Protective Effect of Beraprost Sodium, a Stable Prostacyclin Analogue, on Cardiac Allograft Vasculopathy in Rats

Yoshihiro KURISU1), Kazumasa ORIHASHI1), Taijiro SUEDA1), Hiroki KAJIHARA2) and Yuichiro MATSUURA1)

1) First Department of Surgery, Research Institute of Replacement Medicine, Hiroshima University School of Medicine, Kasumi 1–2–3, Minami-ku, Hiroshima 734, Japan
2) Institute of Health Sciences, Hiroshima University School of Medicine, Kasumi 1–2–3, Minami-ku, Hiroshima 734, Japan

ABSTRACT

Intimal thickening and luminal narrowing of the coronary arteries are insidious complications of cardiac allograft. However, the pathogenesis of cardiac allograft vasculopathy (CAV) remains to be clarified. In this study, the protective effect of a prostacyclin analogue (beraprost sodium; BPS) on CAV was evaluated after heterotopic cardiac transplantation in rats. All recipients were treated with cyclosporine A (10 mg/kg/day intramuscularly). Eight rats received oral therapy with BPS of 50 µg/kg/day (BPS group) and another 8 rats received vehicle only (control group). All surviving cardiac grafts were removed on the 60th postoperative day and were examined to determine the severities of cellular rejection and CAV (>50 µm in diameter). Additionally, 6-keto-prostaglandin F1α and thromboxane B2 were compared between the two groups. There was no significant difference in the grading score for cellular rejection based on the ISHLT grading system (2.31 ± 0.75 vs 2.47 ± 0.65, p=0.81). Although the endothelial cells were preserved in both groups, a deposition of fibrin-like dense materials was recognized in the subendothelial layers of the control group, but not in the BPS group. Intimal thickening was inhibited significantly in the BPS group. The intimal ratio (intimal area/sectional area of artery) was significantly lower in the BPS group than in the control group (0.134 ± 0.03 vs 0.205 ± 0.047; p<0.01), without any difference in the medial ratio (medial area/sectional area of artery). α-actin positive smooth muscle cells (SMC) in intima were fewer in number in the BPS group than in the control group. The plasma thromboxane B2 level was significantly lower in the BPS group than in the control group (270 ± 116 pg/ml vs 585 ± 258 pg/mg; p<0.01). It was concluded that BPS suppressed CAV development after heterotopic allogenic cardiac transplantation in rats.

Key words: Cardiac allograft vasculopathy, Heart transplantation, Beraprost, Prostaglandin I2

As a result of advances in immunosuppression therapy, graft and patient survival rate has been improved in cardiac transplantation5). However, intimal thickening and luminal narrowing of the coronary arteries, termed cardiac allograft vasculopathy (CAV), as well as grafted coronary arteriosclerosis (GCA), have remained insidious complications and the greatest limitations to long-term survival after heart transplantation2,34). The mechanism of CAV is not fully understood, although it is suggested that it is immunologic and related to cytomegalovirus infection11) and hyperlipidemia8,25). Regardless of the variety of potential therapies suggested by the multifactorial etiology of CAV12,19), a proven prophylaxis or treatment (other than retransplantation) has yet to be established.

Recently, it was reported that prostacyclin (PG I2), which is the principal arachidonic acid metabolite synthesized mainly by the endothelium, plays an important role in the regulation of vascular homeostasis21). PG I2 and its stable analog increase the level of intracellular cyclic 3',5'-adenosine monophosphate (cAMP) via the activation of adenylate cyclase. These metabolites have various effects, including: potent antiplatelet and vasodilating activities21); inhibition of the proliferation and migration of vascular smooth muscle cells (SMC) in intima and a cytoprotective effect on vascular endothelial cells30). Beraprost sodium (BPS) is a chemically stable PG I2 analog which mimics PG I2 in its biological properties. Moreover, BPS is the first
PG$_2$ analog to become available for oral clinical administration and is known to have a long biological half-life39. Therefore, BPS is expected to inhibit the development of CAV.

