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Model of curvature-induced phase transitions in the inflationary universe
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Chiral phase transitions driven by space-time curvature effects are investigated in de Sitter space in the
supersymmetric Nambu—Jona-Lasinio model with soft supersymmetry breaking. The model is considered to be
suitable for the analysis of possible phase transitions in inflationary universe. It is found that a restoration of the
broken chiral symmetry takes place in two patterns for increasing curvature: the first-order and second-order
phase transition, respectively, depending on initial settings of the four-body interaction parameter and the soft
supersymmetry breaking parameter. The critical curves expressing the phase boundaries in these parameters
are obtained. Cosmological implications of the result are discussed in connection with bubble formations and
the creation of cosmic strings during the inflationary ¢80556-282(199)50308-1
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In the scenario of the early universe, the Higgs mecha- We start with the Lagrangian for the supersymmetric
nism has been considered to be one of the possible candi¥ambu-Jona-Lasinio model in de Sitter space expressed in
dates in explaining the onset of the inflation era. At the beterms of component fields of the superfie[@3:
ginning of the inflation era, it is assumed that the grand
unified theory phase is broken down to the quantum chromo- L= —Vﬂ¢TVM¢—p2¢T¢—V“¢CTVM¢C
dynamics and electroweak theory phase through the Higgs
mechanism. In this connection it is interesting to note that 2 ot e T . 2
the Higgs fields may be composed of some fundamental fer- —pPPTT YV o tiysm)y— @
mions as in the technicolor model and to see the conse-
quence of this idea in the scenario of inflation. On the otheiwhere we have kept only terms relevant to the leading order
hand, supersymmetry is considered to be a vital nature posn the 1N expansion. In Eq(1) ¢ and i refer to the scalar
sessed by the fundamental unified theory and, hence, théhd spinor component fields of the superfield, respectively,
Incorporation of supersymmetry in composite Higgs model§s the number of components of these fiellis, the covari-
seems to be of principal importance. Under these circumz . qerivative A the four-fermion coupling constant, apd
stances, it is natural for us to consider a supersymmetri e auxiliary s’calar field withy?= o2+ 2. We introdu’ce an
composite Higgs model in the early stage of the universe angdditional termdL composed of nonminimal gravitational

to see whether any remarkable effects are drawn during thterms and a soft supersvmmetrv breaking term to the above
inflation era. For simplicity we adopt the Nambu-Jona- Persy y 9

Lasinio (NJL) model[1] as a prototype of the composite -29rangian(i):

Higgs model in the present communication. _ F. of o A2/ 4t ot e
In the inflation era the quantum effect of gravitation is of OL=~&RAG—EHRGT AN DI T 478, (2)
whereR is the space-time curvature, agg, &, andA are

minor importance, while the external gravitational field is
non-negligible. Hence, we are naturally led to the SUpersyméoupling parameters. We assume that the témexisted
already when the inflation era started.

metric NJL model in curved space. Dealing with the com-
The effective potential for the auxiliary field is calcu-

posite Higgs fields is essentially nonperturbative and does
not accept approximate treatments. Accordingly, we try tqated in the leading order of theN/expansion such th§6]

solve the problem rigorously working in a specific space-

time, de Sitter space, which possesses a maximal symmetry. 2 p 2

de Sitter space is suitable for describing the inflationary uni-  v(p)= p—+if ds Tr S(x,x;s)+ 2i f” dtG(x,x:t),

verse. As a nonperturbative method, we rely on thé éx- 2\ 0 0

pansion technique. ()
The four-fermion interaction modévhich is the basis of .

the NJL model in de Sitter space has been discussed by'nereS(x.y;s) andG(x,y;t) represent the fermion and bo-

several author2—5] and is found to reveal the restoration of SON Propagator in the coordinate space with neaed \/f

the broken chiral symmetry for increasing curvature as deSPectively. The effective potentied) is obtained by taking

second-order phase transition. The supersymmetric versidh€ Short-distance limiy—x, once the full expressions of

of the NJL model in curved space was considered by Buchthe€se propagators are found in de Sitter space.

binder, Inagaki, and Odintsof6] in the weak curvature The boson propagator in de Sitter space is well known

limit. They found that the chiral symmetry is broken as thel8—12 and is given for arbitrary dimensidn by

curvature increases. Their result is in contrast with the result

in the nonsupersymmetric NJL model. On the other hand, the r>=® TI'(ay)l(a-)

supersymmetric NJL model in the flat space-time has been Glxyit)=—i (4m)P2 T(D/2)
investigated by several authdrg| in the context of dynami-
cal chiral symmetry breaking. X ,Fqi(a,,a_,D/2;1-2), 4
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with a.=[D—1+(D—1)>—4tr?]/2. Here z=0c?/(2r?) I I
with o the geodesic distance amdthe radius of de Sitter

space which is related to the conventional Hubble parameter

such thatr=1/H. The scalar propagator for Lagrangi#h

+ 8L is obtained simply by replacingby t+ ¢R+ A2 with Vi
é=¢,=¢, and R=D(D—1)/r? where we have take®,

