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Curvature-induced phase transitions in the inflationary universe:
Supersymmetric Nambu–Jona-Lasinio model in de Sitter spacetime

J. Hashida, S. Mukaigawa, T. Muta, K. Ohkura, and K. Yamamoto
Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

~Received 28 June 1999; published 31 January 2000!

The phase structure associated with chiral symmetry is thoroughly investigated in de Sitter spacetime in the
supersymmetric Nambu–Jona-Lasinio model with supersymmetry breaking terms. The argument is given in
the three and four space-time dimensions in the leading order of the 1/N expansion and it is shown that the
phase characteristics of the chiral symmetry is determined by the curvature of de Sitter spacetime. It is found
that the symmetry breaking takes place as the first order as well as second order phase transition depending on
the choice of the coupling constant and the parameter associated with the supersymmetry breaking term. The
critical curves expressing the phase boundary are obtained. We also discuss the model in the context of the
chaotic inflation scenario where topological defects~cosmic strings! develop during inflation.

PACS number~s!: 04.62.1v, 11.30.Na, 11.30.Rd, 98.80.Cq
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I. INTRODUCTION

In the scenario of the early universe it is understood t
the grand unified theory phase is broken down to the ph
of quantum chromodynamics and electroweak the
through the Higgs mechanism. While Higgs fields are n
mally regarded as elementary fields, it is of interest to c
sider a possibility that the Higgs fields may be composed
some fundamental fermions as in the technicolor model
to see the consequence of this idea in the scenario of
early universe. On the other hand supersymmetry is s
posed to be a vital nature possessed by the fundamental
fied theory and hence the incorporation of supersymmetr
composite Higgs models is principally important. Und
these circumstances it is natural for us to consider a su
symmetric composite Higgs model in the early stage of
universe and to see whether any remarkable effects
drawn during the inflation era.

The Nambu–Jona-Lasinio~NJL! model is a useful proto-
type model to investigate the mechanism of the dynam
symmetry breaking@1#. In many composite Higgs models th
NJL-type Lagrangian is employed to realize the dynami
Higgs mechanism. From the standpoint of exploring the u
fied field theory of elementary particles it may be of inter
to investigate a possibility of a supersymmetric version
the NJL model. Unfortunately, however, in the supersy
metric version of the NJL model the chiral symmetry
strongly protected to keep the boson-fermion symmetry
hence the dynamical chiral symmetry breaking does not t
place@2#. If a soft supersymmetry breaking term is added
the supersymmetric NJL Lagrangian, the dynamical bre
down of the chiral symmetry is brought about for sufficien
large supersymmetry breaking parameterD @3#. The reason
for this is simple: The largeD implies the large effective
mass of the scalar components of the superfields so
quantum effects due to the scalar components get suppre
compared with that of the spinor components. Thus
model becomes closer to the original NJL model which
lows the dynamical fermion mass generation. Stating
same substance in a different way we realize that the bo
0556-2821/2000/61~4!/044015~10!/$15.00 61 0440
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by acquiring its mass term forces supersymmetry to m
balance so that the fermion mass is generated dynamica

The supersymmetric NJL model with soft supersymme
breaking is useful to study the mechanism of the dynam
chiral symmetry breaking within the framework of supe
symmetry. If we take the model seriously as a prototype
the unified field theory, it is natural to extend the argumen
take into account circumstances of the finite temperat
@4,5# and spacetime-curvature as in the early universe@6–8#.

At the inflation era the quantum effect of the gravitation
of minor importance while the external gravitational field
non-negligible. Hence we are naturally led to the supersy
metric NJL model in curved space. Dealing with the co
posite Higgs fields is essentially nonperturbative and d
not accept approximate treatments. Accordingly we try
solve the problem rigorously working in a specific spac
time, the de Sitter space, which possesses a maximal s
metry. The de Sitter space is suitable for describing the
flationary universe. As a nonperturbative method we rely
the 1/N expansion technique.

The four-fermion interaction model~which is the basis of
the NJL model! in de Sitter space has been discussed
several authors@9–12# and is found to reveal the restoratio
of the broken chiral symmetry for increasing curvature a
second order phase transition. The supersymmetric ver
of the NJL model in curved space was considered by Bu
binder, Inagaki, and Odintsov@8# in the weak curvature
limit. They found that the chiral symmetry is broken as t
curvature increases. Their result is in contrast with the re
in the nonsupersymmetric NJL model. On the other hand
supersymmetric NJL model in the flat space-time has b
investigated by several authors@2# in the context of dynami-
cal chiral symmetry breaking.

