Measurement of the Parity-Violation Parameter A_β from the Left-Right Forward-Backward Asymmetry of b Quark Production in Z^0 Decays Using a Momentum-Weighted Track-Charge Technique

(SLD Collaboration)
Measurements of fermion production asymmetries at the Z^0 pole provide probes of the combination of vector (v) and axial vector (a) couplings \(A_f = 2 v_f a_f / (v_f^2 + a_f^2) \), which express the extent of parity violation in the Zff coupling. At Born level, the Z^0 peak differential cross section for producing a final state fermion \(f \) at an angle \(z = \cos \theta \) from the electron beam direction is

\[
\sigma_f(z) = \frac{d\sigma_f}{dz} \propto (1 - A_v P_v)(1 + z^2) + 2 A_f (A_v - P_v) z ,
\]

where \(P_v \) is the longitudinal polarization of the electron beam. By manipulating the sign of \(P_v \), it is possible to measure the left-right forward-backward asymmetry for b quark production [1],

\[
\bar{A}_F^b(z) = \frac{\sigma^b_L(z) - \sigma^b_R(-z)}{\sigma^b_L(z) + \sigma^b_R(-z)} = \frac{\sigma^b_L(z) - \sigma^b_R(-z)}{\sigma^b_L(z) + \sigma^b_R(z) + \sigma^b_R(-z)}
\]

where \(L, R \) refers to \(Z^0 \to b \bar{b} \) decays produced with a predominantly left-handed (negative helicity) or right-handed (positive helicity) electron beam, respectively. The measurement of the double asymmetry eliminates the dependence on the Zee coupling parameter \(A_e \). The quantity \(A_b \) is largely independent of propagator effects that modify the effective weak mixing angle \(\delta = -0.635 \sin^2 \theta_W \), and thus is complementary to other electroweak asymmetry measurements performed at the Z^0 pole.

In this Letter we present a measurement of \(\bar{A}_F^b(z) \) using an impact parameter tag to select an enriched sample of \(Z^0 \to b \bar{b} \) events, and the net momentum-weighted track charge [2] to identify the sign of the charge of the underlying b quark. This result, together with a complementary analysis based on leptons from semileptonic B hadron decay [3], represents the first direct measurement of the extent of parity violation in the Zbb coupling.

The operation of the SLAC Linear Collider (SLC) with a polarized electron beam has been described previously [4]. During the 1993 run, the SLC Large Detector (SLD) recorded 1.8 pb\(^{-1}\) of e\(^+\)e\(^-\) annihilation data at a mean center-of-mass energy of 91.26 ± 0.02 GeV, with a mean electron beam longitudinal polarization of (63 ± 1)%. Charged particles were tracked in the central drift chamber (CDC) [5] in a uniform axial magnetic field of 0.6 T. In addition, a pixel-based silicon vertex detector (VXD) [6] provides an accurate measure of particle trajectories close to the beam axis. The momentum resolution of the combined CDC and VXD systems is \((\delta p / p)^2 = (0.01)^2 + (0.0026 p / \pm)^2\), where \(p \pm \) is the momentum in GeV/c perpendicular to the beam line. The thrust axis [7] was reconstructed using the liquid argon calorimeter [8], which covers a range of \(|\cos \theta| < 0.98\).

The accurate impact parameter measurement provided by the addition of the VXD information to the CDC tracks was used to select a sample enriched in Z^0 \(\to b \bar{b} \) events. The impact parameter \(d \) was derived by applying a sign to the distance of closest approach such that \(d \) is positive when the vector from the interaction point (IP) to the point at which the track intersects the associated jet axis [9] makes an acute angle with respect to the track direction. All impact parameters used in this analysis were for tracks projected into the plane perpendicular to the beam axis, and were measured with respect to the SLC IP, derived from fits to \(Z^0 \) decays close in time to the event under study [10]. Including the uncertainty on the average IP position, the impact parameter uncertainty \(\sigma_d \)
for the overall tracking system approaches 13 μm for high momentum tracks, and is 76 μm at \(p \mid \sin \theta = 1 \) GeV/c.

