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Abstract—Network partition, which makes it impossible for some pairs of precesses to communicate with each other, is one of the

most serious network failures. Although the notion of k-coterie is introduced to design a k-mutual exclusion algorithm robust against

network failures, the number of processes allowed to simultaneously access the critical section may fatally decrease once network

partition occurs. This paper discusses how to construct a k-coterie such that the k-mutual exclusion algorithm adopting it is robust

against network 2-partition. To this end, we introduce the notion of complemental k-coterie, and show that complemental k-coteries

meet our purpose. We then give methods for constructing complemental k-coteries, and show a necessary and sufficient condition for

a k-coteries to be complemental.

Index Terms—Distributed systems, complemental, k-coteries, k-semicoteries, k-mutual exclusion problem, network 2-partition,

nondominatedness, quorums.
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1 INTRODUCTION

SUPPOSE that there is a distributed system whose processes
share a resource. In order to keep the access regulation

on the resource consistent, the processes are requested to
access the resource only in a specified program section
called critical section. Our concerns are protocols for entering
and leaving the critical section, which of course depend on
the access regulation. Many of the shared resources ask a
mutually exclusive access, in the sense that exactly one
process is granted to access at a time. Then, we encounter
the problem of designing protocols (for the critical section)
which guarantee that no more than one process is in the
critical section simultaneously. This problem is called the
mutual exclusion problem. If the resource is more generous so
that at most k processes are granted to access simulta-
neously, then the corresponding protocol design problem is
called the k-mutual exclusion problem (or the (k+1)-exclusion
problem) [6], [11], [15], [16].

A typical k-mutual exclusion algorithm, i.e., a pair of
entering and leaving protocols, uses an information
structure called a k-coterie. Let U be the set of all processes

in a distributed system. A k-semicoterie C under U is a set of
nonempty subsets Q of U satisfying the following two
conditions:

1. Minimality: For all P;Q 2 C; P 6� Q.
2. Intersection Property: There are k pairwise disjoint

quorums in C, but no more than k.

A member Q of a k-semicoterie C is referred to as a quorum.

A k-semicoterie C is called a k-coterie if it satisfies the
following condition [4], [11]:

3. Nonintersection Property: For any set D of h ð< kÞ
pairwise disjoint quorums in C, there is a set D0 of k
pairwise disjoint quorums in C such that D0 � D.

For example, C ¼ ff1; 2g; f3; 4g; f1; 3g; f2; 4gg is a 2-coterie
under U ¼ f1; 2; 3; 4g. Note that 1-semicoteries, which are
by definition 1-coteries, are known as coteries [5].

We would like to explain an outline of the k-mutual
exclusion algorithm that uses a k-coterie C.1 We prepare a
single token permissionv for each process v 2 U , and
initially place it in v.

1. A process u wishing to enter the critical section
selects a quorum P 2 C and requests permissionv to
each process v 2 P .

2. Upon receiving the request from u, each v sends
permissionv to u as soon as v has it.

3. Upon receiving permissionv from each process
v 2 P , u enters the critical section.

4. Upon leaving the critical section, u returns
permissionv to each process v 2 P .

An obvious but important observation is the following: If
a process u is in the critical section, then there is a quorum
P 2 C such that u possesses the tokens permissionv of all
processes v 2 P . Then, the number of processes who are
granted to enter the critical section is bounded by the
number of pairwise disjoint quorums in C, which is k by
Intersection Property. However, there might be a case in
which a choice of less than k quorums does not leave a
quorum that does not intersect with each of the quorums in
the choice, and only a small number of processes could
enjoy the privilege of entering the critical section. Non-
intersection Property guarantees that such cases never
happen.

The robustness against network failures is an advantage
of using the above k-mutual exclusion algorithm. However,
the extent of fault tolerance capability of the algorithm
primarily depends on the k-coterie that it adopts. Much
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1. This rough sketch of the algorithm does not include tricks to make the
algorithm starvation and deadlock free. See [11] for a full implementation.
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effort is hence devoted to construction of a large variety of

k-coteries and pursuit of the best k-coterie in terms of the

availability, i.e., the probability that the algorithm tolerates

network failures and grants a process the access right [1],

[3], [4], [6], [7], [9], [10], [12], [13].
Along this context, this paper investigates the robustness

of k-coteries against network 2-partition. Let C be a k-coterie

adopted in the algorithm, and suppose that the network is

partitioned into two groups S and S ð¼ U n SÞ, and that no

two processes u 2 S and v 2 S can communicate with each

other (but that communication inside each of the groups is

complete). Let tðSÞ (respectively, tðSÞ) be the maximum

number of pairwise disjoint quorums Q in C such that Q �
S (respectively, Q � S). Let �ðSÞ ¼ tðSÞ þ tðSÞ. Then, the

