the in-

+

+ + 

Fig. 4. Summation of the particle-hole ladder diagrams. The def-
initions of the lines are the same as those in Fig. 3. The incom-
ing and outgoing thin solid lines are to show how to apply the

diagrams to the two-particle vertex in the self-energy and the
superconductive gap equation.

+

+ 

= 

Fig. 5. Renormalization of the electron-phonon interaction. The
solid lines denote the electron Green’s functions, and the closed
circle denotes the bare electron-phonon interaction. The thin
solid and wavy lines are to show how to apply the diagrams
to the electron and phonon Green’s functions, respectively. The
thick dashed line denotes the screened Coulomb interaction.

tegral variables. Hence, we omit the ladder diagrams for
simplicity. This simplification is also justified from the
rotational invariance in the spin space. Since we could
take the spin summation for the ring part in Fig. 5, the
spin interaction in eq. (3.4) vanishes. Thus, the electron-
phonon vertex part is not rotationally invariant if we
retain the ladder diagrams. Therefore, we ignore them,
and obtain the electron-phonon vertex part

M̃(q) =
Mq

κ(q)
. (3.20)

3.4 Corrections to the phonons

In this subsection, we examine the phonon Green’s
function. We consider the renormalization of the phonons
due to the Coulomb screening through the electron-
phonon interaction shown in Fig. 5. Then, we obtain the
diagram equation shown in Fig. 6. This approximation
is equivalent to that for the polarization propagator as
shown in Fig. 7.
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+= 

Fig. 6. The diagram equation for the dressed phonon Green’s
function. The thick and thin wavy lines denote the dressed and
bare phonon Green’s functions, respectively. The renormalized
electron-phonon interaction is shown in Fig. 5.

+= 

Fig. 7. The diagram equation for the polarization propagator.
The solid line and thick dashed line denote the bare electron
Green’s function and the screened Coulomb interaction.

The phonon Green’s function is defined by

D(q, τ) = −〈Tτ

[

ϕq(τ)ϕ†
q

]

〉 (3.21)

with ϕq = bq + b†−q, where we have defined A(τ) =

eτHAe−τH . The bare phonon Green’s function D0(q, τ)
is defined in a similar manner, and the Fourier transform
is expressed as

D0(q, iνm) =
−2Ωp

ν2
m + Ω2

p

. (3.22)

The polarization propagator of Fig. 7 summed over
spins is expressed as

P (q) = 2χ0(q) − [χ0(q)]
2
∑

σσ′

(Γc(q) + Γzz
s (q)σσ′)

= 2χ0(q)/κ(q) ≡ χc(q),

(3.23)

where χc(q) denotes the charge fluctuations. From Fig. 6
with Fig. 5 and eq. (3.20) or with Fig. 7 and eq. (3.23),
we obtain

D(q) = D0(q) −D0(q)
2M2

qχ0(q)

κ(q)
D(q), (3.24)

and thus

D−1 = D−1
0 +M2

qχc(q). (3.25)

Using eqs. (3.22) and (2.5), we obtain

D−1 = − 1

2Ωp

[

ν2
m + [ω̃(q)]2

]

(3.26)

with

ω̃(q) = Ωp

√

κU (q)

κ(q)
=

Ωp

κ̃v(q)
. (3.27)

The renormalized phonon dispersion energy is obtained

by solving ω̃q = ω̃(q, ω̃q), where the function ω̃(q, ω) is
obtained by the analitic continuation iνm → ω+ iδ from
ω̃(q, iνm).

In the long wavelength limit q → 0, we obtain

ω̃q = c̃|q| (3.28)

with c̃ = Ωp/q̃s. As is widely known, the longitudinal
optical phonons are screened by electrons into the ac-
coustic mode with a dispersion energy proportional to
|q| as expressed in eq. (3.28). It is easily verified that
putting U = 0, one could recover all the standard results
of the RPA of the electron gas model in the back-ground
jellium positive charge.1 For U 6= 0, we find that the
electron correlations due to the on-site Coulomb repul-
sion weaken the screening effect and increase the sound
velocity.

4. Superconductivity

In this section, we examine the two-particle vertex part
Γσσ1

(k, k′), which induces superconductivity. We clar-
ify the corrections to the vertex part due to the on-site
Coulomb interactions.

4.1 Definition of the effective interactions

The two-particle vertex part Γσσ1
(k, k′) is defined as

one which scatters the pair of two electrons with (k, σ)
and (−k, σ1) to that with (k′, σ) and (−k′, σ1). The gap
equation of superconductivity is written as

∆σσ1
(k) = −

∑

k′

Γσσ1
(k, k′)

×Gσ(k′)Gσ1
(−k′)∆σσ1

(k′),
(4.1)

where we have introduced an abbreviation
∑

k′

= N−1
∑

k′

T
∑

n′

(4.2)

and Gσ(k) denotes the dressed electron Green’s function.
The vertex part Γσσ1

plays a role of the effective inter-
actions. The gap equation (4.1) includes the dynamical
effect by the Matsubara frequency.

The electron self-energy is calculated by

Σσ(k) = −
∑

k′σ′

Γ
(N)
σσ′(k, k

′)Gσ′ (k′), (4.3)

where Γ
(N)
σσ′ denotes the appropriate vertex part for the

self-energy consistent with Γσσ1
. The consistency is con-

sidered phenomenologically or microscopically with the
Ward-Takahashi identity. Equations (4.1) and (4.3) are
called Eliashberg equations.

In order to estimate Tc accurately, we need to solve
the full set of equations. Especially when we consider
the spin-fluctuation-mediated superconductivity, since
the attractive part of the interactions is much weaker
than the repulsive part, the self-energy effect is impor-
tant.37 However, since in this paper we are mainly in-
terested in the phonon-mediated pairing interactions, we
omit the self-energy renormalization of the electrons from
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now on.
We can improve the perturbation theory38, 39 by in-

cluding renormalization of the electron Green’s function
and the vertex corrections in Γσ,σ1

(k, k′). For example,
we could take into account the correction to the spin
and charge fluctuations from the self-energy effect by re-
placing χ0(q) with χ(q), as in the renormalized RPA,
although it requires heavy numerical calculations.

