The behavior of Hg^{2+} tolerant bacteria under various Hg^{2+} concentration

Hideyuki KAWAKAMI, Nariaki ARIMURA*, Noriyuki YOSHIMOTO**
Hiroyuki NAKANO and Hideo HASHIMOTO

Laboratory of Food hygiene and Applied Physics**, Faculty of Applied Biological Science, Hiroshima University, Fukuyma, Nippon Steel Chemical Co., Ltd., Tobata*

Hg^{2+} 存在下における Hg^{2+} 耐性菌の挙動

川上 英之，有村 齊明*，吉本 則之**
中野 宏幸，橋本 秀夫

広島大学微生物科学部

1987年9月1日 受理

現在 Hg^{2+} 耐性菌の耐性機構としては、Hg^{2+} 還元酵素による Hg^{2+} の還元作用がよく知られている。また Hg^{2+} 耐性菌は、一般にペニシリン等の抗生物質に対する耐性も同時に有多剤耐性菌である。一方ペニシリンは細菌の細胞壁を破壊して死滅を促進するが、Hg^{2+} 耐性細菌の細胞壁破壊作用は著しく抑制される。

我々は、トネリから分離した Hg^{2+} 耐性菌の高温細菌を用いて Hg^{2+} 耐性菌の生命活動に対して与える影響を調べる目的で増殖に対する熱力学的解析と形態学的観察を行なった。

その結果、活発に細胞分裂を運営している対数増殖期の細胞はHg^{2+} の存在下では本来の形態を保つ。しかし Hg^{2+} が全く存在しないときと異なり活性を保つ。フィラメント状に伸長することが判明した。

実験材料および方法

供試菌：
下水から分離した MICC 100 の Hg^{2+} 耐性菌 No.10 および19株（いずれも Pseudomonas）の2株、非耐性菌 No.7 および20株（いずれも Moraxella-Acinetobacter），それらにコントロールとして、Pseudomonas putida (ATCC No. 12633) の5菌株を用いた。

増殖曲线の作製：
各供試菌は保存培地から nutrient broth (1% polypeptone, 0.5% Yeat extract, 0.5% NaCl, pH 7.0) 中で 25℃、20時間培養して活性を観察した。試験に際してはこの菌液を Hg^{2+} 濃度6.25, 12.5, 25.0および 50.0 μg/mlになるように HgCl₂ を加えた nutrient broth と Hg^{2+} 無添加のものにそれぞれ接種し、25℃で振とう培養した。増殖曲線は 660 nmにおける吸光度を経時的に測定して求めた。

増殖に要する活性化エネルギーの測定：
供試菌を0, 6.25, 12.5および 25.0 μg/ml の Hg^{2+} 濃度で、20, 25, 30および35℃の各温度で振とう培養し、得られた増殖曲線から増殖速度（ln k）を求めた。この ln k を Arrhenius の式：

$$\frac{d \ln k}{d T} = \frac{E_a}{RT^2}$$

（Ea：活性化エネルギー，R：気体定数，T：絶対温度）にあてはめ、得られた曲線の傾斜から増殖に要する活性化エネルギーを求めた。

* 新日鉄化学株式会社戸崎製造所
** 広島大学生物科学部食品物理学会研究会
細胞の形態に対する Hg^{2+} の影響

供試菌を Hg^{2+} を含まない条件と 12.5 μg/ml の Hg^{2+} を含む条件で 30°C で対数増殖期中後に採取し、蔽で干渉顕微鏡（Olympus BH2-NIC）を用いて細胞の形態を観察した。

結果および考察

増殖に対する Hg^{2+} の影響

6.25 μg/ml の Hg^{2+} 存在下で初代培養した Hg^{2+} 耐性菌 (No.19) を Hg^{2+} 添加 (6.25, 12.5 および 25.0 μg/ml) および無添加の nutrient broth に接種し 25°C で培養した。得られた増殖曲線を図 1 および 2 に示す。

No.10 株では、Hg^{2+} 濃度 6.25 μg/ml では無添加のものとほとんど同じ増殖曲線を示した。しかし、12.5 μg/ml では、誘導期が無添加のものや 6.25 μg/ml の 1.0 時間よりも短くなり 10.5 時間であった。また、Hg^{2+} 濃度を 25.0 μg/ml 以上にすると全株の増殖はかなり抑制され、50.0 μg/ml では 20 時間経過した後でも増殖は認められなかった。

No.19 株では、全体としては No.10 株と同様の増殖を示し 12.5 μg/ml の Hg^{2+} が存在すると無添加のものに比べて誘導期がやや短縮された。しかし、6.25 μg/ml の場合は、誘導期は何故か逆に長くなり 12.7 時間であった。

