IR Photodissociation Spectroscopy
for Cluster Ions of Triatomic Molecules

Yoshiya INOKUCHI
Hiroshima University
Acknowledgment

Prof. Takayuki EBATA (Hiroshima U.)
Prof. Takashi NAGATA (U. of Tokyo)
Prof. Nobuyuki NISHI (IMS)
Dr. Azusa MURAOKA (U. of Tokyo)
Mr. Yusuke KOBAYASHI (Hiroshima U.)
Ms. Ryoko MATSUSHIMA (Hiroshima U.)

Grant-in-Aid for Scientific Research from MEXT
Mitsubishi Chemical Corporation Fund
Introduction

- Why Ion-Molecule Complexes?

- Why IR Photodissociation Spectroscopy?
Why Ion-Molecule Complexes?

"Chemical Intermediates"

Ion-Molecule Complexes

Basis of Chemistry!
Nucleophilic Additional Reactions of C=O

Resonance interactions between MOs are important

Primary process of nucleophilic reactions

Formation of covalent bond
Formation of Covalent Bonds (1)

- Radical + Radical
 - M–M
 - Bond order = 1
 - Covalent
 - H₂, H₂O, NH₃

- Molecule + Proton
 - (M–H)⁺
 - Bond order = 1
 - Covalent
 - H₃O⁺, NH₄⁺
Formation of Covalent Bonds (2)

Molecule + Radical Ion

\[(M-H)^+ \]

Bond order = 0.5

“Semi” - Covalent Bond

“Two-Center Three-Electron” Bond

Found for

\[CO_2^+ \quad \cdots \quad CO_2 \]

\[C_6H_6^+ \quad \cdots \quad C_6H_6 \]
Semi-Covalent Bonds

- Involve in chemical reactions whose mechanism not clear?
- Discover new chemical reactions?

Electronic and geometric characteristics not well understood.
Why IR Photodissociation Spectroscopy?

Resonance interaction occurs in (CO\textsubscript{2})2+. No structural information.

IR Photodissociation (IRPD) Spectroscopy
With a mass spectrometer, in the gas phase.

Electronic Spectra

Thermochem. Measurements

(CO\textsubscript{2})2+ has higher binding E.
This Study

IR Photodissociation Spectroscopy

Quantum Chemical Calculations

Electronic and Geometric Structures

\((\text{CO}_2)_n^+ \ (\text{OCS})_n^+ \ (\text{CS}_2)_n^+\)

Formation of semi-covalent bonds between unsaturated C=O and C=S groups

GAUSSIAN03
B3LYP/6-311+G*
Experimental

$$\text{EI} \quad \text{Acceleration Grids}$$

$$\text{Mass Gate}$$

$$\text{Reflectron}$$

$$\text{Power Meter}$$

$$\text{Experimental (CO}_2\text{)}_3^{+ \ast} + \text{CO}_2$$

$$\text{(Dissociation Threshold)}$$

$$h\nu P_{\text{ex}} P_{\text{diss}}$$

$$\text{Nl: YAG Laser}$$

$$\text{LaserVision}$$

$$\text{AgGaSe}_2 + \text{ZnSe Filter}$$

$$2000-3800 \text{ cm}^{-1}$$

(1-5 mJ/pulse)

$$1000-2200 \text{ cm}^{-1}$$

(0.2-1 mJ/pulse)
Ion Cores and Solvent Molecules

In cluster ions

Ion Cores
The part in which positive charge is localized.

Solvent Molecules
Bonded to ion core with less or no charge distributed.
IRPD Spectra of $(\text{CO}_2)_n^+$

Anti-symmetric CO stretch (ν_3)

Wavenumber (cm$^{-1}$)

Fragment Ion Intensity

$n = 2$
$n = 3$
$n = 4$
$n = 5$
$n = 6$
$n = 7$
$n = 8$
IRPD Spectra of $(\text{CO}_2)_n^+$

- Band position almost the same as that of CO$_2$.
- Solvent CO$_2$ molecules
- Intensity decreases with increasing n.
 - Ion core
- Fragment Ion Intensity
- Wavenumber (cm$^{-1}$)
What is Ion Core of $(\text{CO}_2)_n^+$?

CO_2^+ or C_2O_4^+?

CO_2^+ or C_2O_4^+?

Ion core of $(\text{CO}_2)_n^+$

C_2O_4^+

\times

CO_2^+

CO_2^+ ion core

$(\text{CO}_2)_n^+$ have C_2O_4^+ ion core.
Structure of C_2O_4^+ is controlled by overlap between HOMOs.
IRPD Spectra of $(\text{CO}_2)_n^+$

Band number alternately changes.

