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AbstractÐThe coterie join operation proposed by Neilsen and Mizuno produces, from a k-coterie and a coterie, a new k-coterie. For

the coterie join operation, this paper first shows 1) a necessary and sufficient condition to produce a nondominated k-coterie (more

accurately, a nondominated k-semicoterie satisfying Nonintersection Property) and 2) a sufficient condition to produce a k-coterie with

higher availability. By recursively applying the coterie join operation in such a way that the above conditions hold, we define

nondominated k-coteries, called tree structured k-coteries, the availabilities of which are thus expected to be very high. This paper then

proposes a new k-mutual exclusion algorithm that effectively uses a tree structured k-coterie, by extending Agrawal and El Abbadi's

tree algorithm. The number of messages necessary for k processes obeying the algorithm to simultaneously enter the critical section is

approximately bounded by k log�n=k� in the best case, where n is the number of processes in the system.

Index TermsÐAvailability, distributed systems, k-coteries, k-semicoteries, k-mutual exclusion problem, message complexity,

nondominatedness, quorums.
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1 INTRODUCTION

THE distributed k-mutual exclusion problem is the
problem of controlling a distributed system in such a

way that at most k processes in the system are granted to be
simultaneously in the critical section. The 1-mutual
exclusion problem is known as the distributed mutual
exclusion problem. By definition, a distributed k0-mutual
exclusion algorithm also works as a distributed k-mutual
exclusion algorithm for all k � k0 and, hence, any mutual
exclusion algorithm can be used as a k-mutual exclusion
algorithm for all k � 1 at the risk of decreasing of the level
of concurrency and consequently system performance. A
main concern in the design of a k-mutual exclusion
algorithm is to allow k processes to be in the critical section
without blocking processes that are not requesting the
critical section.

Several k-mutual exclusion algorithms have been
proposed from this viewpoint (e.g., [11], [14], [21], [22]).
In particular, algorithm k-MUTEX proposed by Kakugawa
et al. [14], which uses a k-coterie under the set of processes
in the system, is superior to others in its strong descriptive
power: A variety of different algorithms, ranging from
centralized to fully distributed, are describable using this
algorithm by choosing an appropriate k-coterie [14].

A k-coterie C under a finite set U is a set of nonempty
subsets (called quorums) Q � U of U such that all of the
following three conditions hold [8], [14].

1. Minimality. For all P;Q 2 C; P 6� Q.
2. Intersection Property. There are k pairwise disjoint

quorums in C, but no more than k.
3. Nonintersection Property. For any set D of

h�< k� pairwise disjoint quorums in C, there is a
set D0 of k pairwise disjoint quorums in C such
that D0 � D.

A set C of quorums that holds Minimality and Intersec-
tion Properties is called k-semicoterie [11].1 By definition, any
1-semicoterie is a 1-coterie and a 1-coterie (and, hence, a
1-semicoterie) is known as a coterie [10].

A k-coterie (respectively, k-semicoterie) C is said to be
nondominated (ND, for short) if C is not dominated by any
k-coterie (respectively, k-semicoterie) D, where D dominates
C, if C 6� D and, for any quorum P 2 C, there exists a
quorum Q 2 D such that Q � P . It is worth noting the
following: Since a k-coterie is a k-semicoterie, any ND k-
semicoterie that satisfies Nonintersection Property is an
ND k-coterie. However, an ND k-coterie C may not be an
ND k-semicoterie since there may be a k-semicoterie D
dominating C but not satisfying Nonintersection Property.

Algorithm k-MUTEX uses a k-coterie under the set of
processes. A quorum is then a set of processes. Since a
process wishing to enter the critical section can actually
enter it only when the process has locked a quorum, i.e.,
locked all processes in a quorum of the k-coterie,
Intersection Property guarantees k-mutual exclusion, i.e.,
at most k processes can simultaneously be in the critical
section. However, it does not imply that a process can
always find an unlocked quorum when less than k quorums
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1. The term k-coterie was defined in several different ways. Fujita et al.
first defined the k-coterie [8]. We adopt this definition. The k-coterie in [11]
corresponds to the k-semicoterie in this paper. In [13], Jiang and Huang
adopt our definition of k-coterie. In [19], Neilson and Mizuno do not
prepare different terms, but, in [20], they call a k-coterie (in this paper) a
proper k-coterie and a k-semicoterie a k-coterie.
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have been locked; whether or not there is such an unlocked

quorum depends on which quorums have been locked. The

Nonintersection Property guarantees its existence. Finally,

an ND k-coterie C is definitely superior to any one it

dominates, in terms of availability, i.e., the survivability

from process and/or link fail-stop failures. Hence, an

efficient method to construct a variety of ND k-coteries is

sought.
In spite of the demand, relatively little is known about

constructing k-coteries (and k-semicoteries) [2], [8], [13],

[16], [19], although there are many methods for constructing

coteries (see, e.g., [1], [4], [5], [9], [10], [12], [15], [17], [18]).

Fujita et al. gave some primitive methods Div and Maj.

They also proposed a recursive method based on the grid

coterie, but it may create dominated k-coteries [8].

Agrawal et al. recently discussed generalizations of Div

and Maj [2].
Neilsen and Mizuno [18] proposed an operation, called

the coterie join operation, that produces a coterie D by joining

two coteries, C1 and C2, and showed that D is ND if and only

if both of C1 and C2 are ND. Jiang and Huang [13] then

observed that, given a k-coterie C1 and a coterie C2, the

operation produces a new k-coterie D and showed a

sufficient condition for product D to be ND. This paper

constructs, by using the coterie join operation as a primitive

tool, a method for producing a variety of ND k-coteries.
We first show a necessary and sufficient condition for the

coterie join operation to produce an ND k-semicoterie with

Nonintersection Property. This condition is also sufficient to

produce an ND k-coterie since every ND k-semicoterie with

Nonintersection Property is an ND k-coterie.
We next show a sufficient condition for the coterie join

operation to produce an ND k-coterie whose availability is

higher than input. By repeatedly applying the coterie join

operation in such a way that the sufficiency holds, we

define ND k-coteries, called tree structured k-coteries, whose

availabilities are expected to be very high.
We finally propose a new k-mutual exclusion algorithm