In the present paper we investigate the chiral symme
breaking phenomena in the supersymmetric NJL model in
Sitter spacetime induced by the varying curvature. The s
ation is considered to be suitable to simulate the phase t
sition during the inflationary period. In the inflationary p
riod the universe expands rapidly with increasing speed. T
phenomenon is often called the de Sitter expansion. M
investigations on quantum phenomena in de Sitter space
©2000 The American Physical Society15-1
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have been performed motivated by the inflationary paradi
The present authors have recently investigated the ch
symmetry breaking in the supersymmetric NJL model in
Sitter spacetime in Ref.@6#. In Ref. @6# we have mainly
worked in the case of three spacetime dimensions. In
present paper we extend the previous investigation to
model of four spacetime dimensions, and discuss the cos
logical consequence of the symmetry breaking phenome

This paper is organized as follows: In Sec. II we descr
our model of the supersymmetric NJL model in de Sit
spacetime. Here formulas to obtain effective potentials in
Sitter spacetime in the 1/N expansion method is described
Sec. III we consider the case of three spacetime dimens
D53. The results in Sec. III partially overlap the ones
Ref. @6#. We review the phase structure of the chiral symm
try because the caseD53 is very instructive for considering
the caseD54. The caseD54 is investigated in Sec. IV. In
Sec. V we consider our model in the context of the chao
inflation and discuss the possible formation of cosmic stri
during the inflation. Section VI is devoted to the summa
and discussions. In this paper we use the units\5kB5c
51, and adopt the convention (2 1 1 1) for metric and
curvature tensors@13#.

II. SUPERSYMMETRIC NAMBU –JONA-LASINIO MODEL
IN de SITTER SPACE

A. Lagrangian for supersymmetric NJL

In this section we first summarize the basic ingredients
the supersymmetric NJL model in curved spacetime and t
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we evaluate the effective potential in de Sitter spacetime.
consider the following Lagrangian for the supersymmet
NJL model expressed in terms of the component fields
superfields@8#:

L52¹mf†¹mf2r2f†f2¹mfc†¹mfc2r2fc†fc

2c̄~¹” 1r!c2
N

2l
r2, ~2.1!

whereN is the number of components of boson fieldf and
fermion fieldc, respectively,l is the four-fermion coupling
constant, andr is the auxiliary field. Note that in Eq.~2.1!
only relevant terms in the leading order of the 1/N expansion
are exhibited.

Since the supersymmetry of the model protects the ch
symmetry from breaking@2#, we introduce the following su-
persymmetry breaking terms:

dL52D2f†f2D2fc†fc2j1Rf†f2j2Rfc†fc,
~2.2!

whereR is the spacetime curvature, andj1 , j2, andD are
coupling parameters, respectively.

B. Calculation of effective potential

In this subsection we describe the effective potential
curved space. Our strategy is based on the 1/N expansion and
we obtain the effective potential in the leading order of t
expansion. The partition function for the LagrangianL
1dL in D spacetime dimension is given by
Z5NE DrDfDfcDcDc̄expF i E dDxA2gH f†~¹m¹m2r1
2!f1fc†~¹m¹m2r2

2!fc2c̄~¹” 1r!c2
N

2l
r2J G ,

~2.3!

up to the normalization constant, wherer1 andr2 are defined by

r j
25r21D21j jR, ~2.4!

with j 51,2. Integrating overf, fc, c, andc̄, we find

Z5E Dr@det~¹m¹m2r1
2!#2N@det~¹m¹m2r2

2!#2N@det~¹” 1r!#NexpF i E dDxA2gS 2
N

2l
r2D G

5E Dr expF i E dDxA2gS 2
N

2l
r2D2N ln det~¹m¹m2r22D22j1R!2N ln det~¹m¹m2r22D22j2R!

1N ln det~¹” 1r!G . ~2.5!

