<table>
<thead>
<tr>
<th>Title</th>
<th>Cryptic Anuran Biodiversity in Bangladesh Revealed by Mitochondrial 16S rRNA Gene Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Mahmudul, Hasan; Islam, Mohammed Mafizul; Khan, Md. Mukhlesur Rahman; Alam, Mohammad Shafiqul; Kurabayashi, Atsushi; Igawa, Takeshi; Kuramoto, Mitsuru; Sumida, Masayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>Zoological Science, 29 (3): 162 – 172</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012</td>
</tr>
<tr>
<td>DOI</td>
<td>10.2108/zsj.29.162</td>
</tr>
<tr>
<td>Self DOI</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td>http://ir.lib.hiroshima-u.ac.jp/00045872</td>
</tr>
<tr>
<td>Right</td>
<td>(c) 2012 Zoological Society of Japan</td>
</tr>
<tr>
<td>Relation</td>
<td></td>
</tr>
</tbody>
</table>
Cryptic Anuran Biodiversity in Bangladesh Revealed by Mitochondrial 16S rRNA Gene Sequences

Mahmudul Hasan¹, Mohammed Mafizul Islam¹, Md. Mukhlesur Rahman Khan², Mohammad Shafiqul Alam¹, Atsushi Kurabayashi¹, Takeshi Igawa¹, Mitsuru Kuramoto³, and Masayuki Sumida*¹

¹Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan
²Department of Fisheries Biology and Genetics, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
³Hikarigaoka 3-6-15, Munakata City, Fukuoka 811-3403, Japan

To survey the diversity of anuran species in Bangladesh, we compared mitochondrial 16S rRNA gene sequences (approximately 1.4 kbp) from 107 Bangladesh frog specimens. The results of genetic divergence and phylogenetic analyses incorporating data from related species revealed the occurrence of at least eight cryptic species. *Hoplobatrachus tigerinus* from two districts diverged considerably, indicating the involvement of a cryptic species. Two *Fejervarya* sp. (large and medium types) and *Hylarana* cf. *taiphenensis* formed lineages distinct from related species and are probably new species. *Microhyla* cf. *ornata* differed from *M. ornata* with respect to type locality area and involved two distinct species. In addition, we found that *Hylarana* sp. and *Microhyla* sp. did not match congeners examined to date in either morphology or 16S rRNA sequence. The occurrence of *M. fissipes* was tentatively suggested. Consequently, at least, 19 species were found from Bangladesh in this study. These findings revealed a rich anuran biodiversity in Bangladesh, which is unexpected considering the rather simple topographic features of the country.

Key words: biodiversity, cryptic species, 16S rRNA gene, Anura, Bangladesh

INTRODUCTION

Bangladesh is a riverine country nestled between the Indo-Himalayan and Indo-Chinese sub-regions of the Oriental region (Nishat et al., 2002). The country consists predominantly of low plains comprising the Ganges-Brahmaputra River delta, one of the world’s largest deltas, and lacks high mountainous regions. In the last decade, more than 60 new anuran species, including the new family Nasikabatrachidae, have been described in the neighboring India (e.g., Biju and Bossuyt, 2003, 2009; Kuramoto et al., 2007). Recently, the abundance of anuran biodiversity in northeast India, which is located adjacent to northern and eastern Bangladesh, has been revealed in several studies. For example, Pawar and Birand (2001) listed 57 anuran species, including several possibly new species, from this area, and Ao et al. (2003) reported 19 new records of frogs from Nagaland, five of which are new to India. Mathew and Sen (2009) described 11 new species from northeast India. Similarly, in Myanmar, the other country bordering the southeastern corner of Bangladesh, three new species have been described (Wogan et al., 2003; Wilkinson et al., 2003, 2005), and more than 10 new species which were described in the last decade from Yunnan, China, and Thailand are presumed to exist in Myanmar (see Frost, 2011) and Wogan et al. (2008) added 12 anuran species to the herpetofauna of Myanmar. Notably, most of these newly added species were found in mountainous regions, including the Western Ghats and Nagaland in India, and only a few species were described from the lowlands. Considering the topographic features in Bangladesh, it can be expected that the anuran biodiversity is relatively low. Recently, Kabir et al. (2009) assembled a list of 34 amphibian species across 20 genera of six families in Bangladesh based on morphology and scattered information from field research. In this list, however, no species endemic to Bangladesh have been recognized.

Recent molecular phylogenetic studies focusing on the family Dicroglossidae have suggested the existence of many cryptic species in Bangladesh. Islam et al. (2008a, b), using mitochondrial gene sequencing and allozyme analyses, identified three *Fejervarya* species that differed from *F. limnocharis* and other known congeners, and designated them as *Fejervarya* sp. large, medium and small types. In addition, Hasan et al. (2008) detected a considerable allozymic divergence among three populations of *Hoplobatrachus tigerinus* in Bangladesh, while Alam et al. (2008) found notable mitochondrial 16S rRNA gene divergence among *Euphlyctis*...
cyanophylctis and *E. hexadactylus* from Bangladesh and neighboring countries. Together, these studies highlight the current underestimation of anuran biodiversity and necessity for more extensive review of anuran taxonomy in Bangladesh.