=¢, for simplicity. The fermion propagator is given by \/
(13,14

S(x,y;8)=(A(X,y;8) + B(x,y;s)0., ¥)U, 5

2 2

p p

FIG. 1. Typical behaviors | and Il of the effective potential.

where
_ 2 1 1 tanharsr
Aryis) =i S H@TE) V(o= gt o pdSS(Z+SZr2 o
VS P T(D2+1) mrJo
1 2
X+\1—-2z,F(a,a*,D/2+1;1-2), (6) _ﬁf: dtv cothmrv, (10

anda=D/2+isr andU is the matrix composed of the Dirac

matrices. We do not present the explicit expression of thgvhere we have set 't]=4 (we adopt the reducible repre-
invariant functionB(x,y;s), although it is known analyti- sentation of the Clifford algebra of Dirac matrices to afford
cally. The reason is that we do not need the explicit expresthe existence ofys). It is important to note here that the
sion of this function, since the second term on the right-han@ivergence present in both expressi¢8isand(9) cancel out
side of Eq.(5) disappears for vanishing distance. We find forin the effective potential10). The origin of this cancellation
small geodesic distance~0 that may be traced back to the supersymmetry of our model.

The gap equation is given b
Tr S(x,X;s)=lim A(x,y;s)Tr U gap €q I Y

z—0

_ L 1 far (1, ,\tanhwpr
=Tr[1]im:)A(x,y;s), 7 Vip) =5tz e ot
with the normalization TU=Tr[1]. Equipped with these —Jp?r?+6¢—1coth(mp?r?+6,—1)|=0,
propagators for bosons and fermions, we are now ready to
calculate the effective potenti&) in an exact form. (11

In order to explain our idea in a transparent way, we

mainly work in 3 space-time dimensions and give a briefyyhere byv’(p2) we mean the differentiation of the effective
comment on the full extension to 4 dimensions. We use gotential with respect tp2. Just by observing the left-hand
well-known formula which is found in any mathematical gige of the gap equatiofL1), we find that it is a function
table(e.g.,[15j) to rewrite the boson propagator and find for only of pr with parametersrr/\ and¢. Thus the solutiopr
small geodesic distance-0, of this gap equation is completely specified by two param-
) _ eterswrr/\ and £, respectively. This fact suggests that the
e ' 12 phase diagram of the model will be given on a plane speci-
Gy = T Ty L CONAv+O(Z), (8 oy by these two parameters.
The direct observation of Eq11) shows that it has at

where we have defined= \tr2+6{—1 and{=¢+A2r2/6.  most two solutions fopr and so the shape of the effective
Note here that we are calculating the boson propagator fdpotential (10) is of three types: the symmetric type S, and
LagrangianC+ 5£. The fermion propagator at vanishing dis- type I and Il which are shown in Fig. 1. The phase diagram

tance in 3 dimensions is obtained in a similar way. Using the?f the model is given by the numerical analysis of the effec-
relation (7), we have tive potential(10) and the gap equatiofil), and is given in

Fig. 2. The region above the dashed line and the right half of
is the solid line in Fig. 2 represents a broken phase with the
effective potential of the shape Il given in Fig. 1. The small
region between the solid line and the dashed line in Fig. 2
corresponds to a broken phase with the effective potential of

TrS(x,Xx;8)=Tr[1]

8mrzY? 4mr

% }Jrszrz tanhwsuo(zuz)l_ (9) the shape I in Fig. 1. The region below the whole solid line
4 represents a symmetric phase where the shape of the effec-
tive potential is of the single-well type S.
Substituting propagator8) and (9) into effective potential The boundaries which separate the above three phases are
(3), we find determined as follows: The dashed line and the right half of
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FIG. 2. The phase diagram on the parameter plané and FIG. 3. Typical trajectories for varyingwith A and\ fixed, (a)

7r/\. The point denoted by C is the branching point where AN/7=22.3; (h)AN/7=12.0; (c) AN/7=3.2. Here¢ is fixed so
(7N, 0) = (74 ,L,) with 5, =0.083063 and;, =0.290138. that £=1/8.

the solid line constitute the boundary of the region charachejow ¢=1/4 which is the value of¢ corresponding to

terized by the potential of the shape Il. The boundary is;r/)\ =0, the effective potential stays in the type S ras

determined by the condition increases and, hence, the chiral symmetry is presdiieds
V'(0)=0 12 is no phase transitignIf the parametek is kept in the re-

' gion 1/4<¢<(, , the effective potential changes its shape
from type | to type S as increases. Hence, the broken chiral
symmetry is restored as increases through the first-order
wr o phase transition. If the parametéris kept above/, , the
~ * 7~ V6{—1lcothmy6,—1=0. (13)  effective potential changes its shape from type Il to type S

and so the transition is of the second order. Thus, in the case

The condition for the line separating the phases of type | an#vith A=0 the chiral symmetry restoration occurs as the uni-
type S is given by/(p, ) =0 wherep, =maxp; ,p,} with p; verse evolves. This situation reflects the fact that the non-
and p, two solutions of the gap equatidd). minimal gravitational coupling terms, which break the super-
The branching point C in Fig. 2 is of special interest. It is Symmetry that protects the chiral symmetry for any value of
a critical point which divides the broken phase into type IA andr, are effective only at large curvature. It is also inter-
and type II. At the branching point C, the following condi- €sting to examine the pattern of the phase transitions when