algorithm can grant at most �ðSÞ processes the right to enter

the critical section and, hence, � ¼ minS�U �ðSÞ is a natural

measure to evaluate the robustness of the algorithm against

network 2-partition. We say that a k-coterie is complemental

if � ¼ k, i.e., if tðSÞ þ tðSÞ ¼ k holds for any S � U . The

complementalness of k-semicoterie is defined in the same

way. That C is complemental is a necessary condition for the

algorithm to achieve k-mutual exclusion no matter how the

network is partitioned into two subnetworks. The objective

of this paper is to characterize complemental k-coteries.
A k-coterie (respectively, k-semicoterie) C is said to

dominate a k-coterie (respectively, k-semicoterie) D, if C 6¼
D and for any quorum P 2 D, there exists a quorum Q 2 C
such that Q � P . A k-coterie (respectively, k-semicoterie) C
is said to be nondominated (ND, for short), if C is not

dominated by any k-coterie (respectively, k-semicoterie).2

In [2], Barbara and Garcia-Molina showed that all ND

coteries are complemental. Little effort was however made

to clarify the tolerance capability of k-coteries for network

2-partition, and indeed whether or not any ND k-coterie is

complemental is not known. Our contributions are

summarized as follows:

1. We show that all ND 2-coteries are complemental,
but that for k � 3, there is a noncomplemental ND k-
coterie.

2. For each of several typical k-coterie construction
methods, we derive a condition for it to produce a
complemental k-coterie.

3. We give a necessary and sufficient condition for a k-
coterie to be complemental.

The rest of this paper is organized as follows: Section 2

shows that every ND 2-coterie is complemental. In Section 3,

we introduce the concept of r-complemental k-coteries,

where k-coterie is complemental if and only if it is r-

complemental for all 1 � r � k. Based on the concept,

Section 4 investigates how to construct a complemental

majority k-coterie, a complemental composite k-coterie and

a complemental tree k-coterie. Finally, Section 5 completely

characterizes r-complemental k-coteries. Section 6 concludes

the paper.

2 NETWORK 2-PARTITION AND ND 2-COTERIES

We model a distributed system by a connected undirected
graph G ¼ ðU;EÞ, where U and E represent the set of
processes and the set of bidirectional communication links,
respectively. If communication links in F � E are down,
communication between a pair ðu; vÞ of processes belonging
to different connected components of G0 ¼ ðU;E � F Þ
becomes impossible. We say that the system suffers from
a network ‘-partition if G0 consists of ‘ connected
components. We assume that the processes never fail.

This paper investigates a network 2-partition. A set F of
communication link failures causing a network 2-partition
clearly defines a partition U1; U2 of U , and communication
between two processes is possible if and only if both of
them belong to one of the two partites. However, there may
not be a set F of communication link that realizes a given
partition U1; U2 of U , depending on G. Nevertheless, in this
paper, we say that a k-mutual exclusion algorithm tolerates
a network 2-partition only when it tolerates any partition
U1; U2 of U , since the algorithm cannot select an underlying
network. In other words, we assume that G is complete.

Under the above assumptions, that a k-coterie is
complemental is necessary for the k-mutual exclusion
algorithm to tolerate network 2-partition. In what follows,
we show that any ND 2-coterie is complemental, i.e., � ¼ 2.3

Let C be a k-semicoterie under U and consider the following
condition C: There is a set S � U such that both of the
following two conditions hold:

1. (C1) For any quorum P 2 C, P 6� S.
2. (C2) For any k pairwise disjoint quorums P1; P2,

. . . ; Pk 2 C, Pi \ S 6¼ ; for some 1 � i � k.

Theorem 1 [9], [13], [14].

1. For any k � 1, a k-semicoterie is dominated if and only
if it satisfies Condition C.

2. For any k � 1, if a k-coterie C is dominated then it
satisfies Condition C. On the other hand, for any
k � 2, a k-coterie C is dominated if it satisfies
Condition C.

Note that it is still open to decide whether or not the
second claim of item 2 of Theorem 1 holds for any k � 3.
Given a set D of nonempty subsets of U , MinðDÞ denotes a
subset of D constructed from D by removing each element if
a proper subset of the element is in D.

Definition 1. Let C be a k-semicoterie under U , and r be an

integer such that 1 � r � k. The r-contraction of C, denoted
by Cr, is defined by

Cr ¼MinðfP j P ¼ P1 [ P2 [ � � � [ Pr; Pi 2 C for all

1 � i � r; and Pi \ Pj ¼ ; for all 1 � i < j � rgÞ:

That is, the r-contraction of a k-semicoterie C is the set of all
minimal subsets of U that contains as a subset the union of r
pairwise disjoint quorums of C. Note that C1 ¼ C by
definition. We restate Theorem 1 as Corollary 1.
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Consider the following condition D for C: For any S � U ,

either one of the following two conditions holds:

1. (D1) P � S for some P 2 C.
2. (D2) P � S for some P 2 Ck.

Corollary 1.

1. For any k � 1, a k-semicoterie C is ND if and only if it
satisfies Condition D.

2. For any k � 1, a k-coterie C is ND if it satisfies
Condition D. On the other hand, for any k � 2, if a k-
coterie C is ND then it satisfies Condition D.