Structural change of C_2O_4^+ part? or whole cluster?
Structure of $(\text{CO}_2)_2^+$ and $(\text{CO}_2)_3^+$

Change of C_2O_4^+ band number for $(\text{CO}_2)_n^+$

\rightarrow Structural change of C_2O_4^+ ion core
In-Phase and Out-of-Phase Combinations

The number of IR bands indicates the planarity.

<table>
<thead>
<tr>
<th>Point Group</th>
<th>C_{2h} (planar)</th>
<th>C_2 (bent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-phase</td>
<td>inactive</td>
<td>active (weak)</td>
</tr>
<tr>
<td>Out-of-phase</td>
<td>active</td>
<td>active (strong)</td>
</tr>
</tbody>
</table>

(a) in-phase combination
(b) out-of-phase combination

IR activity of dimer ions

The number of IR bands indicates the planarity.
IRPD Spectra of \((\text{CO}_2)_n^+\)

Number of \(\text{C}_2\text{O}_4^+\) core band changes alternately.

Structure of \(\text{C}_2\text{O}_4^+\) core changes alternately.

Bare \(\text{C}_2\text{O}_4^+\) ion has planar \((\text{C}_2\text{h})\) structure. Structure of \(\text{C}_2\text{O}_4^+\) depends on cluster size.
IRPD Spectra of \((\text{OCS})_n^+\) and \((\text{CS}_2)_n^+\)

Fragment Ion Intensity

Wavenumber (cm\(^{-1}\))

- **\((\text{OCS})_n^+\)**
 - \(n = 2\)
 - \(n = 3\)
 - \(n = 4\)
 - \(n = 5\)
 - \(n = 6\)
 - \(n = 7\)
 - \(n = 8\)

- **\((\text{CS}_2)_n^+\)**
 - \(n = 2\)
 - \(n = 3\)
 - \(n = 4\)
 - \(n = 5\)
 - \(n = 6\)
 - \(n = 7\)
 - \(n = 8\)
IRPD Spectra of $(OCS)_n^+$ and $(CS_2)_n^+$

$(OCS)_n^+$ and $(CS_2)_n^+$

(Dimer ion core)

Core structure not so change, different from $(CO_2)_n^+$.

Solvent molecules
Structure of Dimer Ion Core

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>(\text{C}_2\text{O}_4^+)</th>
<th>(\text{C}_2\text{O}_2\text{S}_2^+)</th>
<th>(\text{C}_2\text{S}_4^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 2)</td>
<td>(\text{C}_{2h})</td>
<td></td>
<td>(\text{C}_{2h})</td>
</tr>
<tr>
<td>3</td>
<td>(\text{C}_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\text{C}_{2h})</td>
<td>(\text{C}_2)</td>
<td>(\text{C}_2)</td>
</tr>
<tr>
<td>5</td>
<td>(\text{C}_2)</td>
<td></td>
<td>(\text{C}_2)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{C}_{2h})</td>
<td>(\text{C}_2)</td>
<td>(\text{C}_2)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{C}_{2h})</td>
<td></td>
<td>(\text{C}_2)</td>
</tr>
<tr>
<td>8</td>
<td>(\text{C}_{2h})</td>
<td></td>
<td>(\text{C}_2)</td>
</tr>
<tr>
<td>(n = 2) calculation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Structure of Dimer Ion Core

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>C$_2$O$_4^+$</th>
<th>C$_2$O$_2$S$_2^+$</th>
<th>C$_2$S$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td>C$_{2h}$</td>
<td></td>
<td>C$_{2h}$</td>
</tr>
<tr>
<td></td>
<td>C$_2$</td>
<td></td>
<td>C$_2$</td>
</tr>
<tr>
<td></td>
<td>C$_{2h}$</td>
<td></td>
<td>C$_{2h}$</td>
</tr>
<tr>
<td></td>
<td>C$_2$</td>
<td></td>
<td>C$_2$</td>
</tr>
<tr>
<td></td>
<td>C$_{2h}$</td>
<td></td>
<td>C$_{2h}$</td>
</tr>
<tr>
<td>8</td>
<td>C$_{2h}$</td>
<td></td>
<td>C$_2$</td>
</tr>
</tbody>
</table>

Q1. Why structure of C$_2$O$_4^+$ alternately changes?
C$_2$O$_4^+$ so floppy?