一般に Hg^{2+} などの薬剤によって誘導期が延長される。しかし今回用いた Hg^{2+} 耐性菌では培地中に 12.5 μg/ml の Hg^{2+} が存在すると誘導期は逆に短縮された。これは Staphylococcus aureus の増殖に対して誘導期を短縮させるという Niacin の作用 p と似ている。

比較のために非耐性菌 (No.7 & 20) についても増殖曲線を求めた。図 3 に示すように Hg^{2+} を 6.25 μg/ml 添加すると増殖せず Hg^{2+} に対する耐性がないことが判る。

Hg^{2+} 耐性菌の増殖に要する活性化エネルギー

12.5 μg/ml の Hg^{2+} の存在は Hg^{2+} 耐性菌の増殖を促進させることができた。そこでこのような Hg^{2+} の効果をさらに確かめるために、Hg^{2+} 存在下での増殖速度 (ln k) と培養温度との関係から Arrhenius plot を求めた (図 4)。この図から判るように 12.5 μg/ml の Hg^{2+} 存在下で傾斜が最も緩やかになり、培養温度間に

Fig. 1. The growth curves of Hg^{2+} tolerant Pseudomonas (No.10) on various Hg^{2+} concentration at 25°C.
- × : 0 μg/ml, - ○ : 6.25 μg/ml, - ● : 12.5 μg/ml, - △ : 25.0 μg/ml, - ▲ : 50.0 μg/ml

Fig. 2. The growth curves of Hg^{2+} tolerant Pseudomonas (No.19) on various Hg^{2+} concentration at 25°C.
- × : 0 μg/ml, - ○ : 6.25 μg/ml, - ● : 12.5 μg/ml, - △ : 25.0 μg/ml, - ▲ : 50.0 μg/ml
おける増殖速度の差が最も小さくなった。

このArrhenius plotからArrheniusの式に従って
Hg²⁺耐性菌が増殖に要する活性化エネルギー（Ea）
を求めた（表1）。まずHg²⁺を添加しない条件下では、
No.10株が7.3Kcal、No.19株が7.6Kcalであった。
一方非耐性菌（No.7 & 20）についてはEaを求めると
それぞれ7.4と7.2Kcalであった。これに対して、
Hg²⁺を添加した条件下では、Hg²⁺濃度6.25μg/mlで
はNo.10が4.9Kcal、No.19が6.6Kcal、12.5μg/mlでは
それぞれ2.5および5.0KcalとEaが大きく減少した。
しかし、Hg²⁺濃度を25.0μg/mlに増加させると逆に7.3および8.0KcalとEaは逆に増大した。この
状態を図示すると（図5）、両菌株ともV字型の曲線を描き、Eaは
Hg²⁺濃度12.5μg/mlのときに最低となった。

これらの結果から、今回用いたMIC100のHg²⁺耐性菌は12.5μg/mlのHg²⁺存在下で最も安定した増殖
を行なうことが判った。このことは、Hg²⁺がこれらの耐性菌にとって有害なものではなく、むしろ何らかの形で利用され増殖を促進させる効果をもっていることを示している。この場合Hg²⁺無添加のものに比べて
Hg²⁺(12.5μg/ml)を添加すると増殖に要する活性化エネルギーが低下したことからHg²⁺はエネルギー
代謝と密接な関係をもつものと考えられる。

細胞の形態におよぼすHg²⁺の影響:

Hg²⁺に対して上述のような挙動を示す耐性菌はHg²⁺存在下でどのような細胞形態をとるか興味がもたれる。そこでHg²⁺無添加のものと12.5μg/mlのHg²⁺を加えたものについて対数増殖期における細胞の
形態を微分干渉顕微鏡で観察した。その結果、plate1〜3に示すようにNo.10およびNo.19株ともHg²⁺
Table 1. The activation energies (Ea) for growth of Hg^{2+} tolerant *Pseudomonas* (No. 10 & 19) and not Hg^{2+} tolerant strains (No. 7 & 20) (Kcal/mol)

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>Nutrient broth(^1)</th>
<th>Hg^{2+} concentration in the medium (μg/ml)(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 10</td>
<td>7.3</td>
<td>0 6.25 12.5 25.0</td>
</tr>
<tr>
<td>No. 19</td>
<td>7.6</td>
<td>— — — —</td>
</tr>
<tr>
<td>No. 7</td>
<td>7.4</td>
<td>— — — —</td>
</tr>
<tr>
<td>No. 20</td>
<td>7.2</td>
<td>— — — —</td>
</tr>
</tbody>
</table>

\(^1\): *Ea* was measured in nutrient broth without Hg^{2+}

\(^2\): *Ea* was measured in nutrient broth after domestication to Hg^{2+} by cultivation in nutrient broth containing 6.25 μg/ml Hg^{2+}.

