Effect of Leukotriene B$_4$ on Enhancement of Superoxide Production Evoked by Formyl-Methionyl-Leucyl-Phenylalanine in Myeloid Differentiated HL-60 Cells: Possible Involvement of Intracellular Calcium Influx and High Affinity Receptor for Leukotriene B$_4$

Yoshiaki HARADA
Department of Pediatrics, Hiroshima University School of Medicine, 1-2-3, Kasumi, Minami-Ku, Hiroshima 734, Japan

ABSTRACT
Exposure of a human leukemic cell line HL-60 to 1% dimethylsulfoxide (DMSO) for 4 days induced myeloid differentiation. DMSO-differentiated HL-60 cells displayed high and low-affinity binding sites for leukotriene B$_4$ (LTB$_4$). The pretreatment of myeloid differentiated HL-60 cells with 1-10 nM LTB$_4$ enhanced superoxide production evoked by 100 nM formyl-methionyl-leucyl-phenylalanine (fMLP) to 127-137% of the controls stimulated by fMLP alone. A concentration eliciting a half maximal increase (EC$_{50}$) of LTB$_4$ for the enhancing effect on superoxide production evoked by fMLP was 0.32 nM. This was roughly similar to the dissociation constant (Kd) of high affinity receptors for LTB$_4$ (0.23 nM). These results suggest that high affinity receptors transduce the enhancing effect of LTB$_4$ on fMLP-induced superoxide production. Although it seems possible that enhancement of fMLP-induced superoxide production is associated with a substantial increase and/or an affinity alteration in receptors for fMLP, LTB$_4$-pretreated cells failed to show significant changes in fMLP binding compared to non-pretreated ones. It seems likely that Ca$^{2+}$ influx transduces enhancement of fMLP-induced superoxide production, because extracellular Ca$^{2+}$ is necessary for an enhancing effect of fMLP-induced superoxide production. Also, EC$_{50}$ of LTB$_4$ for Ca$^{2+}$ influx (0.78 nM) was similar to that of the enhancing effect of superoxide generation evoked by fMLP. Although pretreatment of LTB$_4$ failed to enhance the maximal level of fMLP-induced intracellular Ca$^{2+}$ rise, transient overshoot in intracellular Ca$^{2+}$ evoked by fMLP declined more rapidly after LTB$_4$ pretreatment. Possible involvement of high affinity binding sites for LTB$_4$ and Ca$^{2+}$ influx was noted in the LTB$_4$-enhancement of fMLP-induced superoxide production in DMSO-differentiated HL-60 cells. However, the significance of the rapid attenuation of intracellular Ca$^{2+}$ overshoot needs further evaluation.

Key words: Leukotriene B$_4$, HL-60 cells, Superoxide, Calcium

The HL-60 cell line of a patient with leukemia, initially diagnosed as acute promyelocytic leukemia9 but now classified as acute myeloblastic leukemia with maturation5, undergoes differentiation to a number of different cell types by a variety of different compounds. DMSO-induced myeloid differentiated HL-60 cells exhibit functional maturity5,17, possessing the binding sites for the chemotactic peptide fMLP18 and LTB$_4$,3 as well as the ability to produce LTB$_4$29. DMSO-differentiated HL-60 cells provide a convenient system for assessing the synergistic effect of neutrophil stimuli on granulocyte functions. It should be kept in mind, however, that the data were obtained from a heterogeneous cell population. Experiments with HL-60 cells have many advantages in studies of receptor processing and functioning, because of these cells' long life span in vitro.

LTB$_4$ is a 5-lipoxygenase metabolite of arachidonic acid which is produced by neutrophils in response to specific stimuli12,24, and shares many proinflammatory properties, including the ability to stimulate neutrophil adherence and chemotaxis20,24,25. Although LTB$_4$ is a poor stimulant of neutrophil superoxide, it has been known to enhance fMLP-induced respiratory burst10,11. However, in myeloid differentiated HL-60 cells, the enhancing effect of LTB$_4$ on superoxide production has not yet been established. Experimental evidence has shown that an alternation in expression of receptors8,27 and/or Ca$^{2+}$ mobilization7 modifies the cellular response of neutrophils to fMLP. It seems likely that LTB$_4$-enhancement of superoxide production evoked by fMLP is mediated by alteration in expression of receptors and/or Ca$^{2+}$ influx.
This report shows that LTB₄ increased fMLP-induced superoxide production in myeloid differentiated HL-60 cells. The mechanisms of this enhancing effect of LTB₄ in DMSO-induced mature HL-60 cells were examined. This study has demonstrated that high-affinity receptors for LTB₄ transduce not only Ca²⁺ influx but also have an increasing effect on fMLP-induced superoxide generation. It is shown also that transient overshoot in intracellular Ca²⁺ in LTB₄-treated cells declines more rapidly compared to that of LTB₄ non-pretreated cells.