In this study, the protective effects of BPS on CAV were evaluated after heterotopic cardiac allogenic transplantation in rats.

MATERIALS AND METHODS

Preparation of drugs

Beraprost sodium (Kaken Pharmaceutical Co. Ltd., Urayasu, Japan) was diluted with distilled water to yield a final concentration of 10 μg/ml for oral administration. Cyclosporine A (Sandoz, Pharmaceuticals Ltd., Tokyo, Japan) was diluted to yield a final concentration of 10 mg/ml with Migryol 812 (Hüls Aktiengesellschaft, Marl, Germany) for intramuscular injection. These drugs were prepared within one week before use. Pentobarbital sodium (NembutalTM; Abbott Lab., Chicago, USA) was diluted in isotonic saline to yield a final concentration of 10 mg/ml just before use for anesthesia.

Experimental animals

Male inbred Lewis (RT-1b) rats (body weight of 214.6 ± 11.7 g, 8–10 weeks of age) and male inbred Fisher 344 (RT-1b) rats (body weight of 209.9 ± 13.5 g, 8–10 weeks of age) were used as recipients and donors, respectively. All rats were supplied by the Charles-River Co. (Yokohama, Japan), and were maintained on the regular chow (MF: Oriental Yeast Co., Tokyo, Japan). Oral intake of water and food were allowed anytime. The temperature in the cage was maintained at 20–25°C with a 12–14 hr light cycle per day. All animals received humane care in compliance with the “Principles of Laboratory Animal Care” formulated by the National Society for Medical Research and the “Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of Sciences and published by the National Institutes of Health (NIH publication No.86–23, revised 1985).

Heterotopic heart transplantation

Every rat was anesthetized with a single intraperitoneal injection of 40 mg/kg of pentobarbital sodium. The cardiac graft from the donor rat was implanted in the neck of the recipient rat by anastomosis of the donor’s pulmonary artery and brachiocephalic artery to the recipient’s right jugular vein and left common carotid artery, respectively, in the manner described previously18 according to the modified technique of Suzuki et al38. The ischemic time was 62.8 ± 3.7 min with no significant difference between each group. Every transplanted heart resumed beating well within 30 seconds after declamping and survived until the scheduled sacrifice.

Experimental design

All heart-transplanted recipients were treated with cyclosporine A, administered intramuscularly at a dose of 10 mg/kg/day for 20 days. Eight rats received compulsorily oral administration of beraprost sodium of 50 μg/kg/day (BPS group) and another 8 rats received vehicle only (control group). All surviving cardiac grafts and blood samples were harvested on the 60th postoperative day. The dose of cyclosporine A was determined on the basis of previously published information using the same rat combination23. The dose of BPS administered in this experiment was within the range of having antiplatelet effects30 and below the level of causing subacute and chronic toxicity1,24,29.

Light microscopic analysis

The transplanted hearts were fixed in 10% formalin solution for light microscopic observation. The hearts were then serially cut into 2 mm thick cross sections and embedded in paraffin. Tissue sections of 4 μm thickness were stained with hematoxylin & eosin (HE) and elastic van Gieson stain (EVR). For immunohistochemical observation, the tissue sections were immunostained using the abidin-biotin complex (ABC) method (VECTASTAIN Elite ABC-kitTM, PK-6100, Vector Laboratories Inc., Calif., USA) with a monoclonal antibody against a-smooth muscle actin (dilution 1:100, DAKO Japan Co. Ltd., Tokyo, Japan). The sections were visualized with 3-3'diaminobenzidine (DAB). For additional staining of the elastic fibers, the sections were incubated in victoria blue solution (Muto Pure Chemicals Ltd., Tokyo, Japan) for 18 hours, and then counterstained with methyl green (Katayama Chemical, Osaka, Japan).