For the purpose of selecting hadronic events and calculating the momentum-weighted track charge, a loose set of requirements was placed on reconstructed tracks, while stricter requirements were placed on tracks used to select \(Z^0 \to b \bar{b} \) candidates. “Track-charge quality” tracks were required to have (i) \(p_{\perp} \gtrsim 0.15 \) GeV/c and \(p_{\text{tot}} < 50 \) GeV/c, (ii) \(|\cos \theta| \leq 0.8 \), and (iii) point of closest approach to the beam line within a cylinder of radius \(r_0 \) and half-length \(l_0 \) about the IP of \((r_0, l_0) = (2.0, 10.0) \) cm. “Impact parameter quality” tracks were additionally required to have (i) the point of closest approach within \((r_0, l_0) = (0.3, 1.5) \) cm, (ii) at least one VXD hit, (iii) \(\sigma_d < 250 \) μm, and (iv) not be identified as a decay product of a \(\Lambda, K^0_S \), or \(\gamma \) conversion.

Events were classified as hadronic decays of the \(Z^0 \) provided that they contained at least seven track-charge quality tracks, a visible charged energy of at least 20 GeV, and a thrust axis satisfying \(|\cos \theta_{\text{max}}| < 0.7 \). The resulting hadronic sample contained 26759 events, with \(<0.1\% \) nonhadronic background.

A \(Z^0 \to b \bar{b} \) enriched sample of 4032 events was identified by selecting hadronic events with three or more impact parameter quality tracks with normalized impact parameter \(d/\sigma_d > 3.0 \) [9]. Monte Carlo (MC) studies indicate that this selection is 61.2% efficient for identifying \(Z^0 \to b \bar{b} \) events, with a purity of 90.1%.

Using all track-charge quality tracks, we formed the event momentum-weighted charge sum [2]

\[
Q = \sum_{\text{tracks}} -q_i \text{sgn}(\hat{p}_i \cdot \hat{T})(\hat{p}_i \cdot \hat{T})^\kappa,
\]

where \(q_i \) and \(\hat{p}_i \) are the track charge and momentum, and \(\hat{T} \) is the unit vector in the direction of the reconstructed thrust axis, signed so that \(Q > 0 \), making \(\hat{T} \) an estimate of the \(b \) quark direction. We have chosen \(\kappa = 0.5 \) to maximize the analyzing power (ζ) of the track-charge algorithm for \(Z^0 \to b \bar{b} \) events,

\[
\zeta = \frac{P_{\text{cor}} - P_{\text{inc}}}{P_{\text{cor}} + P_{\text{inc}}} = 37\%,
\]

where \(P_{\text{cor}} \) (\(P_{\text{inc}} \)) is the probability of assigning the \(b \) quark to the correct (incorrect) thrust hemisphere. Figure 1 shows a comparison of the \(Q \) distribution between data and MC simulation. Figure 2 shows the \(\hat{T}_z \) distribution for the enriched sample separately for left- and right-handed electron beams.

Events in the enriched sample were divided into bins of width 0.1 in \(\hat{T}_z \). In each bin, the experimental asymmetry

\[
\hat{A}^{\text{obs}}_i = \frac{N_i^{L,+} + N_i^{L,-} - N_i^{R,+} - N_i^{R,-}}{N_i^{L,+} + N_i^{L,-} + N_i^{R,+} + N_i^{R,-}}
\]

was calculated, where \(N_i^{h,s} \) is the number of events in \(\hat{T}_z \) bin \(i \) produced with beam helicity \(h \), and with estimated \(b \) quark hemisphere \(s = \text{sgn}(\hat{T}_z) \). To determine \(\hat{A}^{b,\text{MC}}_i(z) \), this observed asymmetry was corrected for the light quark \((u,d,s,c) \) event contamination of the enriched sample, due to the misassignment (4) of the \(b \) quark charge, \(R^b \) mixing, thrust axis resolution smearing, \(Z-\gamma \) interference, and the effects of external photon and gluon radiation.

FIG. 1. Comparison between data (dots) and MC (histogram) of the momentum-weighted track-charge sum \(Q \) for events in the enriched sample. The shaded region shows the expected contribution from light quark \((u,d,s,c)\) events.