MATERIALS AND METHODS

Reagents

LTB₄ (Paesel, Frankfurt, FRG), fMLP (Protein Research Laboratory, Osaka, Japan), DMSO (Merk, Darmstock, FRG), ferricytochrome c Type VI, (Sigma, St.Louis, MO), Ethylene glycol-bis-(β-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA, Nakarai, Kyoto, Japan), crystal ovalbumin (OVA, Sigma), Fura 2/AM (Dojindo, Kumamoto, Japan), Hanks' balanced salt solution (HBSS, Gibco, Grand Island, NY), NCS tissue solubilizer (Amersham, Arlington Heights, IL), [³H] LTB₄ (32 Ci/mmol, New England Nuclear, Boston, MA) and [³H] fMLP (60 Ci/mmol, New England Nuclear) were obtained from the suppliers noted. [³H] LTB₄ and [³H] fMLP were stored in ethanol at -20°C and evaporated by centrifugal evaporator (Yamato, Tokyo, Japan). Where low extracellular Ca²⁺ was specified for incubation, Ca²⁺-free HBSS containing 1 mM EGTA was used.

Fura 2 loading and measurement of intracellular Ca²⁺

The intracellular levels of Ca²⁺ were inferred from measurement of fluorescence of Ca²⁺ indicator Fura 2 as previously described[16,23]. To achieve uptake of Fura 2, 10⁶ cells were incubated with 2 µM Fura 2/AM for 30 min at 37°C in 1 ml of HBSS. The cells were diluted twofold and incubated for an additional 30 min at room temperature. The Fura 2-loaded cells were washed several times and resuspended in medium containing 130 mM NaCl, 5 mM KCl, 5.5 mM glucose, 1 mM MgCl₂, 1.5 mM CaCl₂ and 20 mM Hepes buffer (pH 7.2) at a concentration of 5 x 10⁶ cells/ml. The fluorescence of Fura 2-loaded cells was recorded with a spectrophurometer (Hitachi model MPF-4, Hitachi, Tokyo, Japan) at an excitation wavelength of 335 nm and an emission wavelength of 360 nm. Intracellular Ca²⁺ levels were calculated as previously described[20].

Assay for LTB₄ receptors

Specific binding of [³H] LTB₄ to HL-60 cells was measured as previously described[16]. Briefly, 10⁷ cells/ml were incubated on ice for 60 min in the presence of 0.1 to 40 nM [³H] LTB₄ in a final volume of 200 µl of Ca²⁺-free HBSS-OVA (HBSS containing 0.1 g OVA per 100 ml) containing 1 mM EGTA. The reaction was terminated by a rapid filtration through Whatman GF/C glass fiber filter (Whatman, Maidstone, England) and the filters were immediately washed with 10 ml ice cold HBSS. The filters were air dried and solubilized in 1 ml of NCS solution at 50°C for 60 min in a scintillation vial and the radioactivity was determined by liquid scintillation spectrometry. Nonspecific binding was defined as the amount of [³H] LTB₄ bound in the presence of a 500-fold excess of unlabeled LTB₄. The binding data were analyzed by the method of Rosenthal[22] as previously reported[19] on a NEC PC-9801 microcomputer system (NEC, Tokyo, Japan).