However, we expect that the most essential diagrams
are taken into account in the RPA. Within the RPA,
we could reproduce a physical situation that the strong
charge and spin fluctuations mediate the pairing inter-
actions. This consideration is partially based on a phe-
nomelogical viewpoint. However, more or less, we could
not avoid such a phenomenological consideration in the
perturbation theories based on effective Hamiltonians,
such as the Hubbard model. In any perturbation theory,
we need to ignore almost all diagrams in the infinite se-
ries of the perturbation expansion. Taking a particular
series of the diagrams can be rigorously justified only in
an appropriate limit, but otherwise it is not quantita-
tively accurate very much. Furthermore, we need to use
the effective Hamiltonian, which is usually far simpler
than the real materials. Usually, effective Hamiltonians
are useful for qualitative study, but are not very precise
quantitatively. Therefore, even if we develope a pertur-
bation theory by purely theoretical efforts beyond the
RPA, the applicability of the quantitative results to the
real materials are limited, unless any qualitatively dis-
tinct result is obtained.

4.2 Expression of the effective pairing interactions

In this subsection, we derive the expression of
Γσσ1

(k, k′) from the results of the previous section §3.
From the momentum and spin assignment depicted in
Fig. 2 that Γring

σσ′ (k,−k, k − k′) and Γlad
σσ′(k,−k, k − k′)

in eqs. (3.5) and (3.7) contribute to the vertex part
Γσσ1

(k, k′).
The contribution from the charge fluctuations and the

screened Coulomb interaction is obtained from eqs. (3.4)
and (3.5) as

Γc(q) =
1

2

2vq + U

1 + (2vq + U)χ0(q)
=
vq + U/2

κ(q)
, (4.4)

where we have put q = k − k′. Similarly, the contribu-
tion from the spin fluctuations with respect to the Sz

component is written as

σσ1Γ
zz
s (q) = −σσ1

2

U

1 − Uχ0(q)
. (4.5)

In addition to them, we obtain the effective interaction
mediated by phonons

Γph(q) = [M̃(q)]2D(q) =
M2

q

κ(q)
· −2Ωp/κ(q)

ν2
m + [ω̃(q)]2

(4.6)

with ω̃(q) given in eq. (3.27).
The contribution from the spin fluctuations with re-

spect to the Sx and Sy components is obtained from the
ladder diagram as

δ̄σσ1
Γ+−

s (k, k′) = δ̄σσ1
Γlad(k,−k, k − k′)

= δ̄σσ1

U

1 − Uχ0(k + k′)
,

(4.7)

where δ̄σσ1
= 1− δσσ1

. By the parity of the gap function
∆(k, iωn), we could replace the vertex function eq. (4.7)
in the gap equation eq. (4.1) with

δ̄σσ1
Γ+−

s (k, k′) = sδ̄σσ1

U

1 − Uχ0(k − k′)
, (4.8)

where we take the sign s = +1 and s = −1 for singlet
pairing and triplet pairing, respectively.

Collecting the contributions of eqs. (4.4) - (4.8), we
obtain the vertex part

Γσσ1
(k, k′) = Γc(k − k′) + σσ1Γ

zz
s (k − k′)

+ Γph(k − k′) + δ̄σσ1
Γ+−

s (k, k′)

− Uδ̄σσ1
.

(4.9)

Here, the last term −Uδ̄σσ1
is to subtract the double

counted contribution as mentioned below eq. (3.9). With
a definition

Γs(q) ≡
1

2

U

1 − Uχ0(q)
, (4.10)

eq. (4.9) can be rewriten as

Γσσ1
= Γc − σσ1Γs + Γph + 2δ̄σσ1

sΓs − Uδ̄σσ1
. (4.11)

Therefore, for singlet pairing, the vertex part Γσ,σ1
(k, k′)

is expressed as

Γsp = Γc + 3Γs + Γph − U, (4.12)

while for triplet pairing

Γtp = Γc + Γs + Γph. (4.13)

If we put vq = 0, the spin and charge fluctuation terms
are reduced to the expressions obtained in many arti-
cles.22, 28, 31, 35, 36 Due to the complicated momentum de-
pendence, it can work as an attractive interaction or as
a repulsive interaction in the formation of the Cooper
pairs, depending on the symmetry of the gap function
and the shape of the Fermi surface.

Since we have obtained the expressions of the vertex
part eqs. (4.12) and (4.13), it is possible in principle to
solve the Eliashberg equations (4.1) and (4.3). However,
we leave it for future study, and derive weak coupling
effective Hamiltonian in the next section §5.

4.3 Physical interpretation

In this subsection, we rewrite the expressions obtained
above for a physical interpretation. We also discuss the
expressions in the two limits, U → 0 and vq → 0.

In eq. (4.11), the screened Coulomb interactions and
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the phonon-mediated interactions are rewritten as

Γc + Γph =
vq + U/2

κ
− vq

κκU

[ω̃(q)]2

−ω2 + [ω̃(q)]2

=
U

2κU
+

vq

κκU

ω2

ω2 − [ω̃(q)]2
,

(4.14)

where we have made the analytic continuation iνm →
ω ± iδ, and put q = k − k′.

Therefore, the total two-particle vertex part is given
by

Γσσ1
(q) = Γ

(0)
U +

vq

κκU

ω2

ω2 − [ω̃(q)]2
, (4.15)

with q = k−k′, where the function Γ
(0)
U in the first term is

nothing but the vertex part in the pure Hubbard model,
i.e., the model with U 6= 0 and vq = 0.22, 35, 36 For singlet
pairing, it is expressed as

Γ
(0)
U =

1

2

U

1 + Uχ0
+

3

2

U

1 − Uχ0
− U

=
U

1 − U2χ2
0

+
U

1 − Uχ0
− U,

(4.16)

which can be written as

Γ
(0)
U = −1

4
U2χ(0)

c + 3U2χ(0)
s + U (4.17)

with eq. (3.1). For triplet pairing, it is expressed as

Γ
(0)
U =

1

2

U

1 + Uχ0
+

1

2

U

1 − Uχ0
=

U

1 − U2χ2
0

, (4.18)

which can be written as

Γ
(0)
U = −1

4
U2χ(0)

c + U2χ(0)
s + U. (4.19)

In eqs. (4.17) and (4.19), the physical interpretation of
each term is clear.22, 35, 36 The first terms of eqs. (4.17)
and (4.19) are the interactions mediated by the charge
fluctuations, while the second terms are those by the
spin fluctuations. Obviously, the last constant terms in
eqs. (4.17) and (4.19) express the bare on-site Coulomb
repulsive interactions, and do not contribute to the gap
equation for anisotropic pairing. If we put vq = 0, we
obtain

Γσσ1
= Γ

(0)
U , (4.20)

and all the equations are reduced to those in the Hubbard
model.

The second term of eq. (4.15) corresponds to the sum-
mation of the screened Coulomb and phonon-mediated
interactions. If we put U = 0, we obtain

Γσσ1
(q) =

vq

κv

ω2

ω2 − [ω(q)]2
≡ Γ(q), (4.21)

where κv = 1 + 2vqχ0 and ω(q) = Ωp/
√

κv(q). This

equation is easily rewritten as

Γσσ1
(q) =

vq

κv
+ [M̃(q)]2D(q)

=
vq

κv
+
M2

q

κ2
v

2Ωp

ω2 − [ω(q)]2
.

