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Adaptive Control and ldentification Using One Neural must be identified again by using other identification techniques.

Network for a Class of Plants with Uncertainties Besides, many of these methods may require long learning time
or result unstability in some practical applications, where there are
Toshio Tsuji, Bing Hong Xu, and Makoto Kaneko uncertainties between the input to the controlled plant and the error

signal required for learning.
Another approach to the neural adaptive control is to utilize
Abstract—This paper proposes a new neural adaptive control method multiple neural networks [1], [17]-[23]. In this approach, one neural
that can perform adaptive control and identification for a class of o4\ qork s dedicated to the forward model for identifying the uncer-
controlled plants with linear and nonlinear uncertainties. This method L
uses a single neural network for both control and identification, and a fainties of the controlled plant and the other neural networks may
sufficient condition of the local asymptotic stability is derived. Then, in compensate for the effect of the uncertainties based on the trained
order to illustrate the applicability of the proposed method, itis appliedto  forward model. However, multiple neural networks must be trained
the torque control of a flexible beam that includes linear and nonlinear 5,4 stability of this approach is quite difficult to be assured.
structural uncertainties. . .
In this paper, a new neural adaptive control method that can
simultaneously perform adaptive control and identification using
. INTRODUCTION only one neural network is proposed. In the proposed method, an
In recent years, applications of the neural network to adaptivgentification model is composed of a neural network and a linear
control have been intensively conducted. For example, Narendra arwhinal model which is approximated for the controlled plant.
Parthasarathy [1] introduced multilayer neural networks for identiffhe neural network can identify the uncertainties included in the
cation and adaptive control of nonlinear systems. A number of studiesntrolled plant and can adaptively modify the control input computed
such as [2]-[5] for adaptive control of unknown feedback linearizabfeom a predesigned conventional feedback controller at the same
systems and [6]-[8] for achieving guaranteed performance of ttime. The neural network is of the multilayer perceptron, where
neuralnet controller have been reported. This is due to the fact that the weight's updating rule is the error back-propagation using an
neural network has excellent capabilities of nonlinear mapping, leaidentification error between the model output and the controlled
ing ability, and parallel computations. Most of the proposed adaptiygant’s output.
control methods using single neural network can be roughly classifiedThis paper is organized as follows. In Section I, a formulation of
into four types: the direct neural adaptive control [9], [10], the parall¢he controlled plant, a working principle of the proposed method, a
neural adaptive control [11], [12], the feedforward neural adaptiveodel of a neural network, and a stability analysis are shown. In
control [13], and the self-tuning neural adaptive control [14], [15]. Section llI, in order to illustrate the effectiveness of the proposed
Yabuta and Yamada [9] proposed the direct neural adaptive cdRethod, computer simulations for plant models with linear and
trol that replaces a conventional feedback controller with a neurd®nlinear uncertainties are carried out. In Section 1V, to illustrate the
network. Also, they discussed the stability of the linear discrete-ting@Plicability of the proposed method, torque control experiments of a
single-input-single-output (SISO) plant [10]. Although their methofjexible beam are performgd. Experimental results using thg proposed
is quite simple and can be applied to various feedback contf@fthod are compared with those of other neural adaptive control
systems, the uncertainty of the controlled plant cannot be identifigh‘athOdS n order to m'ake clear the distinctive feature of the proposed
and some parameters included in the neural network is quite difficmFthOd' Finally, Section V concludes the paper.
to be set. On the other hand, as the parallel neural adaptive control, 1.

ADAPTIVE CONTROL AND |IDENTIFICATION
Kraft and Campagne [11] and Sadegh [12] presented an adaptive ) ) )
controller based on the neural network arranged in parallel with aOne of the keys to developing the adaptive control using the neural

conventional feedback controller. Their idea is to compensate i twork is a way to deal with the unknown nonlinear properties

control input computed from the conventional feedback controllé?cmded in the plant using the neural network. In our approach, the

" - . nonlinear properties are, first, linearized using one of the conventional
for canceling the effect of the plant uncertainties. Also, Castlil. prop ! ! g

. : roximation technique, and then the nonlinear modeling error is
[13] proposed an adaptive controller using the feedback error Iearn%p 9 9

. . ntified by using the neural network. The same neural network is
[16]. The neural network can gradually modify the control input fromys,, seq to cancel out the effects of the nonlinear modeling error on

a conventional feedback controller and can finally take the place @ controlled variable, so that the single neural network can achieve
the conventional feedback controller. Moreover, Akhyar and Omatgt only the identification of the uncertainties but the control of the
[14] and Khalidet al. [15] presented a self-tuning controller that use|ant. First, we derive the proposed method for a class of plants with
a set of neural networks for regulating the gains of the conventionglear uncertainty. Then we show that the proposed method is also
feedback controller in order to improve the performance of the contrglfective for the plant with nonlinear uncertainty.

