Upgrading Eigenspace-based Prediction using Null Space and its Application to Path Prediction

Background

Surveillance camera system

- Current: Tracking
 - Next step: Judgment of suspicious person
 - Future: Walking path prediction

Path prediction methods

- Kalman Filter
- Autoregressive (AR) model
- Eigenspace-based (Yamamoto 2004)

Walking path condition

- Not simple
- Depend on walking environment (ex. Load, buildings, entrance, etc.)

Eigenspace-based Prediction

Walking path

- a sequence of successive coordinates of the person over frames, and each position given by background subtraction
 \[\mathbf{p}_n = [\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_s] \subseteq \mathbb{R}^2 \]

Path Normalization

- Different sample paths are normalized and coordinated with the number of 2M coordinates

Average vector subtraction

- Normalized N sample path are centered by subtracting an average vector \(\mathbf{m} \)

Learning

1. Learning \(N \) sample path
 - Different sample paths have different number of frames

2. Path Normalization
 - Different sample paths are normalized and coordinated with the number of 2M coordinates

3. Average vector subtraction
 - Normalized N sample path are centered by subtracting an average vector \(\mathbf{m} \)

4. Making Eigenspace
 - Singular value decomposition computes eigenvectors \(\mathbf{e}_i \)

Prediction

5. Tracking path \(\mathbf{y}^* \)
 - Person is tracked at \(a \)th frame

6. Compensation
 - Coordinates of 2(\(M - 1 \)) dimension are compensated by average vector \(\mathbf{m} \)
 - Represent on \(\mathbb{R}^{2M} \)

7. Projection onto Eigenspace
 - Linear combination of eigenvectors
 - \(\mathbf{y}^* = E \mathbf{a} \)
 - \(E = \sum_{i=1}^{N} a_i \mathbf{e}_i \)
 - \(E = \text{diag}(1, \ldots, 1, 0, \ldots, 0) \)

8. Inverse projection
 - Add average vector \(\mathbf{m} \) to \(\mathbf{y}^* \)

Problem & Objective

Problem

- Prediction is not correspond to actual path

Cause

- Rack of eigenvectors in (2M-N) Dimension

Objective

- Improvement of prediction result
IDEA: Use the orthocomplement of the Eigenspace

\[\tilde{y} = \sum_{i=1}^{N} a_i \mathbf{e}_i + \sum_{k=1}^{K} b_k \mathbf{e}_k \]

Modified part

What is it needed to use the orthocomplement of the Eigenspace?
- \(\mathbf{e}_k \): Null vector
- \(b_k \): Coefficient of null vector

Null vector \(\mathbf{e}_k \)
- orthogonal vector of Eigenspace.
- Null space \(\perp \): consists of null vectors

How to get Null vector \(\mathbf{e}_k \)

1. Learning new path that is not the same path used in making Eigenspace.
 - Obtaining new walking path
 - Making new path from smoothing learning sample path

2. Subtraction of average vector

3. Gram-Schmidt orthonormalization
 - Making orthogonal vector of Eigenspace and other null vectors
 - Normalization

\[\mathbf{e}_k = \frac{\mathbf{v}_k}{\| \mathbf{v}_k \|} \]

Cost function
- Consider the degree of smooth of path
- Angle subtended by \(\mathbf{u}_i \) and \(\mathbf{u}_{i+1} \)

\[\cos \theta \] can be calculated easily as follows:

\[\cos \theta = \frac{\mathbf{u}_i^T \mathbf{u}_{i+1}}{\| \mathbf{u}_i \| \| \mathbf{u}_{i+1} \|} \]

Finally, the Jacobian of \(J \) comprises \(\mathbf{u}_i \) and \(\mathbf{e}_k \)

How to get coefficient of null vector \(b_k \)

\[J_{b_k} \] is calculated by

\[J_{b_k} = \frac{\partial J}{\partial b_k} \]

A stopping condition

\[\max_k \left| \frac{J}{\| \mathbf{v}_k \|} \right| < 10^{-5} \]

Assumption
- Walking path is smooth

Experimental Results

Case 1:
Learning
- Sample path: 13
- Downsampling: 50(plots)
- Resampling: 250(plots)

Prediction results.

Case 2:
Learning
- Sample path: 30
- Downsampling: 50(plots)
- Resampling: 300(plots)

Modifying 1 null vector and 3 null vectors

Modification result using 3 null vector.

Modification result using 1 null vector.

Prediction result at \(s=150, 199, 250 \)th.

Modification result at \(s=150, 199, 250 \)th.