Mitochondrial DNA is an effective molecular marker for use in examining genetic divergence and phylogenetic relationships of animal taxa (e.g., Avise, 2000). In South and Southeast Asia, mitochondrial gene information has been used to identify numerous cryptic anuran species (Meegaskumbura et al., 2002; Kurabayashi et al., 2005; Stuart et al., 2006; Kuramoto et al., 2007; Sumida et al., 2007; Alam et al., 2008; Islam et al., 2008b; Inger et al., 2009; Joshy et al., 2009; Kurniawan et al., 2010). In amphibians, the mitochondrial 16S rRNA gene (16S) is considered a reliable marker for determining the taxonomic status of frog species (Vences et al., 2005).

In the present study, to survey anuran biodiversity in Bangladesh, we collected frog specimens from throughout Bangladesh and performed molecular phylogenetic analyses using 16S data. Here, specimens belonging to Ranidae, Rhacophoridae, Microhylidae, and Bufonidae from Bangladesh are examined for the first time. Thus, this study constitutes the first attempt to review the anuran biodiversity in Bangladesh based on molecular data.

MATERIALS AND METHODS

Specimens

Species identification was based mainly on morphological characteristics described by Dutta and Manamendra-Arachchi (1996), Chanda (2002), and Kabir et al. (2009). We followed the species names adopted in the system of Frost (2011), with the exceptions of *Fejervarya sahyadris* (= *Minervarya sahyadris*), which is nested in the South Asian *Fejervarya* clade (Kuramoto et al., 2007; Kotaki et al., 2010), and *F. moodiei*, which is revived from the synonymy of *F. cancivora* (corresponding to Mangrove type) (Kurniawan et al., 2011). Most dicroglossid specimens in the present study were collected from localities that differ from those of previous studies.

A total of 107 specimens were collected from 18 localities of 14 districts of Bangladesh (Fig. 1). Based on their external morphology and relevant literature, *Euphlyctis cyanophylctis*, *E. hexadactylus*, *Hylobatrachus crassus*, *H. tigrinus*, *F. moodiei*, *Hylarana leptoglossa*, *Polyedetes tereanesis*, *Kaloula pulchra*, *K. taprobanaica*, and *Duttaphrynus melanostictus* were identified. Specimens resembling *Hylarana taiphehensis* and *Microhyla ornata* are treated here as *H. cf. taiphehensis* and *M. cf. ornata*, respectively. Specimens belonging to the genera *Hylarana* and *Microhyla*, but not fitting the descriptions of known congeners, are treated here as *Hylarana sp.* and *Microhyla sp.*, respectively. The three unnamed *Fejervarya* taxa are referred to as *Fejervarya sp.* large, medium, and small types, following the designation of Islam et al. (2008a).

DNA extraction, PCR, and sequencing

Total genomic DNA was extracted from the clipped toe of each frog specimen using a DNeasy Tissue Kit (Qiagen, Valencia, USA), as per the manufacturer’s instructions. The extracted DNA solutions were used as polymerase chain reaction (PCR) templates for amplifying a partial 16S region corresponding to positions 3093–4467 of the 16S gene of *Xenopus laevis* (accession no. M10217; Roe et al., 1985). PCR amplification and sequencing were performed using the primers F51 and R51 (Sumida et al., 2002), 12S_3’ end_Fow1 (5’–AGAAARGYAAAGTCGTAAC–3’), 12S_3’ end_Fow2 (5’–GGAGGATGTTTTTGGTAAACAG–3’), 16S_R530 (5’–GGCGATGTTTTTGAGTAAACAG–3’), and 16S_R723 (5’–GGAGAAADDYDWHHTCTT-3’). The length of the resultant 16S fragments varied from 1352 to 1390 bp between identified haplotypes. PCR mixtures were prepared with the Takara Ex Taq™ Kit (Takara Bio, Inc., Shiga, Japan), as recommended in the manufacturer’s protocol. The 16S fragments were amplified using 35 cycles, with each cycle consisting of denaturation for 10 s at 98°C, annealing for 30 s at 47.5°C (10 cycles), 45.0°C (10 cycles), and 42.5°C (15 cycles), and extension for 1 min 20 s at 72°C. The PCR products were purified using MicroSpin™ S-300 HR columns (GE Healthcare, Buckinghamshire, UK). Both strands of the amplified 16S fragments were directly sequenced using the BigDye Terminator Cycle Sequencing Kit (ABI) with an automated DNA sequencer (3100-Avant; ABI, Brooklyn, USA). The obtained sequences were deposited in the DNA Data Bank of Japan (DDBJ) database under the accessions numbers AB530494 to AB530547 and AB543599 to AB543609.

Alignment data and identified haplotypes

The 16S sequences from the 107 Bangladesh frog specimens and *X. laevis* were aligned using the ClustalW program (Thompson et al., 1994). The initial alignment consisted of 1496 nucleotide sites and showed 65 distinct haplotypes. This initial alignment was used for computing the sequence divergence (uncorrected *P* values) among the haplotypes using MEGA Ver. 4.0 (Tamura et al., 2007) with the pairwise-deletion option, in which all alignable sites were
used in the calibration, but indel sites were not counted. The indel and ambiguous alignment sites were then removed using GBlocks Ver. 0.91b (Castresana, 2000) with default parameters, resulting in 1,010 well-aligned sites. After the deletion of indel and ambiguous sites, several of the haplotypes had identical 16S sequences, and the initial 65 haplotypes were reduced to 45 haplotypes, which were used for constructing a neighbor joining (NJ) tree (see below).

