LYSOSOMAL ENZYME RELEASE FROM POLYMORPHONUCLEAR
LEUKOCYTES IN PATIENTS WITH CHRONIC GRANULOMATOUS
DISEASE: THE EFFECT OF HYDROGEN PEROXIDE ON
RELEASED ENZYME ACTIVITIES

By
Masao KOBAYASHI, Takeo TANAKA and Tomofusa USUI

Department of Pediatrics, Hiroshima University School of Medicine, Hiroshima, Japan
(Received September 18, 1981)

ABSTRACT
Lysosomal enzyme release from PMN exposed to STZ was examined using PMN from
normal and CGD donors. Normal PMN showed an increase of extracellular lysosomal
enzyme activity and a marked reduction of total (extra-plus intra-cellular) enzyme
activity after phagocytosis. On the other hand, in PMN from CGD patients, such a
reduction of total enzyme activity was not observed and much more enzyme than normal
was released extracellularly. When the supernatant from PMN from CGD patients after
phagocytosis of STZ was incubated with an artificial H₂O₂ generating system, glucose
plus glucose oxidase, the enzyme activities were greatly suppressed as the amount of
H₂O₂ rose. A similar result was obtained with the addition of glucose oxidase during
phagocytosis in PMN from CGD patients. These findings suggest that the presence of
H₂O₂ might suppress lysosomal enzyme activities and result in inhibition of lysosomal
enzyme release.

INTRODUCTION
Polymorphonuclear leukocytes (PMN) selectively discharge lysosomal constituents not only
into phagocytic vesicles but also into extracellular environment when exposed to phago-
cytosable stimuli. The secretory events are usually coupled with the activation of oxidative
metabolism in PMN, termed the respiratory burst, with the formation of highly reactive
oxygen derivatives. These cellular responses are essential for the intracellular microbicidal
activity of PMN and also contribute to the process of inflammation. PMN from patients
with chronic granulomatous disease (CGD) ingest particles and degranulate normally, but
fail to generate the normal respiratory burst associated with phagocytosis.

The present study was designed to investigate the relationship between lysosomal enzyme re-
lease and the respiratory burst during phagocytosis by using normal and CGD PMN. The
results suggest that H₂O₂ produced during phagocytosis might inhibit lysosomal enzyme
release.

MATERIALS AND METHODS
Reagents: Zymosan A (Sigma Chemical

*1 小林正夫, 田中丈夫, 日井朋包: 慢性肉芽腫症患者好中球よりのリソソーム酵素放出について
Co.) was boiled, washed, and opsonized with autologous serum for 30 min. at 37°C and thoroughly washed with Hanks' balanced salt-solution (HBSS, pH 7.4) with 5.5 mM glucose (HBSSG). Glucose oxidase (GO, type I, Boehringer Mannheim Biochemicals) was diluted in HBSSG. Heparinized venous blood was obtained from healthy adult volunteers and six patients with CGD (three males and three females) diagnosed according to previously described criteria. PMN with 98% purity were prepared by centrifugation on Ficoll-diatrizoate sodium gradients followed by dextran sedimentation and lysis of erythrocytes with Tris-buffered ammonium chloride (0.83%). The prepared PMN were washed twice with HBSSG and suspicious in 0.1% (w/v) triton X-100 and ultrasonicated (20 kHz) in an ice bath for 30 sec. using a pulser cycle (Cell disruptor w–225: Heat system-Ultrasonic Inc.). Portions of each fraction were then assayed for enzymes.