Theorem 2. Every ND 2-coterie C is complemental.

Proof. Let C be anND 2-coterie. Then, it satisfies ConditionD

by Corollary 1. Suppose that U is partitioned into S and S.

Let CðSÞ ¼ fP 2 C j P � Sg and CðSÞ ¼ fP 2 C j P � Sg.
By Intersection Property, tðSÞ þ tðSÞ � 2. If neither of CðSÞ
and CðSÞ are empty, then clearly tðSÞ þ tðSÞ � 2. Hence,

suppose,without loss of generality, that either CðSÞor CðSÞ
is empty. Without loss of generality, we may assume that

CðSÞ ¼ ;, i.e., (D1) does not hold. Then, (D2) holds and

tðSÞ ¼ 2. tu
The NDness is hence sufficient for a 2-coterie to be

complemental. However, we cannot extend it to any k � 3,

as the following counterexample shows.

Example 1. Let U ¼ f1; 2; 3; 4; 5; 6; 7; 8g and consider a 3-

coterie

C ¼ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f1; 6g; f1; 7g; f1; 8g;
f2; 3g; f2; 4g; f2; 5g; f2; 6g; f2; 7g; f2; 8g; f3; 4g;
f3; 5g; f3; 6g; f3; 7g; f3; 8g; f4; 5; 6g; f4; 5; 7g;
f4; 5; 8g; f4; 6; 7g; f4; 6; 8g; f4; 7; 8g; f5; 6; 7g;
f5; 6; 8g; f5; 7; 8g; f6; 7; 8gg

under U . We first show that C is an ND 3-coterie. In fact,

C is a vote assignable k-coterie [7]. To see this, define a

weight function w by wðiÞ ¼ 2 for 1 � i � 3 and wðiÞ ¼ 1

for 4 � i � 8, and take a threshold � ¼ 3. Then,

C ¼ Min S � U j
X
i2S

wðiÞ � �

( ) !
:

Thus, C is a vote assignable 3-coterie. For all S � U , ifP
i2S wðiÞ < 3, then S contains three pairwise disjoint

quorums of C. C is hence ND, by Corollary 1.

To see that C is not complemental, let S ¼ f1; 2; 3g and

S ¼ f4; 5; 6; 7; 8g. Since tðSÞ ¼ tðSÞ ¼ 1, tðSÞþ tðSÞ¼2<3.

3 r-COMPLEMENTAL k-COTERIES

In this section, we define r-complemental k-coteries and

show their basic properties.

Definition 2. Let C and r, respectively, be a k-coterie under U and

an integer such that 1 � r � k. C is said to be r-complemental,

if for anyS � U , either one of the following two conditions holds:

1. (E1) P � S for some P 2 Cr.
2. (E2) P � S for some P 2 Ck�rþ1.

Proposition 1. A k-coterie C is complemental if and only if it is r-

complemental for all 1 � r � k.

Proof. Suppose that a k-coterie C is r-complemental for all
1 � r � k, and consider any partition S and S of U . Let r
be the maximum number of pairwise disjoint quorums
Q 2 C such that Q � S, i.e., r ¼ tðSÞ. If r ¼ k, then
tðSÞ þ tðSÞ ¼ k, by Intersection Property of C. So,
suppose that r < k. Then, by definition, there are no rþ
1 pairwise disjoint quorums Q 2 C such that Q � S.
Hence, there are k� r pairwise disjoint quorums Q 2 C
such that Q � S, since C is ðrþ 1Þ-complemental, which
implies that tðSÞ þ tðSÞ ¼ k, i.e., C is complemental.

On the other hand, suppose that C is complemental,
but is not r-complemental for some 1 � r � k, i.e., there is
an S � U , such that both of (E1) and (E2) do not hold,
which implies that tðSÞ � r� 1 and tðSÞ � k� r. Hence,
tðSÞ þ tðSÞ � k� 1, a contradiction. tu
This motivates the investigation of r-complemental k-

coteries in the following. It is worth noting that, by

Definition 2 and Corollary 1, 1-complemental k-coteries

are always ND.

Proposition 2. A k-coterie C is r-complemental if and only if it is

ðk� rþ 1Þ-complemental.

Proof. Suppose that C is not r-complemental. Then, there

is an S � U such that P 6� S for all P 2 Cr and P 6� S

for all P 2 Ck�rþ1, which implies that C is not

ðk� rþ 1Þ-complemental, since k� ðk� rþ 1Þ þ 1 ¼ r.