The effective action for largeN is written as

G@r#5Se f f@r#1OS 1

ND , ~2.6!

and the effective potentialV(r) in the leading order of the 1/N expansion can be explicitly calculated such that
5-2
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V~r!52
Se f f@r5const#

V

52
1

V F E dDxA2gS 2
r2

2l D2 i ln
det~¹” 1r!

det~¹” !
1 i ln

det~¹m¹m2r22D22j1R!

det~¹m¹m2D22j1R!
1 i ln

det~¹m¹m2r22D22j2R!

det~¹m¹m2D22j2R!
G

52
1

V F E dDxA2gS 2
r2

2l D2 i $Tr ln~¹” 1r!2Tr ln~¹” !%1 i $Tr ln~h2r22D22j1R!2Tr ln~h2D22j1R!%

1 i $Tr ln~h2r22D22j2R!2Tr ln~h2D22j2R!%G , ~2.7!

whereV is the spacetime volume andh denotes¹m¹m . The effective potential~2.7! is normalized so thatV(0)50. Equation
~2.7! may be rewritten in the form

V~r!5
r2

2l
1 i E

0

r

ds tr^xu~¹” 1s!21ux&1 i E
0

r2

dt^xu~h2t2D22j1R!21ux&1 i E
0

r2

dt^xu~h2t2D22j2R!21ux&. ~2.8!
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It is important to note that the last three terms on the rig
hand side of Eq.~2.8! are related to the massive boson a
fermion propagatorsS(x,y;s) andG(x,y;t). If we define the
functions,S(x,y;s) andG(x,y;t), which satisfy

~¹” 1s!S~x,y;s!5
d (D)~x,y!

A2g~x!
, ~2.9!

~h2t !G~x,y;t !5
d (D)~x,y!

A2g~x!
, ~2.10!

respectively, it is easy to find the relationship

S~x,y;s!5^xu~¹” 1s!21uy&, ~2.11!

G~x,y;t !5^xu~h2t !21uy&, ~2.12!

by making use of the following equality:

E dDxA2g~x!ux&^xu51̂, ~2.13!

^xuy&5
d (D)~x,y!

A2g~x!
. ~2.14!

Thus the calculation of the effective potential in the lead
order of the 1/N expansion reduces to the evaluation of t
propagators in the de Sitter spacetime,

V~r!5
r2

2l
1 i E

0

r

dsTr S~x,x;s!

1 i E
0

r2

dtG~x,x;t1D21j1R!

1 i E
0

r2

dtG~x,x;t1D21j2R!. ~2.15!
04401
t-The next task is to write down the fermion and the bos
propagators in de Sitter spacetime.

C. Boson and fermion propagators in de Sitter spacetime

In this subsection we briefly review the boson and f
mion propagators in de Sitter spacetime. The de Sitter sp
time is defined as the maximally symmetric curved spa
time. The quantum field theory in de Sitter spacetime h
been studied extensively and the propagator for scalar fi
is well known @14–18#. The scalar propagator with mas
squaredt in the D dimensional de Sitter spacetime is expl
itly written as

G~x,y;t !52 i
r 22D

~4p!D/2

G~as!G~bs!

G~cs!
2F1~as,bs,cs;12z!,

~2.16!

whereG(a) is the gamma faction,2F1(a,b,c;12z) is the
hypergeometric function, and

as5
1

2
„D211A~D21!224tr 2

…, ~2.17!

bs5
1

2
„D212A~D21!224tr 2

…,

~2.18!

cs5
D

2
, ~2.19!

with

z5
s2

2r 2 , s25
1

2
~xW2yW !2. ~2.20!

Note thats is in proportion to the geodesic distance betwe
the two pointsx andy, andr is the radius of de Sitter space
5-3



rm

an

an
of

tia

e
o

th

e

ra
de
h-

en

s
m-

ely

m-

rd

HASHIDA, MUKAIGAWA, MUTA, OHKURA, AND YAMAMOTO PHYSICAL REVIEW D 61 044015
which is related to the Hubble parameter byH51/r . It
should be emphasized that the nonminimal coupling te
gives effective massD(D21)j/r 2, whereR5D(D21)/r 2.

The fermion propagator is written as@19,20#

S~x,y;s!5„A~x,y;s!1B~x,y;s!s ;mgm
…U, ~2.21!

where U is the matrices composed of the Dirac matrices

A~x,y;s!5 i
sr22D

~4p!D/2

G~af !G~af* !

G~cf !
A12z

3 2F1~af ,af* ,cf ;12z!, ~2.22!

where

af5
D

2
1 isr, cf5

D

2
11. ~2.23!

We do not present the explicit expression of the invari
function B(x,y;s) because it is irrelevant to our purpose
calculating the effective potential. In fact we find

Tr S~x,x;s!5 lim
z→0

A~x,y;s!Tr U

5Tr@1# lim
z→0

A~x,y;s!, ~2.24!

with the normalization limz→0Tr U5Tr@1#.
Now we are ready to calculate the effective poten

~2.15!. It is instructive to investigate the caseD53 @6#, be-
cause the effective potential can be written in terms of
ementary functions. We first review the phase structure
the caseD53 in the next section, and then the caseD54 is
studied in Sec. IV.

