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Curvature-induced phase transitions in the inflationary universe:
Supersymmetric Nambu-Jona-Lasinio model in de Sitter spacetime
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The phase structure associated with chiral symmetry is thoroughly investigated in de Sitter spacetime in the
supersymmetric Nambu—Jona-Lasinio model with supersymmetry breaking terms. The argument is given in
the three and four space-time dimensions in the leading order of khexgansion and it is shown that the
phase characteristics of the chiral symmetry is determined by the curvature of de Sitter spacetime. It is found
that the symmetry breaking takes place as the first order as well as second order phase transition depending on
the choice of the coupling constant and the parameter associated with the supersymmetry breaking term. The
critical curves expressing the phase boundary are obtained. We also discuss the model in the context of the
chaotic inflation scenario where topological defe@issmic stringsdevelop during inflation.

PACS numbgs): 04.62+v, 11.30.Na, 11.30.Rd, 98.80.Cq

[. INTRODUCTION by acquiring its mass term forces supersymmetry to make

balance so that the fermion mass is generated dynamically.

In the scenario of the early universe it is understood that The supersymmetric NJL model with soft supersymmetry

the grand unified theory phase is broken down to the phasereaking is useful to study the mechanism of the dynamical
of quantum chromodynamics and electroweak theonghiral symmetry breaking within the framework of super-

through the Higgs mechanism. While Higgs fields are norSymmetry. If we take the model seriously as a prototype of
mally regarded as elementary fields, it is of interest to conthe unified field theory, it is natural to extend the argument to

sider a possibility that the Higgs fields may be composed otake into accou_nt cwcumstances_ of the finite .temperature

some fundamental fermions as in the technicolor model anéf5] @hd spacetime-curvature as in the early univg@ses].

to see the consequence of this idea in the scenario of the At the inflation era the quantum effect of the gravitation is

early universe. On the other hand supersymmetry is supr minor importance while the external gravitational field is
on-negligible. Hence we are naturally led to the supersym-

posed to be a vital nature possessed by the fundamental u.'ﬂ']etric NJL model in curved space. Dealing with the com-

e Hi dels | incinally i tant. Und rE)osite Higgs fields is essentially nonperturbative and does
composite Higgs models 1S principally important. Under,, accept approximate treatments. Accordingly we try to
these cw_cumstancgs it is natural for us to consider a SUPeLyive the problem rigorously working in a specific space-
symmetric composite Higgs model in the early stage of thgme the de Sitter space, which possesses a maximal sym-

universe and to see whether any remarkable effects argetry. The de Sitter space is suitable for describing the in-

drawn during the inflation era. flationary universe. As a nonperturbative method we rely on
The Nambu—Jona-LasinidNJL) model is a useful proto-  the 1N expansion technique.
type model to investigate the mechanism of the dynamical The four-fermion interaction modéWhich is the basis of
symmetry breakingl]. In many composite Higgs models the the NJL model in de Sitter space has been discussed by
NJL-type Lagrangian is employed to realize the dynamicakeveral authorf9—12] and is found to reveal the restoration
Higgs mechanism. From the standpoint of exploring the uniof the broken chiral symmetry for increasing curvature as a
fied field theory of elementary particles it may be of interestsecond order phase transition. The supersymmetric version
to investigate a possibility of a supersymmetric version ofof the NJL model in curved space was considered by Buch-
the NJL model. Unfortunately, however, in the supersym-binder, Inagaki, and Odintso{8] in the weak curvature
metric version of the NJL model the chiral symmetry islimit. They found that the chiral symmetry is broken as the
strongly protected to keep the boson-fermion symmetry andurvature increases. Their result is in contrast with the result
hence the dynamical chiral symmetry breaking does not taki the nonsupersymmetric NJL model. On the other hand the
place[2]. If a soft supersymmetry breaking term is added tosupersymmetric NJL model in the flat space-time has been
the supersymmetric NJL Lagrangian, the dynamical breakinvestigated by several authdi| in the context of dynami-
down of the chiral symmetry is brought about for sufficiently cal chiral symmetry breaking.
large supersymmetry breaking parametef3]. The reason In the present paper we investigate the chiral symmetry
for this is simple: The large\ implies the large effective breaking phenomena in the supersymmetric NJL model in de
mass of the scalar components of the superfields so th&itter spacetime induced by the varying curvature. The situ-
quantum effects due to the scalar components get suppressation is considered to be suitable to simulate the phase tran-
compared with that of the spinor components. Thus thesition during the inflationary period. In the inflationary pe-
model becomes closer to the original NJL model which al-riod the universe expands rapidly with increasing speed. This
lows the dynamical fermion mass generation. Stating thgghenomenon is often called the de Sitter expansion. Many
same substance in a different way we realize that the bosanvestigations on quantum phenomena in de Sitter spacetime
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have been performed motivated by the inflationary paradigmwe evaluate the effective potential in de Sitter spacetime. We
The present authors have recently investigated the chiralonsider the following Lagrangian for the supersymmetric
symmetry breaking in the supersymmetric NJL model in deNJL model expressed in terms of the component fields of
Sitter spacetime in Refl6]. In Ref. [6] we have mainly superfieldd8]:
worked in the case of three spacetime dimensions. In the
present paper we extend the previous investigation to the £=—V*¢'V,¢—p°¢'¢d—V 4TV, ¢~ p2¢T¢°
model of four spacetime dimensions, and discuss the cosmo- - N
logical consequence of the symmetry breaking phenomenon. —y(V+p)p— =—p2, (2.1