[³H] fMLP binding to LTB₄-treated HL-60 cells

Forty million per milliliter of HL-60 cells in HBSS were incubated with or without 100 nM LTB₄ for 5 min at 37°C, and then equal volume of Ca²⁺-free HBSS containing 2 mM EGTA was added. Specific binding of [³H] fMLP of HL-60 cells was measured as previously described, with some modifications[8]. Briefly, 2 x 10⁶ cells were incubated with different concentrations of [³H] fMLP (0.1—400 nM) in a total volume of 200 µl of Ca²⁺-free HBSS-OVA in the presence or absence of 500-fold excess of unlabeled fMLP. After incubation for 60 min, the cell suspensions were rapidly filtered onto Whatman GF/C glass fiber filters, which were washed with ice-cold HBSS. The radi-
oactivity was counted as described in LTB₄ binding assay.

Statistical analysis
Statistical analysis was performed by the two-tailed Student’s t-test and paired t-test.

RESULTS
Effect of 1% DMSO on myeloid differentiation of HL-60 cells

When the subclone of HL-60 cells was cultured for 4 days in the presence of 1% DMSO, the cells differentiated into promyelocytes (5.8 ± 10.3%), myelocytes (29 ± 3.3%), metamyelocytes (23.6 ± 7.4%), band cells (15.2 ± 5.4%) and segmented cells (26.2 ± 5.6%). Although myeloid differentiated HL-60 cells produced superoxide by a stimulation of fMLP, immature HL-60 cells failed to produce superoxide even by stimulation with fMLP following LTB₄ (data not shown). Myeloid differentiated HL-60 cells had two binding sites for LTB₄. Kd for high affinity receptor (KdH) was 0.23 nM and Kd for low affinity receptors (KdL) was 30.3 nM (Table 1).

Effect of LTB₄ on fMLP-induced superoxide production

Preincubation of myeloid differentiated HL-60 cells with LTB₄ for 5 min, in a dose dependent fashion, enhanced superoxide production evoked by 100 nM fMLP (Table 2). One hundred nM LTB₄ increased superoxide production by 137% at 100 nM fMLP. EC₅₀ of LTB₄ for enhancement of fMLP-induced superoxide production was 0.32 nM.

Table 1. LTB₄ Receptors on Myeloid Differentiated HL-60 Cells

<table>
<thead>
<tr>
<th>Affinity</th>
<th>Kd nM</th>
<th>Bmax fmol/10⁷ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>0.23 ± 0.10</td>
<td>30.3 ± 0.78</td>
</tr>
<tr>
<td>Low</td>
<td>12.4 ± 3.38</td>
<td>335.7 ± 72.8</td>
</tr>
</tbody>
</table>

Myeloid differentiated HL-60 cells were incubated with 0.1 to 40 nM [³H] LTB₄ with or without 500-fold unlabeled LTB₄ in Ca²⁺ free HBSS-OVA for 60 min on ice (n=3).

Table 2. Effect of LTB₄ on Superoxide Production Evoked by fMLP in Myeloid Differentiated HL-60 Cells

<table>
<thead>
<tr>
<th>Concentration of LTB₄ (nM)</th>
<th>Superoxide production nmol/min/10⁶ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.00 ± 0.25</td>
</tr>
<tr>
<td>0.1</td>
<td>3.77 ± 0.63</td>
</tr>
<tr>
<td>1</td>
<td>5.08 ± 0.22*</td>
</tr>
<tr>
<td>10</td>
<td>5.42 ± 0.30*</td>
</tr>
<tr>
<td>100</td>
<td>5.48 ± 0.30*</td>
</tr>
</tbody>
</table>

Myeloid differentiated HL-60 cells were incubated for 5 min at 37°C with different concentrations of LTB₄ before addition of 100 nM fMLP (n=4).

*p<0.01 as compared with the control.

This was roughly similar to KdH for LTB₄ (0.23 nM).

Effect of LTB₄ on [³H] fMLP binding

Differentiated HL-60 cells expressed both high and low-affinity receptors for fMLP. Scatchard analysis of specific binding of [³H] fMLP in LTB₄-pretreated myeloid differentiated HL-60 cells expressed as KdH of 1.83 ± 1.26 nM and KdL of 36.07 ± 24.6 nM (n=3). Total binding capacity (Bmax) for high affinity receptors (BmaxH) was 39.1 ± 8.8 fmol/10⁷ cells, and Bmax for low affinity receptors (BmaxL) was 436.8 ± 126.1 fmol/10⁷ cells in LTB₄-pretreated cells. In non-pretreated cells KdH was 0.90 ± 0.32 nM, KdL 73.9 ± 4.6 nM, BmaxH 48.3 ± 24.0 fmol/10⁷ cells, and BmaxL 416.7 ± 115.5 fmol/10⁷ cells in non-pretreated cells (Fig. 1). The difference in fMLP binding affinity and the number of binding sites exhibited by the LTB₄-pretreated cells compared with non-pretreated cells was not statistically significant (p>0.05).