Detailed phylogenetic analyses were performed with respect to the families Dicroglossidae, Ranidae, and Microhylidae using the 16S data of our specimens and related species in neighboring countries. The 16S data of related species were obtained from the DDBJ/EMBL/GenBank databases. We selected the related taxa described above. The 16S sequences of the alignment data sets varied among the three families and were shortened from the initial alignment depending on the lengths of 16S sequences obtained from DNA databases. The sequence lengths and total number of operational taxonomic units (OTUs) determined from the alignment data were 291 sites of 38 OTUs for dicroglossids, 308 sites of 34 OTUs for ranids, and 457 sites of 18 OTUs for microhylids.

Phylogenetic analyses

We first reconstructed an NJ tree using the alignment data of the 45 haplotypes of Bangladeshi frogs. An appropriate substitution model was estimated using Akaike information criterion (AIC) implemented in Modeltest 3.7 (Posada and Crandall, 1998), and the GTR + I + G model was selected. Support for the nodes of the resultant tree was evaluated by bootstrap probabilities (BPs) calculated from 1000 replicates for NJ analyses. Xenopus laevis was used as the outgroup in this analysis.

Further phylogenetic analyses of the families Dicroglossidae, Ranidae, and Microhylidae were performed by the maximum likelihood (ML), NJ, and Bayesian inference (BI) methods. The ML, NJ, and BI analyses were performed using PAUP* 4.0b10 (Swofford, 2003) and MrBayes Ver. 3.1.2 (Ronquist and Huelsenbeck, 2003) software, respectively. Appropriate substitution models were selected using AIC (SYM + I + G, GTR + I + G, and GTR + I + G for the families Dicroglossidae, Ranidae, and Microhylidae, respectively). Node support of the resultant trees was evaluated by BPs calculated from 500 and 1000 replicates for the ML and NJ analyses.

Table 1. Specimens used and identified 16S haplotypes found in this study. District names are used as population names in the text.

