Role of two-dimensional electronic state in superconductivity in La$_{2-x}$Sr$_x$CuO$_4$

Fumihiko Nakamura, Tatsuo Goko, Junya Hori, Yoshinori Uno, Naoki Kikugawa, and Toshizo Fujita

Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8526, Japan

(Received 16 September 1999)

We have measured out-of-plane resistivity ρ_c for La$_{2-x}$Sr$_x$CuO$_4$ under anisotropic pressure. c-axis compression, which decreases ρ_c, reduces T_c drastically, whereas c-axis extension, which increases ρ_c, enhances T_c from 38 K at ambient pressure to 51.6 K at 8 GPa. We find that the variation of T_c scales as a function of ρ_c, and that the c-axis pressure coefficient is much stronger than the ab-axis one. These findings imply that T_c depends primarily on the interlayer, rather than the in-plane, lattice parameter.

According to uniaxial P (Ref. 16) and ultrasonic17 measurements on high-T_c cuprates, the P dependence of T_c is characterized by strong anisotropy. For LSCO, not only the absolute value but also the sign of dT_c/dP depends strongly on the direction of the applied P regardless of a change of carrier concentration $(dT_c/dP|_{ab}>0$ and $dT_c/dP|_c<0)^{18}$

Thus it is necessary to clarify the uniaxial P dependence of T_c because the effect of hydrostatic P is given by the sum of the uniaxial P coefficients for each axis $(dT_c/dP=2\times dT_c/dP|_{ab}+dT_c/dP|_c)$. Our P experiments were performed by using a cubic-anvil device19 with a mixture of Fluorinert FC70 and FC77 as P-transmitting medium. The samples were put into a cylindrical Teflon cell with an inner space of 1.5-mm diameter and 1.5-mm length, and the current was applied parallel to the cylindrical axis of the cell. Vitrification of the fluid medium at low T often causes a slight deviation from hydrostaticity, though the applied P is completely hydrostatic while the P medium remains fluid. Pressure applied to the anvil unit was held constant within 3% during T sweeps. In this system, quasi-hydrostatic P can be generated by isotropic movement of six anvil tops even after the fluid medium vitrifies at low T and high P. The key feature of our measurement is that, in our cubic anvil device, the hydrostaticity strongly depends on the sample shape and size because of a difference in the compressibility between the sample and the vitrified mixture.

Nonhydrostatic P is generally a hindrance in understanding the P dependence of T_c. However, if we can determine the anisotropy of the applied P, it is possible to determine the intrinsic behavior of T_c even when P is high enough suppress the structural change. In spite of the deviation from hydrostaticity, P dependence of T_c is given by

$$T_c(P)=T_c(0)+2P|_{ab}\frac{dT_c}{dP|_{ab}}+P|_c\frac{dT_c}{dP|_c}.$$

Moreover, the uniaxial P derivatives have been reported for the zero P limit.17 Therefore we can determine the anisotropy in the P acting on the sample by comparing the observed $T_c(P)$ with $dT_c/dP|_{ab}$ and $dT_c/dP|_c$.

Although a large number of experimental and theoretical investigations indicate that strong two dimensionality of the normal state is one of key factors in high-T_c superconductivity,1,3 it remains to be critically examined whether the cuprates are essentially two-dimensional (2D) metals or three-dimensional (3D) metals with strong anisotropy. Strong two dimensionality in the cuprates is after expressed in exotic behavior of the out-of-plane resistivity ρ_c, e.g., a low-T upturn in $\rho_c(T)$ for underdoped high-T_c cuprates.$^{4-7}$ Interlayer coupling, as reflected in ρ_c, is strongly related to the 2D-electronic state.

Low dimensionality is generally known as a destructive factor for long-range order such as superconductivity. Moreover, a theoretical model for high-T_c cuprates8 indicates that T_c enhancement is caused not only by strong in-plane correlation but also by increase of interlayer coupling. This suggests that a strongly 2D electronic state, i.e., weak interlayer coupling, should weaken high-T_c superconductivity. In this paper, we explore how the two dimensionality in the electronic state is reflected in T_c.

Pressure P experiments on high-T_c cuprates have received much attention as a technique which can control the two dimensionality in the electronic state. However, if we can determine the anisotropy of the applied P, it is possible to determine the intrinsic behavior of T_c even when P is high enough suppress the structural change. In spite of the deviation from hydrostaticity, P dependence of T_c is given by

$$T_c(P)=T_c(0)+2P|_{ab}\frac{dT_c}{dP|_{ab}}+P|_c\frac{dT_c}{dP|_c}.$$

Moreover, the uniaxial P derivatives have been reported for the zero P limit.17 Therefore we can determine the anisotropy in the P acting on the sample by comparing the observed $T_c(P)$ with $dT_c/dP|_{ab}$ and $dT_c/dP|_c$.