For $n = 2$ calculation:
- C$_2$O$_4^+$: 2.32 Å (180.0°), 2.89 Å (98.8°)
- C$_2$O$_2$S$_2^+$: 2.96 Å (115.7°)
- C$_2$S$_4^+$: 2.96 Å (115.7°)
Structure of Dimer Ion Core

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>C_2O_4^+</th>
<th>$\text{C}_2\text{O}_2\text{S}_2^+$</th>
<th>C_2S_4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td>C_{2h}</td>
<td>C_{2h}</td>
<td>C_{2h}</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>C_2</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>C_{2h}</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>$n = 5$</td>
<td>C_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 6$</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 7$</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n = 8$</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$n = 2$ calculation

Q2. Why bare $\text{C}_2\text{O}_2\text{S}_2^+$ has bent (C_2) structure?
Structure of Dimer Ion Core

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>C_2O_4^+</th>
<th>$\text{C}_2\text{O}_2\text{S}_2^+$</th>
<th>C_2S_4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td>C_{2h}</td>
<td></td>
<td>C_{2h}</td>
</tr>
<tr>
<td>3</td>
<td>C_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C_{2h}</td>
<td>C_2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>C_2</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>6</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C_{2h}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$n = 2$ calculation

- C_{2h}
- C_2
- C_2

Q3. Why structure different between experiment and calc. for C_2S_4^+?
Q1. Is $C_2O_4^+$ So Floppy?

- Rather $C_2O_4^+$ has hardest structure.
- Structural change of $C_2O_4^+$ in $(CO_2)_n^+$
 - structural weakness of $C_2O_4^+$
 - characteristics of solvent molecules
Proposed Structural Change

Intermol. bonds formed between solvent mols.
Solvent complex bonded asymmetrically to ion core.
Q2. Why $\text{C}_2\text{O}_2\text{S}_2^+$ bent?

$\text{C}_2\text{O}_2\text{S}_2^+$ has deep double-minimum potential.

Calc. results agree with experimental result.

<table>
<thead>
<tr>
<th></th>
<th>$\text{C}_2\text{O}_2\text{S}_2^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>C_2</td>
</tr>
<tr>
<td>calculation</td>
<td>C_2</td>
</tr>
</tbody>
</table>
Q2. Why $\text{C}_2\text{O}_2\text{S}_2^+$ bent?

Contains 2p component of C atom

C_2O_4^+

$\text{C}_2\text{O}_2\text{S}_2^+$ (side view)

$\text{C}_2\text{O}_2\text{S}_2^+$ (top view)

CO_2

OCS

HOMO
Q2. Why $\text{C}_2\text{O}_2\text{S}_2^+$ bent?

- Overlap between MOs
- Repulsive force between components

Completely stacked?

Step-like structure

Far apart from each other?
Q2. Why $\text{C}_2\text{O}_2\text{S}_2^+$ bent?

A. Bent structure originates from broad nature of HOMO.

Minimizes repulsive force.

Overlap increases with decreasing the angle.
Q3. Why Structure in Experiment and Calculation Different for C_2S_4^+?

C_2O_4^+ has shallow PES \rightarrow so floppy

<table>
<thead>
<tr>
<th></th>
<th>C_2S_4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>experiment</td>
<td>C_{2h}</td>
</tr>
<tr>
<td>calculation</td>
<td>C_2</td>
</tr>
</tbody>
</table>

@B3LYP/6-311+G*

A. Intermol. interaction weaker for C_2S_4^+. Higher-level calculations needed.
Summary

$(\text{CO}_2)_n^+$ $(\text{OCS})_n^+$ $(\text{CS}_2)_n^+$

- Dimer ion core structure.
- The semi-covalent bond formed in dimer ion core.

<table>
<thead>
<tr>
<th>Cluster Size</th>
<th>C_2O_4^+</th>
<th>$\text{C}_2\text{O}_2\text{S}_2^+$</th>
<th>C_2S_4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2$</td>
<td>C_{2h}</td>
<td></td>
<td>C_{2h}</td>
</tr>
<tr>
<td>3</td>
<td>C_2</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>4</td>
<td>C_{2h}</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>5</td>
<td>C_2</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>6</td>
<td>C_{2h}</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>7</td>
<td>C_{2h}</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>8</td>
<td>C_{2h}</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td>calculation</td>
<td>C_{2h}</td>
<td>C_2</td>
<td>C_2</td>
</tr>
</tbody>
</table>

C_2O_4^+ changes structure with cluster size.

$\text{C}_2\text{O}_2\text{S}_2^+$ has bent (C_2) structure.

Structure in experim. and calc. different for C_2S_4^+.

Characteristic of solvent molecules.

Broad nature of HOMO of OCS.

Weaker intermolecular interaction.