Electron microscopic analysis

Small tissue samples were obtained from the left ventricular wall of the transplanted hearts, fixed overnight in cold 2.5% glutaraldehyde solution buffered with phosphate at pH 7.4 and then postfixed for 1 hour in 1% OsO$_4$ solution buffered with phosphate at pH 7.4. Thereafter, the tissue samples were dehydrated through immersion in graded alcohol solutions and then embedded in epoxy resin. Semi-thin sections were cut with a Porter-Blum ultramicrotome equipped with glass knives, and the sections were stained with methylene blue (Richardson’s solution). Thin sections were cut with the same ultramicrotome equipped with a diamond knife, and then stained with uranyl acetate and lead citrate, for observation with a transmission electron microscope at 75 kV (H-7000, Hitachi, Japan).

Grading of graft rejection and CAV

Using tissue sections stained with HE, the degree...
Table 1. Score of histologic grades for cellular rejection

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
<th>Histologic appearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>No rejection</td>
</tr>
<tr>
<td>1.0</td>
<td>I</td>
<td>Mild rejection (without myocyte damage) focal and perivascular lymphocytic infiltrate</td>
</tr>
<tr>
<td>1.5</td>
<td>A</td>
<td>diffuse and interstitial lymphocytic infiltrate</td>
</tr>
<tr>
<td>2.0</td>
<td>II</td>
<td>Focal moderate rejection (with focal myocyte damage)</td>
</tr>
<tr>
<td>3.0</td>
<td>A</td>
<td>Moderate rejection (with obvious myocyte damage) multifocal and aggressive lymphocytic infiltrate</td>
</tr>
<tr>
<td>3.5</td>
<td>B</td>
<td>more diffuse and aggressive lymphocytic infiltrate, focal hemorrhage,</td>
</tr>
<tr>
<td>4.0</td>
<td>IV</td>
<td>Severe rejection (with obvious myocyte necrosis) severe lymphocytic infiltrate, diffuse hemorrhage</td>
</tr>
</tbody>
</table>

of graft cellular rejection was graded from 0 to 4 according to the standardized cardiac grading system recommended by the International Society for Heart and Lung Transplantation (ISHLT)\(^4\), as summarized in Table 1. Evaluation was carried out blindly by two observers. For analysis of the degree of intimal thickening, the cross sectional area of the intimal layer, medial layer, and lumen were measured in intramyocardial coronary arteries larger than 50 \(\mu\)m in diameter. Measurements were repeated twice blindly by a single observer by means of a Macintosh computer with analytical software (CanvasTM, Deneba Systems Inc., USA). Tangentially cut vessels were excluded from the measurement in order to minimize the error in estimating intimal thickening. The intima to media ratio (I/M ratio), luminal narrowing (LN), intimal ratio and medial ratio were calculated with the following formula:

\[
\begin{align*}
I/M & = \frac{\text{Intimal area}}{\text{Medial area}} \\
LN & = \frac{\text{Intimal area}}{\text{Intimal area} + \text{Luminal area}} \\
\text{Intimal ratio} & = \frac{\text{Intimal area}}{\text{Cross sectional area}} \\
\text{Medial ratio} & = \frac{\text{Medial area}}{\text{Cross sectional area}}
\end{align*}
\]

Proliferation of SMC in the intima was quantified using the intimal SMC index, which was calculated as follows.

\[
\text{Intimal SMC index} = \frac{N}{A}
\]

N: the number of cells in the intima which were positive for \(\alpha\)-smooth muscle actin

A: the area around the internal elastic lamina of the coronary artery

Biochemical analysis

After the transplanted heart had been harvested, a blood sample was taken from the abdominal aorta using a 19 gauge needle. The following parameters were measured: serum total cholesterol (T-chol), serum triglyceride (TG), plasma thromboxane A\(_2\) (TX A\(_2\)), and plasma 6-keto-prostaglandin F\(_{1\alpha}\) (6-keto-PG F\(_{1\alpha}\)) as an indicator of plasma PG I\(_2\). Serum concentrations of T-chol and TG were determined using standard enzymatic packages (Wako Pure Chemical Co., Osaka, Japan). Plasma TX B\(_2\) and 6-keto-PG F\(_{1\alpha}\) concentrations were determined using radioimmunoassay kits (DuPont NEN Research Products, USA).