The other direction can be shown in the same way. tu

By Proposition 2, a k-coterie is complemental, if it is r-

complemental for all 1 � r � dk=2e.
Example 2. Let U ¼ f1; 2; 3; 4; 5g, and consider a 3-coterie C

C ¼ ff1g; f2; 3g; f4; 5gg

under U . Then, we have

C2 ¼ ff1; 2; 3g; f1; 4; 5g; f2; 3; 4; 5gg

and

C3 ¼ ff1; 2; 3; 4; 5gg;

by Definition 1. Then, C is neither 1 nor 3-complemental

by Proposition 2, since P 6� S for any P 2 C and P 6� S

for any P 2 C3, where S ¼ f2g. It is not 2-complemental

either since P 6� S and P 6� S hold for any P 2 C2, where

S ¼ f1; 2g.
Consider another 3-coterie D

D ¼ ff1g; f2g; f3; 4g; f3; 5g; f4; 5gg

under U . We have

D2 ¼ff1; 2g; f1; 3; 4g; f1; 3; 5g; f1; 4; 5g; f2; 3; 4g;
f2; 3; 5g; f2; 4; 5gg

and
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D3 ¼ ff1; 2; 3; 4g; f1; 2; 3; 5g; f1; 2; 4; 5gg:

By Proposition 2, D is both 1 and 3-complemental
since for any S � U , P � S for some P 2 D or P � S

for some P 2 D3. It is also 2-complemental since for

any S � U , there is a P 2 D2 such that either P � S or
P � S holds. D is thus complemental.

4 CLASSES OF COMPLEMENTAL k-COTERIES

The problem of determining whether a k-coterie is comple-

mental is difficult, in general, because tðSÞ þ tðSÞ must be
checked for all subsets S of U by definition. The problem,
however, becomes tractable if we restrict ourselves to some

classes of k-coteries. In this section, we drive conditions for
several typical classes of k-coteries to be complemental,
which enable us to construct complemental k-coteries

efficiently.

4.1 Majority k-Coteries

Given k � 1, the set

k-MajðUÞ ¼ fP � U j jP j ¼ dðjU j þ 1Þ=ðkþ 1Þeg;

is called a majority k-coterie under U , if it is a k-coterie [4].4

Let U ¼ f1; 2; 3; 4; 5g and k ¼ 2. Then, we have

2-MajðUÞ ¼ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f2; 3g; f2; 4g; f2; 5g;
f3; 4g; f3; 5g; f4; 5gg;

which is a 2-coterie.

Theorem 3. A majority k-coterie k-MajðUÞ is complemental if

jU j þ 1 is divisible by kþ 1.

Proof. Let C ¼ k-MajðUÞ and n ¼ jU j. Suppose, otherwise,
that C is not r-complemental for some 1 � r � k. Since C is

not r-complemental, let S � U be such that neither of (E1)
and (E2) holds forS. By assumption,w ¼ dðnþ 1Þ=ðkþ 1Þe
= ðnþ 1Þ=ðkþ 1Þ, which implies that jSj � rw� 1, since,

otherwise, P � S would hold for some P 2 Cr. Thus,
jSj � n� ðrw� 1Þ ¼ ðk� rþ 1Þw, which, however, im-
plies that P � S for some P 2 Ck�rþ1, a contradiction. tu

4.2 Composite k-Coteries

Given an integer m (2 � m � jU j), let fU1; U2; . . . ; Umg be an

m-partition of U , ki (1 � i � m) a positive integer such thatPm
i¼1 ki ¼ k, and Ci a ki-coterie under Ui. A composite k-coterie

under U [4], [13] is simply defined by

k-CompðC1; C2; . . . ; CmÞ ¼ [m
i¼1Ci:

Let C1 ¼ ff1; 2g; f1; 3g; f2; 3gg and C2 ¼ ff4; 5g; f4; 6g; f5; 6gg
be coteries under U1 ¼ f1; 2; 3g and U2 ¼ f4; 5; 6g, respec-
tively. Then,

2-CompðC1; C2Þ ¼ ff1; 2g; f1; 3g; f2; 3g; f4; 5g; f4; 6g; f5; 6gg

is a composite 2-coterie under U ¼ f1; 2; 3; 4; 5; 6g.
Theorem 4. k-CompðC1; C2; . . . ; CmÞ is complemental if and only

if each of C1; C2; . . . ; Cm is complemental.

Proof. We only prove the casem ¼ 2, but an extension to the

general case is straightforward. Let D ¼ k-CompðC1; C2Þ,
where Ci is a ki-coterie under Ui for i ¼ 1; 2.

If part: Suppose, otherwise, that D is not comple-

mental, i.e., there are an r ð1 � r � kÞ and an S � U such

that Q 6� S for all Q 2 Dr and Q 6� S for all Q 2 Dk�rþ1.
Let Si ¼ S \ Ui and ri be the maximum number of

pairwise disjoint quorums of Ci in Si for i ¼ 1; 2. Then,

r1 þ r2 < r since Q 6� S for all Q 2 Dr.

On the other hand, for i ¼ 1; 2, P 6� Si for all

P 2 Criþ1
i , which implies that P � Ui n Si for some

P 2 Cki�ri
i , since Ci is complemental. Hence, S contains,

as subsets, ðk1 � r1Þ þ ðk2 � r2Þ pairwise disjoint quor-

ums of D. Since ðk1 � r1Þ þ ðk2 � r2Þ ¼ k� ðr1 þ r2Þ �
k� rþ 1; Q � S for some Q 2 Dk�rþ1, a contradiction.