III. ANALYSIS IN 3 DIMENSIONS

A. Gap equation

Following the previous argument, the expression for
effective potential is given by

V~r!5
r2

2l
1 i E

0

r

dsTr S~x,x;s!

12i E
D21jR

D21jR1r2

dtG~x,x;t !, ~3.1!

where we setj15j25j for simplicity.
In order to write down the effective potential we consid

the coincidence limit of the propagator, limy→xG(x,y;t). In
the coincidence limit, the propagator diverges in gene
Then we adopt the point splitting method and consi
G(x,y;t) aroundz50. For that purpose we use the mat
ematical formula~e.g.,@21#!
04401
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G~a!G~b!

G~c! 2F1~a,b,c;12z!

5G~a1b2c!zc2a2b
2F1~c2a,c2b,c2a2b11;z!

1
G~a!G~b!G~c2a2b!

G~c2a!G~c2b! 2F1~a,b,a1b2c11;z!.

~3.2!

With the use of this formula the boson propagator is writt
as

G~x,y;t !5
2 i

8prz1/2
1

i

4pr
n cothpn1O~z1/2!, ~3.3!

where we definedn5Atr221. Analytic continuation is
needed for tr2,1. On the other hand forz→0 Eq. ~2.22!
reduces to

A~x,y;s!5
is

8prz1/2
2

is

4pr S 1

4
1s2r 2D tanhpsr

sr
1O~z1/2!.

~3.4!

Inserting Eqs.~3.3! and ~3.4! into Eq. ~3.1!, then the ef-
fective potential turns out to be

V~r!5
r2

2l
1

1

pr E0

r

dssS 1

4
1s2r 2D tanhpsr

sr

2
1

2pr ED21jR

D21jR1r2

dtn cothpn, ~3.5!

where we have set Tr@1#54.1 Note that the divergent term
cancel each other, which would originate from the supersy
metry.

The gap equation,]V/](r2)50, reads

pr

l
1S 1

4
1r2r 2D tanhprr

rr

2Ar2r 216z21cothpAr2r 216z2150, ~3.6!

where we defined

z5j1
1

6
D2r 2. ~3.7!

Note that the solution of this gap equation is complet
specified by two parametersz andpr /l. This means that the
phase structure derived from the effective potential is co
pletely specified in the plane of these two parameters.

1For D53 we adopt the reducible representation of the Cliffo
algebra of Dirac matrices in order to guarantee the existence ofg5.
5-4
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B. Phase structure

We present the typical shape of our effective potentia
the caseD53 in Fig. 1 ~see also@6#!. In the region labeled
by ‘‘S,’’ the effective potential behaves so that the symme
is unbroken. In the region labeled by ‘‘B,’’ the symmetry
broken through the second order phase transtion. Finall
the region labeled by ‘‘F,’’ the symmetry is broken throug
the first order phase transtion. The boundaries in Fig
which separate the phases, are obtained by direct observ
of numetical analysis of the effective potential. Analytica
the condition is described as follows. The solid line in Fig
is found by solving

]V

]~r2!
U

r50

50, ~3.8!

which is explicitly written as

pr

l
1

p

4
2A6z21cothpA6z2150. ~3.9!

On the other hand, the condition for the dashed line is ra
complicated. The condition isV(r* )50, where r*
5max$r1 ,r2% when the equation]V/](r2)50 has two dif-
ferent solutionsr1 andr2.

The branching point in Fig. 1 is of special interest. It is
critical point which divides the broken phase into type ‘‘F
and type ‘‘B.’’ At the branching point C the following con
ditions are found to be satisfied simultaneously:

]V

]~r2!
U

r50

50,
]2V

]~r2!2U
r50

50. ~3.10!

The conditions are explicitly given respectively by Eq.~3.9!
and

12
p2

12
1

1

2 sinh2pA6z21
2

cothpA6z21

2pA6z21
50.

~3.11!

FIG. 1. Phase structure of the model forD53 on the (pr /l,z)
plane. In the regions labeled by ‘‘S,’’ ‘‘B,’’ and ‘‘F,’’ the shape o
the effective potential is of type of unbroken symmetry, of seco
order phase transition, and of first order phase transition, res
tively. The square denotes the branching point.
04401
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From Eq. ~3.11! we find that z50.290138(5:z* ) at the
branching point. By substituting this value forz in Eq. ~3.9!
we obtainpr /l50.08306 at the branching point.