Coefficient: \(b_1 \), \(b_2 \), \(b_3 \)

Table: Results of Iteration using 1 null vector

<table>
<thead>
<tr>
<th>Initial</th>
<th>After</th>
<th>(J)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>273.45</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>After</td>
<td>275.52</td>
<td>0.01</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table: Results of Iteration using 3 null vector

<table>
<thead>
<tr>
<th>Initial</th>
<th>After</th>
<th>(J)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(b_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>275.62</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
</tr>
<tr>
<td>After</td>
<td>275.62</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
<td>0.13E-06</td>
</tr>
</tbody>
</table>

Coefficient: \(b_1 \), \(b_2 \), \(b_3 \)

Prediction results at \(s=150, 199, 250 \)th.

Modification results at \(s=150, 199, 250 \)th.
Upgrading Eigenspace-based Prediction using Null Space and its Application to Path Prediction

• Yuji Shinomura †
• Toru Tamaki †
• Toshiyuki Amano ‡
• Kazufumi Kaneda †

† HIROSHIMA UNIVERSITY
‡ NAIST
Background

Surveillance camera system

Current : Tracking

Next step ... Judgment of suspicious person

Future : Walking path prediction
Literature review

Path prediction methods

- Kalman Filter
- Autoregressive (AR) model
- Eigenspace-based prediction (Yamamoto 2004)

Walking path condition

- Not simple
- Depend on walking environment
Learning

Walking path: \([p_1^T, p_2^T, \ldots]^T\)

Learning \(N\) paths

Making Eigenspace

Normalization

\(y = [p_1^T, p_2^T, \ldots, p_M^T]^T\)
Prediction

\[y' = [p_1^T, p_2^T, \ldots, p_s^T]^T \subseteq \mathbb{R}^{2s} \]

\[y'' = [p_1^T, p_2^T, \ldots, p_s^T, m_{s+1}^T, \ldots, m_M^T]^T \subseteq \mathbb{R}^{2M} \]
Problem & Objective

Problem
- Prediction is not correspond to actual path

Cause
- Rack of eigenvectors

Objective
- Improvement of prediction result
Proposed method

Modifying a Projection using null vector in null space

\[\tilde{y} = \sum_{i}^{N} a_i e_i + \sum_{k}^{s} b_k \ell_k \]

\(y^* \)

Modified part

\(\mathbb{R}^{2M} \)

\(E_N \)
Null vector ℓ_k

Definition
- A vector Orthogonal of Eigenspace
- Null space E^\perp consists of null vectors

Obtainment of null vector
- Using path except for sample path
- Smoothing sample path
Modification using null vector

Assumption

- Walking path is smooth

Cost function

\[\text{maximize } J = \sum_{t=1}^{M-2} \cos^2 \theta_t \]

Optimization

- The steepest gradient method

\[b_k \leftarrow b_k + \frac{\partial J}{\partial b_k} \]

(\(k\): the number of null vector)
Result: Prediction

Sample: 13 paths, 250 coordinates

Learning

Prediction

Eigenvector
Result: Modification

New path

3 Null vectors

Modification using 1 null vector

Modification using 3 null vector
Additional Experiment

Learning
* Sample path : 30
* Downsampling: 50(plots)
* Resampling: 300(plots)

Tracking and Prediction
* Tracking path : 1

Modification
* Null vector : 3 (same course)
Result: Using 1 Null vector

Cost function: J

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J $</td>
<td>273.45</td>
<td>275.52</td>
</tr>
<tr>
<td>$\frac{\partial J}{\partial b_k}$</td>
<td>-0.2</td>
<td>-9.95E-06</td>
</tr>
<tr>
<td>Coefficient : b_k</td>
<td>0</td>
<td>-22.67</td>
</tr>
</tbody>
</table>
Result: Using 3 null vectors

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>$\frac{\partial J}{\partial b_1}$</th>
<th>$\frac{\partial J}{\partial b_2}$</th>
<th>$\frac{\partial J}{\partial b_3}$</th>
<th>b_1</th>
<th>b_2</th>
<th>b_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>273.45</td>
<td>-0.01</td>
<td>-0.20</td>
<td>-0.01</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>After</td>
<td>275.62</td>
<td>-6.13E-06</td>
<td>-4.15E-07</td>
<td>9.98E-06</td>
<td>-5.78</td>
<td>-22.65</td>
<td>4.20</td>
</tr>
</tbody>
</table>
Conclusions

Summary

- Proposition : Path Modification using Null vector
- Experiments : Not good results

Future works

- Analyzing Effects of type of Null vector
- Making Quantitative Evaluation