system. Their methods could maintain stability of the adaptive control
system through the function of the conventional feedback controlléx. Plant Formulation
For all of the methods presented above using single neural networkj et us consider a controlled plant with a multiplicative uncertainty
however, even if the adaptive controller of the controlled plant can bRscribed by [24]
obtained by neural network learning, the uncertainty included in the

» —_— N_J‘ o
controlled plant cannot be expressed explicitly. When the forward y(];) =H(z )1?‘(1") . @)
model for the controlled plant is necessary, the controlled plant H(z"")=Ha(z" )1+ Au(z")) (2
—1
Manuscript received January 6, 1997; revised November 8, 1997. Hn(;]il) - Bn(z"7) (3)
T. Tsuji and M. Kaneko are with Industrial and Systems Engineering, A, (z7")
Hiroshima University, Higashi-Hiroshima 739, Japan. AB(7_1)
B. H. Xu is with Yamamoto Electric Corporation, Sukagawa 962, Japan. An(z_1) = —'71 (4)
Publisher Item Identifier S 1083-4427(98)04350-1. Aa(zh)

1083-4427/98%$10.00 1998 IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 28, NO. 4, JULY 1998 497

ik ~eto [ Feedback | o [ stk y £
+ g Controller .-;46
T 2
' 1 3
z,
Fig. 1. Block diagram of feedback control system. » =
9 g Y %
. iy
where y(k),u(k), H(:~"), and Ag(z~') are respectively E / v ®) J
the output, the input, the controlled plant model, and the A(k)‘l Hp(eH———
multiplicative uncertainty.Hn(fl) is the known, controllable " _____)é)l—J
nominal model andH.(z~') € RH.. is proper and stable ” A

An(z7H, Ba (27, Au(z7 1), Ap(2 1) are respectively given as

25]. Also, ! is the delay operator, and the polynomials ’ 3 (Y@ 1
[25] y op poly T G2 IO H ) )

An(;fl:) =1+ Z aJ-zfj (5) Fig. 2. Block diagram of the proposed method using one neural network.
j=1
B,(z ") = Z biz=" (n>m) (6) B. Proposed Method
i=0

Fig. 2 shows the block diagram of the proposed method in this
’ . _; paper. The outpug (k) of the identification model is a sum of the
Aa(zT) =1+ Z ayz @) output of the nominal mode}., (k) and the identified outpug, (k)
7= that is the output of the neural netwoyk; ~ (k) passed through the
! nominal modelH.,(z~"). The neural network is trained using the

h

Ap(:7") = Z piz™" (R 21). ®)  identified errore(k) between the model’'s outpgtk) and the plant’s
=0 output y(k)
Here, «j, 3; are unknown coefficients and< n), (< m) are
unknown orders of the polynomials 4 (1), Ag(z~1). e(k) = 4(k) — y(k). (13)
The general block diagram of the feedback control system is shown
in Fig. 1, wherer(k) is the reference signal andk) = r(k) — y(k) The output of the neural networky x (%) modifies the control

is the error between the reference signal and the plant output.  input as
First, consider a special case in which there is no uncertainty in the

plant (1), thatisA7(z~") = 0. The conventional feedback controller

G (271) for the nominal modelH,, (') can be predesigned to

produce a desirable response. The closed loop transfer funct

F.(z7") is described by [26]

Ay (k) = —ynn(k). (14)

. Next, the working principle of the proposed method is explained.
Wusing Fig. 1 and (10), the control inputk) can be represented as

ey = W) __Gale HHAG © u(k) =Gn(z"H[1+ Ag(z7)]e(k)
TR T I G Ha () =un (k) + Ay (k) (15)
—1
Next, consider the general casedf; (z~1) # 0 with the controller un (k) =Gn(z " e(k) (16)
G(z~1) for the plantH (2 !) defined as Ay (k) = A (27 Dun (k) (17)
Gz = Galz7 L+ Aa(z7)] (10)  where un (k) and A, (k) are the nominal control input and the

whereAq (=" represents the modification of the controlfégz—').  modification, respectively.
Thus, the closed loop transfer functiafi(z~!) that consists of  AlS0, from (1) and (2) the outpui(k) becomes

=1 =1 f
H(z~'")andG(z7") can be given as (k) = Ho(= DL+ A (=~ Y]u(k)

P = ey o =0+ A0 ae)
< Yn (k) :Hn(z_l)u(k) (19)
If (9) and (10) are equivalent, the response Bf:z~"') using Ay(k) =An (=" Yuk) (20)

H(z ') and G(z1) can agree with the desirable response [27].
Carrying out an operation using (4) and (9)—(11), we can obtain thghere A, (%) is the uncertain output via the uncertaintyy (>~ 1).

following transformation for this equivalence: Substituting (15), (17) into (20), we have
Azt -
Ag(zh) = _H_Z(—(f)l) 12) Ay(k) = Ap (27 ) (k) + Au(F)]
aH — —
=Ap(z7 [+ Ag(z7)un (k). (21)