This paper is organized as follows: In Sec. Il we describe 2\

our model of the supersymmetric NJL model in de S'tterwhereN is the number of components of boson fieddand

spacetime. Here formulas to obtain effective potentials in d‘?ermion field , respectively) is the four-fermion coupling

Sitter spacetime in the 1/N expansion method is described. IQonstant ang is the auxiliary field. Note that in Eq2.1)

. . : n<5°‘nly relevant terms in the leading order of thé&l ¥xpansion
D=3. The results in Sec. Ill partially overlap the ones N re exhibited.

Ref.[6]. We review the phase structure of the chiral symme- Since the supersymmetry of the model protects the chiral

try because the cage= 3 is very instructive for considering £ Kindo ; he followi )
the caseD=4. The cas® =4 is investigated in Sec. IV. In ;)érrgr;ne]tr:]yetsrgrté;ek?n;]ni{ﬁegr,nvs\/-e introduce the following su

Sec. V we consider our model in the context of the chaoti
inflation and discuss the possible formation of cosmic strings  5£=—A2¢"¢p—A2¢°Tp°— £,RPTp— £,RPT ¢,
during the inflation. Section VI is devoted to the summary (2.2
and discussions. In this paper we use the ufitskg=c
=1, and adopt the convention-(+ + +) for metric and
curvature tensorgl3].

whereR is the spacetime curvature, add, &,, andA are
coupling parameters, respectively.

Il. SUPERSYMMETRIC NAMBU —JONA-LASINIO MODEL B. Calculation of effective potential

IN de SITTER SPACE In this subsection we describe the effective potential in
curved space. Our strategy is based on theedpansion and
we obtain the effective potential in the leading order of the

In this section we first summarize the basic ingredients oexpansion. The partition function for the Lagrangiah
the supersymmetric NJL model in curved spacetime and ther 5L in D spacetime dimension is given by

A. Lagrangian for supersymmetric NJL

_ — N
Z=N f Dpwm%wwexp[i J deJ—_g[ ¢ (VEV = pT) ¢+ ¢ (VAV = p3) °— (Y +p) Y= ngH,

(2.3
up to the normalization constant, whese and p, are defined by
pi=p*+ A2+ ER, (2.9
with j=1,2. Integrating over, ¢°, , andy, we find
N
zZ= f Dp[dervm—pi)]—“[de(V“VM—p§>]—N[dew+p>]Nexp[i f dDX\/‘Q(‘ﬁPZH
= i | dPxy N 2 Inde{V#V 2_A? Inde{(V#V 2_A?
= | Dpexpi XV=0| = 57" | “NInde(V*V,—p"=A"= 5 R) —NInde(VAV ,— p" = A"= &R)
+NInde(V+p)|. (2.5
The effective action for larg®l is written as
1
I'lp]=Serdp]+0O N/ (2.6)

and the effective potentidl(p) in the leading order of the W/ expansion can be explicitly calculated such that
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Set p= consf
V(p)=— eT

de(V+p) i de(V#V,—p*~A*- &R) i de( V4V ,— p?— A%— £,R)
1N 1n
det(v) de(V*V,—A*=&R) de( V4V ,,— A= &R)

pz
5 _PT
fd T ( 2x)
1 p?
=—5“d0x\/—g(—ﬁ) H{TrIn(Y+p)=Trin(Y)}+i{Trin(0d—p?— A2— £,R)—Trin(O—A2—£,R)}