that effectively uses a tree structured k-coterie. A tree

structured k-coterie is regarded as an extension of a tree

coterie [1]. Agrawal and El Abbadi's mutual exclusion

algorithm that uses a tree coterie achieves a low message

complexity [1], [6], [23]. The number of messages necessary

for a process to enter the critical section is bounded by logn

in the best case, where n is the number of processes in the

system. Our algorithm is an extension of theirs and the

number of messages necessary for k processes obeying the

algorithm to simultaneously enter the critical section is

approximately bounded by k log�n=k� in the best case.
The rest of this paper is organized as follows: Section 2

gives a necessary and sufficient condition for the coterie join

operation to produce an ND k-semicoterie with Noninter-

section Property and discusses the availability. We intro-

duce tree structured k-coteries and show their properties in

Section 3. The new k-mutual exclusion algorithm using a

tree structured k-coterie is described in Section 4. Section 5

concludes the paper by giving some remarks.

2 THE COTERIE JOIN OPERATION

Following the definition of the coterie join operation, we
first characterize when it produces an ND k-semicoterie
with Nonintersection Property and then investigate
conditions for the operation to produce a k-coterie with
high availability. The coterie join operation defined below
was first introduced by Neilsen and Mizuno to construct a
coterie [18]. Then, Jiang and Huang observed that it
generally produces a k-coterie, given a k-coterie and a
coterie [13]. For a k-semicoterie C, let [C denote [Q2CQ.

Definition 1. Let U be a finite set, C be a k-semicoterie under U ,
D be a coterie under U , and u be an element in [C. Assume
that [C \ [D � fug holds. Then, the coterie join operation
for inputs C and D produces a quorum set J u�C;D� defined by

J u�C;D� �fR j R � �P ÿ fug� [Q;P 2 C; Q 2 D and u 2 Pg
[ fR j R � P; P 2 C and u 62 Pg:

Example 1. Let U � f1; 2; 3; 4; 5; 6g. Consider a 2-semicoterie

C � ff1; 2g; f3; 4g; f1; 3g; f2; 4gg
and a coterie D � ff4; 5g; f4; 6gg under U . Observe that
[C \ [D � f4g holds. Then, J 4�C;D� is defined and

J 4�C;D� � ff1; 2g; f1; 3g; f2; 4; 5g; f2; 4; 6g; f3; 4; 5g; f3; 4; 6gg:
Observe that J 4�C;D� is a 2-semicoterie.

As mentioned, Jiang and Huang [13, Theorem 9]
showed that if C is a k-coterie and D is a coterie, then
J u�C;D� is a k-coterie, the proof of which implies the
following theorem.

Theorem 1 [13]. Let U be a finite set and assume that, for a
k-semicoterie C under U , a coterie D under U , and an element
u 2 U , the coterie join operation J u�C;D� is defined. Then,
J u�C;D� is a k-semicoterie.

2.1 Constructing ND k-Semicoteries with
Nonintersection Property

Let us start with the following theorem:

Theorem 2 [19], [20]. Let C be a k-semicoterie under a finite
set U . C is dominated if and only if there exists a set S � U
such that

1. Q 6� S for any Q 2 C and
2. For any k pairwise disjoint quorums

Q1; Q2; . . . ; Qk 2 C;
there exists an i such that Qi \ S 6� ;.

Let U , C, D, and u be a finite set, a k-semicoterie under U ,
a coterie under U , and an element in [C, respectively. In the
rest of this section, we assume that J u�C;D� is defined, i.e.,
[C \ [D � fug. Then, J u�C;D� is a k-semicoterie by
Theorem 1.

This section shows the following theorem, the only if
part of which is due to Jiang and Huang [13, Theorem 10].
Thus, we only prove the ªifº part.

Theorem 3. Both of C and D are ND if and only if J u�C;D�
is ND.
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Proof of the If part. We show that if either C or D is
dominated, so is J u�C;D�.

1. Assume first that C is dominated. By Theorem 2,
there exists an SC � [C such that:

1.1. P 6� SC for any P 2 C and
1.2. For any k pairwise disjoint quorums

P1; P2; . . . ; Pk 2 C, there exists an i such that
Pi \ SC 6� ;.

There are two cases to consider. Suppose first
that u 62 SC. For any R 2 J u�C;D�, we first show
that R 6� SC. Without loss of generality, we may
assume that R 62 C by the definition of SC. Then,
R � �P ÿ fug� [Q for some P 2 C and Q 2 D.
Since u 62 SC, Q \ SC � ; and hence R 6� SC.

Arbitrarily choose k pairwise disjoint quorums
R1; R2; . . . ; Rk 2 J u�C;D�. We next show that
there is an i such that Ri \ SC 6� ;. For any
1 � i � k, let Pi 2 C be the quorum from which
Ri is constructed, i.e., either u 62 Pi and Ri � Pi or
u 2 Pi and Ri � �Pi ÿ fug� [Qi for some Qi 2 D.

If Pi � Ri for all 1 � i � k, then Ri \ SC 6� ; for
some 1 � i � k. Observe that Pi 6� Ri implies
Qi � Ri. Hence, there is at most one i in 1 � i � k
such that Pi 6� Ri since D is a coterie. Suppose
that there is exactly one i such that Pi 6� Ri. For
any j 6� i, Ri \Rj � ; implies Pi \ Pj � ;, since
u =2 Pj and [C \ [D � fug. That is, Pis are
pairwisely disjoint. Hence, by the definition of
SC, it follows that Ri \ SC 6� ; for some 1 � i � k.
Thus, by Theorem 2, J u�C;D� is dominated.

Suppose next that u 2 SC. Let

S� � �SC ÿ fug� [Q
for some Q 2 D. For any R 2 J u�C;D�, we first
show that R 6� S�. Without loss of generality, we
may assume that R 62 C. Then, R � �P ÿ fug� [Q
for some P 2 C and Q 2 D. Since P 6� SC, there
exists v 2 P such that v 6� u and v =2 SC and, hence,
R 6� S� follows.