The 10% contamination of light quark events was corrected for bin by bin in \(\hat{T}_z \) according to

\[
\hat{A}^{\text{cor}}_i = \frac{\hat{A}^{\text{obs}}_i}{\frac{1}{\Pi_i} + \hat{A}^{\text{cont}}_i},
\]

where \(\Pi_i \) is the \(Z^0 \to b \bar{b} \) purity for the enriched sample, estimated from MC assuming the world average branching fraction \(R_b = (Z^0 \to b \bar{b})/(Z^0 \to \text{hadrons}) = 0.2202 \pm 0.0020 \) [11]. The expected observed asymmetry of light quark events, \(\hat{A}^{\text{cont}}_i = -0.75\hat{A}^{\text{cor}}_i \), was estimated from the subset of reconstructed MC light quark events that passed the \(Z^0 \to b \bar{b} \) selection criteria.

The remaining of the corrections listed above were taken into account by the comparison (Fig. 3) of \(\hat{A}^{\text{obs}}_i \) with the observed asymmetry \(\hat{A}^{b,\text{MC}}_i \) for MC \(Z^0 \to b \bar{b} \)

FIG. 2. Distribution of tagged events in the polar angle estimate \(\hat{T}_z \), for left-handed \((P_e < 0)\) and right-handed \((P_e > 0)\) events separately. In both plots, a forward-backward asymmetry with appropriate sign is observed.
events which reconstruct in the ith $|\hat{T}_z|$ bin, where the MC sample was generated with the mean electron beam polarization of 63%. The value of the MC parity violation parameter $A_b = 0.87 \pm 0.11$ (stat), with a χ^2 of 8.3 for 6 degrees of freedom. In this procedure, the value of A_b was not constrained to be less than unity.

We investigated a number of effects that can change the measured value of A_b. The correction for the charge misassignment (4) of the momentum-weighted track-charge algorithm, which is implicitly contained in the comparison between \hat{A}^corr and \hat{A}^MC, is sensitive to the modeling of the physics of heavy quark fragmentation and decay. To simulate B hadron production and fragmentation, we used the JETSET 6.3 parton shower MC program [12], with fragmentation parameters tuned to hadronic e^+e^- data [13]. Heavy quark fragmentation was simulated via the Peterson function [14], tuned so that $(x_h) = E_B/E_{\text{beam}} = 0.695 \pm 0.015$ [15], where E_{beam} and E_B are the electron beam energy and the energy of the B hadron after fragmentation, respectively. B hadron semileptonic decay was simulated with the ISGW Model [16], with the fraction of decays producing $D^{\ast\ast}$ mesons set to 9% [3]. To simulate hadronic decays of B hadrons, the JETSET 6.3 heavy hadron decay simulation [12] was adjusted to reproduce the multiplicity and inclusive particle spectra from B meson decays at the Y_{4S} [17]. Care was taken to reproduce the momentum spectra of charmed hadrons from Y_{4S} decays [18], which greatly constrains the charge flow of B hadron decay into the stable particles that are observed in the SLD. B_s meson decay (12% of MC B hadrons) was simulated by exchanging an s quark for the light spectator quark in the B meson decay model. B baryon decay (9% of MC B hadrons) was simulated via the default JETSET 6.3 model. Varying the properties of B hadron fragmentation and decay within the constraints provided by data indicates uncertainty of $\Delta A_b/A_b = \pm 7\%$ due to the corresponding uncertainty in the \hat{A} of the track-charge algorithm. The effect of time dependent neutral B meson mixing, accounted for by the use of $\hat{\chi} = 0.116 \pm 0.008$ [19] in the MC simulation, with the above B hadron admixture and $\chi_s = 0.5$, leads to a change of $\Delta A_b/A_b = (11 \pm 1\%)$.

A number of detector effects can change the track-charge algorithm ζ. Potential differences in the ζ between the forward and backward hemispheres, caused, for example, by geometrical distortion of the tracking system, are suppressed by a factor $A_e/A_b = 0.15$ in the calculation of A_b, and are not a significant source of measurement bias. A comparison between data and MC of the number of charged tracks per hadronic event indicates a $(3 \pm 2\%)$ excess of tracks in the MC simulation of the SLD, leading to a correction to the measured value of A_b of $(+6 \pm 4\%)$.