+i{TrIn(D—pz—Az—§2R)—Trln(D—A2—§2R)}}, (2.7)

where() is the spacetime volume and denotesv#V , . The effective potential2.7) is normalized so tha¥(0)=0. Equation
(2.7 may be rewritten in the form

V(p)——+|sttr(x|(Y7+s) l|x>+|f dt(x|(O0-t—A%2—&R) l|x>+|J dt(x|(O-t—A2—£R) " Yx). (2.8

It is important to note that the last three terms on the right-The next task is to write down the fermion and the boson
hand side of Eq(2.8) are related to the massive boson andpropagators in de Sitter spacetime.
fermion propagatorS(x,y;s) andG(x,y;t). If we define the

functions,S(x,y;s) andG(x,y;t), which satisfy C. Boson and fermion propagators in de Sitter spacetime
5O (x,y) In this subsection we briefly review the boson and fer-
(V+s)S(x,y;s)= iy (2.9 mion propagators in de Sitter spacetime. The de Sitter space-
V=9g(x) time is defined as the maximally symmetric curved space-
time. The quantum field theory in de Sitter spacetime has
5P (x,y) been studied extensively and the propagator for scalar fields
(D—t)G(x,y;t)zﬁ, (210 is well known [14—1§. The scalar propagator with mass
9 squared in the D dimensional de Sitter spacetime is explic-
respectively, it is easy to find the relationship itly written as
X,y;s)=(x|(V+s) "1y}, (2.11 ~ r27P T(agl(by
S(x,y (x|( ly) G(x,y;t)=—i mP2  T(cy oF1(as,bs,Cs;1—12),
G(x,y;t)=(x[(O=1)~"y), (212 (2.19
by making use of the following equality: whereI'(a) is the gamma faction,F,(a,b,c;1—2) is the
hypergeometric function, and
f dPx\/—g(x)[x)(x| =1, (2.13 1
as=§(D—1+\/(D—1)2—4tr2), (2.17)
P (xy)
< | >_ (2-14> 1
V=900 be=5(D~1-\(D-1)7-4tr),
Thus the calculation of the effective potential in the leading (2.18
order of the 1IN expansion reduces to the evaluation of the
propagators in the de Sitter spacetime, D
Cs= E, (2.19)
\% ——+| dsTrS(x,X;s
() f Sx.x:s) with
. P2 . 2 0'2 1 > >
T dtG(X,x;t+ A+ §R) 2=57, 02=5(x—y)2. (2.20

+i fpzdtG(x,x;tJrAer &R). (2.15 Note thata_is in proportion to the geoplesic distance between
the two pointsx andy, andr is the radius of de Sitter space,
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which is related to the Hubble parameter bi=1/r. It I'(a)I'(b)
should be emphasized that the nonminimal coupling term Wzﬂ(a,b.c:l—l)
gives effective masB (D —1)&/r?, whereR=D(D—1)/r2.
The fermion propagator is written §%9,20 =T(a+b—c)z* 2 ",F,(c—a,c—b,c—a—b+1;2)
I'@)I'(b)I'(c—a—b)
I'(c—a)I'(c—hb)

where U is the matrices composed of the Dirac matrices and (3.2

S(x,y;8) = (A(X,y;8)+B(x,y;s)0,,¥)U, (2.2]) ,Fi(a,b,a+b—c+1:2).

5120 T(a)T(a’) With the use of this formula the boson propagator is written
f f

A(x,y;s)=i Vi-z as
(x.y:) (4m)P2  T'(cy)
X ,Fi(as,af ,cr;1-2), (2.22 . :__i '_ 1
G(x,y;t) 8Wr21/2+4wrvcoth7rv+(’)(z 2, (3.3
where
where we definedv=\tr’—1. Analytic continuation is
D D needed for <1. On the other hand foz—0 Eq. (2.22
af=§+isr, cf:§+1. (2.23  reduces to
We do not present the explicit expression of the invariant p(x,y:s)= Lﬂz_ i(l 2.2 tanh—wsr+o(zllz).
function B(x,y;s) because it is irrelevant to our purpose of 8z 4mr\4 ST
calculating the effective potential. In fact we find (3.9
Tr S(x,x;s) = imA(X,y;s) TrU Inserting Egs(3.3) and (3.4) into Eq. (3.1), then the ef-
70 fective potential turns out to be
=Tr[1]ii_r2A(x,y;s), (2.29 . pz+ 1 pd 1+ , ,|tanhasr
A TN M R T
with the normalization lim_,TrU=Tr[1]. . . 1 [a%+¢R+p2
Now we are ready to calculate the effective potential “or | dtv cothmv, (3.5
A+ ¢R