Arbitrarily choose k pairwise disjoint quorums
R1; R2; . . . ; Rk 2 J u�C;D�. We next show that
there is an i such that Ri \ S� 6� ;. For any
1 � i � k, let Pi 2 C be the quorum from which
Ri is constructed, i.e., either u 62 Pi and Ri � Pi or
u 2 Pi and Ri � �Pi ÿ fug� [Qi for some Qi 2 D.

If Pi � Ri for all 1 � i � k, then Ri \ SC 6� ; for
some 1 � i � k. Since u 62 Ri for any 1 � i � k, it
follows that Ri \ S� 6� ; for some 1 � i � k.
Otherwise, if there is an i in 1 � i � k such that
Pi 6� Ri, then it follows that Ri \ S� 6� ; since D is
a coterie. Thus, J u�C;D� is dominated.

2. Assume that D is dominated. By Theorem 2, there
exists SD � [D such that Q 6� SD and Q \ SD 6� ;
hold for all Q 2 D.

Let S� � �P � ÿ fug� [ SD for some P � 2 C such
that u 2 P �. For any R 2 J u�C;D�, we first show
that R 6� S�. Without loss of generality, we can
assume that R \ [D 6� ;, i.e., there exist P 2 C and

Q 2 D such that R � �P ÿ fug� [Q. Since Q 6� SD,
R 6� S�.

Arbitrarily choose k pairwise disjoint quorums
R1; R2; . . . ; Rk 2 J u�C;D�. We next show that
there is an i such that Ri \ S� 6� ;. For any
1 � i � k, let Pi 2 C be the quorum from which
Ri is constructed, i.e., either u 62 Pi and Ri � Pi or
u 2 Pi and Ri � �Pi ÿ fug� [Qi for some Qi 2 D.
If Pi � Ri for all 1 � i � k, by the Intersection
Property of C, P � \ Pi 6� ; for some 1 � i � k.
Otherwise, if there is an i in 1 � i � k such that
Pi 6� Ri, then Qi \ SD 6� ;. Thus, by Theorem 2,
J u�C;D� is dominated. tu

The following theorem characterizes when k-coteries are
produced by the coterie join operation. Again the only if
part is due to Jiang and Huang [13, Theorem 9]. We
therefore concentrate on the ªifº part.

Theorem 4. C has Nonintersection Property if and only if
J u�C;D� has Nonintersection Property.

Proof of the If part. Assume that Nonintersection Property
does not hold for C and show that Nonintersection
Property does not hold for J u�C;D�, either. By definition,
there are h (1 � h < k) pairwise disjoint quorums
P1; P2; . . . ; Ph 2 C such that, for any

P 2 C ÿ fP1; P2; . . . ; Phg;
P \ Pi 6� ; holds for some 1 � i � h.

If u 62 Pi for all 1 � i � h, all Pis are quorums in
J u�C;D�. We show that there is no quorum

R 2 J u�C;D� ÿ fP1; P2; . . . ; Phg
such that R \ Pi � ; for all 1 � i � h. Arbitrarily select
R 2 J u�C;D� ÿ fP1; P2; . . . ; Phg. If R 2 C, there is an i
such that R \ Pi 6� ; by the assumption. If R 62 C, then
R � �P ÿ fug� [Q for some P 2 C and Q 2 D. Since
u =2Pi for all 1 � i � h, there is an i such that

��P ÿ fug� [Q� \ Pi 6� ;:
We may assume that u 2 Pi for some 1 � i � h. Since

Pis are pairwise disjoint, no two Pis contain u. Without
loss of generality, we assume that u 62 Pi for all

1 � i � hÿ 1

and that u 2 Ph. Let Ri � Pi for 1 � i � hÿ 1 and

Rh � �Ph ÿ fug� [Qh

for some Qh 2 D. Then, Ris (1 � i � h) are pairwise
disjoint and are all in J u�C;D�. We show that there is no
quorum

R 2 J u�C;D� ÿ fR1; R2; . . . ; Rhg
such that R \Ri � ; for all 1 � i � h. Arbitrarily select

R 2 J u�C;D� ÿ fR1; R2; . . . ; Rhg:
If R � �P ÿ fug� [Q for some P 2 C and Q 2 D, then
R \Rh 6� ; because D is a coterie. If R � P for some
P 2 C such that u 62 P , thenR \Ri 6� ; for some 1 � i � h
since P \ �Pi ÿ fug� 6� ; for some 1 � i � h. tu
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Corollary 1. 1) k-semicoterie C is ND and satisfies Non-

intersection Property and 2) (1-semi)coterie D is ND if and

only if k-semicoterie J u�C;D� is ND and satisfies Non-

intersection Property.

We would like to make a remark. As mentioned,

Jiang and Huang showed that if both k-coterie C and

coterie D are ND, then so is k-coterie J u�C;D�. However, the

correctness of the other direction is open. Note that we

cannot apply Corollary 1 to this end because of the differece

between ND k-semicoteries and ND k-coteries mentioned in

Section 1.

2.2 Availability

Let U be the set of processes in a distributed system and

assume that every pair of processes has a distinct bidirec-

tional communication link between them. Given a function

g : U ! �0; 1� for specifying the probability g�v� that a

process v 2 U is operational, the availability Ag�C� of a

k-coterie C under U is defined by

Ag�C� �
X

S2Max�U;C�
pg�U; S�;

where

Max�U; C� � fS � U j P � S for some P 2 Cg;
and pg�U; S� is the probability that exactly the processes in S

are operational, i.e.,

pg�U; S� � �v2Sg�v��v2UÿS�1ÿ g�v��:
The availability of a k-coterie C is the probability that

there is a quorum in C such that all processes in the

quorum are operational. Thus, it is the probability that

there exists a process that can enter the critical section

when C is used in algorithm k-MUTEX, provided that the

process operating probability is given by g and the

communication links never fail.
Let g be any operating probability function of U . Define

an operating probability function g0 of U from g by

g0�u� � Ag�D� and g0�v� � g�v� for all v 2 U ÿ fug. We first

introduce the following lemma whose proof, which is

straightforward but lengthy, is given in the Appendix.