Determination of enzyme activities: The conditions for measurement have been reported previously. Acid phosphatase (E.C. 3.1.3.2), N-acetyl-β-glucosaminidase (E.C. 3.2.1.30), β-glucuronidase (E.C. 3.2.1.31), α-fucosidase (E.C. 3.2.1.51), and α-mannosidase (E.C. 3.2.1.24) were assayed with 4-methylumbelliferin (4MU) compounds (Koch–Light Labs. Ltd.) as substrates and were determined by incubating 100 µl of samples with 100 µl aliquots of the following substrates: 0.2 mM 4MU–phosphate in 0.2 M acetate buffer, pH 5.0, 0.2 mM 4MU–acetamide–2-deoxy–β-D-glucopyranoside in 0.2 M citrate buffer, pH 4.5, 0.2 mM 4MU–β-D-glucuronide in 0.2 M acetate buffer, pH 3.5, 0.2 mM 4MU–α-L-fucopyranoside in 0.2 M acetate buffer, pH 4.5. The 4MU formed was measured fluorometrically in Hitachi 204–R spectrofluorometer. Standard assays contained 0.05 mM 4–methylumbelliferone. Lysozyme (E.C. 3.2.1.17) activity was determined by measuring turbidimetrically the rate of lysis of Micrococcus lysodeikticus (Worthington Biochemical Corp.) at pH 6.2. Crystalline hen egg-white lysozyme (Worthington Biochemical Corp.) was used as a standard. Lactate dehydrogenase (LDH) was measured by the method of Wacker et al. Intra–and extracellular enzymes were expressed as a percentage of total enzymatic activities measured in simultaneously run cell incubations without STZ. A ratio of cells to STZ of 1:20 was found to result in stable enzyme release without cell damage from preliminary experiments. At the concentrations employed, none of the agents affected PMN viability as tested by trypan blue exclusion and LDH levels in extracellular fluid.

RESULTS

There were no differences in total enzyme activities between normal and CGD PMN before phagocytosis of STZ (Table 1). Fig. 1 shows the observed intracellular and extracellular enzyme levels during phagocytosis. With normal PMN, extracellular lysosomal enzyme activities increased as phagocytosis progressed. However, there was a marked reduction of total (intracellular plus extracellular) enzyme activity: 25 to 50% less acid phosphatase, N-acetyl-β-glucosaminidase, β-glucuronidase, and α-fucosidase. The losses of α-mannosidase and lysozyme activities were small. On the other hand, PMN from CGD patients showed no

<table>
<thead>
<tr>
<th>Table 1. Lysosomal enzyme activities in PMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme activities are expressed as picomoles of substrate hydrolyzed per min. per 5×10⁶ cells.</td>
</tr>
<tr>
<td>Lysozyme activity of 5×10⁶ cells is expressed in equivalents of micrograms of egg-white lysozyme standard.</td>
</tr>
<tr>
<td>Mean±SD</td>
</tr>
</tbody>
</table>

- **Acid phosphatase**: Normal PMN: 2108±706⁸, CGD PMN: 2071±714
- **N-acetyl-β-glucosaminidase**: Normal PMN: 904±295, CGD PMN: 814±226
- **β-Glucuronidase**: Normal PMN: 778±240, CGD PMN: 670±171
- **α-Fucosidase**: Normal PMN: 204±67, CGD PMN: 162±49
- **α-Mannosidase**: Normal PMN: 190±81, CGD PMN: 206±49
- **Lysozyme**: Normal PMN: 5.2±2.2, CGD PMN: 5.7±1.5
Lysosomal Enzyme Release from CGD PMN

ACID PHOSPHATASE
N-ACETYL-\(\beta\)-GLUCOSAMINIDASE
\(\beta\)-GLUCURONIDASE
\(\alpha\)-FUCOSIDASE
\(\alpha\)-MANNOSIDASE
LYSOZYME

Fig. 1. Intracellular and extracellular enzyme levels during phagocytosis
Intracellular (shaded bars) and extracellular (open bars) enzyme levels are expressed as
the percentage of total enzyme activities in PMN. Each bar represents the average
of the results from two normal (left bar) and two CGD (right bar) donors. The
conditions were described in the text.