Statistics

All values were expressed as mean \(\pm\) one standard deviation (SD). Differences in the grade of cardiac cellular rejection were compared using the Mann-Whitney U test. Differences in the nominal values were evaluated using the unpaired Students’ t test. Differences were considered to be statistically significant if the p value was less than 0.05.

RESULTS

Light microscopic analysis

A. Degree of cellular rejection

In the myocardium of the transplanted heart of both the control and BPS groups, focal inflammatory infiltrations, variable in size and shape, were scattered throughout the myocardium with myocyte replacement. According to the standardized cardiac grading system for cellular rejection (by ISHLT), almost all of the grafted hearts showed grade II to III rejection (mean rejection score: control 2.31 \(\pm\) 0.75, BPS 2.47 \(\pm\) 0.65) (Table 2). Quilty effect-like focal accumulations of lymphocytes, which were predominantly confined to the endocardium, were present as illustrated in Fig. 1. In the epicardium of both groups, severe inflammatory cell infiltration with fibrosis was commonly observed. This finding was considered to be the result of non-specific inflammation following
Table 2. Morphometric parameters reflecting graft rejection and allograft coronary disease

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control group</th>
<th>BPS group</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejection score</td>
<td>2.31 ± 0.75</td>
<td>2.47 ± 0.65</td>
<td>N.S.</td>
</tr>
<tr>
<td>Number of vessels</td>
<td>46.1 ± 7.9</td>
<td>40.3 ± 7.2</td>
<td>N.S.</td>
</tr>
<tr>
<td>I/M ratio</td>
<td>0.402 ± 0.102</td>
<td>0.277 ± 0.079</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>Luminal narrowing</td>
<td>0.457 ± 0.076</td>
<td>0.275 ± 0.04</td>
<td>p < 0.05</td>
</tr>
<tr>
<td>Intimal ratio</td>
<td>0.205 ± 0.047</td>
<td>0.134 ± 0.03</td>
<td>p < 0.01</td>
</tr>
<tr>
<td>Medial ratio</td>
<td>0.563 ± 0.052</td>
<td>0.564 ± 0.053</td>
<td>N.S.</td>
</tr>
<tr>
<td>Intimal SMC index</td>
<td>51.5 ± 15.8</td>
<td>37.8 ± 8.2</td>
<td>p < 0.05</td>
</tr>
</tbody>
</table>

Each value is the mean ± SD. Rejection score was tested by Mann-Whitney U test. Others were tested by unpaired Students’ t test. Statistical significance is p<0.05. N.S.: not significant.

I/M ratio: intima to media ratio. SMC: smooth muscle cell.

B. Changes in the coronary arteries

There was no difference in the total number of cross sectional coronary arteries (<50 µm in diameter) per heart between the control group and the BPS group (46.1 ± 7.9 and 40.3 ± 7.2, respectively). Various changes in the coronary arteries were observed in both groups. Most of the coronary arteries showed evidence of concentric proliferation of the intima with almost an intact internal elastic lamina. The thickened intima consisted of spindle cell proliferation and fibrosis. The cells in the intima were positive for α-smooth muscle actin. Proliferation of elastic fibers (thin or thick), the so-called “intimal elastosis”, was often observed in the thickened intima. However, the severe intimal thickening was not associated with intimal elastosis in some of the coronary arteries. Intimal elastosis appeared to be more severe in the control group than in the BPS group, although an appropriate grading scale for quantitative comparison was not available. The results of morphometric analyses of CAV are listed in Table 2. Typical examples are shown in Fig. 2. The I/M ratio and LN in the BPS group were significantly lower than in the control group (0.277 ± 0.079 vs 0.402 ± 0.102, p<0.05; 0.275 ± 0.040 vs 0.457 ± 0.076, p<0.01, respectively). The ratio of intimal area to cross sectional area in the BPS group was significantly lower than in the control group (0.134 ± 0.03 vs 0.205 ± 0.047, p<0.01). However, no significant difference was detected between the ratio of medial area to cross sectional area of the two groups (BPS group: 0.564 ± 0.053 vs control group: 0.563 ± 0.052, p=0.96). The intimal SMC index was lower in the BPS group than in the control group (37.8 ± 8.2 ×10²/mm² vs 51.5 ± 15.8 ×10²/mm², p<0.05).