Lemma 1.

Ag�J u�C;D�� � Ag0 �C�:

Proof. See Appendix. tu

The following theorem states a sufficient condition for

the coterie join operation to produce a k-coterie without

decreasing the availability. An intuitive idea behind the

proof is that if we increase the reliability of a process, then

the availability of the k-coterie will not decrease.

Theorem 5. If Ag�D� � g�u�, then Ag�J u�C;D�� � Ag�C�.
Proof. Assume that Ag�D� � g�u�. By definition,

Ag�C� �
X

S2Max�[C;C�
pg�[C; S�

�
X

S2Max�[C;C�;u2S
pg�[C; S� �

X
S2Max�[C;C�;u62S

pg�[C; S�

� g�u�
X

S2Max�[C;C�;u2S
pg�[C ÿ fug; S ÿ fug�

� �1ÿ g�u��
X

S2Max�[C;C�;u62S
pg�[C ÿ fug; S�:

On the other hand, by Lemma 1,

AgJ u�C;D� �Ag0 �C�
�Ag�D�

X
S2Max�[C;C�;u2S

pg�[C ÿ fug; S ÿ fug�

� �1ÿAg�D��X
S2Max�[C;C�;u62S

pg�[C ÿ fug; S�:

Since g�u� � Ag�D�, clearlyX
S2Max�[C;C�;u2S

pg�[C ÿ fug; S ÿ fug� �X
S2Max�[C;C�;u 62S

pg�[C ÿ fug; S�

implies Ag�C� � AgJ u�C;D�.
To show this inequality, it suffices to observe

the following: Let F � fS 2Max�[C; C� j u 2 Sg and
F0 � fS 2Max�[C; C� j u 62 Sg.

1. If S 2 F0, then S [ fug 2 F .
2. If S 2 F0, then �S [ fug� ÿ fug � S. tu

Suppose that 0 < g�v� < 1 for any v 2 U . Then,X
S2Max�[C;C�;u2S

pg�[C ÿ fug; S ÿ fug� > 0

and X
S2Max�[C;C�;u62S

pg�[C ÿ fug; S� > 0:

Hence, we have the following corollary:

Corollary 2. Suppose that 0 < g�v� < 1 for any v 2 U . Then,

Ag�J u�C;D�� > Ag�C�, if Ag�D� > g�u�.

The problem of constructing a k-coterie with higher

availability is now reduced to the problem of searching for a

coterie D such that Ag�D� > g�u� holds. Although this

search looks to be difficult in general, it is tractable if we

restrict g to be a constant function.
A coterie C � ffugg for some u 2 U is called a singleton

coterie under U . For an odd n � jU j, the majority coterie is

defined by C � fQ � U j jQj � dn=2eg. It is well known

that the ND coteries that have the highest availability are

1) the majority coterie for g�v� � g > 0:5 [3] or 2) a

singleton coterie for g�v� � g < 0:5 [7], which implies that

the ND coteries that have the lowest availability are 1) a

singleton coterie for g�v� � g > 0:5 or 2) the majority

coterie for g�v� � g < 0:5. All other ND coteries are placed

between them.
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Since the availability of a singleton coterie ffugg is
g�u� � g, we have the following corollary:

Corollary 3. Suppose that g�v� � g is a constant function such
that 1 > g > 0:5. Then, Ag�J u�C;D�� > Ag�C� if D is an
ND coterie and D is not a singleton coterie.

3 TREE STRUCTURED k-COTERIES

Given a sequence of ND coteries D0;D1; . . . ;D`ÿ1, starting
from an ND k-coterie C0, we can construct a sequence of
ND k-coteries C1; C2; . . . ; C` by applying the coterie join
operation to Ci and a coterie Di to construct Ci�1. Corollary 3
guarantees that for any 0 � i � `ÿ 1, Ag�Ci� < Ag�Ci�1�
holds if g is a constant function greater than 0:5 and Dis
are not singleton coteries. This section discusses k-coteries
constructed in this way.

3.1 Vote Assignable k-Semicoteries

Let D be a set of nonempty subsets of U . By Min�D� we
denote a subset of D constructed from D by removing each
element if a proper subset of the element is in D.

Definition 2. To each element u 2 U , we assign a nonnegative
integer w�u� and call it the weight of u. A threshold � is an
integer satisfying 1 � � �W , where W �Pu2U w�u�. Given
a weight function w and a threshold �, the voting system
Vw;��U� under U is defined by

Vw;��U� �Min Q � U j
X
u2Q

w�u� � �
( ) !

:

A k-semicoterie C under U is said to be vote assignable if
there exists a weight function w and a threshold � such that
C � Vw;��U�.
The next theorem states a sufficient condition for a

voting system to be an ND k-semicoterie and is used to
prove the ND-ness of tree k-coteries.

Theorem 6. Let Vw;��U� be a voting system under U . For any
integer 1 � k � jUj, Vw;��U� is an ND k-semicoterie if
Vw;��U� satisfies both of the following two conditions:

1. �k� 1�� �W � 1 and
2. For any S � U , if

P
u2S w�u� � k�, then there exist

k pairwise disjoint quorums

Q1; Q2; . . . ; Qk 2 Vw;��U�
such that Q1 [Q2 [ . . . [Qk � S.

Proof. We first show that Vw;��U� is a k-semicoterie. Clearly,
Minimality holds by Definition 2.

