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Model of curvature-induced phase transitions in the inflationary universe
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Chiral phase transitions driven by space-time curvature effects are investigated in de Sitter space in the
supersymmetric Nambu–Jona-Lasinio model with soft supersymmetry breaking. The model is considered to be
suitable for the analysis of possible phase transitions in inflationary universe. It is found that a restoration of the
broken chiral symmetry takes place in two patterns for increasing curvature: the first-order and second-order
phase transition, respectively, depending on initial settings of the four-body interaction parameter and the soft
supersymmetry breaking parameter. The critical curves expressing the phase boundaries in these parameters
are obtained. Cosmological implications of the result are discussed in connection with bubble formations and
the creation of cosmic strings during the inflationary era.@S0556-2821~99!50308-1#

PACS number~s!: 98.80.Cq, 04.62.1v, 11.30.Pb, 11.30.Rd
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In the scenario of the early universe, the Higgs mec
nism has been considered to be one of the possible ca
dates in explaining the onset of the inflation era. At the
ginning of the inflation era, it is assumed that the gra
unified theory phase is broken down to the quantum chro
dynamics and electroweak theory phase through the H
mechanism. In this connection it is interesting to note t
the Higgs fields may be composed of some fundamental
mions as in the technicolor model and to see the con
quence of this idea in the scenario of inflation. On the ot
hand, supersymmetry is considered to be a vital nature
sessed by the fundamental unified theory and, hence,
incorporation of supersymmetry in composite Higgs mod
seems to be of principal importance. Under these circu
stances, it is natural for us to consider a supersymme
composite Higgs model in the early stage of the universe
to see whether any remarkable effects are drawn during
inflation era. For simplicity we adopt the Nambu–Jon
Lasinio ~NJL! model @1# as a prototype of the composit
Higgs model in the present communication.

In the inflation era the quantum effect of gravitation is
minor importance, while the external gravitational field
non-negligible. Hence, we are naturally led to the supers
metric NJL model in curved space. Dealing with the co
posite Higgs fields is essentially nonperturbative and d
not accept approximate treatments. Accordingly, we try
solve the problem rigorously working in a specific spac
time, de Sitter space, which possesses a maximal symm
de Sitter space is suitable for describing the inflationary u
verse. As a nonperturbative method, we rely on the 1/N ex-
pansion technique.

The four-fermion interaction model~which is the basis of
the NJL model! in de Sitter space has been discussed
several authors@2–5# and is found to reveal the restoration
the broken chiral symmetry for increasing curvature a
second-order phase transition. The supersymmetric ver
of the NJL model in curved space was considered by Bu
binder, Inagaki, and Odintsov@6# in the weak curvature
limit. They found that the chiral symmetry is broken as t
curvature increases. Their result is in contrast with the re
in the nonsupersymmetric NJL model. On the other hand,
supersymmetric NJL model in the flat space-time has b
investigated by several authors@7# in the context of dynami-
cal chiral symmetry breaking.
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We start with the Lagrangian for the supersymmet
Nambu-Jona-Lasinio model in de Sitter space expresse
terms of component fields of the superfields@6#:

L52¹mf†¹mf2r2f†f2¹mfc†¹mfc

2r2fc†fc2c̄~ i¹” 2s1 ig5p!c2
N

2l
r2, ~1!

where we have kept only terms relevant to the leading or
in the 1/N expansion. In Eq.~1! f andc refer to the scalar
and spinor component fields of the superfield, respectivelyN
is the number of components of these fields,¹m the covari-
ant derivative,l the four-fermion coupling constant, andr
the auxiliary scalar field withr2[s21p2. We introduce an
additional termdL composed of nonminimal gravitationa
terms and a soft supersymmetry breaking term to the ab
Lagrangian~1!:

dL52j1Rf†f2j2Rfc†fc2D2~f†f1fc†fc!, ~2!

whereR is the space-time curvature, andj1 , j2 and D are
coupling parameters. We assume that the term~2! existed
already when the inflation era started.

The effective potential for the auxiliary fieldr is calcu-
lated in the leading order of the 1/N expansion such that@6#

V~r!5
r2

2l
1 i E

0

r

ds Tr S~x,x;s!12i E
0

r2

dtG~x,x;t !,

~3!

whereS(x,y;s) andG(x,y;t) represent the fermion and bo
son propagator in the coordinate space with masss andAt,
respectively. The effective potential~3! is obtained by taking
the short-distance limity→x, once the full expressions o
these propagators are found in de Sitter space.

The boson propagator in de Sitter space is well kno
@8–12# and is given for arbitrary dimensionD by

G~x,y;t !52 i
r 22D

~4p!D/2

G~a1!G~a2!

G~D/2!