Transmission electron microscopy

The endothelial cells of the coronary arteries were well preserved in both groups. Deposition of fibrin-like dense materials was, however, fre-
Beraprost against Cardiac Allograft Vasculopathy

Fig. 2. Intramyocardial coronary arterial changes. A: Internal elastic lamina is almost intact. Mild thickening of coronary arterial intima (elastic van Gieson, ×220). B: Marked thickening of coronary arterial intima. Concentric narrowing of arterial lumina with intimal cell proliferation and fibrosis is distinct. But internal elastic lamina is well preserved (elastic van Gieson, ×200). C: Severe intimal elastosis. Densely proliferated elastic fibers are observed in intima (elastic van Gieson, ×380). D: Moderate intimal thickening of coronary artery. Proliferated cells of intima are positive for α-smooth muscle actin (victoria blue and α-smooth muscle actin, ×220).

Subsequently observed in the subendothelial layer of the coronary arteries in the control group (Fig. 3A). Moreover, focal or diffuse proliferation of SMC was usually detected between the endothelial cells and the dense material. A small number of collagen fibers appeared around the prolifer-
ated SMC, although fibroblasts were absent in the subendothelial layer. In the BPS group, proliferation of SMC was also observed in the subendothelial layer. However, the deposition of dense materials was difficult to detect in the subendothelial layer of the coronary arteries (Fig. 3B).

Biochemical analysis

As shown in Table 3, there was no statistical difference in T-chol between the two groups (BPS group: 49.1 ± 8.95 mg/dl vs 51.7 ± 4.13 mg/dl, p=0.46). The triglyceride concentration in the BPS group was significantly lower (26.0 ± 17.2 mg/dl vs 59.4 ± 29.9 mg/dl, p<0.05), but TG levels in both groups were not higher than the normal range. The 6-keto-PG Fl2 concentration in the BPS group (181 ± 145 pg/ml) was not statistically different from that in the control group (215 ± 155 pg/ml). The TX B2 concentration in the control group (585 ± 258 pg/ml) was significantly higher than that in the BPS group (227 ± 116 pg/ml). Thus, the TX B2/6-keto-PG Fl2 ratio tended to be higher in the control group than in the BPS group (3.9 ± 2.4 vs 1.8 ± 1.1, p=0.056).

DISCUSSION

The present study demonstrated that the oral administration of beraprost sodium inhibits the development of CAV in the cyclosporine-treated rat model.

In the allogenically grafted hearts of long-term human survivors, CAV is most commonly characterized by coronary arterial changes, including intimal thickening and concentric narrowing of the vascular lumina with nearly intact internal elastic lamina. The precise mechanism of these changes is still unknown. Some investigators have suggested that CAV may be the result of intimal injury associated with an immune response.

In the present study, changes in the coronary arteries similar to those in human cases developed in a rat allograft model using cyclosporine A 10 mg/kg/day for 20 days, as previously described by Nagamine. The intima of the intramyocardial coronary arteries was thickened to variable degrees with a proliferation of spindle cells and elastic fibers. These intimal spindle cells were SMC because they were immunohistochemically stained with a-smooth muscle actin. In electron microscopic observations, the proliferated intimal cells were identified as SMC, which

![Fig. 3. A: Fine structure of coronary artery of control group. Deposition of fibrin-like dense materials (arrow) was observed in subendothelial layer. Many smooth muscle cells proliferate between endothelial cells and dense materials (×5100). B: Fine structure of coronary artery of BPS group. Deposition of dense materials is not recognized in the subendothelial layer, while smooth muscle cells proliferate in the intima (×4000).](image)

<table>
<thead>
<tr>
<th>Table 3. Biochemical analysis of serum lipid and prostanoids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Control Group</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Total cholesterol (mg/dl)</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
</tr>
<tr>
<td>6ketoPG Fl2 (pg/dl)</td>
</tr>
<tr>
<td>Thromboxane B2 (pg/dl)</td>
</tr>
<tr>
<td>TX B2/6ketoPG Fl2</td>
</tr>
</tbody>
</table>

Values are mean ± SD. Comparisons were tested by unpaired t test.