As for Intersection Property, there are k pairwise
disjoint quorums in Vw;��U� by Condition 2 sinceX

u2U
w�u� �W � �k� 1��ÿ 1 � k�

by Condition 1. Assume that there are k� 1 pairwise
disjoint quorums Q1; Q2; . . . ; Qk�1 2 Vw;��U�. SinceX

u2Qi

w�u� � �W � 1�=�k� 1�

for 1 � i � k� 1 by Condition 1,

W �
X
u2U

w�u� �
X

1�i�k�1

X
u2Qi

w�u�

��k� 1���W � 1�=�k� 1�� �W � 1;

a contradiction.
Next, we show that Vw;��U� is ND. Suppose, otherwise,

that Vw;��U� is dominated. Then, by Theorem 2, there
exists an S � U such that 1) Q 6� S for any Q 2 Vw;��U�
and, 2) for any k pairwise disjoint quorums

Q1; Q2; . . . ; Qk 2 Vw;��U�;
there exists an i such that Qi \ S 6� ;. If

P
u2S w�u� � �,

then there is a quorum Q 2 Vw;��U� such that Q � S, a

contradiction. Hence,
P

u2S w�u� < �. Consider the

complement S of S (i.e., S � U ÿ S). Since it follows thatX
u2S

w�u� < �;X
u2S

w�u� > W ÿ �;

and, hence,
P

u2S w�u� � k�. Then, by Condition 2 of
Theorem 6, there exist k pairwise disjoint quorums

Q1; Q2; . . . ; Qk 2 Vw;��U�
such thatQi � S or, equivalently,Qi \ S � ; for 1 � i � k,
a contradiction. tu
Note that Condition 2 of Theorem 6 always holds for

k � 1. A sufficient condition for a vote assignable coterie
Vw;��U� to be ND is thus � � �W � 1�=2, which was obtained
in [10].

Example 2. Let U � f1; 2; 3; 4; 5g and k � 2. Consider the
voting system Vw;��U� under U , where w�i� � 1 for
1 � i � 5 and � � 2. Then,

Vw;��U� �ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f2; 3g;
f2; 4g; f2; 5g; f3; 4g; f3; 5g; f4; 5gg:

Since Vw;��U� satisfies both conditions of Theorem 6, it is
an ND 2-semicoterie.

Next, consider another voting system Vw0;�0 �U�, where
w0�1� � w0�2� � w0�3� � 2, w0�4� � w0�5� � 1, and �0 � 3.
Then,

Vw0;�0 �U� �ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f2; 3g;
f2; 4g; f2; 5g; f3; 4g; f3; 5gg:

Although Vw0;�0 �U� satisfies Condition 1 of Theorem 6, it
is not ND since Condition 2 does not hold for
S � f1; 2; 3g. In fact, Vw;��U� dominates Vw0;�0 �U�.

3.2 Basic Tree k-Coteries

We now define what we called a basic tree k-coterie and
associate a rooted tree of depth 2 with it. This rooted tree is
used to define general tree k-coteries in the next section and
is effectively used in the tree k-coterie based k-mutual
exclusion algorithm we will propose in the Section 4.

Definition 3. Given a positive integer k �1 � k � jUj�, let H
and r, respectively, be a subset of U such that jHj � km� 1
for some integer m �m � 2� and an element in H. A basic tree
k-coterie C (with respect to H and r) is defined by

HARADA AND YAMASHITA: COTERIE JOIN OPERATION AND TREE STRUCTURED K-COTERIES 869



C �fQ � H j frg \Q 6� ; and jQj � 2g
[ fQ � H j frg \Q � ; and jQj � mg:

The rooted tree, TC, associated with C has root r. The other
elements ti in H are children of r and form leaves of TC. The
depth of TC is, hence, 2 (see Fig. 1 for illustration).

Example 3. Let U � f1; 2; 3; 4; 5; 6; 7g. First, consider the

case k � 1 and m � 2. Hence, jHj � 3. Let us select

an H � f1; 2; 3g and an r � 1. Then, we have the basic

tree coterie (with respect to H and r)

C � ff1; 2g; f1; 3g; f2; 3gg;
that is, in essence, a majority coterie.

Next, consider the case k � 2 and m � 3. Hence,
jHj � 7. Let us select this time an H � f1; 2; 3; 4; 5; 6; 7g
and an r � 1. Then, we have the basic tree 2-coterie (with
respect to H and r)

D � ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f1; 6g; f1; 7g;
f2; 3; 4g; f2; 3; 5g; f2; 3; 6g; f2; 3; 7g; f2; 4; 5g;
f2; 4; 6g; f2; 4; 7g; f2; 5; 6g; f2; 5; 7g; f2; 6; 7g;
f3; 4; 5g; f3; 4; 6g; f3; 4; 7g; f3; 5; 6g; f3; 5; 7g;
f3; 6; 7g; f4; 5; 6g; f4; 5; 7g; f4; 6; 7g; f5; 6; 7gg:

Theorem 7. Any basic tree k-coterie defined above is indeed an
ND k-coterie.

Proof. Let C be a basic tree k-coterie with respect to H and r.

We first show that C is a vote assignable k-semicoterie

satisfying both conditions of Theorem 6.
Let jHj � km� 1. Define a weight function w by

w�r� � mÿ 1, w�u� � 1 for u 2 H ÿ frg, and w�u� � 0 for
u 2 U ÿH, where jHj � km� 1. Then, for threshold
� � m, it is obvious to observe that C � Vw;m�U�, i.e., C
is vote assignable.

Then, we show that C satisfies Conditions 1 and 2 of
Theorem 6. As for Condition 1,

W � �mÿ 1� � km � �k� 1�mÿ 1

since the number of leaves is km. To verify Condition 2,

consider any S � U such that
P

u2S w�u� � km. Suppose

first that r 62 S. Then, w�u� � 1 for all u 2 S. Since

jSj � km, there are k pairwise disjoint quorums in S,

each of which consists of m leaves. Suppose next that

r 2 S. Then, there are kmÿ �mÿ 1� � �kÿ 1�m� 1

leaves in S. Again there are k pairwise disjoint quorums
in S; one consists of the root and a leaf and kÿ 1 others
each consists ofm leaves. Hence, C is an ND k-semicoterie.

Finally, we show that Nonintersection Property
holds for C. Fix any h pairwise disjoint quorums
Q1; Q2; . . . ; Qh 2 C, where 1 � h < k. There are two cases
to consider. Suppose first that r 62 Qi for all 1 � i � h.
Since w�u� � 1 for any u 2 [hi�1Qi, j [hi�1 Qij � hm. Since
the number of leaves is km and h < k, there is a leaf t such
that t 2 H ÿ [hi�1Qi. Then, fr; tg 2 C and fr; tg \Qi � ; for
all 1 � i � h.