However, since AH(z*I) is unknown, the modified value
Ac(z7") cannot be computed by (12). Whehs(z7') is over By (17) and (22), the modification, (k) can be rewritten as
the admissible error's range of the feedback controlier(z~"), .
the control system performance decreases, or yields a steady-state Au(k) = 7AG(Z : ) -
error, or even turns into unstable performance. In order to solve this Ap(z7H[+Ag(z71)]

control problem, in the next subsection we propose a new methgfpstituting (12) into (22), we obtain the following relation between
that can identify the uncertainth (') using a neural network A, (k) and the uncertain outpuh, (k):
and adaptively modify the control input from the feedback controller

Ga(z7"). Au(k) = =A, (k). (23)

Ay (k). (22)
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Fig. 3. Neural network used in the proposed method. 50 Y=10

Fig. 4. Sigmoid function used in the neural network.
On the other hand, by Fig. 2, (13) and (18), the identified error

e(k) can be given as o
Moreover, the output of the output unit is denoted(as = o (%),

(k) =[Hn (2" )ynn(k) = yn (k)] wheres = S, v, H;.
_ [Hn(z_1 WA, (B) + yn (k)] Now, the energy function is defined as
=H,(z"ynn(k) — Ay (k)] (24) T(k) =1 &k
If the neural network is well trained, we can expect th@t) finally =3 {H.:"Dlywn(k) = A (=" Hu(B)]y. (28)

becomes zero in (24). Sind&,. (z~!) is the nominal model and is

not identically zero, we can have The energy function is minimized by changing the weights and

v; in the training process. According to the error back-propagation
ynn (k) = Ay (k). (25) algorithm [28], the weight updating rules at one sampling time can

be described as
We can see that the output of the plant under the proposed method

can agree with the desirable response using (14). As a result, the Vik+1)=V(k)—y OJ:(]")

proposed method can adaptively control a class of plants with linear IV (k)

uncertainty given as (1)—(8) using the neural network. The proposed =V (k) — ne(k)Hn (=) dynn (k) (29)
control system is designed to cancel out the effects of the second term IV (k)

in the right side of (18). Therefore, it should be noted that if the outpyf,q

y(k) can be decomposed as (18) and the uncertalty%) can be

identified by learning of the neural network, the proposed method W(k+1)=W(k) —ne(k)H, (")
is also valid for nonlinear uncertainties included ix, (k). The

effectiveness of the proposed method to the nonlinear uncertaintigseren > 0 is the learning rate.

included in the plant will be verified in Sections Ill and IV. The

next subsection explains how the modificatitin (k) in (14) can be D. Stability Analysis

realized using the neural network.

dynn (k)

OW (k) (30)

This subsection deals with the local asymptotic stability of the
proposed method for the plant (1) near the optimal set of the neural
C. Neural Network Model network’s weights. If the multilayer neural network is used, there

The multilayer neural network used in this paper is shown in Fig. 8xists the optimal set of the weights that results the identified error
The numbers of units in the input layer and the hidden layerMare (k) = 0 [29], [30].
and M, respectively. The number of units of the output layer is one. Near the optimal set of the weightgy v (k) is linearized by
In Fig. 3, w;; (k) represents the weight that connects the yinin T
the input Ia;?ér and the unit in the hidden layery; (k) represents ynn (k) = oV (R)W(E)U ;v (k) (31)
the weight that connects the unitn the hidden layer and the outputwhereo > 0 is the gradient of the sigmoid function.
unit, W (k) € RY*Y V(k) € RY*! are the weight matrix of the  On the other hand, by (4), (7), (8), and (20), the uncertain output
hidden layer and the weight vector of the output layer, respectivelgx.y(k) can be written as
From Fig. 2, the input vector to the neural netwdfky (k) € RV

. . { h
is defined as Ay(k) = [Z ,&zl} wl(k) — [Z a2 Ay(k)
U?NU‘") = [U/(k)v U/(k - 1)* e 7“‘(1“ - Cj) =0 J=1
Ay(k= 1), Ay (k= p)] (26) =0"T1n(k) (©2)
wherep > h,g > LN =p+q+ 1. where
Let the unitj’s output of the input layer be denoted &s = 0 =[f0, 51, . 51,0,---,0
uj(k) (j =1,---,N) and the unit’s output of the hidden layer be s o - Nt
denoted as; = o(s;), wheres; = S| w;;I; ando(x) is the —ai, e —an, 0,0, 0] eR (33)

sigmoid function defined as is the parameter vector. Thus, from (31), (32), the identified error

o(a) = % tanh(yz). @7) e(k) in (24) becomes
y . . - e(k) = Hu(="")p" (F)U 1x (k) (34)
The positive parametey is related with the shape of the sigmoid
function. where
Fig. 4 shows the input—output relation of the sigmoid function. o7 (k) = gVT(k)W(L:) _a7 c RN (35)