N.S.: not significant. PG: prostagrandin. TX: thromboxane.

BPS: beraprost sodium.
contained numerous fine filaments attached to
dense patches. These findings in the present
study supported the observations of Ito et al.\(^{13}\)
who attributed the intimal thickening to the pro-
lation of SMC.

BPS significantly inhibited the intimal thickening,
resulting in a significant reduction of lumi-
nal narrowing, without any changes of the grade
of cellular rejection. BPS suppressed the pro-
fusion of SMC in the intima, as shown by the inti-
mal SMC index. In the electron microscopic
analysis, fibrin-like dense material, as well as SM,
was frequently observed in the subendothe-
liar layer in the control group, but only scarcely
in the BPS group. Although the fine structures of
the vascular endothelial cells were well preserved
at the time of sacrifice in both the control and
BPS groups, the deposition of dense material sug-
gests that the endothelial cells were damaged
more or less after cardiac transplantation and
that plasma proteins leaked through the endothe-
lial cells. These fine structural changes suggest
that the leakage of the plasma protein was larger
in the control group than in the BPS group. Variable
numbers of elastic fibers, indicating elasto-
sis, appeared in the intima with fibrous
thickening. Although the pathogenesis and func-
tional significance of intimal elastosis remains
unclear, the proliferation of elastic fibers was less
severe in the BPS group than in the control
group. These findings indicate that BPS signifi-
cantly inhibits the production of elastic fibers.

Some investigators have demonstrated that the
development of CAV is immunological in origin
and is mediated by multiple steps at different pe-
riods.\(^{5,6,10}\) For instance, endothelial injury acting
as a trigger, activated macrophage infiltration in
the early period, and later SMC proliferation all
play important roles in the development of CAV.
Although PG \(I_2\) and its analogue have various
suppressive effects on a broad range of cellular
activity,\(^{7,21,26,30,33,38}\) there was no significant
difference in the histologic severity of graft cellu-
lar rejection between the two groups. Therefore,
the prevention of intimal thickening cannot be
attributed to enhanced suppression of the cellular
immune response by BPS. BPS appears to sup-
press the CAV during two steps: first, during en-
dotheial injury, and second, during SMC
proliferation. Sakai et al.\(^{30}\) demonstrated the cy-
toprotective effect of BPS against chemical injury
in cultured human vascular endothelial cells and
suggested that it could be derived from the in-
crease in the cAMP level in endothelial cells via
the activation of adenylate cyclase in cultured en-
dotheial cells. In this study, deposition of dense
materials suggested that the endothelial cells
were more highly damaged in the control group
than in the BPS group. As to the effects of BPS
on the proliferation of SMC, an indirect effect of
BPS may be suppression of the proliferation of
SMC by inhibiting the release of PDGF via anti-
platelet effect,\(^{35}\) while PDGF has been reported
to play an important role in CAV.\(^{9}\) BPS may di-
rectly suppress the DNA synthesis in SMC by
acting on the progression stage of the G1 phase
in the cell cycle,\(^{22,33}\) and the phenotype change of
SMC by increasing intracellular cAMP.\(^{27}\) How-
ever, the effect of BPS on the cell cycle and phen-
type change of SMC will need to be further
investigated.