The above equation reduces to

tions are found to be satisfied simultaneously: the parametet is changed withr and\ fixed. In this case
we easily conclude that the chiral symmetry is broken by
V'(0)=0, V"(0)=0. (14 increasing ¢ through the first order phase transition for
- ) o ) 7r/IN<n, while the transition is of the second order for
The condition(14) is explicitly given by Eq.(13) and arIN> 7, .
) We next focus our attention on the role of the soft super-
1 ™ 1 cothm6{—1 ~0. (15 symmetry breaking terms. Here we assume the conformal

12+ 2sinfm6i—1  2m\6(—-1 gravitational coupling in 3 dimension, i.&=1/8, for sim-
plicity. This assumption is not essential for discussions in the

From Eqg. (15 we find that /=0.290138&¢,) at the following as long ast<1/4. In Fig. 3 we show trajcetories
branching point C. By substituting this value fgrin Eq.  on the phase diagram as the radiuacreases witth and\
(13, we obtain wr/A=0.083063E& 7, ) at the branching fixed[see dot-dashed linég)—(c) in Fig. 3]. The trajectories
point C. are specified by the equatiaf=1/8+ (AN/m)?5/6 with 7

Now let us discuss the time-evolution of the chiral struc-=zr/\ for each value ofA\N/7. Increasing the radius
ture of the model assuming that the inflationary era is wellalong the curvda), one experiences a first-order phase tran-
described by the effective potential in de Sitter space. It isition and along the curvé) a second-order one. The criti-
natural to assume that the curvature slowly decreasdés-( cal case is shown by the curyb). These curves show that
creasep as the universe evolves. First, let us consider thehe chiral symmetry breaking can occur in the model with
case where the soft supersymmetry breaking term is not irthe soft supersymmetry breaking terms when the radius
cluded, i.e.A=0. In this case it is easily seen in Fig. 2 that increases or when the curvature of the universe decreases
we move from left to right by increasing radiuswith  during the inflation. By observing the behaviors of these
(=€) and \ fixed. By direct observation of the gap equa- curves, we find that the types of the phase transitions are
tion, one can easily show that, if the paramegeis kept classified as follows: AN/ 7>« (=29.5/¢, —1/8=12.0)
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is satisfied, the phase transition is of the first order. The casgravitational constant and is the line density of the cosmic
1<AN w<a corresponds to the second-order phase transistring[17]. This condition sets a constraint on our model and
tion, and the phase transition does not occukiff 7<<1is it is an interesting problem to investigate whether the condi-
satisfied. tion is satisfied in the model. In order to apply our model to
In summary we have investigated the supersymmetrix more realistic inflationary scenario, we need to deal with
NJL model with the nonminimal gravitational coupling terms the model in 4 dimensions. At the moment we have found
and soft supersymmetry breaking terms in de Sitter spacnat the phase structure in 4 dimensions is very similar to that
The phase structure is completely clarified in the model of 3, 3 gimensions. The expression of the effective potential in

dimensions. We have found that both the nonminimal graviy gimensions is rather cumbersome and the detailed analysis
tational terms and the soft supersymmetry breaking terms il in progress

lead to the phase transition phenomena as radinsreases
or the curvature of the universe decreases. These two terms
work in different ways. The soft supersymmetry breaking

Another comment is directed to the possibility of creation
an open universe in our model. Inflation models for an
open universe have been investigated by using a bounce so-
fution for a bubble formatio18]. The trajectory(a) in Fig.

indicates that bubble nucleations may occur in the region 1.
t is worthy to investigate whether our model can provide a
uccessful model for an open universe or not.

decreases, while the nonminimal gravitational terms lead t
the restoration of the chiral symmetry. The extension of ouy
work to the 4 dimensional case is straightforward althoug
we have to rely on the full numerical estimates. The result o
the analysis will be presented elsewhere. The authors would like to thank Roberto Camporesi, At-
The cosmological consequences of the phase transitiormushi Higuchi, Tomohiro Inagaki and Misao Sasaki for en-
found here seems to be quite interesting. A production ofightening discussions and useful correspondences. Two of
cosmic strings is expected because thEl)-symmetry is  the authors(T. M. and K. Y) are indebted to Monbusho
broken in the model. The formation of topological defects inFund (Grant-in-Aid for Scientific ResearciC) from the
the inflationary universe has been studied in many referencedinistry of Education, Science and Culture with contract
(e.g.,[16)). It is well known that the cosmic strings are con- numbers 08640377 and 09740203, respectjvelyfinancial
strained observationally a8u=<®(10 °) where G is the  support.
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