Role of Ca²⁺ in modulation of superoxide production

When the cells were suspended in Ca²⁺-free HBSS containing 1 mM EGTA, fMLP-induced superoxide production of LTB₄-pretreated myeloid differentiated HL-60 cells and non-pretreated cells was 1.15 ± 0.10 and 1.36 ± 0.21 nmol O₂⁻/min/10⁶ cells (p>0.05, n=3, Fig.2). In Ca²⁺ containing HBSS, fMLP-induced superoxide production of LTB₄-pretreated cells and non-pretreated cells were 6.07 ± 0.31 and 3.97 ± 0.21 nmol O₂⁻/min/10⁶ cells (p<0.01, n=3). Although pretreatment with LTB₄ failed to enhance fMLP-induced superoxide generation in the absence of Ca²⁺, the stimulation of Ca²⁺-containing HBSS with or without 100 nM LTB₄ for 5 min at 37°C followed by [³H] fMLP binding assay on ice.
Fig. 2. Effect of elimination of extracellular Ca2+ on LTB\textsubscript{4}-induced enhancement of superoxide production evoked by fMLP. Myeloid differentiated HL-60 cells were preincubated with 100 nM LTB\textsubscript{4} or HBSS for 5 min before addition of 100 nM fMLP. Cells were incubated in HBSS containing Ca2+ (upper figures) or in Ca2+-free HBSS containing 1 mM EGTA (lower figures).

Fig. 3. LTB\textsubscript{4}-induced intracellular Ca2+ mobilization of myeloid differentiated HL-60 cells. Maximal level of intracellular Ca2+ mobilization of the cells stimulated with 0.1, 1, 10 and 100 nM of LTB\textsubscript{4} was 123 ± 25.3 nM, 194.4 ± 7.8 nM, 245.2 ± 16.5 nM and 248.2 ± 19.7 nM, respectively. Base-line intracellular Ca2+ was 113 ± 8.5 nM. Triplicate determinations were performed in each condition.

Fig. 4. Effect of LTB\textsubscript{4} on fMLP-induced intracellular Ca2+ mobilization in myeloid differentiated HL-60 cells. The decline of the transient overshoot is presented as tangent D, where D is the angle between the base line and the tangential line of the decreasing phase of transient intracellular Ca2+ mobilization that draws from the peak point to a level at 30 sec later. Tangent D of the decreasing phase of intracellular Ca2+ in the cells pretreated with PBS or 100 nM LTB\textsubscript{4} was 1.22 ± 0.23 and 2.00 ± 0.23*, respectively. Triplicate determinations were performed in each condition.

* p < 0.05 as compared to PBS pretreated cells.

Extracellular Ca2+, LTB\textsubscript{4} significantly enhanced fMLP-induced superoxide production in Ca2+ containing HBSS. LTB\textsubscript{4} itself induced intracellular Ca2+ rise in a dose dependent manner (Fig. 3). EC\textsubscript{50} for LTB\textsubscript{4} to increase intracellular Ca2+ level in myeloid differentiated HL-60 cells was 0.78 nM, which was also approximately similar to \(K_{\text{diss}} \) for LTB\textsubscript{4}.

However, fMLP-induced intracellular Ca2+ rise was not affected by LTB\textsubscript{4} pretreatment (Fig. 4). The maximal level of increase of 100 nM fMLP-induced intracellular Ca2+ in 100 nM LTB\textsubscript{4}-pretreated cells (332.6 ± 49.3 nM) was similar to that of non-pretreated ones (330.7 ± 65.9 nM). When LTB\textsubscript{4} (100 nM)-pretreated cells were stimulated with 1 nM and 10 nM fMLP, the maximal level of intracellular Ca2+ was also similar to that of the non-pretreated ones (data not shown). The transient overshoot in intracellular Ca2+ induced by fMLP in LTB\textsubscript{4}-pretreated cells declined more rapidly compared to that of the cells stimulated with fMLP alone. Similar rapid declines of in-
tracellular Ca\(^{2+}\) were observed when differentiated HL-60 cells were pretreated with 1 nM and 10 nM LTB\(_4\) before stimulation with 100 nM fMLP (data not shown).