3 2F1~a1 ,a2 ,D/2;12z!, ~4!
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with a65@D216A(D21)224tr 2#/2. Here z5s2/(2r 2)
with s the geodesic distance andr the radius of de Sitter
space which is related to the conventional Hubble param
such thatr 51/H. The scalar propagator for LagrangianL
1dL is obtained simply by replacingt by t1jR1D2 with
j5j15j2 and R5D(D21)/r 2 where we have takenj1
5j2 for simplicity. The fermion propagator is given b
@13,14#

S~x,y;s!5„A~x,y;s!1B~x,y;s!s ;mgm
…U, ~5!

where

A~x,y;s!5 i
sr22D

~4p!D/2

G~a!G~a* !

G~D/211!

3A12z2F1~a,a* ,D/211;12z!, ~6!

anda5D/21 isr andU is the matrix composed of the Dira
matrices. We do not present the explicit expression of
invariant functionB(x,y;s), although it is known analyti-
cally. The reason is that we do not need the explicit expr
sion of this function, since the second term on the right-ha
side of Eq.~5! disappears for vanishing distance. We find f
small geodesic distancez;0 that

Tr S~x,x;s!5 lim
z→0

A~x,y;s!Tr U

5Tr@1# lim
z→0

A~x,y;s!, ~7!

with the normalization TrU5Tr@1#. Equipped with these
propagators for bosons and fermions, we are now read
calculate the effective potential~3! in an exact form.

In order to explain our idea in a transparent way,
mainly work in 3 space-time dimensions and give a br
comment on the full extension to 4 dimensions. We us
well-known formula which is found in any mathematic
table~e.g.,@15#! to rewrite the boson propagator and find f
small geodesic distancez;0,

G~x,y;t !5
2 i

8prz1/2
1

i

4pr
n cothpn1O~z1/2!, ~8!

where we have definedn5Atr 216z21 andz5j1D2r 2/6.
Note here that we are calculating the boson propagator
LagrangianL1dL. The fermion propagator at vanishing di
tance in 3 dimensions is obtained in a similar way. Using
relation ~7!, we have

Tr S~x,x;s!5Tr@1#F is

8prz1/2
2

is

4pr

3S 1

4
1s2r 2D tanhpsr

sr
1O~z1/2!G . ~9!

Substituting propagators~8! and ~9! into effective potential
~3!, we find
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V~r!5
r2

2l
1

1

pr E0

r

dssS 1

4
1s2r 2D tanhpsr

sr

2
1

2pr E0

r2

dtn cothpn, ~10!

where we have set Tr@1#54 ~we adopt the reducible repre
sentation of the Clifford algebra of Dirac matrices to affo
the existence ofg5). It is important to note here that th
divergence present in both expressions~8! and~9! cancel out
in the effective potential~10!. The origin of this cancellation
may be traced back to the supersymmetry of our model.

The gap equation is given by

V8~r2!5
1

2pr Fpr

l
1S 1

4
1r2r 2D tanhprr

rr

2Ar2r 216z21 coth~pAr2r 216z21!G50,

~11!

where byV8(r2) we mean the differentiation of the effectiv
potential with respect tor2. Just by observing the left-han
side of the gap equation~11!, we find that it is a function
only of rr with parameterspr /l andz. Thus the solutionrr
of this gap equation is completely specified by two para
eterspr /l and z, respectively. This fact suggests that t
phase diagram of the model will be given on a plane spe
fied by these two parameters.

The direct observation of Eq.~11! shows that it has a
most two solutions forrr and so the shape of the effectiv
potential ~10! is of three types: the symmetric type S, an
type I and II which are shown in Fig. 1. The phase diagr
of the model is given by the numerical analysis of the effe
tive potential~10! and the gap equation~11!, and is given in
Fig. 2. The region above the dashed line and the right hal
the solid line in Fig. 2 represents a broken phase with
effective potential of the shape II given in Fig. 1. The sm
region between the solid line and the dashed line in Fig
corresponds to a broken phase with the effective potentia
the shape I in Fig. 1. The region below the whole solid li
represents a symmetric phase where the shape of the e
tive potential is of the single-well type S.

The boundaries which separate the above three phase
determined as follows: The dashed line and the right hal

FIG. 1. Typical behaviors I and II of the effective potential.
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the solid line constitute the boundary of the region char
terized by the potential of the shape II. The boundary
determined by the condition

V8~0!50. ~12!

The above equation reduces to

pr

l
1

p

4
2A6z21cothpA6z2150. ~13!

The condition for the line separating the phases of type I
type S is given byV(r* )50 wherer* 5max$r1,r2% with r1
andr2 two solutions of the gap equation~11!.

The branching point C in Fig. 2 is of special interest. It
a critical point which divides the broken phase into type
and type II. At the branching point C, the following cond
tions are found to be satisfied simultaneously:

V8~0!50, V9~0!50. ~14!

The condition~14! is explicitly given by Eq.~13! and

12
p2

12
1

1

2 sinh2pA6z21
2

cothpA6z21

2pA6z21
50. ~15!

From Eq. ~15! we find that z50.290138([z* ) at the
branching point C. By substituting this value forz in Eq.
~13!, we obtain pr /l50.083063([h* ) at the branching
point C.