Since we have seen the phase structure of our effec
potential, we now discuss the time-evolution of the chi
symmetry assuming an inflation background. This consid
ation will make sense if the Hubble parameter~radius of de
Sitter spacetime! changes slowly and the effective potenti
in the inflation phase is well described by that in de Sit
spacetime found above. As we will see in Sec. V, the Hub
parameter slowly decreases as the universe evolves du
the chaotic inflation in actual. And the curvature of de Sit
spacetime slowly decreases~radiusr increases!.

First let us consider the caseD50. In this casez is equal
to j. If the coupling constantl and j are fixed, we move
from left to right by increasingr in Fig. 1. This indicates tha
the chiral symmetry will be ultimately restored for suffi
ciently larger. The initial situation depends on the value
j. By direct observation of the gap equation one can ea
show that if the parameterj is kept below 1/4 the effective
potential stays in the region ‘‘S’’ in the limit ofpr /l50.
Thus the phase transition does not occur forj,1/4. On the
other hand the effective potential is in a broken phase of t
‘‘F’’ or ‘‘B’’ if we take the value of j above 1/4. Then the
phase restoration occurs as the curvature decreases.

Second we consider the casej50 andDÞ0. In this case
z5D2r 2/6. If the coupling constantl and j are fixed, then
the trajectory for varyingr on the (z,pr /l) plane will be the
one as shown in Fig. 2. By increasing the radiusr, we move
from the bottom to the top along the straight line. For ea
line, the value ofDl/p is fixed ~a! Dl/p5100, ~b! Dl/p
515.9, and~c! Dl/p52. Along the curve forDl/p5100 a
first order phase transition occurs, however, a second o
transition occurs forDl/p52. The critical case isDl/p
515.9. ForDl/p,1 the phase transition does not occur

Thus in the modelDÞ0 andj50, the phase of the sym
metry is in the symmetric phase first, and it is broken as
curvature of the universe decreases as long asDl/p>1. On
the other hand the symmetry is ultimately unbroken in
caseD50. This case is not relevant to our conventional id
of symmetry breaking. Thus we focus our attention to t
caseDÞ0 andj50 in the following arguments.

d
c-

FIG. 2. Typical trajectories for varyingr with Dl/p fixed on
the (pr /l,z) plane. We choseDl/p5100, 15.9, and 2 for straigh
lines, respectively.
5-5
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IV. ANALYSIS IN 4 DIMENSIONS

A. Gap equation

In this section we consider the caseD54. From Eq.
~2.15! or Eq. ~3.1! the gap equation,]V/](r2)50, reads

1

2l
1

i

2r
Tr S~x,x;r!12iG~x,x;r21D2!50. ~4.1!

Here we consider the caseDÞ0 andj15j250, because this
choice of parameter is relevant to the conventional idea
symmetry breaking phenomena as described in Sec. III.

The boson propagators~2.16! in the caseD54 reduce to2

G~x,y;t !5
2 iH 2

~4p!2

G~3/21n!G~3/22n!

G~2!

3 2F1~3/21n,3/22n,2;12z!, ~4.2!
m
nt

-
t-
-

04401
f

where we defined

n5A9

4
2

t

H2 2
D2

H2. ~4.3!

While the functionA of Eq. ~2.22! is

A~x,y;s!5
isH2

~4p!2

G~21 is/H !G~22 is/H !

G~3!
A12z

3 2F1~21 is/H,22 is/H,3;12z!. ~4.4!

Since the propagators diverges in the coincidence lim
z→0, we adopt the point splitting regularization by keepi
z small but finite. In this case it is useful to use the ma
ematical formula~e.g.,@21#!
s to
G~a!G~b!

G~a1b21! 2F1~a,b,a1b21;12z!5
1

z
1~a21!~b21! (

n50

`
~a!n~b!n

n! ~n11!!
$ ln~z!1c~a1n!1c~b1n!

2c~n11!2c~n12!%zn, ~4.5!

where (a)n5G(a1n)/G(a) andc(x) is the polygamma function. With the use of this formula the gap equation reduce

~2p/H !2

l
1

12A12z

z
2A12z~11r2/H2! (

n50

`
~21 ir/H !n~22 ir/H !n

n! ~n11!!
$ ln~z!1c~21 ir/H1n!1c~22 ir/H1n!

2c~n11!2c~n12!%zn1~221r2/H21D2/H2! (
n50

`
~3/21n!n~3/22n!n

n! ~n11!!

