このエントリーをはてなブックマークに追加
ID 34781
本文ファイル
著者
Yamanaka, Takeshi
Tabayashi, Kiyohiko
Tanaka, Kenichiro
キーワード
ammonia
association
binding energy
density functional theory
hydrogen bonds
intermolecular mechanics
molecular clusters
orbital calculations
red shift
resonant states
Rydberg states
spectral line broadening
time of flight mass spectra
X-ray absorption spectra
NDC
化学
抄録(英)
Nitrogen 1s (N 1s) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragmentmass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, "cluster" specific excitation spectra could be recorded. Comparison of the "cluster" band with "monomer" band revealed that the first resonance bands of clusters corresponding to N 1s -> 3sa(1)/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions Delta FWHM (N 1s -> 3sa(1)/3pe) = similar to 0.20/similar to 0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H(3)N center dot center dot center dot H-NH(2)) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-sigma* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding sigma* (N-H) character. Contributions of other cyclic H-bonded clusters (AM)(n) with n >= 3 to the spectral changes of the N 1s -> 3sa(1)/3pe bands are also examined. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3673778]
掲載誌名
Journal of Chemical Physics
136巻
1号
開始ページ
014308
出版年月日
2012
出版者
The American Institute of Physics
ISSN
0021-9606
NCID
出版者DOI
言語
英語
NII資源タイプ
学術雑誌論文
広大資料タイプ
学術雑誌論文
DCMIタイプ
text
フォーマット
application/pdf
著者版フラグ
publisher
権利情報
(c) 2012 American Institute of Physics
関連情報URL
部局名
放射光科学研究センター