(4.22)

We note that the expression of Γσσ1
in the presence of

both U and vq, i.e., eq. (4.15), is not obtained by sim-
ply adding eqs. (4.20) and (4.21). The second term of
eq. (4.15) includes the corrections due to U in a rather
complicated manner as explained in the next subsection.

4.4 Interpretation of the corrections due to U

Now, let us interpret how the corrections from U en-
ters in the phonon-mediated pairing interaction, i.e., the
second term of eq. (4.15). We can derive eq. (4.15) in
another manner as follows, starting from eq. (4.22), i.e.,
the effective interaction in the absence of U .

First, we rewrite eq. (4.22) as

Γσσ1
(q) =

vq

κv
+

2M2
q

κvΩp

[ω(q)]2

ω2 − [ω(q)]2
, (4.23)

and in this equation we replace κv with κ̃v renormal-
ized by the Hubbard-type charge fluctuations as shown
in eq. (3.17). At the same time, we replace the phonon
frequency ω(q) with ω̃(q) of the fully dressed phonons,
which is given by eq. (3.27). Secondly, we modify the
electron-phonon coupling constant Mq with

Mq

κU
= Mq

[

1 − Uχ0 + U2χ2
0 ∓ · · ·

]

.

The series in the right-hand-side is easily verified from
the diagramatical technique. At the same time, we insert
1/κU into the both end of the screened Coulomb line
which corresponds to vq/κ̃v(q). In other words, we re-
place vq/κ̃v with vq/κ̃vκ

2
U . Thirdly, we add the Hubbard-

type fluctuation diagrams Γ
(0)
U including bare U . Then,

we obtain the expression of Γσσ1
(q)

Γσσ1
(q) = Γ

(0)
U +

vq

κ2
U κ̃v

+
2M2

q

κ2
UκvΩp

[ω̃(q)]2

ω2 − [ω̃(q)]2
, (4.24)

which coincides with eq. (4.15), since

vq

κκU
=

1

κ2
U

vq

κ̃v
=

2M2
q

κ2
U κ̃vΩp

(4.25)

holds from eqs. (3.16) and (2.5).

5. Effective Interactions for Weak Coupling

In this section, we derive the effective pairing interac-
tions along the scheme of the traditional weak coupling
theory. The effective interactions derived here are not
suitable for accurate estimations for the transition tem-
perature, but useful for qualitative and semi-quantitative
arguments. For quantitative purpose, direct numerical
calculations based on the effective vertex eqs. (4.12) and
(4.13) is more suitable.
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5.1 The case of U = 0

First, we briefly review the standard derivation of the
effective pairing interactions for U = 0.1 In this case, the
total two-particle vertex part Γσσ1

is given by eq. (4.21).
In this equation, it is explicitly shown that the phonon-
mediated interaction is attractive for small ω overcoming
repulsive Coulomb interactions. This effect is called the
overscreening effect.

In the weak coupling theory, the frequency dependence
of the two-particle vertex part Γ(q) is simplified by a
replacement with a step function as shown in Fig. 8, that
is,

Γ(q, ω) ≈ vq

κ(q, 0)
[1 − ᾱ θ(ωc − |ω|)] , (5.1)

where ωc and ᾱ denote effective constants which express
the frequency range and the depth of the attractive part
of the interactions. Here, the static approximation for the
dielectric function has been introduced.

The effective constants ᾱ and ωc are complicated quan-
tities that reflect the dispersion energy and the density of
states of the dressed phonons. However, it is reasonable
to consider that the constant ωc is of the order of the
Debye frequency ωD, i.e., the upper limit of the dressed
(observed) phonon frequency ω̃q. According to the stan-
dard weak coupling theory, we regard those constants as
parameters in this paper.

For isotropic superconductors, the prefactor vq/κ(q, 0)
is often replaced by an effective constant V0. We should
note that V0 is an averaged quantity of vq and different
from the on-site Coulomb interaction U derived in §2.7, 11

Further, in the weak coupling theory, the cutoff ωc

in ω integral is taken into account by introducing the
same cutoff in ξ integral, where ξ denotes the electron
energy measured from the Fermi energy. In other words,
we replace the cutoff function θ(ωc − |ω|) with θ(ωc −
|ξk|)θ(ωc − |ξk′ |).

After these simplifications, we could solve the gap
equation along the scheme of the standard weak cou-
pling theory. The Coulomb repulsion, i.e., the first term
in the braket of eq. (5.1), is taken into account through
the effective Coulomb parameter defined by

µ∗
V 0 =

V0N(0)

1 + V0N(0) ln(WC/ωc)
, (5.2)

where WC denotes the cutoff energy of the Coulomb
interactions, which is of the order of the band width
W .40 The influence of the Coulomb repulsion is weaken
(µ∗

V 0 < V0N(0)) by the retardation of the phonon prop-
agation when ωc < WC. The superconducting transition
temperature Tc is given by

Tc = 1.13ωce
−1/(λ−µ∗

V 0
), (5.3)

where λ = ᾱV0N(0).

0 2 4
–2

0

2

ω /ωc

Γ 
(q

) 
  (

 v
q 

/ κ
 )

Fig. 8. Schematic figure of the two-particle vertex part Γ(q) as a
function of ω/ωc. The solid, dashed, dot-dashed lines show Γ(q)
as functions of ω with different fixed values of q. The thick dotted
line shows a step function which is introduced to approximate
Γ(q) in eq. (5.1).

5.2 The case of U 6= 0

We extend the above formulation to the case of U 6= 0.
We introduce the same simplification as eq. (5.1) in the
context of the weak coupling theory. Hence, it is obtained
that

Γσσ1
(q, ω) = Γ

(0)
U + ṽq [1 − ᾱ θ(ωc − |ω|)] , (5.4)

with ṽq ≡ vq/κ(q, 0)κU (q, 0), where the static approxi-

mation has been also introduced in κ, κU and Γ
(0)
U as in

eq. (5.1).
Let us compare the expressions for U = 0 and U 6= 0,

i.e., eqs. (5.1) and (5.4). One of the important differences
is that eq. (5.4) includes the Hubbard-type effective in-

teraction Γ
(0)
U that we have discussed in §4.3.