When~ < 0.1,0(x) can be approximated by a linear function. On
the other hand, when > 1,¢(z) has the form of the tanh function. is defined as the parameter error.
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From Fig. 2 and (34), it can be seen that if the identified error 1.4
e(k) can be asymptotically stabilized, the asymptotic stability of the L
proposed method can be also guaranteed. Since the nominal model 10 -
H,(>~") is controllable and the control inpdif;~ (k) is bounded, 3 o
the stability of the parameter errgf k) should be guaranteed in order .; 06 | First "efam".
to assure the stability of the identified errak). g 1 | T Second itcration
Now, let us consider a Lyapunov functioh(k) of the following © 02 - -~ Fifth iteration
form:
02 : ) R .
T(k) =" (k)p(k). (36) 00 20 40 60 80 100
Time [s]

When the difference

AW = U(k+ 1) — (k) < 0 37) Fig. 5. Responses of the plaft'(z—') by using the proposed method.
is held, the asymptotic stability of the parameter errok) can be o 1o reference signal k) of a unit step function and a rectangular
guaranteed by the stipulations of the Lyapunov stability teChn'que'fUnction, the responses of the nominal mo#el(=~") of (44) using
the neural network is trained untf (k) =~ 0. the sufficient condition the control G (371) of (45) are respectively shown in Fig. 7 and
of the local asymptotic stability is to choose the learning rates Fig. 9 as the desired response (DRE).

2 >5>0 (38) In the proposed methody = 1 in the sigmoid function (27) is
oC||Q (k)0 used, and the weight's initial value of the neural network is chosen
o as the uniform random number jr-2.0, +2.0]. The learning rate is
C= sup [Hn(e™7“")] (39) 5 = 0.05 and the sampling time is 10 ms. Also, because the order
0<w<oo . 1N s .
of the uncertaintyAx (=) is unknown, it is set as the maximum
10Kl = sup 7{Q(k)} (40) order, th_at is_h = n(=p),l = m(=q). This resultsN = 5 and
<k<kj M = 5 in Fig. 3.

wherek;. is the learning time]" is the sampling period7{Q(k)} The computer simulations performed in this section are divided
(hereafter, abbreviated a&k)) is the maximum singular value of into two parts: linear uncertainties and combined linear and nonlinear

the matrixQ(k) € VXN given by uncertainties.
Qk) =U n(k)H, (=~ U [n (k)W (k) (k)W (k)
+ VI (k) (k)V (U [ (k)] (41)

A. Linear Uncertainties

The plant model
1.1
1.2+ 1.1z71 +5.622 4+ 0.48273 + 0.05z—1
(46)

(see Appendix). The diagonal elements; (%), w2, (k) of the diag-

: . H'(:"YH =
onal matricest?; (k),Q:2(k) are given as -

ty . -
() =TT =0, i s =0)  (42) _ _ _ _
Si was used with the reference signal of the unit step function. The
waii (k) =o' (8)o' (si) (43) simulation result under the proposed method is shown in Fig. 5. The

wherea’ () is the derivative ofr(-). It can be easily seen that when' €SPONse of the §|mu|ated pla_nt is converging on the desired response
accordance with the learning of the neural network.

the small positive learning rate is chosen, the condition (38) can E‘eF. 6 sh the ti hist f th . inaul |
generally satisfied. ig. 6 shows the time history of the maximum singular value

In this subsection, only the local asymptotic stability for the pla (k) in (40) during the first iteration of the neural network learning.

with linear uncertainty was discussed. If the uncertainty includ should .be noFed that.other. smgglar values@.ﬁks).are always
in the plant is not limited to a linear one, the stability analysigonnegf"‘t've during th_e 5|mulat|_on. Since the mafjtk) includes the
might be very difficult to be done. Therefore, we will examine thgontrol inputls.x (), (k) archives the largest value(k) = 19.92
stability of the proposed method by using computer simulations a che beglnnlng of the gontroll time .Where the control input for
experiments in Sections Il and IV. Future research should be directt step-like reference signal is rapidly changed. As the result,

ed ~ " o 7 "
to the stability analysis of the proposed system including nonline?’fnr_ 0.05 satlsfles the_ .suff|c:|ent condition (38) and guarantees the
uncertainties. ocal asymptotic stability of the proposed system. It can be seen

that, if the learning ratey is chosen as a smaller positive number,
the sufficient condition (38) can be generally satisfied for the local
asymptotic stability. However, in order to make the learning more
To illustrate the effectiveness of the proposed method, we uggickly, n should be large. The upper bound of the learning rate
the simulated plants with linear and nonlinear uncertainties. Thein (38) is affected by randomly chosen initial weights and the
simulation results under the proposed method and the conventiogghtrol input, so that unfortunately, the stability cannot be checked

I1l. COMPUTER SIMULATION

feedback control method are compared. beforehand. Future research should be directed to develop an adaptive
The nominal model used in the computer simulation is regulation ofy in order to speed up the learning.
H, (") = 1 On the other hand, Fig. 7 shows the desired response as the
(27 = 144271 4+2.42=2 +0.4482—3 + 0.02562—* solid line, the response of the feedback control method by using