Table 2. Intracellular and extracellular enzyme activities after phagocytosis

<table>
<thead>
<tr>
<th></th>
<th>Acid phosphatase</th>
<th>N-acetyl-(\beta)-glucosaminidase</th>
<th>(\beta)-glucuronidase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra</td>
<td>Extra</td>
<td>Intra</td>
</tr>
<tr>
<td>Normal PMN (n=22)</td>
<td>63.3±6.6(^a)</td>
<td>9.2±2.2</td>
<td>53.5±10.8</td>
</tr>
<tr>
<td>CGD PMN (n=6)</td>
<td>70.0±3.9</td>
<td>20.1±4.0(^a)</td>
<td>56.0±6.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\alpha)-Fucosidase</th>
<th>(\alpha)-Mannosidase</th>
<th>Lysozyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intra</td>
<td>Extra</td>
<td>Intra</td>
</tr>
<tr>
<td>Normal PMN (n=22)</td>
<td>37.8±10.9</td>
<td>8.9±5.1</td>
<td>66.0±8.1</td>
</tr>
<tr>
<td>CGD PMN (n=6)</td>
<td>51.3±8.9</td>
<td>41.7±10.0(^a)</td>
<td>58.5±7.0</td>
</tr>
</tbody>
</table>

\(^1\) The ratio of PMN to STZ was 1:20 and the incubation time was 20 minutes.
\(^2\) Intracellular (Intra) and extracellular (Extra) enzyme levels are expressed as the percentage of total enzyme activities in PMN (Mean±SD).
\(^3\) \(p<0.001\) for test of equality with extracellular level in normal PMN.
reduction of total enzyme activity and seemed to extrude more of these enzymes than did normal PMN. In table 2, intracellular and extracellular enzyme activities after phagocytosis for 20 min. were compared between normal and CGD PMN. For all enzymes, PMN from patients with CGD released significantly more lysosomal enzyme extracellularly than normal PMN \((p<0.001)\).

In order to test the stability of the enzymes that were released into solution, PMN lysates were placed in incubation media and measured for enzyme activity at various times at \(37^\circ\)C. All enzymes except acid phosphatase remained stable for an hour in HBSSG (pH 7.4) at \(37^\circ\)C. Acid phosphatase activity decreased by 25\% after incubation for 20 min. There was no difference in the stability of the enzymes between normal and CGD PMN (data not shown). It is therefore likely that the difference in extracellular enzyme activity after phagocytosis between normal and CGD PMN is not due to the enzyme stability. Mixtures of the supernatants after phagocytosis and PMN lysates from normal and CGD patients were examined for the presence of an enzyme activator or inhibitor, but neither was found.

In order to evaluate the effect of oxidative metabolism of PMN, the supernatant after phagocytosis of STZ from CGD PMN was incubated with an artificial \(\text{H}_2\text{O}_2\) generating system, glucose-glucose oxidase. As shown in Fig. 2, enzyme activities decreased as the amount of \(\text{H}_2\text{O}_2\) rose. Alpha mannosidase and lysozyme activities showed a smaller decrease than the other four enzymes. Heat-inactivated glucose oxidase had no effect on enzyme activities. Under the same conditions, enzyme activities in the supernatant after phagocytosis of normal PMN were also suppressed in the same manner as seen in CGD PMN (data not shown).

Furthermore, when glucose oxidase was added externally to the medium during phagocytosis

![Fig. 2. Effect of \(\text{H}_2\text{O}_2\) produced from glucose-glucose oxidase on enzyme activities in the supernatant after phagocytosis in CGD PMN](image)

The reaction mixture contained the supernatant in HBSSG (glucose 5.5 mM) and either glucose oxidase (●) or heat-inactivated glucose oxidase (○). The data are expressed as a percentage of the initial enzyme activity of the supernatant and mean ± SD of four experiments.
Table 3. Effect of H$_2$O$_2$ produced from glucose-glucose oxidase on lysosomal enzymes in CGD PMN during phagocytosis

