Measurement of Nonrandom Event-by-Event Fluctuations of Average Transverse Momentum in $\sqrt{s_{NN}} = 200$ GeV Au + Au and p + p Collisions

Abilene Christian University, Abilene, Texas 79699, USA

Department of Physics, Banaras Hindu University, Varanasi 221005, India

PHENIX Collaboration

1 Abilene Christian University, Abilene, Texas 79699, USA

2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

3 Department of Physics, Banaras Hindu University, Varanasi 221005, India

27 AUGUST 2004

092301-1 0031-9007/04/93(9)/092301(6)$22.50 © 2004 The American Physical Society 092301-1
Event-by-event fluctuations of the average transverse momentum of produced particles near mid-rapidity have been measured by the PHENIX Collaboration in p_{T} range over which the average is calculated. Both the centrality and p_{T} dependence can be well reproduced by a simulation of random particle production with the addition of contributions from hard-scattering processes.

DOI: 10.1103/PhysRevLett.93.092301 PACS numbers: 25.75.Dw
The measurement of fluctuations in the event-by-event average transverse momentum of produced particles in relativistic heavy ion collisions has been proposed as a probe of phase instabilities near the QCD phase transition [1–3], which could result in classes of events with different properties, such as the effective temperature of the collision. Fluctuation measurements could also provide information about the onset of thermalization in the system [4]. The resulting phenomena can be observed by measuring deviations of the event-by-event average p_T, referred to here as M_{p_T}, of produced charged particles from the expectation for statistically independent particle emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6].

Several M_{p_T} fluctuation measurements have been reported in heavy ion collisions [7–10], including a study by PHENIX [9] in $\sqrt{s_{NN}} = 130$ GeV Au + Au collisions, which set limits on the magnitude of nonrandom fluctuations in M_{p_T}. Recently, STAR has reported fluctuations in excess of the random expectation, within the PHENIX limits, at the same collision energy [10]. For the first results from $\sqrt{s_{NN}} = 200$ GeV Au + Au and $p + p$ collisions reported here, upgrades of the PHENIX central arm spectrometers [11] have expanded the azimuthal acceptances reported here, produced charged particles from the expectation for statistically independent particle emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6] after subtracting contributions from fluctuations arising from physical processes such as elliptic emission [5,6].

Nonrandom fluctuations can be quantified, namely ϕ_{p_T} [16,17], v_{dynamic} [18], and F_{p_T} [9]. The calculation of F_{p_T} is based upon the magnitude of the fluctuation, ω_{p_T}, defined as

$$\omega_{p_T} = \frac{(\langle M^2_{p_T}\rangle - \langle M_{p_T}\rangle^2)^{1/2}}{\langle M_{p_T}\rangle}.$$

F_{p_T} is defined as the fractional deviation of ω_{p_T} from a baseline estimate defined using mixed events,

$$F_{p_T} = \frac{\langle \omega_{(p_T,\text{data})} - \omega_{(p_T,\text{mixed})} \rangle}{\omega_{(p_T,\text{mixed})}}.$$

Mixed event M_{p_T} distributions are validated by comparisons to a calculation of M_{p_T}, assuming statistically independent particle emission using parameters extracted from the inclusive p_T distributions of the data [19]. For the 0%–5% centrality class, which suffers the most from tracking inefficiency, the effects of two-track resolution, and background contributions, the mixed event M_{p_T} distribution yields a value of F_{p_T} = 0.04% with respect to the calculation. The results of this comparison are included in the estimates of the systematic errors. Further details on the mixed event procedure and a discussion of contributions to the value of F_{p_T} from detector efficiency and resolution effects can be found in the description of the data analysis of $\sqrt{s_{NN}} = 130$ GeV Au + Au collisions [9].