3$ ln~z!1c~3/21n1n!1c~3/22n1n!2c~n11!2c~n12!%zn50. ~4.6!
by
f
the
ng
off
ap
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e
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ter.
The divergent terms of orderO(z21), which appears in the
boson and fermion propagators, cancel each other in the
fective potential. This would be traced back to the supersy
metry of the theory. However the logalithmic diverge
termsO(ln z) arise in the caseD54. Thus our theory de-
pends on the cutoff parameter. Instead ofz we introduce the
momentum cutoff parameterL. We can show that the geo
desic distances5(xW2yW )2/2 is related to the momentum cu
off parameterL such thats5L22. Then we have the rela
tion

z5
H2

2L2 , ~4.7!

where we used Eq.~2.20!.

2In this section we use the Hubble parameterH(51/r ) instead of
the radiusr to describe the curvature of de Sitter spacetime.
ef-
-

B. Phase structure

Next we consider the phase structure of the model
solving the gap equation~4.6!. Because of the complexity o
equation, an analytic approach would not be useful in
caseD54. Then we adopt numerical method by calculati
equation~4.6!. As the gap equation depends on the cut
parameter, we do not find a simple scaling relation in g
equation~4.6!, in contrast to the caseD53. Therefore we fix
the cutoff parameterL51015 GeV in the following argu-
ments, for simplicity.

Figure 3 shows the phase structure of the effective po
tial on the (H/L,1/lL2)-plane. The curves in the figur
show the phase boundary between a symmetric phase a
broken phase forD51015 GeV, 331014 GeV, 1014 GeV,
respectively. In the right and upper region of each curve
Fig. 3, the effective potential behaves so that the symmetr
unbroken. On the other hand in the left and lower region
each curve the symmetry is broken. We discuss the typ
the broken phase, i.e., first order or second order, in the la

By decreasing the curvature~decreasingH) with the cou-
pling constants,L, D, andl fixed, we move from right to
5-6
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left in Fig. 3. This indicates that the effective potential is
the symmetric phase initially, however, the symmetry is b
ken asH decreases if the coupling constantl is larger then a
critical value. Let us find the critical value of the couplin
constant, which depends on the supersymmetry brea
massD and the cutoff parameterL. Taking the limitH→0
of Eq. ~4.6!, we find the following critical coupling constan
lcr :

1

lcr
52

D2

~2p!2 (
n50

`
1

n! ~n11!!

3F ln
D2

2L2 2c~n11!2c~n12!G S D2

2L2D n

. ~4.8!

We show the critical valuelcr as a function ofD/L in Fig. 4.
We see the expected result in the figure that the critical c
pling constantlcr must becomes larger as the the supersy
metry breaking massD becomes smaller.

Finally in this section we discuss the effective potential
type of the first order phase transition. Similar to the ca
D53 we find that the effective potential behaves so that
phase transtion occurs through first order transition for a s
cific range of coupling constants. The region is small and

FIG. 3. Phase boundary in the caseD54 on the (H/L,1/lL2)
plane. HereL51015 GeV is used. We adopted the supersymme
breaking parameterD51015, 331014, 1014 (GeV), respectively,
for each curve in the figure. The right and upper region labeled
‘‘S’’ is in a symmetric phase for each curve, while the left an
lower region labeled by ‘‘B’’ is in a broken symmetry.

FIG. 4. Critical coupling constantlcr
21L22 of Eq. ~4.8! as a

function of D/L.
04401
-

ng
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cannot recognize it in Fig. 3. Figure 5 shows the region
Fig. 3 under magnification for demonstration, where
adopted the caseD51015 GeV. In the narrow region labeled
by ‘‘F’’ the effective potential has the shape of the first ord
phase transition. For other cases,D5331014 GeV andD
51014 GeV in Fig. 3, we find narrow regions of ‘‘F’’ in a
similar way. Thus the model forD54 has the similar phase
structure as the caseD53.

Because there appears many parameters in the casD
54 and we cannot find a good scaling relation on the c
trast to the caseD53. Due to this fact it is difficult to show
the phase structure in caseD54 clearly. As will be dis-
cussed in the next section the change of the Hubble par
eter is rather fast in the chaotic inflation model. Then t
period that the the effective potential has the shape of
first order phase transition is very short compared with
Hubble expansion time. Then the cosmological importan
of the first order transition is unclear at present. Therefore
only focus on the epoch of the~second or first! phase tran-
stion in the inflationary universe and discuss other cosm
logical consequences because phase transitions in the
verse predicts topological defects in general.