Another difference between eqs. (5.1) and (5.4) is the
renormalization of the second term of eq. (5.4) due to the
on-site Coulomb interaction U . In this term, the prefac-
tor ṽq and the constants ᾱ and ωc are modified. The con-
stants ᾱ and ωc are usually treated as parameters in the
weak coupling theory, and sometimes determined by ex-
periments. Hence, we do not need to know the differences
from their original values, and the modifications in ᾱ and
ωc do not need to be considered explicitly. Therefore, the
important modification is in the prefactor ṽq, because it
affects the momentum dependence. From eqs. (3.16) and
(3.17), it is written as

ṽq ≡ vq

κκU
=

1

2χ0κU

q̃2s
|q|2 + q̃2s

. (5.5)

Putting U = 0 in eq. (5.5), it reduces to the factor of
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eq. (5.1), i.e.,

1

2χ0

q2s
|q|2 + q2s

. (5.6)

Comparing eqs. (5.5) and (5.6), we note that qs is re-
placed with a smaller quantity q̃s in eq. (5.5). As dis-
cussed in §3.2, the screening length λscr = q−1

TF = [qs]
−1
q=0

is lengthened into λ̃scr = [q̃s]
−1
q=0 because U > 0.

Then, the peak of eq. (5.5) becomes sharper, and the
anisotropic components increase.

In summary of this part, we find two effects of the

short-range correlations: (1) The Hubbard term Γ
(0)
U ,

which includes bare U , is added as pointed out in the pre-
vious section §4; (2) The short-range correlations change
the momentum dependence of the phonon-mediated pair-
ing interaction. Both effects unfavor isotropic pairing,
but favor anisotropic pairing of some symmetries.

It is also found that for this mechanism of triplet pair-
ing, the existence of the on-site Coulomb interaction U is
essential, but not the s-wave (isotropic) component of vq,
such as V0. We note in the second term of eq. (5.4) that
the long-range part ṽq of the Coulomb interaction and
the phonon-mediated pairing interaction −αṽqθ(ωc−|ω|)
have the same momentum dependence. Hence, it is not
effective for the change in the dominancy of the coupling
constants. In fact, when we put the dominant isotropic
component V0 and the subdominant anisotropic compo-
nent V1, the difference of the effective coupling constants
which include the negative contributions of the effective
Coulomb parameters is calculated as

[

ᾱV0 −
V0

1 + V0x

]

−
[

ᾱV1 −
V1

1 + V1x

]

= (V0 − V1)
[

ᾱ− 1

(1 + V0x)(1 + V1x)

]

,
(5.7)

where x ≡ N(0) ln(WC/ωc). We have ᾱ > 1 when the
overscreening effect gives rise to a net attractive interac-
tion for low frequencies. Thus, when V0 > V1, the right-
hand-side of eq. (5.7) is positive. Therefore, it is found
that the long-range part ṽq , which gives rise to the third
and fourth terms in the left-hand-side of eq. (5.7), does
not change the sign of eq. (5.7). In the rest of this pa-
per, we investigate the change in the dominancy of the
coupling constants due to the Coulomb interaction more
explicitly.

5.3 Interactions mediated by spin fluctuations

In this subsection, we develope a weak coupling the-
ory including interactions mediated by spin fluctuations

through Γ
(0)
U . In particular, when the spin fluctuations

are relevant, the vertex part Γ
(0)
U (q, ω) consists of two

parts as a function of q and ω: (a) A broad peak that
reflects the energy scale of the band width ∼ W ; (b)
A sharp peak that reflects the energy scale of the spin
fluctuations ωsf , as discussed in our previous papers.17, 22

Hence, we write it in the form

Γ
(0)
U (q, ω) ≈ Γ̄

(0)
U (q, 0) + Γ

(0)
sf (q, 0)θ(ωsf − |ω|), (5.8)

where the first and second terms which correspond to
(a) and (b) mentioned above, respectively. Obviously,

Γ̄
(0)
U includes the on-site Coulomb repulsive interaction.

Therefore, we obtain

Γσσ1
(q, ω) = VC(q) + Γ

(0)
sf (q, 0)θ(ωsf − |ω|)

− ᾱṽq θ(ωc − |ω|)
(5.9)

from eq. (5.4), where we have defined a Coulomb term

VC(q) ≡ Γ̄
(0)
U (q, 0) + ṽq.

As mentioned in §5.1, we replace θ(ωk − |ω|) with
θ(ωk − |ξk|)θ(ωk − |ξk′ |) within the weak coupling the-
ory, where ω1 = ωc and ω2 = ωsf . Therefore, we obtain
effective interactions

Veff(k,k′) = VC(k−k′)+Vsf(k,k
′)+Vph(k,k′), (5.10)

where

Vsf(k,k
′) = Γ

(0)
sf (k − k′, 0)θ(ωsf − |ξk|)θ(ωsf − |ξk′ |)

Vph(k,k′) = −ᾱṽk−k′θ(ωc − |ξk|)θ(ωc − |ξk′ |).
(5.11)

When ωsf ≪ W and ωc ≪ W , we may regard Γ
(0)
sf and

ṽk−k′ as functions of k‖ and k′‖, which denote the mo-

mentum components of k and k′ along the Fermi surface.
Hence, we introduce a complete set of the basis func-
tions γα(k‖) with α = 0, 1, 2, · · · , which are normalized
by the average on the Fermi surface. For example, we
may replace k‖ with k̂ ≡ k/|k| or (θ, ϕ), and take α =
s, px, py, px · · · or α = (l,m) in the spherically symmetric

systems. We define Vsf (k‖, k
′
‖) ≡ [Γ

(0)
sf (k − k′, 0)]ξk=ξ′

k
=0

and Vph(k‖, k
′
‖) ≡ −ᾱ[ṽk−k′ ]ξk=ξ′

k
=0, and expand the in-

teractions as

Vk(k‖, k
′
‖) =

∑

α

V α
k γα(k‖)γα(k′‖), (5.12)

where the index k donotes the kind of interactions, for
example, V1 = Vph, V2 = Vsf and V3 = VC. We define
dimensionless coupling constants λα

ph = −V α
phN(0) and

λα
sf = −V α

sf N(0), and effective Coulomb parameter µ∗
α =

V α
CN(0)/[1 + V α

CN(0) ln(WC/ωc)].
The gap function is also expanded as

∆(k) =
∑

α

∆αγα(k‖) (5.13)

on the Fermi surface. By taking the basis functions γα

appropriately, we can make the gap equation diagonal
with respect to the symmetry index α upto the linear or-
der of ∆. While each decoupled gap equation gives a dif-
ferent second order transition temperature Tcα, we must
take the highest one of Tcα’s, since the system exhibits
superconductivity when at least one of ∆α’s is nonzero.