<table>
<thead>
<tr>
<th></th>
<th>Acid phosphatase</th>
<th>N-acetyl-β-glucosaminidase</th>
<th>β-Glucuronidase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intraa</td>
<td>Extraa</td>
<td>Intra</td>
</tr>
<tr>
<td>Case 1 (C. L) PMN+STZ</td>
<td>70a</td>
<td>24</td>
<td>67</td>
</tr>
<tr>
<td>+GO (5 mU)</td>
<td>71</td>
<td>13</td>
<td>68</td>
</tr>
<tr>
<td>Case 2 (N. L) PMN+STZ</td>
<td>68</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>+GO (5 mU)</td>
<td>67</td>
<td>12</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Intra</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1 (C. L) PMN+STZ</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>+GO (5 mU)</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>Case 2 (N. L) PMN+STZ</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>+GO (5 mU)</td>
<td>46</td>
<td>7</td>
</tr>
</tbody>
</table>

1 The ratio of PMN to STZ was 1:20 and the incubation time was 20 minutes.

2 Intracellular (Intra) and extracellular (Extra) enzyme levels are expressed as the percentage of total enzyme activities in PMN.

Lysosomal Enzyme Release from CGD PMN

in PMN from CGD patients, decreases of extracellular lysosomal enzyme activities and of total enzyme levels were observed (Table 3).

DISCUSSION

It is well known that the contents of both azurophil and specific granule constituents of PMN are released not only into phagocytic vesicles but also into extracellular space$^{1-5}$. In addition to the increase of extracellular enzyme activity, a decrease of total enzyme levels after phagocytosis has been reported, but the cause of this phenomenon is not yet clear8. The present study showed a remarkable difference in the levels of released lysosomal enzymes between normal and CGD PMN after phagocytosis. As shown in Fig. 1, the decrease in enzyme levels in normal PMN was due mostly to a loss of released enzyme. PMN from patients with CGD showed higher extracellular levels of enzyme activity than normal PMN and unchanged levels of total enzyme activity after phagocytosis. PMN from patients with CGD are characterized by a lack of the respiratory burst despite normal phagocytosis6,10. From the evidence that PMN from CGD patients maintained released enzyme activities, it may be postulated that oxidative metabolism associated with phagocytosis is related to the loss of total enzyme activity in normal PMN. Stossel et al. have demonstrated normal degranulation and normal specific activity of lysosomal enzymes in phagocytic vesicles in PMN from CGD patients, but they did not measure the exocytic enzyme activity15. In order to evaluate the effect of oxidative metabolism, we used a H$_2$O$_2$ generating system, glucose plus glucose oxidase, which is more closely analogous to continuous H$_2$O$_2$ formation by phagocytosing PMN and has improved the bactericidal activity in PMN from CGD patients16,17. Under these conditions, released lysosomal enzyme activities from PMN from CGD patients were greatly suppressed. Furthermore, the addition of glucose oxidase during phagocytosis in PMN from CGD patients resulted in lower extracellular enzyme activities and loss of total enzyme levels as was seen in normal PMN. H$_2$O$_2$ had less of an effect of α-mannosidase and lysozyme than on the other four enzymes. H$_2$O$_2$ has been able to generate a number of active oxygen species by interaction with myeloperoxidase and halides or with the superoxide anion8,13. Although the precise
mechanism of suppression of lysosomal enzyme activities and the difference in susceptibility to
H\textsubscript{2}O\textsubscript{2} among these enzymes are unknown, this result parallels the degree of the total enzyme level decrease during phagocytosis as shown in
Fig. 1. It is therefore possible that the suppression of enzyme activity may be dependent in part on H\textsubscript{2}O\textsubscript{2} production.

Recently, Newburger et al. reported that not only CGD peripheral PMN but also cultured
cells from CGD bone marrow showed supranor-
mal degranulation accompanying phagocytosis of STZ19. They suggested that this was due to
the lack of the toxic autooxidative effect on cellular function20 that might limit degranula-
tion in normal PMN19. Our results suggest in addition that H\textsubscript{2}O\textsubscript{2} produced during phago-
cytosis has the capability to suppress the activity of released enzymes. These two possibilities
may help to explain the differences of released enzyme activities between normal and CGD PMN.