(44) Ga(z7') = 1 as the dotted line (abbreviated as FBC) and the
response during the fifth learning iteration using the proposed method
as the dashed line, respectively, where the proposed method is
denoted as neuro-based adaptive control (NBAC). We can see that
Gz 1) = 1.889 + 7.1312 71 + 2-878:72. (45) the response of the proposed method can almost achieve the desired
-1 response by only fifth learning iteration.

and the following feedback controllé#, (>~ ') is designed by using
the pole-zero cancellation method [31]

z
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Fig. 9. Simulation results for the pladf?(z~1).
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Fig. 7. Comparison of control results for the plaiit (z—1). ] ] ) o ] )
Fig. 10. Simulation results for the plant with linear and nonlinear uncertain-

ties.
800 .
-
i 600 order of the denominator comparing to the nominal mdde(=~").
g 400 Thus, the response of the conventional feedback control (FBC) is
%’ ® oscillating, while the response of the proposed method almost agrees
§ 200 with the desired response after the fifth learning iteration.
U s
0 4 * B. Linear and Nonlinear Uncertainties
001 003 010 030 100 3.00 Consider the following plant model with linear and nonlinear
Range of initial weights, & uncertainties:
(1) — TN (1 _ (ke
Fig. 8. Change of the control performance with the initial values of the y(t) = H (=" Ju(k) + {1 — exp[ru(k)]} (48)

neural networks weights. where{1—exp[ru(t)]} is the nonlinear uncertainty. The parameter

represents the index of nonlinear extent and is set&s0.01 in this

The control performance using the neural network is closely relatgtinulation. It should be noted thdf' (= ~") includes the parameter
with the initial values of the network weights. When the neurderturbation shown in (46).
network is not sufficiently trained, the local asymptotic stability may The proposed control method was applied to the plant model
not be always guaranteed as shown in Section II-D. Therefore, {#8) with the reference signal of the unit step function and the
examine the relationship between the control performance and fRgdback controller as (45). Fig. 10 shows the simulation results.
initial values of the weights in the proposed method. In the simulatidifie response during the 15 learning iterations almost agrees with
experiments, ten different sets of the initial values were chosen usig desired response shown in Fig. 10. Although the stability of the
the uniform random numbers within the range¢, ¢]. The mean- Proposed system is proved to the plant with only linear uncertainty
square-error between the desired response and the plant output foifh@ection 11-D, it may be also effective to the class of plants with
unit step reference signal are shown in Fig. 8 with the rafigas nonlinear uncertainty.
the range of the random numbers becomes large, the mean-square-
error is increasing and the standard deviation is spreading. However, IV. TORQUE CONTROL OF A FLEXIBLE BEAM

if smaller initial values are used, the mean-square-error Converges, inis section. we apply the proposed method to a real control

almost zero. _ _ problem that is torque control of a flexible beam as shown in Fig. 11.
Next, let us consider another plant model described as While the flexible beam contacts with a fixed object, we would

H*(=™h like to control the joint torque of the flexible beam in accordance
‘ 1.45 + 0.25-=1 4 0.05:~2 with a reference signal. The contact point between the flexible beam
= 075132, 1110224 035:5 1 0.0252" and the fixed object can be detected by active motion of the joint

(47) [32]-[34]. Therefore, if the joint torque is controlled, the force applied
to the fixed object can be also controlled. However, the dynamic
Fig. 9 shows the simulation results using the rectangular function @saracteristics of the flexible beam under consideration nonlinearly
the reference signal. It should be noted tff&t(>~") includes not depend on the material and shape of the flexible beam, the external
only the parameter uncertainties but also increase of the polynontahtact force, the contact friction and so on. Moreover, the rotational
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Response of H,(z')
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Fig. 11. Flexible beam in contact with an object. Fig. 12. Measured and predicted torque of the flexible beam.

stiffness of the beam is largely changed depending on the posit@ssumed that its linear approximation is given by

of the contact point. When the distance from the joint to the contact , - 1 T

point is small, the rotational stiffness is increased. When the contact Fluth)) = Ha(z ) Au (= )u(k) (50)

point goes away from the joint, the joint becomes less stiffer. Thughere Ay (=) is the uncertainty. Then, (49) becomes the same

it is very difficult to obtain the exact dynamic model of the flexibleform as the plant (1).

beam beforehand, and a precise torque control of the flexible beanNext, the nominal model used in the proposed method is identified.

cannot be achieved by a conventional adaptive control technique The desired angular veloci&l(k) is considered as the input to the
Fukudaet al. [35] presented a method of adaptive force conflexible beam, so that the transfer function frém(k) to the torque

trol of a rigid manipulator taking the object’s characteristics inte (k) at the joint can be approximately described by

consideration, and also proposed a feedback decoupling control for K. K,

suppressing vibrations in position control of a flexible robot arm [36]. H,.(s) = m

Then, Tokita and Fukuda [37] presented an adaptive force control of I :

a robotic manipulator using neural networks. Also, Takahashi [2#jherels is the gaint, is the time constant in the velocity-controlled

used an adaptive neural identifier and the direct neural controller [38jstem, andy is the elastic constant of the beam. The discrete form

for controlling a flexible arm. The neural identifier can identify thé@f (51) is given as

parameter of the arm and the neural controller can work on the basis . brz ! o byz 2

of the identified parameters. Moreover, using a linearized model of Ho(z7) = Ttaz—"+a,2-2 (52)

the flexible arm, robust control of the flexible arm has been actively

studied by using the model matching control dfid control methods L = 0.20 m was chosen and the beam was fixed to the environment.