BPS also significantly diminished plasma TX \(B_2\)
concentration. From the viewpoint of regulation
of vascular homeostasis, eicosanoids, particularly
PG \(I_2\) and TX \(A_2\), are considered to function in
the maintenance of "vascular integrity."\(^{21}\) Sicard
et al.\(^{32}\) concluded that the balance between TX
\(A_2\) and PG \(I_2\) production in the grafted vascular
wall might be the best determinant of the long-
term patency of small-caliber grafts. In this
study, the plasma TX \(B_2\) level was significantly
lower in the BPS group after transplantation than in the control group. Consequently, BPS
may have the effect of improving the balance be-
tween TX \(A_2\) and PG \(I_2\) production. It is consid-
ered that an increase of cAMP level in the BPS
group may result in suppression of TX \(A_2\) pro-
duction, although the diminution of PG \(I_2\) due to en-
dotheial injury after transplantation stimulates
platelets to produce TX \(A_2\). Kouchi et al.\(^{15}\) dem-
onstrated that both TX \(B_2\) and TX \(B_2\)/6-keto-PG
\(F_k\) were decreased after administration of BPS,
and concluded that BPS might prevent intimal
hyperplasia in the peripheral arterial grafting
model. Teraoka et al.\(^{37}\) showed that thromboxane
synthetase inhibitor has a suppressive effect on
chronic vascular rejection after kidney trans-
plantation. Thus, one of the suppressive effects of
BPS on CAV may be the prevention of TX \(A_2\)
production.

Several investigators have reported that hyper-
cholesterolemia accelerated human CAV,\(^{2,4,26}\)
Oral therapies of fish oil\(^{31,40}\) and of sivastava-
tin\(^{20}\) significantly inhibited CAV in the exper-
imental hypercholesterolemia model. As regards
the influence of PG \(I_2\) on cholesterol metabolism,
PG \(I_2\) stimulates activity of both lysosomal (acid)
cholesteryl ester hydrolase and cytoplasmic neu-
tral cholesteryl ester hydrolase by cAMP and
cAMP-dependent protein kinase, respectively, in
intact arterial SMC.\(^{27}\) BPS has also been re-
ported to decrease the serum cholesterol level in
cholesterol-fed rabbit.\(^{16}\) In this model with a stan-
dard diet, hyperlipidemia and changes of T-chol
level were not observed in either group. Only the triglyceride level was lower in the BPS
group than in the control group. Further inves-
tigation is necessary to clarify the effect of a low-
er triglyceride level on protecting CAV, although
cholesterol metabolism can likely be excluded as
a possible mechanism contributing to the inhibitory effect of BPS on CAV.

Several limitations of this study must be acknowledged. The metabolism of arachidonic acid and the lipid metabolism and pharmacokinetic characteristics of BPS are likely to be different among animals. Moreover, heterotopic, non-working cardiac allografts may be different from a working orthotopic transplant model in terms of the vascular disease and therapeutic intervention. The potential usefulness of BPS for suppressing CAV, as demonstrated in this study, cannot thus be directly extrapolated to humans.

In summary, ultrastructural, immunohistochemical and biochemical analyses demonstrated that BPS significantly inhibits the development of CAV by several possible mechanisms: 1) protection of endothelial cells; 2) inhibition of SMC proliferation; and 3) maintenance of vascular homeostasis by regulation of the eicosanoid cascade. Further investigations will be needed to clarify the mechanism of the protective effect of BPS in greater detail.

ACKNOWLEDGEMENTS

We thank Ms. Hidaka for her great support in the preparation of the histopathological specimens. We also thank S. Mukai, M.D., S. Wada, M.D., Ph.D., K. Iwase and members of our laboratories for their assistance and valuable discussions.

Beraprost sodium, cyclosporine A and Miglyol 812 were kindly supplied by Kaken Pharmaceutical Co. Ltd., Sandoz Pharmaceuticals Co. Ltd., and Mitsuba Trading Co. Ltd., respectively.

This study was presented at the 31st annual meeting of the Japan Society for Transplantation in September 1995, at the 36th annual meeting of the Japanese College of Angiology, November 1995, and at the 96th annual congress of the Japan Surgical Society in April 1996.

(Received October 31, 1996)
(Accepted January 16, 1997)

REFERENCES

Beraprost against Cardiac Allograft Vasculopathy