(2.15. It is instructive to investigate the cafe=3 [6], be-

cause the effective potential can be written in terms of el- 1 )
ementary functions. We first review the phase structure oyvhere we have set 't |=4." Note that the divergent terms
the casd =3 in the next section. and then the caxe 4 is  cancel each other, which would originate from the supersym-

studied in Sec. IV. metry. _ X
The gap equatioryV/d(p“) =0, reads

Ill. ANALYSIS IN 3 DIMENSIONS

ar (1, tanhmpr
, —+| =+ ———
A. Gap equation N 4 pr
Fol_lowing the_ p_revipus argument, the expression for the _ Wcothwm= 0, (3.6
effective potential is given by
p? o where we defined
V(p)= ﬁﬂf dsTrS(x,X;s)
0
1
— T A2.2
A2+ R4 g2 §—§+6A re. 3.7
+2i dtG(x,x;t), (3.2
A2+ ¢R

Note that the solution of this gap equation is completely

where we set, = &= ¢ for simplicity. specified by two parf'imetegsand wr/\. This means_tha_t the

In order to write down the effective potential we considerPhase structure derived from the effective potential is com-
the coincidence limit of the propagator, [mG(x,y:t). In pletely specified in the plane of these two parameters.
the coincidence limit, the propagator diverges in general.
Then we adopt the point spliting method and consider
G(x,y;t) aroundz=0. For that purpose we use the math- !For D=3 we adopt the reducible representation of the Clifford
ematical formulale.g.,[21]) algebra of Dirac matrices in order to guarantee the existengg.of

044015-4



CURVATURE-INDUCED PHASE TRANSITIONS IN THE . .. PHYSICAL REVIEW D 61 044015

0.30

0.28 |
e Fle
<

0.26 |
024 Lo i

10° 102 10! 1

oA’
FIG. 1. Phase structure of the model =3 on the r/\,{) FIG. 2. Typical trajectories for varying with AN/ fixed on

plane. In the regions labeled by “S,” “B,” and “F,” the shape of the (zr/\,¢) plane. We chosA\/7=100, 15.9, and 2 for straight
the effective potential is of type of unbroken symmetry, of secondjines, respectively.

order phase transition, and of first order phase transition, respec-

tively. The square denotes the branching point. )
From Eg. (3.1) we find that{=0.290138&:¢,) at the

B. Phase structure branching point. By substituting this value férin Eq. (3.9

W t the tvpical sh f focti tential inVe obtainzr/A=0.08306 at the branching point.
€ present the typical shape ot our eflective potentialin ;00 \e have seen the phase structure of our effective

the caseD =3 in Fig. 1(see alsd6]). In the region labeled . ; . : )
e . . potential, we now discuss the time-evolution of the chiral

by “S,” the effective potential behaves so that the symmetry : . . . .
symmetry assuming an inflation background. This consider-

is unbroken. In the region labeled by “B,” the symmetry is 7. . . .
broken through the second order phase transtion. Finally igtion will make sense if the Hubble parameteadius of de

the region labeled by “F,” the symmetry is broken through Sitter spacetimechanges slowly and the effective potential
the first order phase transtion. The boundaries in Fig. 1in the inflation phase is well described by that in de Sitter
which separate the phases, are obtained by direct observati§Racetime found above. As we will see in Sec. V, the Hubble

of numetical analysis of the effective potential. Analytically Parameter slowly decreases as the universe evolves during
the condition is described as follows. The solid line in Fig. 1the chaotic inflation in actual. And the curvature of de Sitter

is found by solving spacetime slowly decreasésdiusr increases
First let us consider the cage=0. In this cas€ is equal
a ~0 3.9 to ¢. If the coupling constank and ¢ are fixed, we move
a(p?) p:0_ ’ ' from left to right by increasing in Fig. 1. This indicates that
the chiral symmetry will be ultimately restored for suffi-
which is explicitly written as ciently larger. The initial situation depends on the value of
&. By direct observation of the gap equation one can easily
i show that if the parametef is kept below 1/4 the effective
T+ Z—\/Gg—lcothm/Gg—l:O. (3.9  potential stays in the region “S” in the limit ofrr/A=0.