In the same way as in our previous paper,17 we can ob-
tain the transition temperature Tc and the isotope effect
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coefficient αIE defined by

αIE = − ∂ lnTc

∂ lnM
, (5.14)

where M denotes the relevant atomic mass. Because the
application is straightforward, we shall omit the deriva-
tion and only present the results.

When ωsf < ωc ∼ ωD, which occurs in the prox-
imity of the magnetic instability, we obtain the transi-
tion temperature Tc = 1.13ωc exp[−1/(λα

sf + λα∗
ph)] with

λα∗
ph = (λα

ph − µ∗
α)/[1 − (λα

ph − µ∗
α) ln(ωc/ωsf)] and the

isotope effect coefficient

αIE =
1

2

( λα∗
ph

λα
sf + λα∗

ph

)2[

1 −
( µ∗

α

λα
ph − µ∗

α

)2]

. (5.15)

When ωsf > ωc ∼ ωD, which occurs away from the mag-
netic instability, we obtain the transition temperature
Tc = 1.13ωc exp[−1/(λα

ph + λα∗
sf )] with λα∗

sf = (λα
sf −

µα∗
sf )/[1−(λα

sf −µα∗
sf ) ln(ωsf/ωc)] and µα∗

sf = V α
CN(0)/[1+

V α
CN(0) ln(WC/ωsf)]. The isotope effect coefficient is ob-

tained as

αIE =
1

2

[

1 −
( λα∗

sf

λα
ph + λα∗

sf

)2]

. (5.16)

5.4 Anisotropic pairing mediated by phonons

In this subsection, we derive expressions of the effective
coupling constants and the effective Coulomb parameters
for anisotropic pairing. We concentrate our attention on
the interactions mediated by phonons, and ignore the

attractive interactions by Γ
(0)
U .

Hence, we consider the case in which we could ignore
the momentum and frequency dependences of χ0(q), so
that χ0(q) ≈ χ0(0, 0) = N(0) holds. Although this sim-
plification becomes qualitatively better away from the
magnetic instability, even there the spin fluctuations still
have an important effect of enhancement of the repulsive
Coulomb interactions as

U

1 − Uχ0(0)
= U + U2χ(0)

s (0) > U. (5.17)

Further, since Γ
(0)
U becomes constant in the simplifi-

cation mentioned above, it affects only s-wave pairing.

Hence, we use the expression of Γ
(0)
U for singlet pairing

eq. (4.16). From eqs. (5.4) and (5.5), we obtain

Γσσ′(q, ω)N(0) =
µC

1 − µ2
C

+
µ2

C

1 − µC
+

F̃ (q)

2(1 + µC)

− gN(0)

1 + µC
F̃ (q) θ(ωc − |ω|),

(5.18)

where we have defined a parameter g by ᾱ = 2gN(0)
and

F̃ (q) ≡ q̃2s
|q|2 + q̃2s

(5.19)

with

q̃2s =
q2s

1 + µC
=

q2TF

1 + µC
. (5.20)

We expand F̃ (q) and ∆(k) on the Fermi surface with re-
spect to the momentum components parallel to the Fermi
surface as in eqs. (5.12) and (5.13). We define the expan-
sion factors Cα of F̃ by

F̃ (k − k′) =
∑

α

Cαγα(k‖)γα(k′‖). (5.21)

For convenience, we write α = 0 for s-wave pairing, while
α 6= 0 for anisotropic pairing, from now on.

Therefore, from eq. (5.18) and the replacement of
θ(ωc − |ω|) with θ(ωc − |ξk|)θ(ωc − |ξk′ |) that is adopted
in §5.1 and §5.3, the α component of the effective inter-
actions is written in the form

VαN(0) = −λαθ(ωc − |ξk|)θ(ωc − |ξk′ |) + µα, (5.22)

where λα and µα denote the dimensionless coupling con-
stants of the phonon-mediated pairing interaction and
the repulsive Coulomb interaction, for “α-wave” super-
conductivity, which are expressed as follows. The con-
stant λα is expressed as

λα =
gN(0)

1 + µC
Cα, (5.23)

for any value of α. In contrast, the constant µα has dif-
ferent forms depending on α = 0 or α 6= 0. For s-wave
pairing (α = 0), we obtain

µ0 =
µC

1 − µ2
C

+
µ2

C

1 − µC
+

C0

2(1 + µC)
, (5.24)

while for anisotropic “α-wave” pairing (α 6= 0)

µα =
Cα

2(1 + µC)
. (5.25)

For the retardation effect, the effective Coulomb param-
eter µ∗

α becomes smaller than µα as

µ∗
α =

µα

1 + µα ln(WC/ωc)
. (5.26)

The derivation of eq. (5.26) is explained, for example, in
Refs. 1 and 17. The superconducting transition temper-
ature for “α-wave” pairing is estimated from the above
parameters by the equation

Tcα = 1.13ωce
−1/λ̃α , (5.27)

where λ̃α = λα−µ∗
α. As argued below eq. (5.13), the real

transition temperature Tc is the highest one among all
Tcα’s.

We obtain the isotope effect coefficient

αIE =
1

2

[

1 −
(µ∗

α

λ̃α

)2
]

, (5.28)

putting λα
sf = 0 in eq. (5.15). The reverse isotope effect

αIE < 0 occurs when µ∗
α > λ̃α, i.e., 2 > λα/µ

∗
α.
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From eqs. (5.23) and (5.25), we have λα/µα = 2gN(0)
for anisotropic pairing. Hence, for αIE < 0 to occur in
anisotropic superconductors, the inequality 1 > gN(0)
needs to hold, because 2 > λα/µ

∗
α > λα/µα > 2gN(0).

However, for such weak coupling, the transition temper-
ature becomes extremely low so that it is not practically
observable. If we take into account repulsive contribution

to µα from Γ
(0)
U , which modifies eq. (5.25), the reverse

isotope effect αIE < 0 is possible even in the present
situation.17

In eq. (5.26), the Coulomb cutoff energy WC is usually
of the order of the band width W . More precisely, it is
defined by

lnWC ≡ 1

2

[

ln
(

W − ǫF
)

+ ln ǫF

]

(5.29)

as is easily verified from the derivation of eq. (5.26),
where W and ǫF denote the band width and the chem-
ical potential (Fermi energy) measured from the bot-
tom of the electron band. Equation (5.29) is written
as WC =

√

ǫF(W − ǫF). Hence, it is easily proved that
WC ≤W/2, where the equal sign holds when ǫF = W/2.
In particular, when the charge carrier density is very
small as in semi-metals, that is, ǫF ≪ W , we obtain
WC ≈

√
WǫF ≪ W .