Thus, although there are many unexplained
and delicate mechanisms in the interaction of
lyosomal enzyme release and oxidative metabo-

tism associated with phagocytosis, the balance
between these two functions of PMN may have
an important role at sites of inflammation.

ACKNOWLEDGMENT

This work was supported in parts by Grants-

in-Aid for Scientific Research (Project Nos.
437010 and 544050) from the Ministry of Educa-
tion, Science, and Culture of Japan. We are
grateful to Dr. Alice S. Cary for assistance in
preparing this manuscript.

REFERENCES

1) Henson, P. M.: The immunologic release of con-
stituents from neutrophil leukocytes. I. The role
of antibody and complement on nonphagocytos-
able surfaces or phagocytosable particles. J. Im-
munol., 107, 1535, 1971.

2) Wright, D.G. and Malawista, S.E.: The mobiliza-
tion and extracellular release of granular enzymes from
human leukocytes during phagocytosis. J. Cell

3) Weissman, G., Zurier, R. B., Spieler, P.J. and Gold-
stein, I. M.: Mechanism of lysosomal enzyme re-
lease from leukocytes exposed to immune com-
plexes and other particles. J. Exp. Med., 134,
149, 1971.

4) Baintoin, D.F.: Sequential degranulation of two
types of polymorphonuclear leukocyte granules
during phagocytosis of microorganisms. J. Cell

5) Bentwood, B. J. and Henson, P. M.: The sequential
release of granule constituents from human neut-

6) Root, R.K., Metcalf, J., Oshino, N. and Chance, B.:
H\textsubscript{2}O\textsubscript{2} release from human granulocytes during
phagocytosis. I. Documentation, quantitation, and
some regulating factors. J. Clin. Invest., 55, 945,
1975.

7) Bavier, B. M.: Oxygen dependent microbial killing
by phagocytes (First of two parts). N. Engl. J.

8) Badwey, J. A. and Karnovsky, M. L.: Active oxygen
species and the function of phagocytic leukocytes.

9) Johnston, R. B. Jr. and Newmann Sl.: Chronic
granulomatous disease. Pediatr Clin. N. Am., 24,

10) Bavier, B. M.: Oxygen dependent microbial killing
by phagocytes (Second of two parts). N. Engl.

11) Tanaka, T.: The different composition of eight
lysosomal enzymes in human peripheral lym-

12) Tanaka, T.: Chediak-Higashi syndrome: abnor-
mal lysosomal enzyme levels in granulocytes of
patients and family members. Pediatr Res., 14,
901, 1980.

Freehold NJ Worthington Biochemical, p. 185,
1977.

14) Wacker, W. E. C., Ulmer, D. D. and Vallee, B. L.:
Metalloenzymes and myocardial infarction. II.
Malic and lactic dehydrogenase activities and zinc
concentration in serum. N. Engl. J. Med., 255,
449, 1956.

15) Stossel, T. P., Root, R. K. and Vaughan, B. L.:
Phagocytosis in chronic granulomatous disease
286, 120, 1972.

16) Johnston, R. B., Jr. and Baehner, R. L.: Improve-
ment of leukocyte bactericidal activity in chronic

17) Baehner, R. L., Nathan, D. G. and Karnovsky,
M. L.: Correction of metabolic deficiencies in the
leukocytes of patients with chronic granulomatous

18) Klebanoff, S. J.: Antimicrobial mechanisms in
neutrophilic polymorphonuclear leukocytes. Semin

19) Newburger, P. E., Kruskall, M. S., Rappaport J.
M., Robinson, S. H., Chovaniec, M. E. and Cohen,
H. J.: Chronic granulomatous disease: expression
of the metabolic defects in vitro culture of bone

L.: Autooxidation as a basis for altered function
by polymorphonuclear leukocytes. Blood, 50, 327,
1977.