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Collection station</th>
<th>No. of frogs used</th>
<th>Specimen Voucher No. 1</th>
<th>16S RNA gene haplotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicroglossidae</td>
<td>Euphlyctis cyanophlyctis</td>
<td>Laboni point (Cox's Bazar)</td>
<td>8</td>
<td>DFBGBAU Eya 3-10</td>
<td>4 Ecya-Bd1, 3-5</td>
</tr>
<tr>
<td></td>
<td>Euphlyctis hexadactylus</td>
<td>Char Nikhia (Mymensingh)</td>
<td>1</td>
<td>IABHU 3758</td>
<td>1 Ecya-Bd2*</td>
</tr>
<tr>
<td></td>
<td>Hoplobatrachus tigrinus</td>
<td>Dacope (Khusa)</td>
<td>3</td>
<td>IABHU F2422 1-3</td>
<td>1 Ehex-Bd1* Ab530499</td>
</tr>
<tr>
<td></td>
<td>Hoplobatrachus crassus</td>
<td>Teknaf (Cox's Bazar)</td>
<td>1</td>
<td>IABHU 3887</td>
<td>1 Ehex-Bd2 Ab534599</td>
</tr>
<tr>
<td></td>
<td>Fajervarya sp. large type</td>
<td>Golagaj (Sylhet)</td>
<td>4</td>
<td>IABHU F2461 1-4</td>
<td>1 Fsp. L-Bd1 Ab530504</td>
</tr>
<tr>
<td></td>
<td>Fajervarya sp. medium type</td>
<td>Dacope (Khusa)</td>
<td>1</td>
<td>IABHU 3859</td>
<td>1 Fsp. L-Bd2 Ab530501</td>
</tr>
<tr>
<td></td>
<td>Fajervarya sp. small type</td>
<td>Teknaf (Cox's Bazar)</td>
<td>1</td>
<td>IABHU 3860</td>
<td>1 Fmod-Bd1* Ab543601</td>
</tr>
<tr>
<td></td>
<td>Rhacophoridae</td>
<td>Bisamurp (Sunamganj)</td>
<td>4</td>
<td>DFBGBAU Per 179, 181, 178, 180</td>
<td>3 Fmod-Bd3, 7-8</td>
</tr>
<tr>
<td></td>
<td>Polypedates tarsius</td>
<td>Vowal (Gazipur)</td>
<td>3</td>
<td>IABHU F4040 1-3</td>
<td>2 Fsp. M-Bd1 Ab530517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mednupur (Tangail)</td>
<td>1</td>
<td>IABHU F4040</td>
<td>1 Fsp. M-Bd2 Ab530518</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sadar Thana (Bandarban)</td>
<td>2</td>
<td>DFBGBAU Per 41-402</td>
<td>2 Fsp. M-Bd3 Ab530520</td>
</tr>
<tr>
<td>Ranidae</td>
<td>Hylarana cf. taprobanica</td>
<td>Ghazni (Sherpur)</td>
<td>5</td>
<td>DFBGBAU Hsi 216, 225, 229-231</td>
<td>1 Fsp. M-Bd1 Ab530521</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Char Nikhia (Mymensingh)</td>
<td>1</td>
<td>IABHU Hla 228</td>
<td>1 Fsp. M-Bd2 Ab530522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghorosaf (Narsingd)</td>
<td>2</td>
<td>IABHU 3883-3884</td>
<td>1 Fsp. M-Bd3 Ab530523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barguna (Barguna)</td>
<td>1</td>
<td>IABHU 3892</td>
<td>1 Fsp. M-Bd4 Ab530524</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ghazni (Sherpur)</td>
<td>5</td>
<td>DFBGBAU Hsi 216, 225, 229-231</td>
<td>1 Fsp. M-Bd5 Ab530525</td>
</tr>
<tr>
<td></td>
<td>Hylarana leptoglossa</td>
<td>Kawthalthal, BAUC * (Mymensingh)</td>
<td>3</td>
<td>IABHU 3897, IABHU F2423 1-2</td>
<td>2 Fsp. M-Bd6 Ab530526</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golagaj (Sylhet)</td>
<td>1</td>
<td>IABHU 3784</td>
<td>1 Fsp. M-Bd7 Ab530527</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandarban (Bandarban)</td>
<td>2</td>
<td>DFBGBAU 3856-3866</td>
<td>2 Fsp. M-Bd8 Ab530528</td>
</tr>
<tr>
<td>Microhylidae</td>
<td>Microhyla sp.</td>
<td>Char Nikhia (Mymensingh)</td>
<td>14</td>
<td>IABHU F5012 1-6, BdfM 75-76, 81, 70, 72-73, 77-78</td>
<td>7 Fmod-Bd1 Ab530529</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAUC * (Mymensingh)</td>
<td>1</td>
<td>DFBGBAU Msp 306</td>
<td>1 Mom-Bd1 Ab530530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BAUC * (Mymensingh)</td>
<td>1</td>
<td>DFBGBAU Msp 306</td>
<td>1 Mom-Bd2 Ab530531</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golagaj (Sylhet)</td>
<td>2</td>
<td>IABHU 3888-3899</td>
<td>2 Mom-Bd3 Ab530532</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rahat (Chittagong)</td>
<td>2</td>
<td>IABHU 3890-3891</td>
<td>2 Mom-Bd4 Ab530533</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parthapuri (Dinapur)</td>
<td>3</td>
<td>IABHU 22135-22137</td>
<td>2 Mom-Bd5 Ab530534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IABHU 3883-3884</td>
<td>2</td>
<td>Mom-Bd6 Ab530535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microhyla sp.</td>
<td>Golagaj (Sylhet)</td>
<td>8</td>
<td>DFBGBAU Msp 411-413, 415-416, 418-419, IABHU 3786</td>
<td>2 Mom-Bd7 Ab530540</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandarban (Bandarban)</td>
<td>2</td>
<td>DFBGBAU 3856-3866</td>
<td>2 Mom-Bd8 Ab530541</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Golagaj + Bandarban (Bandarban)</td>
<td>3</td>
<td>IABHU 3791-3793</td>
<td>2 Mom-Bd9 Ab530542</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kupla-Bd1 Ab530543</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kupla-Bd1 Ab530544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaloula pulchra</td>
<td>Golagaj + Bandarban (Bandarban)</td>
<td>3</td>
<td>IABHU 3791-3793</td>
<td>2 Mom-Bd1 Ab530545</td>
</tr>
<tr>
<td></td>
<td>Kaloula taprobanica</td>
<td>Golagaj + Bandarban (Bandarban)</td>
<td>3</td>
<td>IABHU 3791-3793</td>
<td>2 Mom-Bd2 Ab530546</td>
</tr>
<tr>
<td></td>
<td>Bufonidae</td>
<td>Ukhia (Cox's Bazar)</td>
<td>1</td>
<td>IABHU F5013</td>
<td>1 Kup-Bd1 Ab530547</td>
</tr>
<tr>
<td></td>
<td>Outpuglyphus melanotestic</td>
<td>Ukhia (Cox's Bazar)</td>
<td>1</td>
<td>IABHU F5013</td>
<td>1 Kup-Bd2 Ab530548</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IABHU F5013</td>
<td>1</td>
<td>DFBGBAU Omeil 226</td>
<td>1 Kup-Bd3 Ab530549</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IABHU F5013</td>
<td>1</td>
<td>DFBGBAU Omeil 226</td>
<td>1 Kup-Bd4 Ab530550</td>
</tr>
</tbody>
</table>

1 BAUC, Bangladesh Agricultural University Campus.
2 DFG/GBAU, Department of Fisheries Biology and Genetics, Bangladesh Agricultural University; IABHU, Institute for Amphibian Biology, Hiroshima University.
3 used for further molecular analyses (ML/NJ/BI) incorporating GenBank data.
ses, respectively. BI analysis was performed with the following settings: Markov chain Monte Carlo of 2×10^6 generations and sampling frequency of 100. The burn-in size was determined by checking the convergence of $-\log$ likelihood ($-\ln L$) values, and the first 10% generations were discarded. Statistical support of the BI tree was evaluated by Bayesian posterior probability (BPP).

RESULTS

Haplotypes and phylogeny of Bangladesh frogs

Among the 16S sequences from 107 frog specimens, we identified 65 haplotypes (sequences with ≥ 1 nucleotide change were assigned as different haplotypes). These haplotypes and their DNA database accession numbers are shown in Table 1. The initial 65 haplotypes were reduced to 45 after indel and ambiguous sites were excluded from analysis. For the remaining haplotypes, we constructed an NJ tree (Fig. 2), which showed five well-supported major clades corresponding to the five families involved. Interfamilial relationships and generic level relationships within each family were congruent with nearly all recent molecular phylogenetic studies (e.g., Frost et al., 2006; Roelants et al., 2007). The paraphyletic nature of the genus Fejervarya with respect to the genera Hoplobatrachus and Euphlyctis, which has been suggested in several studies (Frost et al., 2006; Kotaki et al., 2008, 2010), was also supported.