Thus the phase transition does not occur ferl/4. On the
» o other hand the effective potential is in a broken phase of type
On the other hand, the condition for the dashed line is ratherp or “B” if we take the value of ¢ above 1/4. Then the

complicated. The ~ condition ISV(p*)2=O, where p.  phase restoration occurs as the curvature decreases.
=maxpy,p,} When the equationV/d(p°)=0 has two dif- Second we consider the case 0 andA#0. In this case
ferent solutionsp, andpy. o _ ¢{=A%r?%6. If the coupling constant and ¢ are fixed, then
_The branching point in Fig. 1 is of special interest. It is a,q yrajectory for varying on the ¢, 7r/\) plane will be the
critical point which divides the broken phase into type “F one as shown in Fig. 2. By increasing the radiuse move

and type "B.” At the branching point C the following con- o the bottom to the top along the straight line. For each

ditions are found to be satisfied simultaneously: line, the value ofAX/ is fixed (8) AN/7r= 100, (b) AN/
) =15.9, andc) AN/7=2. Along the curve fod\/7=100 a
N -0 v -0 (3.10 first order phase transition occurs, however, a second order
é’(pz) p=0 ’ (9(p7)z =0 ' transition occurs forAN/7T=2. The critical case iAN/m
=15.9. ForAN/ <1 the phase transition does not occur.
The conditions are explicitly given respectively by Eg.9) Thus in the modeA #0 and£=0, the phase of the sym-
and metry is in the symmetric phase first, and it is broken as the
curvature of the universe decreases as lon§xsr=1. On
5 — the other hand the symmetry is ultimately unbroken in the
-7 4 ! _ Cothmy6e—1 0. caseA=0. This case is not relevant to our conventional idea
12 2 sinkmy67—1 2m\6{—1 of symmetry breaking. Thus we focus our attention to the

(3.11) caseA#0 andé=0 in the following arguments.
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IV. ANALYSIS IN 4 DIMENSIONS where we defined
A. Gap equation

. . . fo t A?
In this section we consider the cag&e=4. From Eq. v=\lz" g2 4.3

(2.15 or Eq.(3.1) the gap equationjV/d(p?)=0, reads

L TrS(XX:p) + 2IG (XX pP+ A2 =0, (4.1) While the functionA of Eq. (2.22 is

2N 2p
. 2 . .
Here we consider the cade# 0 andé; = £,=0, because this A(X.y:S)= IsH F(2+'S/H)F(2_'S/H)\/ﬁ
choice of parameter is relevant to the conventional idea of o (4m)°? r'e3)
symmetry breaking phenomena as described in Sec. lll. ) )
The boson propagatofg.16) in the caseD =4 reduce t6 X oF1(2+is/H,2—is/H,3;1-2). (4.4
_ —iH? T (3/2+ »)I'(3/2— v) Since the propagators diverges in the coincidence limit,
Gxyt)= (4m)? T2 z—0, we adopt the point splitting regularization by keeping

z small but finite. In this case it is useful to use the math-
X oF1(3/2+v,3[12—v,2;1-2), (4.2 ematical formulale.g.,[21])

I'(a)I'(b)

W e a)n(b)n
I'(a+b—-1)2

1 ©
1(a,b,a+ b—l;l—z)=zJr(a—l)(b—l)nzo n(!(n—+1)!{ln(z)+ Y(a+n)+y(b+n)

—y(n+1)—y(n+2)}2", (4.5

where @),=I"(a+n)/T'(a) and ¢(x) is the polygamma function. With the use of this formula the gap equation reduces to

(2mIH)? 1-1-z
N * z

2+iplH) (2—i
nl(n+1)!

H
¢! )”{In(2)+ Y(2+ip/H+n)+g(2—ip/H+n)

—\/1—z(1+p2/H2);0(

N+ D)= g2} (24 pHEH AN S (324 )n(3/2= )y

n'(n+1)!