Fig. 5. The activation energies (Ea) for growth of Hg^{2+} tolerant *Pseudomonas* (No. 10 & 19) against various Hg^{2+} concentration.

- O-: No. 10, -X-: No. 19

が存在すると個々の細胞がよく分散し コントロールとして用いた *P. putida* (ATCC No. 12633) と同様に細胞の輪郭も明確で大きさも一定し、形態上の変化はみられず、*Pseudomonas* の特徴の1つである運動性も活発に認められた。これに対して、Hg^{2+} を加えない場合では、細胞は伸長し、細胞分裂時の隔壁形成に伴う細胞のくびれがみられず、明らかに形態に変異が生じ運動性も緩慢であった。Hg^{2+} 耐性菌のこのような形態の変異に関する報告は今回が最初である。

これまでに薬剤による細胞の形態の変異については、ベニリンによるものがよく知られている5-6。ベニリンによる形態の変異は細胞壁のペプチドグリカンの生合成が細胞分裂の過程で阻害されるために起こることが知られている。また低濃度のベニリンの存在で隔壁の生合成が阻害され、フィラメント状の giant
Plate 1. The morphological change of Hg$^{2+}$ tolerant Pseudomonas (No. 10) when was incubated in nutrient broth with or without Hg$^{2+}$ up to middle of log phase (9.5 h) at 30°C with shaking. (a); not containing Hg$^{2+}$, ×200, (b); ×500, (c); containing Hg$^{2+}$ (12.5 μg/ml), ×200, (d); ×500

Plate 2. The morphological change of Hg$^{2+}$ tolerant Pseudomonas (No. 19) when was incubated in nutrient broth with or without Hg$^{2+}$ up to middle of log phase (10.5 h) at 30°C with shaking. (a); not containing Hg$^{2+}$, ×200, (b); ×500, (c); containing Hg$^{2+}$ (12.5 μg/ml), ×200, (d); ×500
cell や spherical cell が形成されることが観察されている。これらの事実を今回の一結果を併せて考えると、一度高い Hg^{2+} 耐性能を獲得した細胞にとって、Hg^{2+} の存在は正常な細胞形態や生理機能を維持するために、有効に作用するが、逆に Hg^{2+} が存在しないと、変異しやすくなり、特に形態形成に不可欠の細胞壁や隔壁の生合成を阻害するようになるのではないかと考えられる。これらの点について現在さらに詳しい試験を進めている。

要約

Hg^{2+} によって細菌の受ける影響を調べるべきため下水から分離した Hg^{2+} 耐性能の高い Pseudomonas (No. 10 & 19) を用いて増殖に対する熱力学的解釈と形態学的観察を行なった。その結果、12.5 μg/ml の Hg^{2+} 存在下での増殖は Hg^{2+} が存在しない場合には増殖が短縮された。この時の増殖に要する活性化エネルギーは、No. 10 株が 2.5 Kcal, No. 19 株が 5.0 Kcal と両菌株とも最低となった。一方、形態学的には、Hg^{2+} (12.5 μg/ml) 存在下で、本来の形態と運動性を保持するが、逆に Hg^{2+} が存在しないと変異しやすくなり、細胞が伸長することができた。これは細胞壁や隔壁の生合成が阻害されるために起こるものと推察された。

以上の結果から、今回分離した MIC100 の高い耐性能を有する Hg^{2+} 耐性菌にとっては Hg^{2+} は増殖を促進させる共に細胞を安定な状態に保持する効果をもつことが示唆された。

参考文献

5) Adler H. I., C. E. Terry, and A. A. Hardigree: J. Bacteriol., 95, 139–142 (1968)
8) 田中信男，中村昭四郎：抗生物質大辞第 3 版（1982），p. 19–23
Summary

Thermodynamical and morphological studies were conducted to know the effect of various conc. of Hg$^{2+}$ on high Hg$^{2+}$ tolerant Pseudomonas strains (No. 10 & 19) isolated from sewage.

In the thermodynamical studies, the lag phase was shortened and the minimum activation energy for growth of these strains (No. 10 & 19) was recognized under 12.5 μg/ml Hg$^{2+}$ conc.: 2.5 Kcal/mol and 5.0 Kcal/mol respectively. On the other hand, morphological studies revealed that the native cell maintained the shape when Hg$^{2+}$ conc. was 12.5 μg/ml but in the absence of Hg$^{2+}$ it was observed to abnormal long shape.

The result suggested that 12.5 μg/ml Hg$^{2+}$ conc. was required for the growth and maintenance of native cell in high Hg$^{2+}$ tolerant Pseudomonas.