As shown in Fig. 2, each species formed a clade, and in many cases, the average 16S divergence within each species was less than 1.0%. However, slightly divergent haplotypes were detected in *F. moodiei* (2.1%), and the 16S divergence between *H. tigerinus* from Mymensingh and Cox’s Bazar was remarkably high (6.0%). Although the haplotypes of *M. cf. ornata* from Mymensingh and those from Sylhet were only slightly divergent (1.5%), markedly high divergence was found between *M. cf. ornata* from Chittagong and the above two populations (5.1% and 5.4%, respectively). Furthermore, *M. cf. ornata* from Dinajpur constituted a distinct clade from...
other M. cf. ornata specimens and exhibited 14.0% 16S divergence with respect to the abovementioned populations. The high 16S divergences among the Chittagong, Dinajpur, and Mymensingh + Sylhet specimens indicated that the M. cf. ornata specimens with similar external morphology consist of three distinct species. The remaining Microhyla sp. from Sylhet formed a sister taxon with respect to the above three taxa in the NJ tree (Fig. 2).

Genetic divergence and phylogenetic position of Bangladeshi frogs with respect to congener species

To clarify the phylogenetic relationships of the taxa in Dicroglossidae, Ranidae, and Microhylidae, we selected 20 representative haplotypes (marked with asterisks in Fig. 2) from the 45 haplotypes initially analyzed and performed further phylogenetic analyses incorporating 28, 31, and 11 16S sequences from the DNA database. The resultant ML trees are shown in Figs. 3–5. In these analyses, the majority of nodes were not strongly supported by BP or BPP values. This low statistical support may have been due to the truncated alignment data used. However, in many cases, the sister species recovered in the resultant trees showed the lowest 16S divergence.

For P. teraiensis and D. melanostictus, we compared our 16S data to available sequences in DNA databases, and found that our examined P. teraiensis was 3.1% divergent with P. leucomyctes from the type locality (Java, Indonesia). We could not verify our 16S data with those of P. teraiensis from the type locality (East Nepal) or any other regions due to a lack of available 16S sequences in

![Fig. 3. Maximum Likelihood (ML) tree of dicroglossid frogs based on nucleotide sequences of the mitochondrial 16S rRNA gene using the SYM + I + G substitution model with Limnonectes fujianensis as an outgroup. The bootstrap support (> 50%) is given in order for ML (500) and NJ (1000) replicates. Asterisks represent Bayesian posterior probability (BPP) of ≥ 95%. The scale bar represents 0.01 nucleotide substitutions per site. a) AB290413, Alam et al. (2008); b) AB272594, Alam et al. (2008); c) AB272596, Alam et al. (2008); d) AB272599, Alam et al. (2008); e) Y882957, Tandon et al. (unpublished); f) AB162444, Sumida et al. (2007); g) AB530613, Hasan et al. (in preparation); h) AB530625, Hasan et al. (in preparation); i) AJ292015, Viet et al. (2001); j) AB530611, Hasan et al. (in preparation); k) AB488883, Kotaki et al. (2010); l) AB444691, Kurniawan et al. (2010); m) AY841754, Guha et al. (unpublished); n) AB444689, Kurniawan et al. (2010); o) AB444693, Kurniawan et al. (2010); p) AB167947, Kurniawan et al. (2005); q) AB488888, Kotaki et al. (2010); r) Y841748, Guha et al. (unpublished); s) Y841843, Meeus et al. (2002); t) AF206465, Chen et al. (2005); u) AB488900, Kotaki et al. (2010); v) AB530604, Hasan et al. (in preparation); w) AB530606, Hasan et al. (in preparation); x) AB488889, Kotaki et al. (2010); y) AB530603, Hasan et al. (in preparation); z) AB530601, Hasan et al. (in preparation); a1) AB530607, Hasan et al. (in preparation); and b1) AB526311, Matsui et al. (2010).]
DNA databases. In contrast, 16S divergences of *D. melanostictus* from Bangladesh were compared with publicly available 16S data, and it was found that our examined specimen was close (16S divergence = 1.1%) to one Indian population, but had diverged from the Vietnam and Yunnan (China) populations (16S divergence = 2.2% and 2.4%, respectively).

The family Dicroglossidae (Fig. 3)

Euphlyctis cyanophlyctis, *E. hexadactylus*, and *H. crassus* from Bangladesh showed little genetic divergence from those of India. In *H. crassus*, the Khulna (Bangladesh) population showed only 2.9% 16S divergence from the Assam (India) population. In *H. tigerinus*, two Bangladesh (Mymensingh and Cox’s Bazar) populations showed very high 16S diversity (6.0%). Notably, the Mymensingh and Cox’s Bazar (Bangladesh) populations had diverged 3.8% and 4.8%, respectively, from the Padil (India) population.