Only if part: Suppose, otherwise, that C1 is not

complemental, without loss of generality. Then, there

are an r1 ð1 � r1 � k1Þ and an S1 � U1 such that P 6� S1

for all P 2 Cr11 and P 6� U1 n S1 for all P 2 Ck1�r1þ1
1 . Let

S ¼ S1 [ U2. Then, Q 6� S for all Q 2 Dk2þr1 .

On the other hand, Q 6� S for all Q 2 Dk1�r1þ1. Since

k1 � r1 þ 1 ¼ k� ðk2 þ r1Þ þ 1, Q 6� S for all Q 2 D
k�ðk2þr1Þþ1. Hence, D is not complemental, a contra-

diction. tu

4.3 Coterie Join Operation

For a k-coterie C, we denote [P2CP by [C.
Definition 3. Let C1 be a k-coterie under U , C2 a coterie under U ,

and u an element in [C1. Assume that [C1 \ [C2 � fug
holds. Then, from C1 and C2, the coterie join operation

produces a quorum set J uðC1; C2Þ defined by

J uðC1; C2Þ ¼fR j R ¼ ðP n fugÞ [Q; P 2 C1; Q 2 C2
and u2Pg [ fR j R ¼ P; P 2 C1 and u 62 Pg:

Jiang and Huang [9] showed that J uðC1; C2Þ is a k-coterie.
The coterie join operation is a powerful tool to construct a

new k-coterie.

Theorem 5. Let C1 be a k-coterie underU , C2 a coterie underU , and

r an integer such that 1 � r � k. Assume that [C1 \ [C2
� fug. Then, J ¼ J uðC1; C2Þ is r-complemental if and only if

C1 is r-complemental and C2 is ð1-Þcomplemental. Thus, J is

complemental if and only if both C1 and C2 are complemental.

Proof. Only if part:We show that J is not r-complemental if

either C1 is not r-complemental or C2 is not 1-comple-

mental.

(I) Suppose that C1 is not r-complemental despite that

J is r-complemental, and derive a contradiction. Since C1
is not r-complemental, for some S � [C1, P 6� S for all

P 2 Cr1 and P 6� S for all P 2 Ck�rþ1
1 . Then, since J is r-

complemental, either R � S for some R 2 J r or R � S

for some R 2 J k�rþ1. Observe that R 6� [C1 since,

otherwise, if R � [C1, then R belongs either to Cr1 or to

Ck�rþ1
1 , a contradiction because C1 is not r-complemental.

Hence, R � S for R 2 J k�rþ1, and R ¼ ðP n fugÞ [Q for

some P 2 Ck�rþ1
1 and Q 2 C2. Note that P 6� S because C1
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is not r-complemental. If u 62 S, then ðP n fugÞ 6� S and,
hence, R 6� S, a contradiction. So, we may assume u 2 S.

Let Sþ ¼ S [Q for some Q 2 C2. Since J is r-comple-
mental, either R0 � Sþ for some R0 2 J r or R0 � Sþ for

some R0 2 J k�rþ1. Note that, if R0 � [C1 then R0 � S or

R0 � S. Then, by the sameargument above,R0 6� [C1 holds
and, hence,R0 62 Cr andR0 62 Ck�rþ1. Suppose thatR0 � Sþ

for R0 2 J r. By Minimality of C2, R0 ¼ ðP 0 n fugÞ [Q for

some P 0 2 Cr. Since u 2 S, it follows P 0 � S, a contra-

diction because C1 is not r-complemental. Hence, R0 � Sþ

forR0 2 J k�rþ1. SinceR0 62 Ck�rþ1,R0 ¼ ðP 0 n fugÞ [Q0 for
some P 0 2 Ck�rþ1 and Q0 2 C2. However, by Intersection

Property of C2, R0 6� Sþ holds, a contradiction.

(II) Next, suppose that C2 is not 1-complemental.

Then, by definition, for some S � [C2, both of Q 6� S and

Q 6� S hold for all Q 2 C2. Let A 2 Cr1 be such that u 2 A.

Note that there is such an A since u 2 [C1. Put

Sþ ¼ ðA n fugÞ [ S. In the following, we show that J is

not r-complemental for Sþ, i.e., 1) R 6� Sþ for all R 2 J r

and 2) R 6� Sþ for all R 2 J k�rþ1 hold.

To claim 1), let R 2 J r. If R � [C1, then R 2 Cr1. Then,
we may assume that u 62 R since, otherwise, C2 ¼ ffugg,
which is 1-complemental, a contradiction. Since u 2 A,
R 6� A by Minimality of Cr1 and, hence, R 6� Sþ. Suppose

R 6� [C1. Then, R ¼ ðP n fugÞ [Q for some P 2 Cr1 and

Q 2 C2. By definition, Q 6� S. Then, R 6� Sþ since there is

a v 2 ðQ n SÞ such that v 62 Sþ.