Comparisons of the data and mixed event M_{p_T} distributions for the 0%–5% and 30%–35% centrality classes are shown in Fig. 1. Any excess fluctuations are small and are difficult to distinguish by eye in a direct overlay of the M_{p_T} distributions. Therefore, the comparison is also shown as residuals of the difference between the data and mixed event distributions in units of standard deviations of the individual data points. The double-peak shape in the residual distributions is an artifact of the fact that the mixed event distributions, which always have a smaller standard deviation in M_{p_T} than the data, are normalized to minimize the total χ^2 of the residual distribution.

Figure 2 shows the magnitude of F_{p_T}, expressed in percent, as a function of centrality for Au + Au collisions with $p_T^{\text{max}} = 2.0$ GeV/c. The error bars are dominated by time-dependent systematic effects during the data taking period due to detector variations, which are minimized using strict time-dependent cuts on the mean and standard deviations of the inclusive p_T and N_{tracks}.

charged particle momenta are reconstructed in the PHENIX central arm spectrometers with a drift chamber and a radially adjacent pixel pad chamber. Nonvertex track background rejection is provided by pixel pad chambers and calorimeters located further outward radially from the collision vertex [15]. The momentum resolution is $\langle \delta p/p \rangle = 0.7\% \oplus 1.0\% \times p$ (GeV/c).

M_{p_T} is calculated for each event, which contains a number of reconstructed tracks within a specified p_T range, N_{tracks}. The p_T range is always given a lower bound of 200 MeV/c and a varying upper bound, p_T^{max}, from 500 MeV to 2.0 GeV/c. There is a minimum N_{tracks} cut of three in both Au + Au events (removing 0%, 4.6%, and 29% of events in the 0%–50%, 50%–60%, and 60%–70% centrality ranges, respectively, when $p_T^{\text{max}} = 2.0$ GeV/c) and $p + p$ events (removing 59% of the events).
distributions. Statistical errors are below $F_{pT} = 0.05\%$ for all centralities. The systematic errors are determined by dividing the entire dataset into ten separate subsets for each centrality class and extracting the standard deviation of the F_{pT} values calculated for each subset. From Fig. 2, a significant nonrandom fluctuation is seen that appears to peak in midcentral collisions. However, the magnitude of the observed fluctuations are within previously published limits [9]. In addition, the value of F_{pT} for the most peripheral Au + Au collisions is consistent with, albeit slightly below, the value measured by the same PHENIX apparatus in minimum bias $\sqrt{s_{NN}} = 200$ GeV $p + p$ collisions. If the magnitude of F_{pT} is entirely due to fluctuations in the effective temperature of the system [12], this measurement corresponds to a fluctuation of $\sigma_{T}/\langle T \rangle = 1.8\%$ at 0%–5% centrality and 3.7% at 20%–25% centrality.

To further understand the source of the nonrandom fluctuations, F_{pT} is measured over a varying p_T range for which M_{pT} is calculated, 0.2 GeV/$c < p_T < p_T^{\text{max}}$. Figure 3 shows F_{pT} plotted as a function of p_T^{max} for the 20%–25% centrality class. A trend of increasing F_{pT} for increasing p_T^{max} is observed for this and all other centrality classes. The majority of the contribution to F_{pT} appears to be due to correlations of particles with $p_T > 1.0$ GeV/c, where F_{pT} increases disproportionately to the small increase (only 14%) of N_{tracks} in this region.

The behavior of F_{pT} as a function of centrality and p_T is similar to trends seen in measurements of elliptic flow [20]. The contribution of elliptic flow to the magnitude of F_{pT} is investigated using a Monte Carlo simulation whereby events are generated with a Gaussian distribution of N_{tracks} particles determined by a fit to the data and a random reaction plane azimuthal angle, Φ, between 0 and 2π. Independent particles within an event are generated following the inclusive p_T distribution with azimuthal angles, ϕ, distributed according to collective elliptic flow described by the function $dN/d(\phi - \Phi) = 1 + 2\nu_2 \cos[2(\phi - \Phi)]$. The values of the ν_2 parameter are linearly parametrized as a function of p_T and centrality using PHENIX measurements of inclusive charged hadrons [20]. Only generated particles that lie within the PHENIX azimuthal acceptance are included in the calculation of M_{pT}. This simulation estimates that the