Fejervarya sp. large type was nested in the Southeast-Asian group of *Fejervarya* and formed a clade with *F. orissaensis* (16S divergence = 4.0%), which is a sister group to “*F. limnocharis*” from Bangkok, Thailand (= *Fejervarya* sp. hp2, corresponds to *F. orissaensis* or an undescribed species [Kotaki et al., 2010]). The 16S divergence between *F. limnocharis* and “*F. limnocharis*” (Thailand) was 3.5%. Three distinct species have been recognized in “*Fejervarya cancricora*” (designated as large, mango, and Sulawesi types). The large type of *F. cancricora* was designated as the nominal *F. cancricora* (Kotaki et al., 2010), while the mango and Sulawesi types were...
designated as *F. moodiei* and an undescribed species, respectively (Kurniawan et al. 2011). *Fejervarya moodiei* from two Bangladeshi populations (Cox’s Bazar and Khulna) formed a clade with two *F. cancrivora* mangrove type from Thailand and India (BPs = 97 for ML, 100 for NJ, ≥ 95% for BI, and sequence divergence = 0.2%–2.1%, average 1.07%). This clade became monophyly with *F. cancrivora* (large type) from Indonesia (their average sequence divergence = 9.13%), but the statistical support of this relationship is low (BP = 57 in ML). *Fejervarya* sp. small type formed a clade with *F. granosa* (Western Ghats, India), *F. pierrei* (Chitwan, Nepal), and “*F. syhadrensis*” (India and Sri Lanka) with strong support (BPs = 95 for ML, 100 for NJ, and ≥ 95% for BI). The 16S divergence among *Fejervarya* sp. small type vs. “*F. syhadrensis*” (India), “*F. syhadrensis*” (Sri Lanka), *F. granosa* (Western Ghats, India), and *F. pierrei* (Chitwan, Nepal) were 0.2%, 2.7%, 3.3%, and 5.7%, respectively. *Fejervarya* sp. medium type formed a clade with “*F. limnocharis*” from Myanmar (BP = 64 for NJ, and 16S divergence = 6.9%) and the clade was a sister taxon to *Fejervarya* sp. from Assam, India (= *Fejervarya* sp. hp5 in Kotaki et al., 2010). The sequence divergence between *Fejervarya* sp. medium type and *Fejervarya* sp. hp5 was 7.5%.

The family Ranidae (Fig. 4) Among the Bangladesh ranid specimens examined, *Hylarana leptoglossa* became a sister taxon to the *H. aurantiaca* and *H. temporalis* clade (the latter two species were from Western Ghats, India). *Hylarana cf. taipehensis* (Sherpur) formed a clade with *H. macrodactyla* (Wenchang, Hainan, China) with 3.4% sequence divergence. *Hylarana cf. taipehensis* and *H. macrodactyla* differ strikingly in many morphological traits. *Hylarana taipehensis* (Tram Lap, Vietnam) was found to be a sister species to the *H. cf. taipehensis* + *H. macrodactyla* clade; the 16S divergence between *H. cf. taipehensis* and *H. taipehensis* (Vietnam) was 10.4%. These findings support the distinct specific status of the taxon designated here as *Hylarana cf. taipehensis*. *Hylarana* sp. (Bandarban) formed a clade with *H. malabarica* from the Western Ghats and high sequence divergence (15.8%) was found between these two species.

The family Microhylidae (Fig. 5) In the constructed ML tree, *Microhyla* sp. formed a clade with *M. berdmorei* from Gombak, Malaysia, despite a complete difference in morphology and a relatively high 16S divergence (5.2%). *Microhyla cf. ornata* from Dinajpur and *M. ornata* from Karnataka, India, formed a clade, but their sequence divergence was high (6.8%). *Microhyla cf. ornata* from Chittagong formed a clade with *M. fissipes* from Thailand. The 16S sequence divergence was only 2.7% between these two species, assuming the existence of *M. fissipes* in Bangladesh. In contrast, *M. cf.
omnata from Mymensingh and Sylhet was found to be a sister taxon to the *M. fissipes* + *M. cf. ornata* (Chittagong) clade. The 16S divergence between *M. cf. ornata* from Chittagong and *M. cf. ornata* from Mymensingh and Sylhet was 5.4%. Both *Kaloula pulchra* and *K. taprobanica* formed a clade with the respective conspecific sample from other countries and displayed low 16S divergence (1.1% for both *K. pulchra* and *K. taprobanica*). In the ML tree, these *Kaloula* species exhibited paraphyly, a finding that is congruent with two recent molecular phylogenetic studies (Van Bocxlaer et al., 2006; Kurabayashi et al., 2011).

DISCUSSION

Recent molecular studies have demonstrated that DNA sequence information, particularly 16S data, can help to uncover the cryptic biodiversity in anurans. Fouquet et al. (2007) reported that a divergence threshold of 3% in 16S sequences is useful to identify species of anurans. Vences and Wake (2007) proposed the term "candidate species" for newly discovered units that likely correspond to undescribed species.

In Bangladesh, 35 frog species are currently recognized (Kabir et al., 2009; Howlader, 2011): two bufonids (*Duttaphrynus melanostictus* and *D. stomaticus*), 10 dicroglossids (*Euphlyctis cyanophlyctis*, *E. hexadactylus*, *Fejervarya limnocharis*, *F. syhadrensis*, *F. asmati*, *H. crassus*, *H. tigerinus*, *Occidozyga borealis*, *O. lima*, and *Sphaerotheca breviceps*), two megophryids (*Leptobrachium smithii* and *Xenophrys parva*), seven microhyliids (*Kalophrynus interlineatus*, *K. pulchra*, *K. taprobanica*, *Microhyla berdmorei*, *M. ornata*, *M. rubra*, and *Uperodon globulosus*), eight ranids (*Amolops marmoratus*, *Clinotarsus alticola*, *Humarana humeralis*, *Hylarana erythraea*, *H. taiphehensis*, *H. tytleri*, *H. leptoglossa*, and *H. nigrovittata*), and six rhaephophioids (*Chiro mantis simus*, *C. vitattus*, *Polyypedates leucomystax*, *P. maculatus*, *Rhacophorus htuwini*, and *R. maximus*). Of these 35 species, 26 have 16S data available in GenBank. On the basis of the 16S data obtained in the present study and the available GenBank data, we discuss below the taxonomical status of several unresolved taxa from Bangladesh.