X{In(z) + (3124 v+n)+ f(3/2— v+n) — p(n+ 1) — y(n+2)}z2"=0. (4.6)

The divergent terms of ordeP(z '), which appears in the B. Phase structure

boson and fermion propagators, cancel each other in the ef- Next we consider the phase structure of the model by
feCtiVe pOtential. Th|S WOU|d be tl’aced baCk to the Supersymso|ving the gap equat|0€746) Because of the Comp|exity of
metry of the theory. However the logalithmic divergent equation, an analytic approach would not be useful in the
terms O(In 2) arise in the cas® =4. Thus our theory de- caseD=4. Then we adopt numerical method by calculating
pends on the cutoff parameter. Insteadzefe introduce the equation(4.6). As the gap equation depends on the cutoff
momentum cutoff parameteY. We can show that the geo- parameter, we do not find a simple scaling relation in gap
desic distance=(x—y)?/2 is related to the momentum cut- €quation(4.6), in contrast to the cade = 3. Therefore we fix
off parameterA such thator=A ~2. Then we have the rela- the cutoff paramete = 10" GeV in the following argu-
tion ments, for simplicity.
Figure 3 shows the phase structure of the effective poten-

5 tial on the H/A,1/\A?)-plane. The curves in the figure

H @7 show the phase boundary between a symmetric phase and a
' broken phase forA=10'" GeV, 3x 10'* GeV, 10* GeV,

respectively. In the right and upper region of each curve in
Fig. 3, the effective potential behaves so that the symmetry is
unbroken. On the other hand in the left and lower region of
each curve the symmetry is broken. We discuss the type of
the broken phase, i.e., first order or second order, in the later.

2In this section we use the Hubble paraméiér= 1/r) instead of By decreasing the curvatutdecreasindgd) with the cou-
the radiusr to describe the curvature of de Sitter spacetime. pling constantsA, A, and\ fixed, we move from right to

where we used Ed2.20.
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107 ey 1.5x10°
4=10°Gev S ]

L 107 E  A=3x10"Gev o100 [
= , <
< r A=10"GeV P _ S -

: 5x10* ¢

10-1 . 1 ol— . . N,
HA? 054 055 056 057

HA!
FIG. 3. Phase boundary in the caBe=4 on the H/A,1A\A?)
plane. HereA = 10'° GeV is used. We adopted the supersymmetry
breaking parameter\=10%, 3x 10" 10" (GeV), respectively,
for each curve in the figure. The right and upper region labeled b
“S" is in a symmetric phase for each curve, while the left and
lower region labeled by “B” is in a broken symmetry.

FIG. 5. Phase boundary for the model f&r=4 on the
(H/A,1INA?) plane. Here we set =10'° GeV andA =10'° GeV.
In the narrow region between two curves labeled=bthe effective
%otential has a shape of type of first order transition. The square is
the branching point obtained from numerical calculation.

cannot recognize it in Fig. 3. Figure 5 shows the region in
left in Fig. 3. This indicates that the effective potential is in Fig. 3 under magnification for demonstration, where we
the symmetric phase initially, however, the symmetry is bro-adopted the casé = 10" GeV. In the narrow region labeled
ken asH decreases if the coupling constants larger then a by “F” the effective potential has the shape of the first order
critical value. Let us find the critical value of the coupling phase transition. For other cases=3x 10" GeV andA
constant, which depends on the supersymmetry breaking 10'4 GeV in Fig. 3, we find narrow regions of “F” in a
massA and the cutoff parametet. Taking the limitH—0  similar way. Thus the model fdd =4 has the similar phase
of Eq. (4.6), we find the following critical coupling constant strycture as the case=3.
Nert Because there appears many parameters in the Rase
5 =4 and we cannot find a good scaling relation on the con-
i _ A 1 trast to the cas® = 3. Due to this fact it is difficult to show
Ner (2m)? o nl(n+1)! the phase structure in cagg=4 clearly. As will be dis-
A2 N cussed in the next section the change of the Hubble param-
eter is rather fast in the chaotic inflation model. Then the
X|Ingxz ¢t =unt2) ) - 48 period that the the effective potential has the shape of the
first order phase transition is very short compared with the
Hubble expansion time. Then the cosmological importance
We show the critical valug, as a function ofA/A in Fig. 4.  of the first order transition is unclear at present. Therefore we
We see the expected result in the figure that the critical couenly focus on the epoch of thsecond or firgtphase tran-
pling constant ., must becomes larger as the the supersymstion in the inflationary universe and discuss other cosmo-
metry breaking masA becomes smaller. logical consequences because phase transitions in the uni-
Finally in this section we discuss the effective potential ofverse predicts topological defects in general.
type of the first order phase transition. Similar to the case
D=3 we find that the effective potential behaves so that the
phase transtion occurs through first order transition for a spe-
cific range of coupling constants. The region is small and we