5.5 Dimensionality and anisotropic pairing

As we could see in eqs. (5.18) - (5.21), the anisotropic
pairing interactions can dominate when q̃s is small and
Cα6=0 is near C0. Since q̃s is proportional to qTF as seen
in eq. (5.20), small qTF favors anisotropic pairing. In sys-
tems with isotropic Fermi surfaces, we have

F̃ (q) =
q̃2s /2k

2
F

1 − cos θ + q̃2s /2k
2
F

=
αs − 1

αs − cos θ
, (5.30)

where αs = 1 + q̃2s /2k
2
F = 1 + q2TF/2k

2
F(1 + µC), and θ

denotes the angle between k and k′, since q = k − k′.
Thus, it is found that the scaled parameters q2TF/2k

2
F

and µC are the essential parameters in the sense that
they determine the property of the function F̃ (q).

First, we discuss the three dimensional system. In sys-
tems with spherically symmetric Fermi surfaces,7 we ob-
tain

q2TF

2k2
F

=
2

π(3π2)1/3n1/3

mb

m

a

aB
≈ 1

n1/3

mb

m

a

2.6[Å]
(5.31)

where m, mb, aB and n denote the bare electron mass,
the band effective mass, the Borh radius aB = ~

2/me2 ≈
0.5293Å, and the electron (or charge carrier of ±e) den-
sity per a site, respectively. Therefore, as the lattice con-
stant a increases, the ratio q2TF/2k

2
F increases, which im-

plies stronger screening.
We obtain a qualitatively different result in the quasi-

two-dimensional system. In systems with cylindrically
symmetric Fermi surfaces,11 we obtain

q2TF

2k2
F

=
1

πn

mb

m

a2

aBd
≈ 1

n

mb

m

a2

1.7[Å] × d
, (5.32)

where a and d denote the lattice constant in the layer
and the layer interval. As pointed out in our previous pa-
per,11 as the layer interval d increases, the ratio q2TF/2k

2
F

decreases, which implies weaker screening, in contrast to
the result in the three-dimensional systems mentioned
above.

6. Examples of the Application

Purpose of this section is to show examples of the
application of the effective Hamiltonian derived in the
previous section. For simplicity, we consider spherical
symmetric systems. We have already examined a spher-
ical symmetric system in our previous paper,7 but the
present treatment is based on a more basic model. Con-
sequently, the corrections due to U are taken into account
in more detail. The transition temperatures obtained in
this section should be taken as crude estimations, be-
cause the model is simplified. Nevertheless, the qualita-
tive results obtained here reflect essential aspects of the
present mechanism.

From the symmetry, we take the basis function as
γα(k̂) = Ylm(θ, ϕ) with α = (l,m). Therefore,

F̃ (k − k′) =
∑

l,m

Cl [Ylm(θ, ϕ)]∗ Ylm(θ′, ϕ′)

=
∑

l

(2l+ 1)Cl Pl(cos θkk′)

∆(k̂) =
∑

lm

∆lmYlm(θ, ϕ),

(6.1)

where θkk′ denotes the angle between k and k
′. Since

P0(w) = 1 and P1(w) = w, we obtain from eq. (5.30)

C0 =

∫

dΩ

4π

αs − 1

αs − cos θ
= −αs − 1

2
ln

∣

∣

∣

∣

αs − 1

αs + 1

∣

∣

∣

∣

C1 =

∫

dΩ

4π

(αs − 1) cos θ

αs − cos θ

= −(αs − 1)

[

1 +
αs

2
ln

∣

∣

∣

∣

αs − 1

αs + 1

∣

∣

∣

∣

]

,

(6.2)

where dΩ = sin θ dθ dϕ. Considering the signs of the
three quantity, λ̃0, λ̃1, and λ̃0 − λ̃1, we obtain the phase
diagrams as shown in the following subsections.

6.1 Typical parameter values for ordinary metals

Figure 9 shows the phase diagram for the set of pa-
rameter values WC/ωc = 100 and q2TF/2k

2
F = 0.5. The

formar ratio WC/ωc = 100 is typical of most metallic
systems since WC ∼ W and ωc ∼ ωD. The latter ra-
tio q2TF/2k

2
F = 0.5 implies the Thomas-Fermi screening

length λTF = 1/kF ∼ a/π, which seems typical of metals,
too. Because at µC = UcN(0) ≈ 1, the magnetic insta-
bility χs → ∞ should occur, the results are plotted only
for UN(0) < 1. It is found that the triplet state occurs
for large U , which confirms one of our previous results.7

It is also found that for large g, the s-wave state is more
favored than the p-wave state.
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Fig. 9. The phase diagram on the plane of the on-site Coulomb
energy U and the effective coupling constant g of the phonon-
mediated pairing interaction, in the spherical symmetric system.
The parameters are chosen as q2

TF
/2k2

F
= 0.5 and WC/ωc = 100.

The abbreviation SC stands for superconductivity.
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gN
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qTF
2
/2kF

2
 = 0.5

WC /ω c = 5

Normal 
  state

Fig. 10. The phase diagram for a narrow band case, in which we
set q2

TF/2k2
F = 0.5 and WC/ωc = 5. Along the vertical thin

dotted line, the transition temperatures are plotted in Fig. 11.

Therefore, for the present set of parameter values, the
resultant dimensionless coupling constant λ̃p for the p-
wave state is quite small, where it overcomes the s-wave
state. For example, when µC = UN(0) = 0.5, the high-
est transition temperature to the p-wave state occurs
near the phase boundary at gN(0) ≈ 1.05. However,
at µC = 0.5 and gN(0) = 1.0, we obtain λ̃0 ≈ 0.031
and λ̃1 ≈ 0.037, and such a small value of λ̃1 gives
Tcp ∼ 10−10K, which is too low to be observed in prac-
tice. For gN(0) >∼ 1.05, we obtain larger Tc, but there

0 2 410–4

10–2

100

gN(0)

T
c 

[K
]

ωc = 300K

qTF
2
/2kF

2
 = 0.5

WC /ω c = 5

Tcp

Tcs

Fig. 11. The transition temperatures as functions of the effective
constant g of the phonon-mediated interaction for the narrow
band case, in which we set q2

TF/2k2
F = 0.5, WC/ωc = 5. We have

put ωc = 300 K as an example. The solid and dashed lines show
the transition temperatures Tcp and Tcs of the p-wave and s-wave
states for UN(0) = 0.5. For each value of gN(0), the higher one
of Tcp and Tcs is the final result of Tc, i.e., the physical Tc. The
thin solid and dashed lines show those for UN(0) = 0.7.