[39], [40] in recent years. . . L . 4
In this section, the proposed method using one neural networkTiEe rectangular input signal with its amplitude2od < 10" " rad/s and

applied to the torque control of the flexible beam, and the contr Iperlod 0f 0.5 s was used s after passing through the first-order

performance and identification ability of the proposed method argy Pass f'"‘?r with a cutpff frequency 5 Hz. The 10|_nt to_r_que was
shown with the comparison of the experimental results using tI;%easured with the sampling frequency 100 Hz. The identified values

; . the model parameters weég = —1.20296, 4, = 0.201 21,by =
model reference adaptive control and other neural adaptive cont a _ . ’ '
methods. 3.63063, b2 = 0.07341 by using the least-squares method. The

response of the nominal model with the identified parameters is
. ) ) shown in Fig. 12 as the thick line. From Fig. 12 we can see that
A. Experimental Device and Formulation the error between the output &, (z~') and the measured torque
An experimental device for the torque control of the flexible beamf the flexible beam withl. = 0.2 m is increasing with time.
is shown in Fig. 11 [34]. The beam is steel, 0.32 m in length and 0.8Using the same experimental device, the fixed posifioof the
mm in diameter. The torque sensor is made of a semiconductor gabgam was changed. The measured results are also shown in Fig. 12,
glued on an aluminum sheet. When the beam contacts with a fixgtlere the alternate long and short dashed line represents the result
object, the torque (k) at the joint of the beam can be measured bwith Z = 0.12 m and the dashed line represents the result with
the torque sensor. The actuator is velocity-controlled with the desiréo= 0.32 m. When the contact positioh is varied, the joint torque
angular velocityd4(k) of the joint being assigned by the computerbecomes significantly different from the output of the nominal model
It should be noted that the driving torque of the actuator can not béth L = 0.20 m. In the next subsection, the proposed method using
controlled directly. the identified parameters fat = 0.20 m is applied to the torque
For this experimental device, first, let us consider a nonlinear placdntrol of the flexible beam with different contact positiahs
described by

(61)

In order to identify the parameters of (52), the contact point

(k) = Ha (=" (k) + Fu(k)) (49) B. Control Performance _ _ N
In the neural network used in the experiment, the initial value of the
where u(k) and 7(k) are the input to the actuator and the joinweight was set as an uniform random numbej-i.0 x 1072, 1.0 x
torque of the flexible beam, respectively(u(k)) represents the 107%]. The learning rate wag = 0.05 and the parametey of the
nonlinear uncertainty and unknown parameter’s perturbation of thiggmoid function wasy = 1. In order to cover the maximum order
experimental device; andi,(z"') represents the linear nominal(p = 2,¢ = 2) of the uncertainties\ (>~ '), the neural network
model that is estimated from measured data by using a conventiooahsisted of five units in the input layer, ten units in the hidden layer,
identification technique. For the nonlinear functigiu(k)), it is and one unit in the output layer. Also, the reference sigga) was
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Fig. 13. Experimental results of the torque control of the flexible beam wiffig. 15. Experimental results of the torque control of the flexible beam with
L = 0.20 m. L = 0.32 m.
- rBC Reference Volk)
030 . NBAC "l Model .
k
E \ﬂﬂf g, e(k)
Z ous [V A uk) [Flexible -
= Beam v(k)
X [s] :
< 000 —
v 90.0 | 100.0 @"H
o
=
& -0.15
g T | |
< Mag
= (AN ﬁ)ﬁ%—
030 - { ¢ Fig. 16. MRAC for the torque control of the flexible beam.
(@)
—MRAC 16 e neaC o mC o
0.30 ———NBAC : |
- \ A MRAC
T 015 L& o A
S 5 E [e]
¥ [s] §Z 45l o o
X 0.00 ' Ty A o A
© 90.0 100.0 g %
g S & 04 2 A = )
g-0.15 L ' ¢ ? o ¢
[_‘ V\.‘ ¢ H 5
0.30 0.0 L -- o : : : :
) 0.08 0.16 024 032
Length, L [m]

Fig. 14. Experimental results of the torque control of the flexible beam )
with L = 0.12 m. (a) Proposed method and the feedback control usiffgg- 17. Change of the control performance with the length of the beam.
Gn(z71) = 1 and (b) proposed method and the model reference adaptive
control.
However, whenL is varied as shown in Figs. 14 and 15, the

feedback control using+,, (') results significant overshoot or un-

of a rectangular form with its amplitude @t0 x 10™" Nm and & dershoot. The model reference adaptive control works well for linear
period of 5 s. The feedback controlléh, (= ') wasG.(=~') =1  parameter perturbation, so that it improves the control performance
and the control duration was 100 s. The proposed method was appligghtly. On the other hand, it can be seen from the experimental
to 6 different contact points that wete = 0.12, 0.16, 0.20, 0.24, results of Figs. 14 and 15, the proposed method always produces
0.28, 0.32 m. stable responses. It should be noted that the identified parameters of