2
2A2

V. EPOCH OF PHASE TRANSTION IN THE CHAOTIC
INFLATIONARY MODEL

In this section we consider a cosmological application of
our model in the chaotic inflation univer§22]. Cosmologi-

-1
10 E O cal phase transition predicts the formation of topological de-
: : fects in general. In our mod&l(1) chiral symmetry is bro-
102 | ken down and the formation of cosmic strings would be
e E A=J0YGeV predicted by the phase transition. In general topological de-
5 1 fects are harmful, as exemplified by the monopole problem
10 | and domain wall problem. However, cosmic strings have
: been studied with the motivation of the cosmic structure for-
[ mation. The observational confrontation of the cosmic string
10 scenario is still at issug23].
10? 12'1/1_1 The investigations in the present paper show that the sym-

FIG. 4. Critical coupling constank*A~2 of Eq. (4.8 as a

function of A/A.

metry breaking may occur during inflation era, which is trig-
gered by the change of the curvature of spacetime. As an
application we consider the phase transition in the context of

044015-7
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the chaotic inflation model and the formation of the cosmicas follows. The phase qf does not fix soon after the phase
strings during the inflation. If the inflation lasts sufficiently transition because of the quantum fluctuations ofgdHeeld.
long after the phase transition, the defects will be dilutedFollowing the previous investigations on curvature induced
However, if the phase transition occurs at a suitable epoch gdhase transitioi24,25,23, the phase op fixes at the time,
inflation, the dilution of the strings is not completed. Similar when the condition is satisfied

investigations were given on the basis of a simple model of

curvature induced phase transitif24,25. Following their H?=—limV(p)", (5.9
consideration we here discuss the epoch of the formation of p—0
the cosmic strings in our model during the chaotic inflation

which we may regard as the time of the string formation

era. . . . S
We assume the chaotic inflation background. To be Sloequrmg the inflation. We denote the value #(t) at this time

cific we assume that the inflation is derived by the fieid as ¢,. With the use of Eq(5.4), ¢, is written as

with the Lagrangian 2
3MPL 1 n
1 0= — 2 2I|m V(p)". (5.10
Ly==VEPV b= 5 Mm%, (5.0 M0

In the previous worK24,25 the formation of the cosmic

Here we sem= 10" GeV [25], which is the constraint from  strings during inflation was discussed to avoid observational
the amplitude of density perturbations for a successful inflagifficulties of the cosmic string scenario. They argued the

tion scenario. With the background metric, range of the model paramet@roupling constantto realize
the suitable formation of the cosmic strings. In this paper we
ds®=—dt*+a(t)*dx*, (5.2 consider the observational possibility and find the condition
that the cosmic strings are formed during the inflation with-
out complete dilution of the cosmic strings so that the cosmic
strings may exist in the universe at present time. The condi-

the equations of motion under the slow roll approximation
take the form

3H¢+m2p=0 (5.3 tion is simply given by
2 AT o MSd)253M PL> (5.11
He= 3|V||2>|_m b°, (5.9 N/

where we have assumed that the strings are formed at the
Yate of one string per horizon volume at the formation epoch.
This condition constrains the coupling constanin our

whereH=a/a is the hubble parameter, and the dot denote
(cosmic time t differentiation. The solution of inflation is

well known: model. From Eq(5.9), we have
B0 =~ P () 55 1. .. H
o : S TH -G V1-2,F1(2,2,3;1-2)
2 2
o H2 (14— pu?) _ -
a(t)=aiex;{M—2(¢i2—¢(t)2)], + (277_)2 cosmu 2F1(3/2+M13/2_M12,1_ z)=0,
PL
(5.6) (5.12
A7m? whereu=\/9/4— A%/H?, z=H?/2A?, andH is specified as
H(t)= > ¢(1), (5.7
MpL H /47Tm2¢ (5.13
= 2. .
3M3,

. 16w
R=12H?+6H= —-m’¢*(t)—2m?