V. EPOCH OF PHASE TRANSTION IN THE CHAOTIC
INFLATIONARY MODEL

In this section we consider a cosmological application
our model in the chaotic inflation universe@22#. Cosmologi-
cal phase transition predicts the formation of topological
fects in general. In our modelU(1) chiral symmetry is bro-
ken down and the formation of cosmic strings would
predicted by the phase transition. In general topological
fects are harmful, as exemplified by the monopole probl
and domain wall problem. However, cosmic strings ha
been studied with the motivation of the cosmic structure f
mation. The observational confrontation of the cosmic str
scenario is still at issue@23#.

The investigations in the present paper show that the s
metry breaking may occur during inflation era, which is tri
gered by the change of the curvature of spacetime. As
application we consider the phase transition in the contex

y

FIG. 5. Phase boundary for the model forD54 on the
(H/L,1/lL2) plane. Here we setL51015 GeV andD51015 GeV.
In the narrow region between two curves labeled byF, the effective
potential has a shape of type of first order transition. The squa
the branching point obtained from numerical calculation.
5-7
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the chaotic inflation model and the formation of the cosm
strings during the inflation. If the inflation lasts sufficient
long after the phase transition, the defects will be dilut
However, if the phase transition occurs at a suitable epoc
inflation, the dilution of the strings is not completed. Simil
investigations were given on the basis of a simple mode
curvature induced phase transition@24,25#. Following their
consideration we here discuss the epoch of the formatio
the cosmic strings in our model during the chaotic inflati
era.

We assume the chaotic inflation background. To be s
cific we assume that the inflation is derived by the fieldf
with the Lagrangian

Lf52¹mf¹mf2
1

2
m2f2. ~5.1!

Here we setm51013 GeV @25#, which is the constraint from
the amplitude of density perturbations for a successful in
tion scenario. With the background metric,

ds252dt21a~ t !2dx2, ~5.2!

the equations of motion under the slow roll approximati
take the form

3Hḟ1m2f50, ~5.3!

H25
4p

3MPL
2

m2f2, ~5.4!

whereH5ȧ/a is the hubble parameter, and the dot deno
~cosmic time! t differentiation. The solution of inflation is
well known:

f~ t !5f i2
mMPL

2A3p
~ t2t i !, ~5.5!

a~ t !5aiexpF 2p

MPL
2
„f i

22f~ t !2
…G ,

~5.6!

H~ t !5A4pm2

3MPL
2

f~ t !, ~5.7!

R512H216Ḣ5
16p

MPL
2

m2f2~ t !22m2

.
16p

MPL
2

m2f2~ t !, ~5.8!

whereMPL is the Plank mass, and the subscript ‘‘i’’ denot
the value at the initial time when the inflation started.

In this chaotic inflation model the horizon crossing~dur-
ing the inflation! of the fluctuation of the wave length corre
sponding to the present horizon size occurs atf(t)
;3MPL . The epoch of forming cosmic string are estimat
04401
c

.
of

f

of

e-

-

s

as follows. The phase ofr does not fix soon after the phas
transition because of the quantum fluctuations of ther field.
Following the previous investigations on curvature induc
phase transition@24,25,22#, the phase ofr fixes at the time,
when the condition is satisfied

H252 lim
r→0

V~r!9, ~5.9!

which we may regard as the time of the string formati
during the inflation. We denote the value off(t) at this time
asf2. With the use of Eq.~5.4!, f2 is written as

f25A2
3MPL

2

4pm2
lim
r→0

V~r!9. ~5.10!

In the previous work@24,25# the formation of the cosmic
strings during inflation was discussed to avoid observatio
difficulties of the cosmic string scenario. They argued t
range of the model parameter~coupling constant! to realize
the suitable formation of the cosmic strings. In this paper
consider the observational possibility and find the condit
that the cosmic strings are formed during the inflation wi
out complete dilution of the cosmic strings so that the cosm
strings may exist in the universe at present time. The con
tion is simply given by

MPL

A4p
&f2&3MPL , ~5.11!

where we have assumed that the strings are formed at
rate of one string per horizon volume at the formation epo

This condition constrains the coupling constantl in our
model. From Eq.~5.9!, we have

1

l
1H22

H2

~2p!2A12z2F1~2,2,3;12z!

1
H2

~2p!2

p~1/42m2!

cospm 2F1~3/21m,3/22m,2;12z!50,

~5.12!

wherem5A9/42D2/H2, z5H2/2L2, andH is specified as

H5A4pm2

3MPL
2

f2 . ~5.13!