Taxonomic status of dicroglossid frogs from Bangladesh

Four nominal species have been described in the genus *Hoplobatrachus*. Among them, *H. tigerinus* and *H. crassus* have been identified in Bangladesh (Alam et al., 2008). In the present study, it was shown that *H. tigerinus* from Cox’s Bazar and *H. tigerinus* from Mymensingh have diverged from each, based on the detected 16S divergence of 6.0%. As the two populations differ in size and in a few morphological traits (Hasan et al., in preparation), *H. tigerinus* from Cox’s Bazar, Bangladesh represents an undescribed cryptic species. However, it remains for future studies to determine which population belongs to the nominal species with the type locality “Bengali” (Frost, 2011).

In *E. cyanophlyctis* and *E. hexadactylus*, whose type localities are Tranquebar and Pondicherry, India, respectively (Bauer, 1998; Frost, 2011), considerable 16S divergences (4.0–5.9%) were detected between the India and Bangladesh populations (Alam et al., 2008). They (2008) speculated that *E. cyanophlyctis* from Bangladesh might be a cryptic species compared with that from Western Ghats (India), and that *E. hexadactylus* from Bangladesh might be “real” *E. hexadactylus* if the Sri Lanka specimens correspond to the nominal species. Thereafter, Joshy et al. (2009) described two species of the genus *Euphyllyctis* from Western Ghats (India) as new species: *E. mudigere* and *E. aloysii*. However, at present it is difficult to confirm that the Bangladesh specimens correspond to real *E. cyanophlyctis* and *E. hexadactylus*. Further study involving comparisons with topotypic specimens is necessary for elucidating the taxonomic status of *E. cyanophlyctis* and *E. hexadactylus* from Bangladesh.

The genus *Fejervarya* comprises 31 species that are distributed in South and Southeast Asia (Frost, 2011). Two species (*F. limnocharis* and *F. syhadrensis*) are listed as Bangladeshi *Fejervarya* species in Kabir et al. (2009) and one new species (*F. asmati*) was recently described from Bangladesh by Howlader (2011). Asmat et al. (2003) first reported the occurrence of *F. limnocharis* in Bangladesh, but Rasel et al. (2007) later suggested the presence of *F. nepalensis*, *F. pietrie*, *F. syhadrensis*, and *F. teraiensis*, rather than *F. limnocharis*. Based on morphological, crossing, and molecular analyses, Islam et al. (2008b) claimed that four types of *Fejervarya* exist in Bangladesh: *Fejervarya* sp. large type, *Fejervarya* sp. medium type, *Fejervarya* sp. small type, and “*F. cancivorara*” mangrove type (= *F. moodiei*). In the present study, *F. moodiei* (including the previous "*F. cancivorara*" mangrove type) from Bangladesh (Cox’s Bazar and Khulna, India), and Thailand formed a clade, which exhibited less than 3% (0.2–2.1%) 16S divergence. *Fejervarya* sp. small type shows close relationships with "*F. syhadrensis*" from India and Sri Lanka, *F. pietrie* from Nepal, and *F. granosa* from India. Among these related species, "*F. syhadrensis*" exhibits low 16S divergence with *Fejervarya* sp. small type (0.2% and 2.7% for India and Sri Lanka specimens, respectively). Thus, our *Fejervarya* sp. small type clearly corresponds to this taxon. However, several *F. syhadrensis*-like species have been identified in South and Southeast Asia (including the India and Sri Lanka populations), and at present, it is unclear which populations correspond to real *F. syhadrensis* (Kuramoto et al., 2007; Kotaki et al., 2010). Thus, although our results suggest that "*F. syhadrensis*" occurs in Bangladesh, final confirmation as to whether "*F. syhadrensis*" in Bangladesh corresponds to bona fide *F. syhadrensis* requires 16S sequence analysis of the topotypic *F. syhadrensis* specimens (Poona district, India). There is a possibility that "*F. syhadrensis*" from the southeastern part of Bangladesh corresponds to *F. asmati* that was recently described from Chittagong, Bangladesh (Howlader, 2011), but more investigations are needed to confirm this speculation.

Fejervarya sp. large and medium types have been examined in previous studies, which have suggested that these taxa are possibly undescribed species (Islam et al., 2008b). The present results are consistent with the findings of Islam et al. (2008b). *Fejervarya* sp. large type shows a close relationship with *F. orissanensis*, but the 16S divergence (4%) is larger than the species threshold value. *Fejervarya* sp. medium type constitutes a clade with "*F. limnocharis*" from Myanmar, but their 16S divergence is high.
Taipehensis Hylarana (6.9%). It was suggested that “F. limnocharis” from Myanmar is not real F. limnocharis (Islam et al., 2008b), a view that is also supported by our results. Consequently, our study confirmed the occurrence of two possibly undescribed species, namely Fejervarya sp. large and medium types, from Bangladesh. Although our sampling areas covered a wide range in Bangladesh, F. limnocharis specimens corresponding to the haplotype from the type locality area (Indonesia) were not found. As previous molecular studies also failed to detect F. limnocharis in Bangladesh, we propose that the name F. limnocharis should be removed from the list of Bangladesh anurans.