To claim 2), letR 2 J k�rþ1. IfR � [C1, thenR 2 Ck�rþ1
1 .

By the same argument as above, we may assume u 62 R.

SinceA contains r quorums of C1 andR contains k� rþ 1

quorums of C1,R 6� A by Intersection Property of C1. Since
u 62 R, R 6� A n fug and, hence, R 6� Sþ. Suppose that

R 6� [C1. Then,R ¼ ðP n fugÞ [Q for someP 2 Ck�rþ1
1 and

Q 2 C2. By definition, Q 6� S. Hence, R 6� Sþ.

If part: Suppose that J is not r-complemental, and
derive a contradiction. That is, there is an S � U such

that R 6� S for all R 2 J r and R 6� S for all R 2 J k�rþ1.

Let Sþ ¼ S [ fug. Since C1 is r-complemental, either

P � Sþ for some P 2 Cr1 or P � Sþ for some P 2 Ck�rþ1
1 . If

P � Sþ, then u 62 P and, hence, P 2 J k�rþ1, a contra-

diction since P � ðSþ n fugÞ � S. Hence, there is a P 2 Cr1
such that P � Sþ. We may assume that u 2 P since,

otherwise, if u 62 P , then P 2 J r, a contradiction because

P � ðSþ n fugÞ � S. Since C2 is 1-complemental, either
Q � S or Q � S for some Q 2 C2. Suppose that Q � S.

Since u 2 P , there is a W 2 J r such that W ¼ ðP n fugÞ
[ Q. However, since ðP n fugÞ � S and Q � S, W � S

holds, a contradiction because J is not r-complemental.

So, we may assume that Q � S for Q 2 C2.

Next, let S� ¼ S n fug. Since C1 is r-complemental, by

arguing as above, we have a P 0 2 Ck�rþ1
1 such that

P 0 � S�. If u 62 P 0, then P 0 2 J k�rþ1, a contradiction since

P 0 � ðS� n fugÞ � S. If u 2 P 0, then W ¼ ðP 0 n fugÞ [Q

and W 2 J k�rþ1. However, since ðP 0 n fugÞ � ðS� n
fugÞ � S and Q � S, W � S holds, a contradiction. tu

4.4 Tree k-Coteries

Let H be a subset of U such that jHj ¼ kmþ 1 for some
integer m ðm � 2Þ, and v be an element in H. A basic tree k-
coterie [7], denoted by k-TreeðU;H; v;mÞ, is defined as

k-TreeðU;H; v;mÞ ¼fQ � H j fvg \Q 6¼ ; and jQj ¼ 2g[
fQ � H j fvg \Q ¼ ; and jQj ¼ mg:

The rooted tree T associated with k-TreeðU;H; v;mÞ has the
root v. The other elements in H are children of v and form
leaves of T .

A tree k-coterie is recursively constructed by using the
coterie join operation. In the following construction, we
assume that u 2 [C1 and [C1 \ [C2 � fug, in order for
J uðC1; C2Þ to be defined. We also associate a rooted tree T

for each tree k-coterie J uðC1; C2Þ:

1. Any basic tree k-coterie C1 is a tree k-coteries. The
rooted tree TC1 associated with C1 was already
defined.

2. Let C1 and C2, respectively, be a tree k-coterie and a
basic tree (1-)coterie, and assume that TC1 and TC2 are
the rooted trees associated with them.

If [C1 \ [C2 ¼ fug and u is a leaf of TC1 , then
J uðC1; C2Þ is a tree k-coterie. If [C1 \ [C2 ¼ ;, then
J uðC1; C2Þ is a tree k-coterie for any leaf u of TC1 . The
associated rooted tree T is constructed from TC1 by
replacing leafuwith treeTC2 , i.e.,we remove leafu and
place the root of TC2 instead of u. All leaves of TC1
except u, and all leaves of TC2 are now leaves of T .

No other quorum sets are tree k-coterie.

Theorem 6. Let m be an integer such that m � 2, H a subset of
U , and v an element in H. Assume that k-TreeðU;H; v;mÞ is
definable, i.e., jHj ¼ kmþ 1. Then, k-TreeðU;H; v;mÞ is
complemental.

Proof. We denote k-TreeðU;H; v;mÞ by C, and let T be the
rooted tree associated to C. Suppose that C is not r-
complemental and derive a contradiction. By definition,
for some S � U , P 6� S for all P 2 Cr and P 6� S for all
P 2 Ck�rþ1.

Suppose first that v 2 S. If S contains ðr� 1Þmþ 1
leaves of T , P � S for some P 2 Cr by the definition of
basic tree k-coterie. We hence assume that S contains at
least ðk� rþ 1Þm leaves, which however, implies that
P � S for some P 2 Ck�rþ1, a contradiction.

