Experimental study on performance of view-based pose estimation

Toru Tamaki
Hiroyuki Okugawa
Toshiyuki Amano
Kazufumi Kaneda
View-based pose estimation

Learning

Images x_1, x_2, \ldots

poses $\theta_1, \theta_2, \ldots, \theta_n$

Estimation

x

$\hat{\theta}$
Learning relations

- **Learning set**
 - \(\{ \theta_j, x_j \} \)
 - \((i = 1, 2, \ldots, n)\)

- **Relations**
 - Nonlinear: \(\theta_j = f(x_j) \)
 - Linear: \(\theta_j = Fx_j \)

- **Estimation**
 - Nonlinear: \(\theta = f(x) \)
 - Linear: \(\theta = Fx \)

- **Nonlinear methods**
 - Parametric
 - Eigenspace method
 - (Murase, 1995)
 - Kernels
 - (Melzer, 2003)
 - (Ando, 2005)
 - Manifold learning
Learning relations

- Learning set
 - \(\{ \theta_j, x_j \} \)
 - \((i=1, 2, \ldots, n)\)

- Relations
 - Nonlinear: \(\theta_j = f(x_j) \)
 - Linear: \(\theta_j = Fx_j \)

- Estimation
 - Nonlinear: \(\theta = f(x) \)
 - Linear: \(\theta = Fx \)

- Linear methods
 - Linear regression
 - (Okatani, 2000)
 - Cyclic permutation
 - (Tamaki, 2007)
 - EbC
 - (Amano, 2006/2007)
Overview of EbC

- EbC: "Estimation-by-Completion"

- Learn
 - Image part x_j
 - Parameter part p_j
 - Compute Eigenspace

- Estimate pose
 - A test image has no parameter part
 - Completed as missing image area
Questions to investigate

- Performance depends on the number of learning images.
 - Few images: bad estimation
 - Many images: better performance
- Is it really? How many images are enough?
Questions to investigate

- Performance depends on the number of learning images.
- What is an appropriate set of images when we fix the number of images?
 - Any set is enough?
Learning image set

Definition of a learning set:

\[S_{i,s} = \{ x_{ik+s} \} \]

- \(x_{\theta} \) : images at \(\theta \)
- \(i \) : sample span [deg]
- \(k = 0, 1, \ldots, n_i - 1 \)
- \(n_i = 360/i \)
- \(s \) : start angle [deg]

Example:

<table>
<thead>
<tr>
<th></th>
<th>(x_0)</th>
<th>(x_5)</th>
<th>(x_{10})</th>
<th>(x_{15})</th>
<th>(x_{20})</th>
<th>(x_{25})</th>
<th>(x_{30})</th>
<th>(x_{35})</th>
<th>(x_{40})</th>
<th>(x_{45})</th>
<th>(x_{50})</th>
<th>(x_{55})</th>
<th>(x_{60})</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{20,0})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{20,5})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{20,10})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{20,15})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance evaluation

Root mean square error (RMSE):

$$RMSE_{i,s} = \sqrt{\frac{1}{72 - n_i} \sum_{x_j \in S_{i,s}} (\hat{\theta}_j - \theta_j)^2}$$

\(\theta\): true angle
\(\hat{\theta}\): estimated angle

Exclude learned images

sample spans:

\(i = 5, 10, 15, 20, 30, 40, 45, 60, 90, 120\)

(divisors of 360 [deg])
Experimental results 1: moderate case

COIL-20 Object 4

- Error increases monotonically
- Starting angle doesn’t affect the performance

<table>
<thead>
<tr>
<th>Sample Span [deg]</th>
<th>RMSE [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

i: sample span [deg]

RMSE [deg]
Experimental results 2: performance dip at 40 deg.

More the images, Better the performance

- Not monotonically
- Error at $i=40$ [deg] is very large: 9 images are learned

The number of images is important!
Examples of learning sets

$S_{60.0}$ 6 images

$S_{45.0}$ 8 images

$S_{40.0}$ 9 images

Worst!

$S_{30.0}$ 12 images
Objects that have performance dip at 40 deg.

What property affect the performance?
Future work....
Experimental results 3: keeping good performance

- Error increases monotonically
- Error at $i=120$ [deg] is so small: only 3 images are used for learning
Objects that keep good performance

- Round shape may affect the performance
- Also future work...

COIL-20 Object 15

COIL-20 Object 12

COIL-20 Object 20
Conclusions

- Performance evaluation of EbC
 - a view-based pose estimation
- Experimental results:
 - Some objects have the performance dip
 - Some objects keep good performance
- Future work
 - To investigate the relationship between performance and object shape