Figs. 13-15 show the experimental results corresponding to ## nominal model fod, = 0.20 m were used for all cases.
case ofL = 0.20, 0.12, 0.32 m, respectively. In all cases, the Fig. 17 shows the mean-square-error
dashed lines represent the results corresponding to the use of the

feedback controller (FBCY+,, (=), the thick lines the results by | oo
the proposed method (NBAC), the thin lines the results obtained Er = — Z cQ(k) (53)
with the model reference adaptive control (MRAC) of Fig. 16. In 10, %560

the MRAC, as the reference model and the controller, the nominal
model H,(=~") of (52) with the identified parameterd. = 0.2  between 90 and 100 s. In the figure, the white circle, the triangle and
m) andG,(=~"') = 1 were used, respectively, and the polynomialshe black circle represent the results by the feedback control using
D,(z"') and H,(z~") of the compensators as shown in Fig. 167,(>~"), the model reference adaptive control and the proposed
were set ad, (: ') = 1+ du1z  andHy (27 ') = ho + k1z~', method, respectively. The errors corresponding to the proposed
whered,1, ho and h, are the updating coefficients at one samplingnethod are shown with their mean values and standard deviations
time [26], [41]. for 10 different initial values of the weights. From the results shown
In Fig. 13, due to the fact that the same valuelof= 0.20 m in Fig. 17, we can see that even if there is a large error between the
was used for identifying the nominal model, the experimental resut®minal model and the real dynamics of the flexible beam, the stable
obtained under three control methods were not obviously differentesponse is always obtained using the proposed method.
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Fig. 18. Predicted torque by the proposed method.

C. Identification Ability

The another feature of the proposed method is that it can construct (k)
the identification model for the controlled plant (sgg:) shown in _
Fig. 2). Let us investigate the identification ability of the proposed
method for the contact poinf = 0.12 m after learning of 100 s (b)
which is corresponding to Fig. 15.

Fig. 18 shows the identification model's outpj(tt) for the case
of L = 0.12 m with the same input signal as shown in Fig. 12. It
should be noted that the identified parametersifee 0.20 m were
used as the nominal modé&l, (=~'). We can see that the adaptive
control and identification for the controlled plant can be achieved
using only one neural network simultaneously. o Feedback | ¥ |, [Flexible ] Y&

+?: Controller u(k)| Beam

Feedback
Controller

D. Comparison ©)

In this subsection, we make a comparison of the proposed methgd 19 Bjock diagrams of the adaptive control systems using neural net-
with other neural adaptive control methods, which are the self-tunin@rks. (a) Self-tuning neural adaptive control. (b) Feedforward neural adaptive
neural adaptive control (STNC) [14], [42] the feedforward neuralontrol. (c) Parallel neural adaptive control.
adaptive control (FNAC) [13], [16] and the parallel neural adaptive
control (PNAC) [11]. Fig. 19 shows three block diagrams of STNC, 16

FNAC, and PNAC, respectively. It should be noted that the direct ———xgéxg
neural adaptive control did not result any stable learning in our ----PNAC
—FNAC

experiments. :
08 f

Mean square error,
E, [x 10°(Nm)¥s]

In the experiments, experimental conditions were the same as the
ones described in the Section IV-B except for the control duration 60
s. The mean-square-errét, during the one period of the reference
signal, that is, 0.0 R
500 ¢ 2 4 6 8 10 12
E, = % > EBE00(n— 1)+ k] (n=1,2,---,12) Period number, n

k=1 Fig. 20. Comparison of the learning history.

(54)

is computed for each control method. The sampling frequency Wastpe range of the uniform random numterz, ¢] for the weight's
100_ Hz. ) ) . . initial value was changed and the mean-square-direr 1/2(Eq; +

Fig. 20 shows the comparison of the learning history. From Fig. %@12) between 50 s and 60 s [see (54)] was computed as shown in
the learning speed of the proposed method is faster than those of o;l_qar 21. For larger values of the range of the initial weight> 0.01
control me_thods. STNC, PNAC, and FNAC need to learn the inverﬁgzr STNC, ¢ > 0.03 for FNAC and¢ > 0.1 for PNAC), the control
model, while the proposed method requires to learn only the forwagflsiem hecame unstable and the neural network learing could not be
model of the uncertainty included in the controlled plant. Thus, thg,nyerged. On the other hand, the proposed method always achieved
learning load of the proposed method is much less than the onesspfyie jeaming of the neural network and adaptive control for the
other control methods. range¢ < 3.0.