107 ©2000 The American Physical Society
drastically reduced, though the dependence of \(T_c\) on \(P\) decreases with \(P\), namely, the \(T_c\) of the reported sample is different from that for the stick sample. In particular, increasing \(T_c\) is induced by applying \(P \geq 0.8\) GPa at 297 K as shown in the inset. Moreover, the \(P\) dependence of the interlayer distance is sensitively reflected in \(\rho_c\) in LSCO,\(^{7,20}\) namely, \(\rho_c(P)\) can be regarded as a strain gauge along the \(c\) axis. Therefore, we deduce that the \(c\) axis is stretched by applying \(P\) in this measurement. These results obviously indicate that the stress on the plate sample is strongly anisotropic.

We can infer the reason why the stress on the plate sample is strongly anisotropic even though the sample is not in direct contact with the Teflon cell. It is empirically known that the Fluorinert mixture is jelled by applying \(P \geq 1\) GPa at around 300 K. The jelled mixture, which has a much larger compressibility than the sample, acts as a cushion. Hence quasihydrostatic conditions would be achieved if the sample were embedded in a large volume of mixture. However, a deviation from hydrostatic \(P\) is likely caused by the strongly anisotropic distribution of the jelled mixture, though the displacement of six anvil tops was isotropic. In the \(P\) cell, the \(c\) axis of the plate sample was arranged parallel to the cylindrical axis of the cell. Comparing the sample size with the inner diameter of the cell, we can see that the clearance between the inner wall of the cell and the sample is much narrower than the space along the \(c\)-axis direction. Pressure transmission is strongly anisotropic because the jelled mixture shows poor fluidity and the cell geometry is anisotropic. In the plate sample measurement, the in-plane compression must be much stronger than the interlayer one; thus the \(c\)-axis stretch is caused by a large contribution from Poisson’s ratio.

Figure 3 provides a plot of \(T_c\) determined by zero resistivity against \(P\) for the stick-shaped sample \((x=0.1)\) and plate ones \((x=0.1\) and 0.15). Both the stick and plate sample with \(x=0.1\) show a change of slopes in \(T_c(P)\) at around \(P_d \sim 3\) GPa. Then, \(T_c\) changes linearly with \(P\) in the orthorhombic phase. We found a significant difference between \(P\) dependence of \(T_c\) for the stick and plate samples. For the stick sample, \(T_c\) decreases at a rate of \(dt_c/dP \sim -0.8\) K/GPa for \(P \leq 3\) GPa, and \(T_c\) for \(P \geq 3\) GPa is more strongly suppressed with a rate of \(dT_c/dP \sim -3\) K/GPa. By contrast, \(T_c\) for the plate sample increases with a rate of \(dt_c/dP \sim +0.6\) K/GPa under \(P \geq 3\) GPa. The plate sample with \(x=0.15\) shows \(T_c\) enhancement from 38 K at ambient \(P\)
to 51.6 K at 8 GPa with a rate of \(dT_c/dP \sim +5\) K/GPa under \(P \leq 1.5\) GPa and \(dT_c/dP \sim +1.5\) K/GPa for \(P \geq 1.5\) GPa. The maximum \(T_c = 51.6\) K is the highest recorded so far for LSCO.

We have attempted to quantify the nonhydrostaticity at low \(T\) in order to clarify these results. It is reported that the uniaxial-\(P\) derivatives obtained at around ambient \(P\) are \(dT_c/dP_{ab} = +3.2\) K/GPa and \(dT_c/dP_{\perp} = -6.6\) K/GPa for \(x = 0.1\). Comparing these uniaxial-\(P\) derivatives with the observed \(dT_c/dP\) in the orthorhombic phase, we estimated the anisotropy of applied \(P\) on the stick and plate samples using Eq. (1). In the measurement for the stick sample with \(x = 0.1\), we obtained the anisotropic \(P\) ratio to be \(P_{\perp}/P_{ab} \sim 1.1\). By contrast, the \(P_{\perp}/P_{ab}\) values for the plate samples with \(x = 0.1\) and 0.15 are about 0.6 and 0.5, respectively. Thus the above-mentioned inference is probably confirmed by this estimation. Incidentally, the \(c\)-axis stretch for the plate samples is also indicated by comparing \(P_{\perp}/P_{ab}\) with compressibility\(^{21}\) and Poisson’s ratio,\(^{22}\) as is indicated by increasing \(\rho_c\).

Next, we consider the intrinsic \(P\) dependence of \(T_c\) in the tetragonal phase. Assuming that the anisotropic \(P\) ratio in the orthorhombic phase is retained in the \(P\)-induced tetragonal one, we estimated the uniaxial-\(P\) derivatives in the tetragonal phase to be \(dT_c/dP_{\perp} = -8 \pm 1\) K/GPa and \(dT_c/dP_{ab} = +3 \pm 0.5\) K/GPa from Eq. (1). Equally, we obtained the uniaxial-\(P\) derivatives for \(x = 0.15\) to be \(dT_c/dP_{\perp} = -9 \pm 1\) K/GPa and \(dT_c/dP_{ab} = +3.5 \pm 0.5\) K/GPa utilizing the previously reported \(P\) dependence of \(T_c\).\(^7\) Though \(dT_c/dP_{ab}\) remains nearly constant regardless of the structural change, \(dT_c/dP_{\perp}\) in the tetragonal phase is much stronger than that in the orthorhombic phase. Incidentally, from a sum of these uniaxial \(P\) derivatives we obtained a hydrostatic \(P\) derivative in the \(P\)-induced tetragonal phase to be \(dT_c/dP \sim -1\) K/GPa for optimal doping. This estimation agrees well with the reported value of \(dT_c/dP = -1\) K/GPa for polycrystalline LSCO with \(x = 0.15\) under hydrostatic \(P\) up to 8 GPa.\(^{23,24}\) Therefore it is a reasonable assumption that the anisotropic \(P\) ratio is retained in the high-\(P\) range.