Suppose next that v 62 S. If S contains rm leaves of T ,
then P � S for some P 2 Cr. We hence assume that S
contains ðk� rÞmþ 1 leaves. However, since v 2 S, P �
S for some P 2 Ck�rþ1, a contradiction. tu

The next corollary follows.

Corollary 2. Tree k-coteries are complemental.

5 CHARACTERIZING r-COMPLEMENTAL k-COTERIES

The objective of this paper is to understand complemental
k-coteries. To this end, in Section 3, we introduced the
concept of r-complemental k-coteries and showed that a k-
coterie is complemental if and only if it is r-complemental
for all 1 � r � k. In Section 4, we showed that the k-coterie
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in some classes are complemental by using the concept of r-
complemental k-coterie, but we did not give their complete
characterization. The aim of this section is to completely
characterize the r-complemental k-coteries, with the hope
that it gives us a new viewpoint to understand the
complemental k-coteries, although currently, it seems to
be useless to reduce the time complexity of the membership
problem. We begin this section with several lemmas.

Lemma 1. Let C be a k-coterie under U . For any 1 � r � k and

S � U , jSj � r if Condition (E2) does not hold.

Proof. Suppose, otherwise, that jSj ¼ m < r and let

P1; P2; . . . ; Pk be k pairwise disjoint quorums in C.
Since jSj ¼ m, Pi \ S 6¼ ; for at most m Pis. There are

hence, at least k�m Pis such that Pi � S. Let P be the

union of k� rþ 1 out of those Pis. Then, P 2 Ck�rþ1, a

contradiction. tu

Let S be a subset of U . We denote a set of r-partition of S

by Sr ¼ fS1; S2; . . . ; Srg, where Si 6¼ ; for all 1 � i � r,

[r
i¼1Si ¼ S, and Si \ Sj ¼ ; for all 1 � i < j � r.

Lemma 2. LetC be a k-coterie underU . If neither ofConditions (E1)

and (E2) hold for some S � U and 1 � r � k, then there is an r-

partition Sr of S such that P 6� S0 for all P 2 C and S0 2 Sr.

Proof. Suppose that (E2) does not hold for S and r. By

Lemma 1, jSj � r. Since (E1) does not hold either, S

contains at most ‘ pairwise disjoint quorums P1; P2; . . . ; P‘

of C, where 0 � ‘ � r� 1. By definition, P0 ¼ S n [‘
i¼1Pi 6�

P for anyP 2 C and, hence, any subsetQ ofPi (0 � i � ‘) is

not a proper superset of a quorum P of C. Since jSj � r, we

can obviously construct a desired Sr by partitioning some

Pi (0 � i � ‘) into several disjoint subsets. tu
Lemma 3. Let C be a k-coterie. Suppose that Condition (E2) does

not hold for some S � U and 1 � r � k, and let Sr be an r-

partition of S. Then, D ¼ MinðC [ SrÞ is an ‘-semicoterie

for some k � ‘ � kþ r� 1.

Proof. Suppose that (E2) does not hold for S and r. Since

jSj � r by Lemma 1, let Sr be any r-partition of S, and

define D ¼ MinðC [ SrÞ. Then, D satisfies Minimality by

definition. We hence examine Intersection Property in

the following.
Let ‘ be the maximum number of pairwise disjoint

elements of D and show k � ‘ < kþ r. Let P1; P2; . . .Pk

be k pairwise disjoint quorums in C. Since either Pi or its
proper subset is in D by definition, k � ‘.

To show ‘ < kþ r, suppose, otherwise, that there are
kþ r pairwise disjoint quorums Q1; Q2; . . . ; Qkþr in D.
Since D is a subset of C [ Sr and since C is a k-semicoterie,
without loss of generality, wemay assume that k quorums
Q1; Q2; . . . ; Qk belong to C, while the other r quorums
Qkþ1; Qkþ2; . . . ; Qkþr to Sr, i.e., Sr = fQkþ1,Qkþ2, . . . ,Qkþrg.
Since (E2) does not hold, there are at most k� r pairwise
disjoint quorums Q 2 C such that Q � S, a contradiction,
since Qi � S for all 1 � i � k. tu

Lemma 4. Let C and D, respectively, be a k and an
‘-semicoteries, and suppose that for any P 2 C, there is a
Q 2 D such that Q � P . Then, for all r ð1 � r � kÞ and
P 2 Cr, there is a Q 2 Dr such that Q � P .

Proof. Let P ¼ [r
i¼1Pi 2 Cr, where P1; P2; . . . ; Pr 2 C are

r pairwise disjoint quorums in C. By assumption, for
each Pi (1 � i � r), there is a Qi 2 D such that Qi � Pi.
Since Pis are pairwise disjoint, so are Qis. Let
Q ¼ [r

i¼1Qi 2 Dr. Then, Q � P . tu
We are now ready to characterize the r-complemental k-

coteries.