Suppose otherwise that r 2 Qi for some 1 � i � h.
Then, [hi�1Qi consists of r and hmÿm� 1 leaves, so
there are �kÿ h� 1�mÿ 1 leaves in H ÿ [hi�1Qi. Observe
that �kÿ h� 1�mÿ 1 > m since k > h and m > 2. Then,
a set Q � ft1; t2; . . . ; tmg of m leaves in H ÿ [hi�1Qi

satisfies Q 2 C and Q \Qi � ; for all 1 � i � h.
Finally, recall that an ND k-semicoterie with Non-

intersection Property is an ND k-coterie. tu
3.3 Tree k-Coteries

In the spirit we described at the beginning of Section 3, this
section constructs tree structured k-coteries from a basic
tree k-coterie C0 and a sequence of basic tree (1-)coterie Di.
Since k-semicoterie C0 and coteries Dis are ND and satisfy
Nonintersection Property, k-semicoterie C` is ND and the
satisfies Nonintersection Property, by Corollary 1. Further-
more, by Corollary 3, the availability of C` is higher than
that of C`ÿ1, provided that the operating probability
function g is a constant function greater than 0:5, since a
basic tree coterie is not a singleton coterie by definition.

In order for J u�C;D� to be defined, [C \ [D � fug must
be required. In the following construction, we further
restrict the selection of u. Our intention is to construct a
new message-efficient k-mutual algorithm that effectively
makes use of the structure of tree k-coteries at the expense
of the variety of tree k-coteries.

A tree k-coterie is recursively defined by using the coterie
join operation as follows: In the definition, we associate a
rooted tree T for each tree k-coterie J u�C;D�. This tree T

plays an important role in the tree k-coterie based k-mutual
exclusion algorithm.

1. Any basic tree k-coterie C is a tree k-coterie. The
rooted tree TC associated with C was already defined
in Section 3.2.

2. Let C and D, respectively, be a tree k-coterie and a
basic tree (1-)coterie and assume that TC and TD are
the rooted trees associated with them.

If [C \ [D � fug and u is a leaf of TC, then
J u�C;D� is a tree k-coterie. If [C \ [D � ;, then
J u�C;D� is a tree k-coterie for any leaf u of TC. The
associated rooted tree T is constructed from TC by
replacing leaf u with tree TD, i.e., we remove leaf u
and place the root of TD instead of u.2 All leaves of C,
except u, and all leaves of D are now leaves of
J u�C;D�.

3. No other quorum sets are tree k-coteries.
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2. The root of TD can be u when [C \ [D � fug.

Fig. 1. An illustration of the rooted tree Tc associated with a basic

tree k-coterie C.



Example 4. Consider the following three coteries:

C0 �ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f2; 3g; f2; 4g; f2; 5g; f3; 4g;
f3; 5g; f4; 5gg;

D0 �ff2; 6g; f2; 7g; f6; 7gg;
D1 �ff3; 8g; f3; 9g; f8; 9gg:
C0 is a basic tree 2-coterie with root r � 1 and m � 2. D0

and D1 are basic tree coteries with roots 2 and 3,

respectively. Since [C0 \ [D0 � f2g and 2 is a leaf of C0,

C1 defined by

C1 �J 2�C0;D0�
�ff1; 3g; f1; 4g; f1; 5g; f3; 4g; f3; 5g; f4; 5g; f1; 2; 6g;
f1; 2; 7g; f1; 6; 7g; f2; 3; 6g; f2; 3; 7g; f2; 4; 6g; f2; 4; 7g;
f2; 5; 6g; f2; 5; 7g; f3; 6; 7g; f4; 6; 7g; f5; 6; 7gg;

is a tree 2-coterie. Since [C1 \ [D1 � f3g and 3 is a leaf of

C1, C2 defined by

C2 �J 3�C1;D1�
�ff1; 4g; f1; 5g; f4; 5g; f1; 2; 6g; f1; 2; 7g; f1; 3; 8g; f1; 3; 9g;
f1; 6; 7g; f1; 8; 9g; f2; 4; 6g; f2; 4; 7g; f2; 5; 6g; f2; 5; 7g;
f3; 4; 8g; f3; 4; 9g; f3; 5; 8g; f3; 5; 9g; f4; 6; 7g; f4; 8; 9g;
f5; 6; 7g; f5; 8; 9g; f2; 3; 6; 8g; f2; 3; 6; 9g; f2; 3; 7; 8g;
f2; 3; 7; 9g; f2; 6; 8; 9g; f2; 7; 8; 9g; f3; 6; 7; 8g; f3; 6; 7; 9g;
f6; 7; 8; 9gg;

is also a tree 2-coterie.

Fig. 2 illustrates the rooted tree associated with C2.
As observed, we have the following theorem:

Theorem 8. Every tree k-coterie is an ND k-coterie.

4 TREE ALGORITHM FOR k-MUTUAL EXCLUSION

Agrawal and El Abbadi proposed a mutual exclusion

algorithm called the tree algorithm [1], which is one of the

most well-known coterie-based algorithms. In this section,

we extend their mutual exclusion algorithm and propose a

new k-mutual exclusion algorithm that effectively makes

use of the rooted tree associated with a tree k-coterie. We

call the algorithm k-TREE.

4.1 Algorithm k-TREE

Let U be the set of processes forming the distributed system
under consideration. Suppose that a tree k-coterie C under U
is used in k-TREE, where C�� C`� is constructed from a basic
tree k-coterie C0 and a sequence of basic tree 1-coterie
D0;D1; . . . ;D`ÿ1 and m � m0 is used to construct C0. Let T
and r be the rooted tree associated with C and its root,
respectively. Note that, in real applications, T , not C, is
usually given since the description length of C can be
exponential in that of T .