The species in the genus Fejervarya constitute two distinct groups, the Southeast-Asian and South-Asian groups (Fig. 3), with F. moodiei and Fejervarya sp. large type belonging to the former, and Fejervarya sp. medium and small types belonging to the latter. Thus, the intermingling nature of anuran fauna of Bangladesh is evident. Two species of “F. limnocharis” (large and small, which also differ in their habitat) were recognized in Myanmar (Zug et al., 1998), but the relationship between Fejervarya taxon of Bangladesh and Myanmar remain to be determined in future studies.

Taxonomic status of ranid frogs from Bangladesh

The genus Hylarana consists of 86 nominal species, and 75 Hylarana species are distributed in Asia and northern Australia (Frost, 2011). It has been reported that five species of this genus (H. erythrea, H. taipehensis, H. leptoglossa, H. tytleri, and H. nigrovittata) are distributed in Bangladesh (Kabir et al., 2009). Our present specimens contained H. leptoglossa and two unidentified species (H. cf. taipehensis and Hylarana sp.). Among these species, H. cf. taipehensis has a close affinity with H. macrodactyla (Wenchang, Hainan, China), with 3.4% 16S divergence, but the external morphologies of the two differ completely (Hasan et al., in preparation). In contrast, the 16S divergence between H. cf. taipehensis and H. taipehensis (Vietnam) is very high (10.4%). Thus, our results show that H. cf. taipehensis does not correspond to either H. macrodactyla or H. taipehensis, and likely represents a new cryptic species. Specimens of H. cf. taipehensis were collected from many regions of Bangladesh and it is probable that this taxon has long been confused with H. taipehensis. Thus, the name H. taipehensis should be removed from the anuran list of Bangladesh.

Hylarana sp. (Bandarban, Bangladesh) and H. malabarica (India) formed a clade and exhibited 15.8% 16S divergence. Due to the limited number of available 16S sequences of nominal Hylarana species (15 of 86) and lack of 16S data for H. tytleri specimens, our analyses could not verify the taxonomic status of this unidentified Hylarana taxon. However, the present phylogenetic analyses, together with morphological comparisons (Hasan et al., in preparation), suggests that Hylarana sp. does not correspond to four Hylarana species (H. leptoglossa, H. erythrea, H. taipehensis, and H. nigrovittata) currently recognized in Bangladesh. Although usable 16S data is lacking for H. tytleri, the morphologies of our Hylarana sp. differ from those of the remaining Bangladeshi Hylarana species (H. tytleri). Detailed morphological comparisons are now in progress.

Taxonomic status of microhylid frogs from Bangladesh

The genus Microhyla consists of 31 species that are widely distributed throughout South and Southeast Asia (Frost, 2011). In Bangladesh, only three nominal species (M. ornata, M. berdmorei, and M. rubra) are reported to exist (Kabir et al., 2009). In the present study, we identified four distinct taxa in the genus Microhyla. Microhyla cf. ornata from Chittagong formed a clade with M. fissipes (Thailand) and displayed a 16S divergence of only 2.7%. Thus, we speculated this taxon to M. fissipes, which needs further taxonomic study to confirm this idea. Microhyla fissipes has long been confused with M. ornata (Matsui et al., 2005) and is presumed to occur in Myanmar (Frost, 2011). Microhyla cf. ornata from Mymensingh and Sylhet showed a considerable genetic divergence (> 5.0%) from these above taxa, although they share similar external morphologies. Thus, it is highly probable that M. cf. ornata from Mymensingh and Sylhet is a cryptic species. Microhyla cf. ornata from Dinajpur is morphologically similar to M. ornata (Kamataka, India; type locality area), but a relatively high 16S divergence (6.8%) exists between them. Therefore, this taxon is apparently a new cryptic species, as suggested by Matsui et al. (2005). Microhyla sp. from Sylhet has 5.2% 16S divergence from M. berdmorei (Gombak, Malaysia). As these two taxa differ morphologically, Microhyla sp. from Sylhet is likely a cryptic species.

In conclusion, the present study revealed the presence of at least eight undescribed frog taxa in Bangladesh. This finding is remarkable in view of the relatively simple topographic features of Bangladesh, which mainly consists of lowlands and lacks high mountainous regions. In addition, our results clearly indicate that anuran biodiversity has been underestimated in Bangladesh and emphasize the necessity for further taxonomic studies of anurans in this country.

ACKNOWLEDGMENTS

We thank the Bangladesh Ministry of Commerce for giving us the permission to collect and transport frogs from Bangladesh to Japan. This work was supported by Grants-in-Aid for Scientific Research (C) (Nos. 17570082 and 20510216) to M. Sumida from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was performed with the kind cooperation of the Analysis Center of Life Science and Natural Science Center for Basic Research and Development, Hiroshima University.

REFERENCES

Ao JM, Bordoloi S, Ohler A (2003) Amphibian fauna of Nagaland with nineteen new records from the state including five new records for India. Zoos’ Print Journal 18: 1117–1125
Bauer AM (1998) South Asian herpetological specimens of historical

An amphibian hotspot. Science 298: 379

(Received July 28, 2011 / Accepted October 21, 2011)