Theorem 7. Let C be a k-coterie underU . C is not r-complemental if
and only if there is an ‘-semicoterieD under U satisfying both
of the following two conditions, where k � ‘ � kþ r� 1:

1. (F1) For any P 2 C, Q � P for some Q 2 D.
2. (F2) For some S 2 Dr n Cr, Q 6� S for all Q 2 Dk�rþ1.

Proof. Only if part: Since C is not r-complemental, neither of
(E1) and (E2) holds for some S � U . By Lemma 2, there is
an r-partition Sr of S such that P 6� S0 for all P 2 C and
S0 2 Sr. Define D ¼ MinðC [ SrÞ. Then, by Lemma 3, D is
an ‘-semicoterie under U , where k � ‘ � kþ r� 1. In
what follows, we show that D satisfies both (F1) and (F2).

The fact that (F1) holds is obvious from the definition
of D. As for (F2), since P 6� S0 for all P 2 C and S0 2 Sr,
Sr � D and, hence, S 2 Dr. Since (E1) does not hold for S,
S 62 Cr, i.e., S 2 Dr n Cr. To see that (F2) holds for S, if
Q � S for some Q 2 Dk�rþ1, then there would be k� rþ1
pairwise disjoint quorums P1; P2; . . . ; Pk�rþ1 2 C such
that Pi � S for all 1 � i � k� rþ 1, a contradiction, since
(E2) does not hold for S.

If part: Let S � U and assume that (F1) and (F2) hold
for S. We show that neither of (E1) and (E2) holds for S.
Assume first, otherwise, that (E1) holds for S, i.e., P � S
for some P 2 Cr. Since (F2) holds for S, S 62 Cr and, hence,
P � S. On the other hand, Q � P for some Q 2 Dr by
(F1) and Lemma 4. Thus, Q � S 2 Dr, which contradicts
to Minimality of Dr.

As for (E2), again by (F1) and Lemma 4, there is a
Q 2 Dk�rþ1 such that Q � P , for any P 2 Ck�rþ1. Since
Q 6� S for any Q 2 Dk�rþ1, P 6� S for any P 2 Ck�rþ1, i.e.,
(E2) does not hold for S. tu

Example 3. Consider again 3-coterie C in Example 1 and let
us observe that C is not 2-complemental by using
Theorem 7. Based on the procedure in the proof of
Theorem 7, we illustrate how to construct ‘-semicoterie D
satisfying (F1) and (F2) from C.

Let S ¼ f4; 5; 6; 7; 8g and r ¼ 2. Clearly, neither of
(E1) and (E2) hold for them. Lemma 2 then guarantees
that there is a 2-partition S2 of S such that P 6� S0

holds for all P 2 C and S0 2 S2. For instance, let us
select S2 ¼ ff4; 5g; f6; 7; 8gg. Then,

D ¼ MinðC [ S2Þ
¼ ff1; 2g; f1; 3g; f1; 4g; f1; 5g; f1; 6g; f1; 7g; f1; 8g; f2; 3g;

f2; 4g; f2; 5g; f2; 6g; f2; 7g; f2; 8g; f3; 4g; f3; 5g; f3; 6g;
f3; 7g; f3; 8g; f4; 5g; f4; 6; 7g; f4; 6; 8g; f4; 7; 8g;
f5; 6; 7g; f5; 6; 8g; f5; 7; 8g; f6; 7; 8gg;

which is a 4-semicoterie. Clearly, (F1) holds. Moreover,

(F2) holds since S 2 D2 n C2 and S ¼ f1; 2; 3g contains no

two quorums of D disjoint each other.
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6 CONCLUSION

In this paper, we investigated the robustness of k-coteries
against network 2-partition. We first introduced the concept
of complemental k-coterie. Intuitively the k-mutual exclusion
algorithm, an outline of which we illustrated in Section 1,
allows k processes to enter the critical section even if network
2-partition occurs, when it adopts a complemental k-coterie.
We then showed that the k-coteries of some classes are
complemental, and completely characterized the comple-
mental k-coterie.

As final remarks, we would like to touch several open
questions. First, when network 2-partition occurs, some of
the quorums of a complemental k-coterie may be parti-
tioned and become useless. As a result, Nonintersection
Property can be invalidated, although Intersection Prop-
erty remains to hold. That is, the network 2-partition can
weaken the complemental k-coterie to a complemental k-
semicoterie. We leave as a future work the problem of
constructing a k-coterie such that both Nonintersection
and Intersection Properties hold, in spite of network 2-
partition. Second, as mentioned in Section 2, this paper
has assumed that the underlying communication network
is complete, with a justification that the k-mutual
exclusion algorithm cannot select its execution environ-
ment, i.e., the underlying communication network. It is,
however, also true that if we are allowed to design a k-
mutual exclusion algorithm for a fixed communication
network, then we may be able to come up with a new
property of k-coteries as a generalization of the comple-
mentalness. Finally, an obvious open problem is an
investigation of a network ‘-partition for ‘ � 3.
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