Algorithm k-TREE works as follows: When a process u
wishes to enter the critical section, u calls the following
recursive function GetQuorum�r�, which is evaluated
among a set of processes. If GetQuorum�r� returns a set Q
of processes, then Q 2 C and every process in Q has been
locked for u; i.e., u can enter the critical section. When u

leaves the critical section, it unlocks all processes in Q. If
GetQuorum�r� returns ªfail,º then, currently there is no
quorum in C that is available for u.

Function GetQuorum(p: process): Quorum

1. Case p is root r. If r is unlocked, then lock itself and
returnfrg [Q�t�asGetQuorum�r� if a child t returns a
set Q�t� as GetQuorum�t�. If another child x�6� t� also
returns a set Q�x� as GetQuorum�x�, then unlock all
processes in Q�x�. If all children return ªfail,º then
return ªfailºas GetQuorum�r�.

If r is locked, then return [m0

i�1Q�ti� as

GetQuorum�r�
if m0 children ti; �1 � i � m0� return a set Q�ti� as
GetQuorum�ti�. If another child x�6� ti; �1 � i � m0��
also returns a setQ�x� asGetQuorum�x�, then unlock
all processes inQ�x�. If less thanm0 children ti return a
set Q�ti� as GetQuorum�ti�, then return ªfailº as
GetQuorum�r� and unlock all processes in Q�ti�s.

2. Case p is a leaf. If p is unlocked, then lock itself and
return fpg as GetQuorum�p�; otherwise, return ªfailº
as GetQuorum�p�.

3. Case p is an intermediate vertex. If p is unlocked, then
lock itself and return fpg [Q�t� asGetQuorum�p� if a
child t returns a set Q�t� as GetQuorum�t�. If another
child x�6� t� also returns a set Q�x� as

GetQuorum�x�;
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then unlock all processes in Q�x�. If all children
return ªfail,º then return ªfailº as GetQuorum�p�.

If p is locked, then return [di�1Q�ti� as
GetQuorum�p� if every child ti; �1 � i � d� of p
returns a set Q�ti� as GetQuorum�ti�, where d is the
number of the children. If not all children ti return a
set Q�ti� as GetQuorum�ti�, then return ªfailº as
GetQuorum�p� and unlock all processes in Q�ti�s.

The procedures for the root and an intermediate vertex
are quite similar; when p is locked, the former needs only
m0 (out of km0) successful children, while the latter needs
all children to be successful.

Depending on which processes are now being locked,
GetQuorum�r� may return a different quorum. Let Q�T � be
the set of quorums that GetQuorum�r� function can
produce for T .

Theorem 9. Q�T � � C.
Proof. The proof is by induction on the order that C � C` is

constructed. Since the base case, i.e., the case C � C0, is
obvious, by the definitions of basic tree k-coterie and
function GetQuorum, we concentrate on the induction
step.

Let Ti be the rooted graph associated with Ci for
any 0 � i � `. The induction hypothesis guarantees
Q�T`ÿ1� � C`ÿ1. By assumption, there is a leafuofT`ÿ1 such
that 1) [ C`ÿ1 \ [D`ÿ1 � fug and 2) C` � J u�C`ÿ1;D`ÿ1�.
Let x be the root of the tree associated with D`ÿ1. Then, T`
is constructed from T`ÿ1 by replacing u with x (and the
whole rooted tree). Note that x can be u.

By the definition of k-TREE, P 2 Q�T`ÿ1� and u 2 P if
and only if �P ÿ fug� [Q 2 Q�T`� for any Q 2 D`ÿ1 since
[C`ÿ1 \ [ D`ÿ1 � fug and, for any tree k-coterie, each
element in U appears at most once as a vertex in the
associated rooted tree. On the other hand, P 2 Q�T`ÿ1�
and u 62 P if and only if P 2 Q�T`� \ Q�T`ÿ1�.

Since Q�T`ÿ1� � C`ÿ1,

C` � J u�C`ÿ1;D`ÿ1� � Q�T`�:
tu

4.2 Message Complexity

In order to demonstrate the effectiveness of Algorithm

k-TREE, let us estimate its message complexity, i.e., the

number of messages necessary to exchange for a process to

enter the critical section. Observe that messages are

consumed when 1) a process p calls GetQuorum�t� for

some of its children t, 2) t returns its value to p, and 3) p

unlocks some of locked processes. A basic assumption we

make regarding k-TREE is that p calls GetQuorum�t� one by

one, i.e., p always calls GetQuorum�t0� for another child t0

after receiving the value of GetQuorum�t� from a child t.

Note that this prohibition against concurrent search for

unlocked processes is a well-known practical strategy for

avoiding deadlocks and is called the ordered resource

policy. For eliminating meaningless message exchanges, we

can further assume that if a child t of r receives

GetQuorum�t� when it is locked, it immediately returns fail.

Consider an execution on GetQuorum�r� on a rooted tree

T � �U;E� (associated with a tree k-coterie C under U) and

let S � �V ;A� be the subgraph of T consisting of vertices

and edges on which messages are flowed. Suppose that

GetQuorum�r� returns a quorum Q 2 C. Clearly, Q � V
and the message complexity is bounded by 3jAj. If

GetQuorum�r� returns fail, the number of messages that are

exchanged in vain is bounded by 2jAj. For our purpose, it

suffices to estimate jAj.
The size of S depends both of T and the set of currently

locked processes. As for T , an extremal case is a tree of

depth 2, i.e., C is a basic tree k-coterie. Then, jAj is terribly

large and is 
�n=k� even if root r alone is locked, although

jAj � 1 if no processes are locked. Another extremal case is

a balanced tree such that root r has k� 1 children and every

internal vertex, except r, has two children. In this case, jAj is
bounded by O�log�n=k�� for the case in which r alone is

locked, whereas jAj � 
�log�n=k��, even if no processes are

locked. For making the message complexity in the worst

case better, we suggest the balanced tree as T and assume it

in the following analysis.

