このエントリーをはてなブックマークに追加
ID 14679
本文ファイル
著者
Nishiura, Y
Ueyama, Daishin
Yanagita, T
キーワード
Bifurcation theory
Chaos
Dissipative systems
Lattice differential equation
LDE
Localized pulse
NDC
数学
内容記述
Existence and dynamics of chaotic pulses on a one-dimensional lattice are discussed. Traveling pulses arise typically in reaction diffusion systems like the FitzHugh-Nagumo equations. Such pulses annihilate when they collide with each other. A new type of traveling pulse has been found recently in many systems where pulses bounce off like elastic balls. We consider the behavior of such a localized pattern on one-dimensional lattice, i.e., an infinite system of ODEs with nearest interaction of diffusive type. Besides the usual standing and traveling pulses, a new type of localized pattern, which moves chaotically on a lattice, is found numerically. Employing the strength of diffusive interaction as a bifurcation parameter, it is found that the route from standing pulse to chaotic pulse is of intermittent type. If two chaotic pulses collide with appropriate timing, they form a periodic oscillating pulse called a molecular pulse. Interaction among many chaotic pulses is also studied numerically.
掲載誌名
SIAM Journal on Applied Dynamical Systems
4巻
3号
開始ページ
733
終了ページ
754
出版年月日
2005
出版者
Society for Industrial and Applied Mathematics
ISSN
1536-0040
出版者DOI
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
author
権利情報
Copyright (c) 2005 Society for Industrial and Applied Mathematics
関連情報URL(IsVersionOf)
http://dx.doi.org/10.1137/040608714
部局名
理学研究科