Mg, Figure 6 shows the formation time of the cosmic strings
on the parameter spacey and A. Here we setA
=10'"® GeV. The result depends on the choice of cutoff pa-
rameterA. However the qualitative feature does not depend
on the choice of\. The region between the two solid curves
whereMp, is the Plank mass, and the subscript “i” denotesin Fig. 6 satisfies the conditiof®.11). The lower solid curve
the value at the initial time when the inflation started. is from the condition that the formation of the strings occurs

In this chaotic inflation model the horizon crossifdur-  at ¢,=3Mp, . While the upper solid curve comes frod
ing the inflation of the fluctuation of the wave length corre- =Mp,_/\/ﬂ. The larger coupling constamt leads to the
sponding to the present horizon size occurs @&t) earlier formation of the strings during the inflation. And the
~3Mp,. The epoch of forming cosmic string are estimatedlarger breaking parametér also leads to the earlier forma-

167
= —-m?gA(1), (5.8
MpL

044015-8
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10! —rrrr————r—rry plays a role similar to the soft supersymmetry breaking term
F s ] in the present paper. They found that the positive spacetime
[ A=107GeV ] curvature acts against chiral symmetry breaking. This result

102 k is consistent with our result. Their analysis, however, is

based on the small curvature expansion up to the linear term
in the space-time curvatur6] and they found only the
phase transition of the second order. Our finding of the first
order phase transition is considered to be a unique phenom-
enon in the strong curvature regime.

A

10?3 E

ot b 1 In the case of three-spacetime dimensions, the gap equa-
10t 10%° tion reduces to a simple equation written by elementary func-
A(GeV) tions (Sec. 1. Divergent terms cancel each other and we do

FIG. 6. Constraint on formation epoch of cosmic strings on thenOt need introduce a cqtoff parameter. AS Shown,',n Sec. I,
(N, A) plane. Here we adopted the momentum cutdif the shape of the effective potential can be specified by the
—10' GeV. The upper solid curve reflects the conditig, WO Parametersy/A and ¢, which characterizes the phase
=(4m) YM,, and the lower solid curve corresponds ¢,  Structure. This model might not have physical meaning,
=3M,, . The dashed line shows the critical coupling conshant however, it is very instructive to consider the case of four-

spacetime dimensions.

tion of the strings. Figure 6 shows this expected result. Thus N the case of four-spacetime dimensions, the gap equa-
if we make a choice of parameters in the lower region tharfion does not reduce to a simple form, which is written by the
the lower solid curve, the strings are diluted out by the in-Nypergeometric functions. We have to introduceér@men-
flation and they would not be observaBl&he dashed line, tum) cutoff parameter to regularize the theory. The analysis
which is almost overlapped with the upper solid line, shows's tedious, however, we have found that the phase structure is
the critical coupling constant for the phase transiti¢pse  Very similar to the case of three-spacetime dimensions. Simi-
also Fig. 4. Therefore the strings do not form when we makelar to the case of three-spacetime dimensions we find a nar-

a choice of parameters in the region above the dashed lingOW region in which the effective potential has a shape of
first order phase transitions. In the open inflation scenario a

bubble nucleatior(first order transition occurs during the
inflation[27]. It may be of interest to consider the possibility
In summary we have shown that the curvature of spacewhether our model works as a successful model for the open
time might be a trigger of phase transition during the infla-universe or not. However this first order phase transition
tion in a class of model of the dynamical symmetry breakingwould not work successfully, because the curvatitebble
To be specific we have investigated the phase structure of tHearameter of de Sitter spacetime changes rather fast during
supersymmetric NJL model in de Sitter spacetime. By evaluthe inflation as we have shown in Sec. V.
ating the effective potential in the leading order of thal1/ ~ We have briefly discussed a cosmological application in
expansion, we have examined the phase structure of the chpec. V. We consider the phase transition in the chaotic infla-
ral symmetry in three- and four-spacetime dimensions. Wéion background, neglecting the back-reaction from the fields
have investigated how the curvature of de Sitter spacetim@hich derives the phase transition. The strong coupling con-
changes the phase structure, and we have found that the syftant\ leads to the early phase transition and the subsequent
metry breaking takes place as the first order as well as sed?flation dilute the strings. The weak coupling constant does
ond order phase transition depending on the coupling conAot lead to the phase transition during the inflation. Thus this
stant and the parameter of the supersymmetry breaking iodel may work as a model of forming the cosmic strings
both cases of three- and four-spacetime dimensions. during the inflation if we choose the parameters in a suitable
A similar model, the supersymmetric NJL model interact-range[24,25.
ing with a constant magnetic field and external gravitational
field, has been investigated by Inagaki, Odintsov and ACKNOWLEDGMENTS
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