We now estimate the total number Nk of messages

necessary to exchange for k processes to enter the critical

section. Let ni�0 � i � kÿ 1� be the size of S, provided that

i processes are already in the critical section. Obviously,

n0 � n1 � O�log�n=k��. Observe that ni � O�i� log�n=k��
since the first i children of r are locked and the search for

the i� 1th child succeeds in O�log�n=k�� messages. Then,

we have Nk � O�k�k� log�n=k��.
However, Nk is actually reducible to O�k log�n=k��, since

r knows which of its children are currently unlocked and,

hence, we may be able to assume that r can instruct

currently unlocked child. Such a modification makes k-TREE

resemble a centralized algorithm. We would like to

emphasize the fact that k-TREE works even if r is down,

which is the point completely different from a centralized

algorithm, although more messages would be required to

enter the critical section than a centralized algorithm.

5 CONCLUSION

In this paper, we first considered the coterie join

operation that produces a new k-semicoterie from a

given k-semicoterie and a (1-semi)coterie. We character-

ized when ND k-semicoteries and/or k-semicoteries with

Nonintersection Property are produced by the operation

and discussed conditions when the operation increases the

availability. Based on those results, we next proposed a

method to produce a sequence of ND k-coteries called tree

k-coteries. Furthermore, we can guarantee that the sequence

is sorted in increasing order of the availability, assuming a

certain natural condition on the operating probability.

Finally, we proposed a new k-mutual exclusion algorithm

that effectively makes use of a tree k-coterie and briefly

discussed its message complexity, assuming that the

distributed system is reliable. However, we leave the

analysis for the unreliable case as an important future work.
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APPENDIX

PROOF OF LEMMA 1

By J we denote J u�C;D�. The availability of J with respect

to g is, by definition,

Ag�J � �
X

S2Max�U;J �
pg�U; S�

�
X

S2Max�U;J �\Max�U;D�
pg�U; S�

�
X

S2Max�U;J �ÿMax�U;D�
pg�U; S�:

�1�

For any S � U , let SD � S \ [D and SC � S ÿ SD. Clearly,

pg�U; S� � pg�[D; SD� � pg�U ÿ [D; SC�:
We first evaluate the first sum of the righthand side of

(1). Let C1 � fP ÿ fugjP 2 Cg. Then,

S 2Max�U;J � \Max�U;D�
if and only if SD 2Max�[D;D� and SC 2Max�U ÿ [D; C1�.
Hence, X

S2Max�U;J �\Max�U;D�
pg�U; S�

�
X

SD2Max�[D;D�
pg�[D; SD�

0@ 1A
X

SC2Max�Uÿ[D;C1�
pg�U ÿ [D; SC�

0@ 1A:
Since X

SD2Max�[D;D�
pg�[D; SD� �

X
SD2Max�U;D�

pg�U; SD�;X
SD2Max�[D;D�

pg�[D; SD� � Ag�D� � g0�u�

holds. On the other hand, since [C1 � [C ÿ fug,X
SC2Max�Uÿ[D;C1�

pg�U ÿ [D; SC�

�
X

SC2Max�[Cÿfug;C1�
pg�[C ÿ fug; SC�

�
X

SC2Max�[Cÿfug;C1�
pg0 �[C ÿ fug; SC�:

Hence, X
S2Max�U;J �\Max�U;D�

pg�U; S�

� g0�u�
X

SC2Max�[Cÿfug;C1�
pg0 �[C ÿ fug; SC�:

Next, we evaluate the second sum of the righthand side

of (1). By definition, S 2Max�U;J � ÿMax�U;D� if and

only if SD 62Max�[D;D� and SC 2Max�U ÿ [D; C2�, where

C2 � fP 2 Cju 62 Pg. Then,

X
S2Max�U;J �ÿMax�U;D�

pg�U; S�

�
X

SD 62Max�[D;D�
pg�[D; SD�

0@ 1A
X

SC2Max�Uÿ[D;C2�
pg�U ÿ [D; SC�

0@ 1A:
By definition,X

SD 62Max�[D;D�
pg�[D; SD� � 1ÿAg�D� � 1ÿ g0�u�:

Since [C2 � [C ÿ fug,X
SC2Max�Uÿ[D;C2�

pg�U ÿ [D; SC�

�
X

SC2Max�[Cÿfug;C2�
pg0 �[C ÿ fug; SC�:

Hence, X
S2Max�U;J �ÿMax�U;D�

pg�U; S�

� �1ÿ g0�u��
X

SC2Max�[Cÿfug;C2�
pg0 �[C ÿ fug; SC�:

Finally, we evaluate Ag0 �C�.

Ag0 �C� �
X

S2Max�U;C�
pg0 �U; S�

�
X

S2Max�U;C�;u2S
pg0 �U; S� �

X
S2Max�U;C�;u 62S

pg0 �U; S�

� g0�u�
X

S2Max�U;C�;u2S
pg0 �U ÿ fug; S ÿ fug�

� �1ÿ g0�u��
X

S2Max�U;C�;u62S
pg0 �U ÿ fug; S�

� g0�u�
X

S2Max�[C;C�;u2S
pg0 �[C ÿ fug; S ÿ fug�

� �1ÿ g0�u��
X

S2Max�[C;C�;u62S
pg0 �[C ÿ fug; S�:

The proof completes if bothX
S2Max�[C;C�;u2S

pg0 �[C ÿ fug; S ÿ fug�

�
X

S2Max�[Cÿfug;C1�
pg0 �[C ÿ fug; S�

and X
S2Max�[C;C�;u62S

pg0 �[C ÿ fug; S�

�
X

S2Max�[Cÿfug;C2�
pg0 �[C ÿ fug; S�

hold. Clearly, S 2 fX�2Max�[C; C��ju 2 Xg if and only if

S � T [ fug for some T 2Max�[C ÿ fug; C1� and S � T
for some T 2 fX�2Max�[C; C��ju 62 Xg if and only if

S 2Max�[C ÿ fug; C2�. Thus,
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X
S2Max�[C;C�;u2S

pg0 �[C ÿ fug; S ÿ fug�

�
X

S2Max�[Cÿfug;C1�
pg0 �[C ÿ fug; S�

and X
S2Max�[C;C�;u 62S

pg0 �[C ÿ fug; S�

�
X

S2Max�[Cÿfug;C2�
pg0 �[C ÿ fug; S�

hold. tu
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