DISCUSSION

It is a widely accepted hypothesis that cell surface receptors regulate the responses of the cells. In this study, pretreatment of the myeloid differentiated HL-60 cells with 1–100 nM LTB\(_4\) increased fMLP-evoked superoxide production to 127–137% of the control. EC\(_{50}\) of LTB\(_4\) for an enhancing effect of superoxide production evoked by fMLP was roughly similar to \(K_{dH}\) for LTB\(_4\). These results suggest that high-affinity receptors for LTB\(_4\) transduce an enhancing effect of superoxide production evoked by fMLP.

It is well known that several substances, including Ca\(^{2+}\) ionophore A23187 and PMA, increase both the number of fMLP receptors on the neutrophil plasma membrane and the cellular oxidative response to fMLP\(^{10,18,37-39}\). It seems possible that subsequent fMLP exposure can cause an increase and/or an affinity change in receptor-ligand coupling, resulting in an enhancement of fMLP-mediated responses. However, in the present data, pretreatment of LTB\(_4\) failed to cause significant changes in high and low-affinity receptors for fMLP in myeloid differentiated HL-60 cells. In human neutrophils, LTB\(_4\) also failed to alter fMLP binding in spite of enhancing fMLP-induced NBT reduction\(^{10}\). It seems likely that an enhancing effect of LTB\(_4\) is not mediated by a change in the number and affinity of fMLP binding sites. However, because the binding studies were performed in heterogeneous differentiated HL-60 cells, modulation of receptor number and/or affinity of a subpopulation of cells cannot be ruled out.

Since LTB\(_4\) is a calcium ionophore\(^{39}\), the role of calcium in the enhancing effect was also investigated. fMLP-induced superoxide production was enhanced by pretreatment of LTB\(_4\) in the presence of extracellular Ca\(^{2+}\). However, in the absence of Ca\(^{2+}\), an enhancing effect of LTB\(_4\) was not observed. These results suggest that the extracellular Ca\(^{2+}\) is necessary for an enhancing effect of LTB\(_4\) on superoxide production evoked by fMLP in myeloid differentiated HL-60 cells. EC\(_{50}\) of LTB\(_4\) for intracellular calcium mobilization was approximately similar to that of LTB\(_4\) for the enhancing effect on fMLP-induced superoxide production. Therefore, it seems likely that Ca\(^{2+}\) influx evoked by LTB\(_4\) transduces enhancement of fMLP-induced superoxide production.

Pretreatment of LTB\(_4\) did not alter the maximal level of increase of fMLP-induced intracellular Ca\(^{2+}\). The maximal intracellular Ca\(^{2+}\) level reflects mainly Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores\(^{29}\). Therefore, the enhancing effect of LTB\(_4\) may not be associated with changes in fMLP-induced Ca\(^{2+}\) release from intracellular Ca\(^{2+}\) stores.

It is interesting that the transient overshoot in intracellular Ca\(^{2+}\) in LTB\(_4\)-treated cells declined more rapidly compared to LTB\(_4\), non-pretreated cells. The possibility that plasma membrane ionic channels are modified by a protein kinase C-dependent mechanism has been reported\(^{29}\). In myeloid differentiated HL-60 cells, inositol trisphosphate is thought to be a signal for fMLP-induced Ca\(^{2+}\) mobilization\(^{39}\). It seems likely that a rapid decrease in intracellular Ca\(^{2+}\) transient may indicate a change of activation of protein kinase C and/or phospholipase C in LTB\(_4\)-treated cells. The significance of LTB\(_4\) induced rapid decline of Ca\(^{2+}\) influx must be further evaluated.

ACKNOWLEDGEMENT

The author would like to thank Professor K. Ueda, Hiroshima University School of Medicine, and Dr. T. Sakano, Hiroshima Prefectural Hospital, for helpful advice and manuscript review.

(Received March 29, 1990)
(accepted August 16, 1990)

REFERENCES