MC studies indicate a $(9.3 \pm 0.5\%$ $[0.6 \pm 0.2\%])$ contamination of $Z^0 \rightarrow e^+e^-$ ($Z^0 \rightarrow uds$) events in the enriched sample [9], with expected observed asymmetries of $\hat{A}_t = (-0.86 \pm 0.22)\hat{A}_t$ and $\hat{A}^{uds} = (0.26 \pm 0.26)\hat{A}_b$, leading to a systematic uncertainty of $\delta A_b/A_b = \pm 2\%$, dominated by the $\sim 25\%$ relative uncertainty on the parameter A_t [11]. We examined the dependence of A_b upon the criteria used to select the enriched sample, and see no statistically significant effects. As a check, the fraction 0.151 ± 0.002 (stat) of hadronic events selected for the enriched sample is consistent with the MC expectation of 0.147 ± 0.006 (syst) [9]. In addition, a preliminary lifetime measurement based on the distribution of the two-dimensional impact parameter yields a value of $\tau_B = 1.62 \pm 0.10$ [20], consistent with other measurements at the Z^0 [21].

Comparing the consistency of the sign of Q between opposite hemispheres confirms the MC simulation of the track-charge algorithm ζ. Calculating Q independently for tracks in each thrust hemisphere, we formed the quantity $H = (N_{\text{con}} - N_{\text{inc}})/(N_{\text{con}} + N_{\text{inc}}) = (\zeta_\text{hem})^2$, where N_{con} (N_{inc}) is the number of events with consistent (inconsistent) charge assignment in opposing hemispheres. For the data sample, we find $H = 0.093 \pm 0.016$, while the MC expectation, including the tracking simulation and B meson mixing corrections discussed above, is $H = 0.116 \pm 0.007$. Taking into account the presence of light quark backgrounds, this corresponds to a difference in the MC and data hemisphere-only ζ of $\Delta \zeta_{\text{hem}}/\zeta_{\text{hem}} = (11 \pm 9\%)$, consistent with zero. In addition, we examined the dependence of A_b upon the value of the momentum-weighting exponent κ used in the track-charge algorithm; no statistically significant effects were observed.

Effects due to Z-γ interference and external radiation account for a $(3 \pm 1\%)$ correction to A_b, dominated by hard gluon radiation [12]. Table I presents a summary of the above sources of relative systematic error ($\delta A_b/A_b$). Adding all sources in quadrature yields a total relative systematic error of $\pm 11\%$, yielding

$$A_b = 0.87 \pm 0.11 \text{(stat)} \pm 0.09 \text{(syst)}.$$
TABLE I. Contributions to the relative systematic error on A_h.

<table>
<thead>
<tr>
<th>Source of error</th>
<th>Contribution ($\delta A_h / A_h$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B hadron fragmentation and decay</td>
<td>$\pm 7%$</td>
</tr>
<tr>
<td>Charged particle tracking</td>
<td>$\pm 4%$</td>
</tr>
<tr>
<td>Light quark subtraction</td>
<td>$\pm 2%$</td>
</tr>
<tr>
<td>Electron beam polarization</td>
<td>$\pm 2%$</td>
</tr>
<tr>
<td>B meson mixing</td>
<td>$\pm 1%$</td>
</tr>
<tr>
<td>Radiative effects</td>
<td>$\pm 1%$</td>
</tr>
<tr>
<td>MC statistics</td>
<td>$\pm 6%$</td>
</tr>
<tr>
<td>Total</td>
<td>$\pm 11%$</td>
</tr>
</tbody>
</table>

This number is in good agreement with the standard model expectation of $A_h = 0.94$ [1], assuming the value $\sin^2 \theta_W^{\text{eff}} = 0.23$.

This result complements that of an independent approach using leptons from semileptonic B decay [3]. Taking into account small correlations between the two techniques yields

$$A_h = 0.89 \pm 0.09(\text{stat}) \pm 0.06(\text{syst})$$

(8)

for the combined SLD measurement of the extent of parity violation in the Zbb coupling.

We thank the personnel of the SLAC accelerator department and the technical staffs of our collaborating institutions for their outstanding efforts on our behalf. We also thank H. Olsen and J. Stav for helpful discussions relating to this analysis.

*Deceased.
†Also at the Università di Genova, I-16146 Genova, Italy.
‡Also at the Università di Perugia, I-06100 Perugia, Italy.

[9] Jets are defined via the JADE algorithm [W. Bartel et al., Z. Phys. C 33, 23 (1986)], using a value of $y_{\text{min}} = 0.02$.