Nanoparticles Generated by Pulsed Laser Ablation in High-pressure Fluid: Static and Dynamic Spectroscopic Measurements

(高圧流体中でのパルスレーザーアブレーションによるナノ粒子生成：静的・動的分光測定)

by Shaoyu Wei (魏紹禹)

Department of Chemistry,
Graduate School of Science,
Hiroshima University

Contents of the thesis

PREFACE:

CHAPTER 1: General introduction: nanoparticles, synthesis by pulsed laser ablation, and generation dynamics

I. Gold (Au) nanomaterials and their generations by pulsed laser irradiations
II. Silicon (Si) nanomaterials and their generations by pulsed laser irradiations
III. Laser ablation in supercritical fluid for generating advanced nanomaterials
IV. Motivation of this desertion
 A) The dynamics of gold nanoparticle generation in supercritical fluid:
 time evolutions from nanosecond to hours
 B) Generation and luminescence mechanism of light-emitting Si nanocrystals by laser ablation

References

CHAPTER 2: In situ multipurpose time-resolved spectrometer and the dynamics of gold nanoparticle generation in supercritical fluid

I. Introduction
II. Development of Apparatus
 A. Optical cell designed for in situ spectroscopic measurements of nanoparticle generation by pulsed-laser ablation in supercritical fluid
 B. In situ transient absorption spectrometer for observing nanoparticle generation in supercritical fluid
 C. In situ time-resolved absorption spectrometer for observing nanoparticles in supercritical fluid at long delay times
D. *In situ* time-resolved dynamic light scattering for tracking nanoparticle size in supercritical fluid

III. Summary
IV. Acknowledgments

References

CHAPTER 3: Spectroscopic time evolution of the white-light-emission from silicon nanocrystal and the investigation of its mechanism

I. Introduction
II. Experimental Section
III. Results and Discussion
IV. Conclusions
V. Acknowledgments

References

CHAPTER 4: Summary

APPENDIX I: The basics of Mie theory

APPENDIX II: Electronic band structures and photo-luminescence mechanisms of Si nanocrystal

APPENDIX III: The design drawings of the high-pressure optical cell

ACKNOWLEDGMENTS