Now let us discuss the time-evolution of the chiral stru
ture of the model assuming that the inflationary era is w
described by the effective potential in de Sitter space. I
natural to assume that the curvature slowly decreases (r in-
creases! as the universe evolves. First, let us consider
case where the soft supersymmetry breaking term is no
cluded, i.e.,D50. In this case it is easily seen in Fig. 2 th
we move from left to right by increasing radiusr with
z(5j) and l fixed. By direct observation of the gap equ
tion, one can easily show that, if the parameterj is kept

FIG. 2. The phase diagram on the parameter plane inz and
pr /l. The point denoted by C is the branching point whe
(pr /l,z)5(h* ,z* ) with h* 50.083063 andz* 50.290138.
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below j51/4 which is the value ofj corresponding to
pr /l50, the effective potential stays in the type S asr
increases and, hence, the chiral symmetry is preserved~there
is no phase transition!. If the parameterj is kept in the re-
gion 1/4,j,z* , the effective potential changes its sha
from type I to type S asr increases. Hence, the broken chir
symmetry is restored asr increases through the first-orde
phase transition. If the parameterj is kept abovez* , the
effective potential changes its shape from type II to type
and so the transition is of the second order. Thus, in the c
with D50 the chiral symmetry restoration occurs as the u
verse evolves. This situation reflects the fact that the n
minimal gravitational coupling terms, which break the sup
symmetry that protects the chiral symmetry for any value
l andr, are effective only at large curvature. It is also inte
esting to examine the pattern of the phase transitions w
the parameterj is changed withr and l fixed. In this case
we easily conclude that the chiral symmetry is broken
increasing j through the first order phase transition f
pr /l,h* while the transition is of the second order fo
pr /l.h* .

We next focus our attention on the role of the soft sup
symmetry breaking terms. Here we assume the confor
gravitational coupling in 3 dimension, i.e.,j51/8, for sim-
plicity. This assumption is not essential for discussions in
following as long asj,1/4. In Fig. 3 we show trajcetorie
on the phase diagram as the radiusr increases withD andl
fixed @see dot-dashed lines~a!–~c! in Fig. 3#. The trajectories
are specified by the equationz51/81(Dl/p)2h/6 with h
5pr /l for each value ofDl/p. Increasing the radiusr
along the curve~a!, one experiences a first-order phase tra
sition and along the curve~c! a second-order one. The crit
cal case is shown by the curve~b!. These curves show tha
the chiral symmetry breaking can occur in the model w
the soft supersymmetry breaking terms when the radiur
increases or when the curvature of the universe decre
during the inflation. By observing the behaviors of the
curves, we find that the types of the phase transitions
classified as follows: IfDl/p.a ([29.5Az* 21/8512.0)

FIG. 3. Typical trajectories for varyingr with D andl fixed, ~a!
Dl/p522.3; ~b!Dl/p512.0; ~c! Dl/p53.2. Herej is fixed so
that j51/8.
2-3
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is satisfied, the phase transition is of the first order. The c
1,Dl/p,a corresponds to the second-order phase tra
tion, and the phase transition does not occur ifDl/p,1 is
satisfied.

In summary we have investigated the supersymme
NJL model with the nonminimal gravitational coupling term
and soft supersymmetry breaking terms in de Sitter sp
The phase structure is completely clarified in the model o
dimensions. We have found that both the nonminimal gra
tational terms and the soft supersymmetry breaking te
lead to the phase transition phenomena as radiusr increases
or the curvature of the universe decreases. These two te
work in different ways. The soft supersymmetry breaki
terms lead to the chiral symmetry breaking as the curva
decreases, while the nonminimal gravitational terms lead
the restoration of the chiral symmetry. The extension of
work to the 4 dimensional case is straightforward althou
we have to rely on the full numerical estimates. The resul
the analysis will be presented elsewhere.

The cosmological consequences of the phase transit
found here seems to be quite interesting. A production
cosmic strings is expected because theU(1)-symmetry is
broken in the model. The formation of topological defects
the inflationary universe has been studied in many referen
~e.g.,@16#!. It is well known that the cosmic strings are co
strained observationally asGm&O(1025) where G is the
ov

s

,
.

d

10130
se
i-

ic

e.
3
i-
s

ms

re
to
r
h
f

ns
f

es

gravitational constant andm is the line density of the cosmic
string @17#. This condition sets a constraint on our model a
it is an interesting problem to investigate whether the con
tion is satisfied in the model. In order to apply our model
a more realistic inflationary scenario, we need to deal w
the model in 4 dimensions. At the moment we have fou
that the phase structure in 4 dimensions is very similar to
in 3 dimensions. The expression of the effective potentia
4 dimensions is rather cumbersome and the detailed ana
is still in progress.

Another comment is directed to the possibility of creati
of an open universe in our model. Inflation models for
open universe have been investigated by using a bounce
lution for a bubble formation@18#. The trajectory~a! in Fig.
3 indicates that bubble nucleations may occur in the regio
It is worthy to investigate whether our model can provide
successful model for an open universe or not.
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