FIG. 1. Comparisons between the data and mixed event M_{pT} distributions for the representative 0%–5% and 30%–35% centrality classes. Plots (a) and (c) show direct comparisons of the data (points) and normalized mixed event (solid line) M_{pT} distributions. Plots (b) and (d) show the residuals between the data and mixed events in units of standard deviations of the data points from the mixed event points.
of high observed nonrandom fluctuations is due to the correlation of collisions. Note that the contribution due to jets, a Monte Carlo simulation with hard-scattering processes modeled using PYTHIA with a constant (dotted curve) and R_{AA}-scaled (dashed curve) hard-scattering probability factor, and include the estimated contribution due to elliptic flow.

Figure 3 illustrates that a large contribution to the measured value of F_{p_T} within the PHENIX acceptance, which is consistent with the value extracted from 100 000 PYTHIA events for minimum bias $p + p$ collisions, yielding $F_{p_T} = 2.06\%$ within the PHENIX acceptance, is largely canceled out by the symmetry of the PHENIX acceptance, and is negligible for central collisions. The estimated elliptic flow contribution to the value of F_{p_T} is less than 0.1\% for $N_{part} > 150$, increasing to about 0.6\% for $N_{part} < 100$. Note that F_{p_T} measured for minimum bias $p + p$ collisions, where collective flow is not expected to contribute, is nonzero $(1.9 \pm 0.6\%)$, implying that a nonflow contribution may also be present in peripheral Au+Au collisions.

Two scenarios are considered for studies of the centrality dependence of jet contributions to the value of F_{p_T}: (i) with $S_{prob}(N_{part})$ set at a constant rate for all centrality classes, and (ii) with $S_{prob}(N_{part})$ scaled for each centrality class by the PHENIX measurement of the suppression of high p_T charged particles, which is characterized by the nuclear modification factor, R_{AA}, integrated over $p_T > 4.5$ GeV/c [23]. The p_T value at which R_{AA} is extracted has little effect on the simulation results, which change by less than 0.2\% for 0\%–5\% centrality if the R_{AA} measurement at $p_T = 2.0$ GeV/c is used instead. The latter scenario is intended to model the effect of the suppression of jets due to energy loss in the nuclear medium [24] on the fluctuation signal. The initial value of $S_{prob}(N_{part})$ for both scenarios is normalized so that the F_{p_T} result from the R_{AA}-scaled simulation matches that of the data for the 20\%–25\% centrality class. The results of the simulation...
as a function of p_T^{max}, with $S_{\text{prob}}(N_{\text{part}})$ scaled by R_{AA}, are
represented by the dashed curve in Fig. 3 for the 20%–25% centrality class. The trend of increasing F_{pT} with
increasing p_T^{max} observed in the data is reproduced by the
simulation reasonably well.

The results of the two hard-scattering simulation scena-
rios are shown in Fig. 2 as a function of centrality. The model
curves include the small contribution estimated from the
eLLip tic flow simulation. The dotted curve is the result with
increasing p_T as a function of centrality and a PYTHIA-based hard-
scattering description can consistently describe contribu-
tions to the signal as a function of centrality and p_T with
increasing centrality and p_T with a simple implementation of jet suppression.

To summarize, the PHENIX experiment has observed
a positive nonrandom fluctuation signal in event-by-event
average transverse momentum, measured as a function of
centrality and p_T in $\sqrt{s_{NN}} = 200$ GeV Au + Au and $p + p$ collisions. The increase of F_{pT} with increasing p_T
implies that the majority of the fluctuations are due to
correlated high p_T particles. A Monte Carlo simulation that includes elliptic flow and a PYTHIA-based hard-
scattering description can consistently describe contribu-
tions to the signal as a function of centrality and p_T with
*Deceased.
†PHENIX Spokesperson.
Email address: zajc@nevis.columbia.edu
scattering events and MSEL = 2 for min. bias $p + p$ events,
CKIN(3) = 0.0, MSTP(32) = 4, and MSTP(33) = 1.