100 101 102
0

0.1

0.2

0.3

(a) p

(a) s (b) s

(b) p

(c) s

(c) p

WC / ωc

λ α~

qTF
2
/2kF

2
 = 0.5

Fig. 12. The dimensionless coupling constants λ̃α as functions
of WC/ωc. The solid and dashed lines denote λ̃p and λ̃s, re-
spectively. The parameter values are taken as (a) gN(0) = 3,
UN(0) = 0.5, (b) gN(0) = 3, UN(0) = 0.8, and (c) gN(0) = 2,
UN(0) = 0.5.

the s-wave state occurs. This result is consistent with
the experimental fact that spin-triplet superconductiv-
ity has not been observed in the ordinary metals.

6.2 Narrow band systems

Next, we examine systems in which the ratio WC/ωc

is not so large. From eq. (5.29), since WC/ωc ∼
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√

ǫF(W − ǫF)/ωD, such a situation is realized, for exam-
ple, in semi-metals with extremely small ǫF and in narrow
band systems with extremely small W . In such systems,
since ωc ≪ W or ωc ≪ ǫF does not hold, the approxi-
mation N(ǫ) ≈ N(0) is not correct quantitatively, but it
is not essential for our purpose. The phase diagram for
q2TF/2k

2
F = 0.5 and WC/ωc = 5 is presented in Fig. 10.

Since W >∼ 2WC = 10ωc ∼ 10ωD, if we put ωD = 300 K,

we obtain W >∼ 0.3 eV. As the ratio WC/ωc becomes
smaller, since the retardation effect becomes weaker, s-
wave pairing is suppressed more effectively by the on-site
Coulomb repulsion. As a result, the area for the p-wave
state is enlarged in the phase diagram, and Tcp becomes
large enough to be observed in contrast to the result in
the previous subsection §6.1.

In Fig. 11, the transition temperatures for the param-
eter values of Fig. 10 are plotted, where we have put
ωD = 300 K as an example. For UN(0) = 0.5, it is found
that the transition temperature Tcp to the triplet state
could reach 0.3 K at gN(0) ≈ 2.6, while for gN(0) >∼ 2.6,
s-wave superconductivity occurs since Tcs > Tcp. In con-
trast, for UN(0) = 0.7, since Tcp > Tcs upto gN(0) ≈ 4,
because s-wave pairing is strongly suppressed by the on-
site U . Thus, Tcp could reach a rather larger value 2 K,
where the triplet state occurs.

Figure 12 shows the dimensionless coupling constants
λ̃α as functions of WC/ωc. It is found that the p-wave
state is favored for narrower band widths W (∼ 2WC),
because the on-site U suppresses s-wave pairing more ef-
fectively. The coupling constants λ̃p for p-wave pairing
depend on WC/ωc slightly. If we put ωc ≈ ωD = 300 K,
we could estimate Tcp as Tcp = 0.015 K, 0.16 K, and

0.79 K, for λ̃p = 0.1, 0.13, and 0.165, respectively. There-
fore, for q2TF/2k

2
F = 0.5, which gives λTF ∼ 1/kF

>∼
a/π ∼ 0.3 × a, the transition temperature Tcp can be
high enough to be observed in practice, where the s-wave
state is suppressed by strong on-site Coulomb repulsion.
For this mechanism, the smallness of the ratio WC/ωc is
essential.

6.3 Systems with weak Coulomb screening

Next, we examine systems with weak Coulomb screen-
ing. As examined in our previous paper11 and briefly
discussed in §5.5, the screening can be weak, for example
in layered systems with sufficiently large intervals be-
tween the layers, although here we examine spherically
symmetric systerms.

Now, let us examine the case with q2TF/2k
2
F = 0.1 and

WC/ωc = 100. For q2TF/2k
2
F = 0.1, we obtain λTF =√

5/kF
>∼

√
5a/π ∼ 0.7× a. The short-range correlations

lengthen the screening length by
√

1 + µC as shown in
eq. (3.18). In Fig. 13, the area of the p-wave state is much
larger than those in Figs. 9 and 10. Thus, we confirm
that as the screening becomes weaker, the anisotropic
pairing interactions increase, as proposed in our previous
papers.7, 11

0 0.5 1
0

2

4

6

Normal 
  state

s–wave 
   SC

UN(0)
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/2kF

2
 = 0.1

WC /ω c = 100

p–wave 
   SC

Fig. 13. The phase diagram for a weak screening case, in which
we set q2

TF
/2k2

F
= 0.1 and WC/ωc = 100. Along the vertical thin

dotted line, the transition temperatures are plotted in Fig. 14.
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Fig. 14. The transition temperatures as functions of the effective
constant g of the phonon-mediated interaction for a system with
the weak screening, in which we set q2

TF
/2k2

F
= 0.1, WC/ωc =

100. We have put ωc = 300 K as an example. The solid and
dashed lines show the transition temperatures Tcp and Tcs for
the p-wave and s-wave states.

In Fig. 14, the transition termpartures are estimated
for the parameter values of Fig. 13. It is found that Tcp for
the p-wave state could reach 0.3K, which are practically
observable.

6.4 Narrow band systems with weak screening

Lastly, we examine systems with weak Coulomb
screening and narrow electron bands. We set param-
eters as q2TF/2k

2
F = 0.1 and WC/ωc = 20. The for-

mar corresponds to the Thomas-Fermi screening length
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Fig. 15. The phase diagram for a system with weak screening
and a narrow electron band, in which we set q2

TF
/2k2

F
= 0.1 and

WC/ωc = 20. Along the vertical thin dotted line, the transition
temperatures are plotted in Fig. 16.

λTF
>∼ 0.7 × a as mentioned in the previous case. The

latter corresponds to W/ωD ∼ 2WC/ωc = 40. If we
put ωD = 200 ∼ 400 K as a typical value, we obtain
W = 0.8 ∼ 1.6 eV, which is realistic for the organic
superconductors and the ruthenate superconductors. In
Figs. 15 and 16, the phase diagram on the U -g plane
and the transition temperatures are shown. Comparing
Figs. 13 and 15, we confirm again that the area of the
triplet state is enlarged when the electron band width
becomes narrower. In Fig. 16, we find that the transi-
tion temperature Tcp of the triplet state can reach 3 K
at gN(0) ≈ 6.2, although for gN(0) >∼ 6.2, the p-wave
state is hidden behind the s-wave state (Tcs > Tcp). We
shall discuss the application of this result to the real
compounds in the last section.

7. Summary and Discussion

7.1 Summary of the results

Now, we shall summarize the results. In §2, we have de-
rived an effective Hamiltonian which is written in terms
of the short-range (on-site) Coulomb interactions U and
the long-range Coulomb interactions vq, from a basic
Hamiltonian. On the basis of this effective Hamilton-
ian, we have examined the spin and charge fluctuations
and screened Coulomb interactions (§3.1), considering
the two-particle vertex part within an RPA extended to
the model including both U and vq. The effective inter-
actions between electrons are written in the simple forms
as shown in eqs. (3.11) and (3.12). We have derived an
expression of the dielectric function and the screening
length (§3.2). It was found that the screening length is
lengthened by the on-site correlations due to U .