Figure 6 shows the formation time of the cosmic strin
on the parameter space,l and D. Here we set L
51015 GeV. The result depends on the choice of cutoff p
rameterL. However the qualitative feature does not depe
on the choice ofL. The region between the two solid curve
in Fig. 6 satisfies the condition~5.11!. The lower solid curve
is from the condition that the formation of the strings occu
at f253MPL . While the upper solid curve comes fromf2

5MPL /A4p. The larger coupling constantl leads to the
earlier formation of the strings during the inflation. And th
larger breaking parameterD also leads to the earlier forma
5-8
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CURVATURE-INDUCED PHASE TRANSITIONS IN THE . . . PHYSICAL REVIEW D 61 044015
tion of the strings. Figure 6 shows this expected result. T
if we make a choice of parameters in the lower region th
the lower solid curve, the strings are diluted out by the
flation and they would not be observable.3 The dashed line,
which is almost overlapped with the upper solid line, sho
the critical coupling constant for the phase transitions~see
also Fig. 4!. Therefore the strings do not form when we ma
a choice of parameters in the region above the dashed l

VI. CONCLUSIONS

In summary we have shown that the curvature of spa
time might be a trigger of phase transition during the infl
tion in a class of model of the dynamical symmetry breaki
To be specific we have investigated the phase structure o
supersymmetric NJL model in de Sitter spacetime. By eva
ating the effective potential in the leading order of the 1N
expansion, we have examined the phase structure of the
ral symmetry in three- and four-spacetime dimensions.
have investigated how the curvature of de Sitter spacet
changes the phase structure, and we have found that the
metry breaking takes place as the first order as well as
ond order phase transition depending on the coupling c
stant and the parameter of the supersymmetry breakin
both cases of three- and four-spacetime dimensions.4

A similar model, the supersymmetric NJL model intera
ing with a constant magnetic field and external gravitatio
field, has been investigated by Inagaki, Odintsov a
Shil’nov @26#. The constant magnetic field in their mod

3If the reheating temperature was so high that the symmetry
stored by the finite temperature effect, the cosmic string would
produced again.

4In the case of the potential barrier is small enough, the conv
tional picture of first order phase transition would be broken do
because of the quantum fluctuation of the field.

FIG. 6. Constraint on formation epoch of cosmic strings on
(1/l, D) plane. Here we adopted the momentum cutoffL
51015 GeV. The upper solid curve reflects the conditionf2

5(4p)21/2MPL and the lower solid curve corresponds tof2

53MPL . The dashed line shows the critical coupling constantlcr .
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plays a role similar to the soft supersymmetry breaking te
in the present paper. They found that the positive spacet
curvature acts against chiral symmetry breaking. This re
is consistent with our result. Their analysis, however,
based on the small curvature expansion up to the linear t
in the space-time curvature@26# and they found only the
phase transition of the second order. Our finding of the fi
order phase transition is considered to be a unique phen
enon in the strong curvature regime.

In the case of three-spacetime dimensions, the gap e
tion reduces to a simple equation written by elementary fu
tions ~Sec. III!. Divergent terms cancel each other and we
not need introduce a cutoff parameter. As shown in Sec.
the shape of the effective potential can be specified by
two parameters,r /l and z, which characterizes the phas
structure. This model might not have physical meani
however, it is very instructive to consider the case of fo
spacetime dimensions.

In the case of four-spacetime dimensions, the gap eq
tion does not reduce to a simple form, which is written by t
hypergeometric functions. We have to introduce a~momen-
tum! cutoff parameter to regularize the theory. The analy
is tedious, however, we have found that the phase structu
very similar to the case of three-spacetime dimensions. S
lar to the case of three-spacetime dimensions we find a
row region in which the effective potential has a shape
first order phase transitions. In the open inflation scenar
bubble nucleation~first order transition! occurs during the
inflation @27#. It may be of interest to consider the possibili
whether our model works as a successful model for the o
universe or not. However this first order phase transit
would not work successfully, because the curvature~Hubble
parameter! of de Sitter spacetime changes rather fast dur
the inflation as we have shown in Sec. V.

We have briefly discussed a cosmological application
Sec. V. We consider the phase transition in the chaotic in
tion background, neglecting the back-reaction from the fie
which derives the phase transition. The strong coupling c
stantl leads to the early phase transition and the subseq
inflation dilute the strings. The weak coupling constant do
not lead to the phase transition during the inflation. Thus t
model may work as a model of forming the cosmic strin
during the inflation if we choose the parameters in a suita
range@24,25#.
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