Next, the effect of the choice of the weight's initial value of the T
neural network used in adaptive control was examined. In the early
stages of training, the neural network’s output works as an undesirable
disturbance to the controlled plant. If the weight's initial value that In this paper, the new neural adaptive control method that can
produces a large output of the neural network is set, it may happegulate the control input and identify the controlled plant with linear
that the control system becomes unstable and the learning of #rel nonlinear uncertainties by using only one neural network has
neural network begins to diverge. Thus, the control performance loden proposed. The working principle of the proposed method was
the neural adaptive control methods are examined for the rangeeaplained and the sufficient condition of the local asymptotic stability
the weight's initial value. near the optimal weight's set was derived. Computer simulations were

V. CONCLUSION
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W(k+1) " W(k) — ne(k)H,(z~") 2 (k)V (E)U [ x (k).

—B— STNC (56)
—8—NBAC

The diagonal elements of the matrice®, (k) and £2;(k) are

|wiii (k)| < M, |waii (k)| < M2 whereM,, M, are constants, since
H the sigmoid function is of the tanh function. Therefofh,(%), Q2 (k)

are bounded matrices.

ﬁ esos el By (55) and (56), assuming the identified error to be sufficiently

Control error,
E |x10'(Nm)¥s]
<
oc

0.0
0.0001 0.01 1 Sma”' we get
Range of the initial weights, V'T(k + DW(k+1)
@ = VT (k) = ne(b)Ho (=" WU v ()W (k) 21(k)]
. . —1 N . T”
1.6 FNAC . [PTV(k) —ne(k)H (2 ).Q:(lk)V(L)UL\ (k)]
_ NBAC =~V /(Yk)W(k)/ - ne(k)Hn(z"")
g N,\;: - [UfAY(Lf)Wf (k)02 (k)W (k)
3 Eos | + V() 2o (B)V () U T (). (57)
B2 -
3 S; 7 f Substituting (34) into the parameter error (57) yields
onmE
o | 38eeemt VI (k+1)W(k+1)
o000t 001 1 ~ V(W (k) = nHn (2" et (U v (R)H, (271)
Rangeo;themma.l weights , & ) [Ulf\/(k)Wl(k).(ll(l\/)W(k)
(®) F V()22 (R)V ()T L ()]
16 —A—PNAC =V (kW) —gH,. (=" )" (h)Q(k). (58)
g ;\E ¢—NBAC Then substituting (58) into (35) yields
§ B " » "
3 Sos A1) =oVi(k+1)W(k+1) — 6"
g8 — _
S 7 =o' (W) = noHn (=" )Q(K)] (59)
ad ‘g =EE where I' € RY*Y is the unit matrix. So, the differencA¥ can
00 B - be written as
0.0001 0.01 1
Range of the initial weights , & AV =T(k+1)— T(k)
© =" (k)T = noH . (z~")Q(k)]
Fig. 21. Change of the control performance with the initial weights of the [ = noH, (=~ )QT(k)]np(k) — L,or(k)ﬁp(k)
neural network. (a) NBAC and STNC, (b) NBAC and FNAC, and (c) NBAC _ ‘ ‘
and PNAC. @ ® © =—noH . (=" )" ()[Q(k) + Q" (k)
—noH (=" 1)QK)QT ()] (k). (60)

performed to the plant with linear and nonlinear uncertainties, so thathen the learning rate satisfies to the following expression
the effectiveness and asymptotic stability of the proposed method . 4 .

were clearly confirmed. Also the proposed method was applied to Q(k)+ Q" (k) —noHn (=7 )QKQ" (k) > 0 (61)
the _torque control of a flexible beam in contact. vv_|th the exterr_@l]e condition ofA¥ < 0 can be guaranteed.

environment. Even though the dynamic characteristics of the ﬂex'bleNext, we derive the condition that the learning ratsatisfies (61).
beam were largely varied, the precise control was realized in tbf%ing the matrix norm, (61) becomes

experiment. The comparison of the experimental results under the ,

proposed method and other neural adaptive control methods was done [|Q(k) + Q" (k)llce > nollH.(>~)Q(E)Q" (k)| s (62)
in order to show the distinctive feature of the proposed method. .

In order to improve the performance of the controlled plant usirBef'n'ngQ
the neural network, this paper have concentrated on the control 1QE) + Q" (k)| = QK)o + [|Q" (k)|
structure of the controlled plant. The other way to improve the control —201Q(k)| (63)
performance is to revise the neural network model itself. In the e
future, we plan to improve the learning speed of the neural networknally, (62) can be represented as
and extend the proposed method to a general nonlinear plant and a

(k) to be a positive semi-definite matrix yields [43]

multivariable system. 2(1Q(k) oo > no¢{[|Q(E) |0} (64)
that is
APPENDIX 2
. . . . — e > >0 (65)
Near the optimal set of the weights, the updating weight rules (29), oC||Q(K)||
(30) with the sigmoid function can be approximated as follows:
where
- \ - > ./71 o 7( INTT Al s
V(k+1)x=V(k)—ne(k)H,(z" )21 (k)W (k)U ~n (k) C= sup |Hn(e™*T). (66)
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