In §3.3 and §3.4, we have examined the Coulomb

0 4 810–4

10–2

100

gN(0)

T
c 

[K
]

ωD = 300K

UN(0) = 0.5

qTF
2
/2kF

2
 = 0.1

WC /ω c = 20

Tcp

Tcs

Fig. 16. The transition temperatures as functions of the effective
coupling constant g of the phonon-mediated interaction for the
system with the weak screening and the narrow electron band,
in which we set q2

TF/2k2
F = 0.1, WC/ωc = 20. We have put

ωc = 300 K as an example. The solid and dashed lines show the
transition temperatures Tcp and Tcs for the p-wave and s-wave
states.

screening corrections to the electron-phonon interactions
and the phonon Green’s function within the RPA con-
sistent with those for the interactions between electrons.
It was found that the sound velocity increases by the
weakening of the screening due to the on-site correlations
mentioned above.

In §4, we have examined superconductivity. We have
derived a general form of the effective Hamiltonian which
includes the interactions mediated by the phonons and
those mediated by the spin and charge fluctuations,
where the short and long-range parts of the Coulomb
interactions and the screening effects are taken into ac-
count. It was found in eq. (4.15) that the effective inter-
action is written in a summation of two terms, that is,

Γ
(0)
U and the renormalized phonon-mediated pairing in-

teraction. Here, we call Γ
(0)
U the Hubbard term, because

it is nothing but the vertex part in the pure Hubbard
model without the long-range Coulomb interaction vq.
In contrast, the latter term has the same form as the
phonon-mediated interaction in the absence of the short-
range Coulomb interaction U , but the prefactor and the
phonon energy ω̃q include the corrections due to U .

In §5, we derived the effective interactions along the
same way as the traditional weak coupling theory of su-
perconductivity. In particular, for the system away from
any magnetic instability, we derived the effective Hamil-
tonian, with which we have examined anisotropic super-
conductivity in §6. The present model includes the mod-
els examined so far5–7, 11 in appropriate limits except the
corrections due to U .

In §6, we have applied our theory to some ideal sys-
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tems. The results are summarized as follows: (1) The
triplet superconductivity occurs in the system with
strong on-site correlations and weak electron-phonon
coupling; (2) Spin-triplet pairing is favored when the
band width is narrow and when Coulomb screening is
weak;10 (3) The transition temperature of p-wave pair-
ing is limited, because s-wave pairing is favored if the
electron-phonon coupling is strong. In the most favorable
system, the transition temperature Tcp can be only of the
order of 1 K as a crude estimation. These results agree
with our knowledge as follows: The triplet superconduc-
tivity has not been observed in the ordinary metals, while
there are candidates in the heavy fermion superconduc-
tors, and the layered superconductors with large layer
intervals, such as (TMTSF)2X and Sr2RuO4, but their
Tc’s are not so high.

7.2 Narrow band width and triplet pairing

As mentioned in the above summary, we have found
in Figs. 10 - 12 that p-wave pairing is favored in nar-
row band systems. This result can be explained as fol-
lows. The on-site Coulomb repulsion affects only s-wave
pairing, but it has a limit itself. The effective Coulomb
parameter µ0 satisfies an inequality

µ∗
0 =

µ0

1 + µ0 ln(WC/ωc)
<∼

1

1 + ln(WC/ωc)
≡ µmax,

(7.1)
where we have used 1 > Uχ0(q, 0) >∼ UN(0), which is
the necessary condition for the absence of the magnetic
long-range order within the RPA. The upper bound µmax

is determined only by the ratio WC/ωc, which is usually
of the order of W/ωD. Therefore, we obtain µmax ∼ 0.18,
0.30, and 0.38, for WC/ωc ∼ 100, 10, and 5, respec-
tively. The phonon-mediated pairing interaction origi-
nally has the anisotropic components, such as λp, but
they are much smaller than the isotropic component λs.
For triplet pairing to occur only by phonon-mediated
pairing interaction, it is needed that s-wave pairing is
suppressed for some reason, and the dominancy of the
coupling constants, λs and λp, changes. From the results
shown in Fig. 12, the value µmax ∼ 0.18 forWC/ωc ∼ 100
is too small to change the dominancy, when λTF ∼ 1/kF.
In contrast, the large value of µmax = 0.30 ∼ 0.38 for
WC/ωc = 10 ∼ 5 can be large enough to suppress the
s-wave state.41

7.3 Application to the heavy fermion systems

The value of Tc obtained in Fig. 11 is consistent with
Tc ≈ 0.5 K in the heavy fermion UPt3 system,29, 30

if the set of the parameter values q2TF/2k
2
F = 0.5 and

WC/ωc = 5 is regarded to be appropriate for this com-
pound. In addition, as in UGe2,

8, 9 if singlet pairing is
suppressed by the internal exchange field due to the co-
existing ferromagnetic long-range order, the p-wave tran-
sition temperature Tcp can be of the order of 1 ∼ 2 K,
which is consistent with the experimental value and our

previous result.7, 42

7.4 Conclusion and future study

In conclusion, we have examined a model of the
electron-phonon system with both the long-range and
short-range Coulomb interactions, which is derived from
a more basic model. In particular, we have examined su-
perconductivity, and shown that the phonon-mediated
interaction could induce spin-triplet pairing, when the
Coulomb screening is relatively weak and the on-site
Coulomb interaction is strong. The transition temper-
ature can be high enough to be observed in practice,
and similar to the experimental values in the candidates
of the spin-triplet superconductors. In the future, more
quantitative study on the isotope effect, in which the cor-
relation effects and the strong coupling effects are taken
into account, may give a direct evidence of the applica-
bility of this mechanism.

For more precise estimations of Tcp in the applica-
tion to Sr2RuO4 compound, we need to take into ac-
count the two-dimensionality. We have examined a two-
dimensional effective model in our previous paper,11 and
shown that a realistic value of Tcp can be reproduced. It
is possible to derive the effective Hamiltonian from the
present Hamiltonian with the interaction of eq. (5.4). The
derivation will be presented in a separate paper.43

The application to the quasi-one-dimensional (Q1D)
organic superconductor (TMTSF)2X is another interest-
ing subject to study as discussed in §1. In particular,
Suginishi and the present author found by detailed cal-
culations based on the present theory that specific fea-
tures of the Q1D system play an important role in the
pairing symmetry. It will also be presented in a separate
paper.27
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