Chirality and Magnetism in Metal Organic Frameworks \[\text{[Mn}^{\text{II}}(L)]_x\text{[M}^{\text{III}}(\text{CN})_6]_y\cdot n\text{H}_2\text{O}\]

\(M = \text{Cr or Mn}, \ L = \text{aspartate, aminoalanine, serine or 1,2-diaminopropane}\)

(配位重合体\[\text{[Mn}^{\text{II}}(L)]_x\text{[M}^{\text{III}}(\text{CN})_6]_y\cdot n\text{H}_2\text{O}\]
におけるキラリティーと磁性
\(M = \text{Cr or Mn}, \ L = \text{aspartate, aminoalanine, serine or 1,2-diaminopropane}\)

李 理 (Li Li)
Department of Chemistry, Graduate School of Science, Hiroshima University

Chapter I

Introduction ... 1
I-1. MAGNETS AND MAGNETISM ... 2
I-2. MOLECULAR MAGNETS .. 4
I-2.1. Prussian Blue Analogs (PBA) .. 5
I-2.2. Organic Ligand Modified PBA ... 6
I-3. MULTIFUNCTIONAL MOLECULAR MAGNETS .. 7
I-4. CHIRAL MAGNETS .. 8
I-4.1. Special Properties of Chiral Magnets ... 9
I-5. CHIRAL MOLECULAR MAGNETS ... 10
I-6. THIS WORK ... 11
REFERENCES ... 14

Chapter II

Experimental Section .. 19
II-1. SYNTHESIS OF RAW MATERIALS ... 20
II-1.1. Synthesis of \(\text{K}_3[\text{Cr(CN)}_6]\) .. 20
II-1.2. Synthesis of \(\text{K}_3[\text{Mn(CN)}_6]\) .. 21
II-1.3. Synthesis of S-pn-2HCl ... 21
II-2. SYNTHESIS OF COMPOUNDS ... 22
II-3. APPARATUS OF EXPERIMENT .. 22
II-3.1. Elemental Analyses .. 22
II-3.2. Infrared Spectroscopy (IR) .. 22
II-3.3. Thermogravimetric Analyses (TGA) .. 23
II-3.4. X-ray Diffraction (XRD) .. 23
 II-3.4.1. Powder X-ray Diffraction (PXRD) 23
 II-3.4.2. Single Crystal X-ray Diffraction (SXRD) 23
II-3.5. Magnetic Measurements .. 23

Chapter III
Synthesis, Crystal Structure and Magnetic Properties of a Chiral
Cyanide-Bridged Bimetallic Framework K₃[MnII(L-asp)]₆[CrIII(CN)₆]·2H₂O ··· 25
III-1. ABSTRACT ... 26
III-2. INTRODUCTION .. 26
III-3. EXPERIMENTAL SECTION .. 29
III-4. RESULTS AND DISCUSSION .. 31
 III-4.1. Crystal Structure ... 31
 III-4.2. Thermal Property ... 39
 III-4.3. Infrared Spectroscopy .. 40
 III-4.4. Magnetic Properties .. 41
III-5. CONCLUSION .. 46
REFERENCES .. 48

Chapter IV
Progressive Transformation between Two Magnetic Ground States for
One Crystal Structure of a Chiral Molecular Magnet 52
IV-1. ABSTRACT ... 53
IV-2. INTRODUCTION .. 54
IV-3. EXPERIMENTAL SECTION .. 56
 IV-3.1. General Information .. 56
 IV-3.2. Physical Measurements ... 57
IV-4. RESULTS AND DISCUSSION .. 58
 IV-4.1. Syntheses .. 58
 IV-4.2. Crystal Structures .. 59
 IV-4.2.1. Framework Structure ... 66
 IV-4.2.2. Geometry of the MnII(CN)₆³⁻ 66
 IV-4.2.3. Dehydration and Rehydration Effects 68