What we are mainly interested in now is why the absolute value of \(dT_c/dP_{\perp}\) is much stronger than that of \(dT_c/dP_{ab}\). In the tetragonal phase, the enhancement of \(T_c\) due to interlayer expansion is about 2.6 times stronger than that due to in-plane compression. Naturally, the \(dT_c/dP_{ab}\) value is too small to account for the observed \(P\) dependence of \(T_c\). As shown in Fig. 4, the variations of \(T_c\) obtained for both stick- and plate-shaped samples could be scaled linearly with \(\rho_c\) at 297 K. Additionally, the \(P\) dependence of \(\rho_c\) can be expressed as a function of the lattice parameter \(c\).\(^{7,20}\) Therefore \(T_c\) is much more strongly reflected in the interlayer distance than the in-plane one. Thus a change of \(T_c\) is mainly interpreted in terms of the interlayer coupling as monitored in \(\rho_c\).

Incidentally \(\rho_c\) is given by \(\rho_c \sim [N\sigma_{\tau}^T]^{-1}\), where \(N\) is carrier number, and \(\sigma\) is lifetime in the plane.\(^9\) In general, \(P\) dependence of \(N\) and \(\sigma\) is reflected in those of the residual resistivity and the slope of \(\rho(T)\), respectively.\(^{25}\) Recently, we have reported that anisotropic pressure does not change \(\rho_{ab}\) below about 60 K.\(^{13,20}\) Moreover, weak \(P\) dependence of \(N\) has been reported.\(^{10,11}\) Therefore we deduce that \(\tau\) and \(N\) for LSCO are almost independent of \(P\) at low \(T\); thus \(P\) dependence of \(\rho_c\) for LSCO is mainly governed by that of \(T_c\).

As a clue to understanding the relation between \(T_c\) and interlayer coupling \(t_c\), we focus on the low-\(T\) behavior of \(\rho_c\) in the tetragonal phase when the \(c\)-axis compression is stronger than the in-plane one. Although the \(P\) reduces \(\rho_c\) values over the whole \(T\) range, the peak value of \(\rho_c(T)\) just above \(T_c\) is almost independent of \(P\) as shown in Fig. 1. This observation suggests that superconductivity occurs when \(t\) reaches some critical value. Thus higher \(T_c\) values can be expected in the system which has strongly suppressed \(t\).

We infer why a strongly 2D electronic state is an advantageous factor for the superconductivity in LSCO against the expectations from the theoretical model.\(^8\) \(T\) dependence of \(\rho_c\) and \(\rho_{ab}\) indicate that the interlayer coupling is suppressed with decreasing \(T\). It seems that the perfectly 2D metal expected from the spin-charge separation model is achieved at absolute zero Kelvin when superconductivity is absent.
However, it is believed that the perfectly 2D metal is unstable at low \(T \). Moreover, it has been reported that not only \(\rho_c \) but also \(\rho_{ab} \) shows a logarithmic upturn when \(T_c \) is suppressed by a large magnetic field.\(^5\) Therefore superconductivity or a 3D localized electronic state is likely required at low \(T \) in order to depress the instability. Thus enhancing the instability, which is caused by the \(c \)-axis expansion, increases \(T_c \).

In conclusion, we have demonstrated that strong 2D structure of the electronic state as is monitored in \(\rho_c \) is a key parameter for high-\(T_c \) superconductivity, though low dimensionality is generally known as a destructive factor for conventional superconductivity. The remarkable thing is that \(T_c \) is strongly reflected in interlayer distance rather than in-plane one. Indeed, the enhancement of \(T_c \) in LSCO, which reaches 51.6 K at 8 GPa, is mainly interpreted in terms of interlayer expansion, which enhances two dimensionality. Therefore we expect that measurement under anisotropy controlled pressures causes much higher \(T_c \) than previously reported values for many high-\(T_c \) materials.

We would like to thank S. R. Julian for criticizing the manuscript. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas, from the Ministry of Education, Science, Sports and Culture of Japan, and a grant from NEDO.

18 We use the value \(dT_c/dP_{\parallel b} \) which is the average of \(dT_c/dP_{a} \) and \(dT_c/dP_{\parallel b} \) because LSCO spontaneously forms a twinned structure below \(T_d \).
22 We use a Poissons ratio \(\sim 0.3 \) obtained from our uniaxial-\(P \) experiment for LSCO with \(x=0.15 \).