A study of documents and records concerning science education reform in postwar Japan (I): Focusing on the CIE films of science education

Kazumi Shiba

The 377 CIE and USIS films have been preserved at Tokushima Prefectural Archives. After examining them, seven CIE films and one USIS film were found out as to science education. Comparing the CIE film "Beware of Fire" produced by Japan with "Chemistry of Fire" by U.S.A., it was found that they were excellent motion pictures from the viewpoint of science education.

Keywords; science education, CIE film, chemistry of fire, beware of fire, museums for school children

キー ウード；理科教育, CIE 映画，火の化学，火の用心，児童博物館

はじめに

筆者は戦後日本における理科教育改革の歩みを、米国科学教育情報の受容という視点から考察して来た。既に、教育課程文庫所収の米国教科書が『小學生の科学』(1949)の発行に与えた影響、アメリカ科学教育界の重鎮であったクレイグ（Craig, Gerald Spellman）著作の科学教科書の翻訳・出版過程及びこれらのが国への影響について論述している。これらの研究過程において、占領期には米国から科学教育に関する大量の文字情報だけでなく、映像情報もわが国にもたらされたことが判明した。阿部彰氏の『戦後地方教育制度成立過程の研究』(1983) 1)や『人間形成と学習環境に関する映画史料情報集成』(1993) 2)において、GHQ/SCAP (連合軍最高司令官総司令部)のCIE（民間情報教育局）により展開された「ナトコ」を用いた啓蒙政策について考察しているが、理科教育においてCIE映画がどのように利用されたのかという点については研究の対象としていない。従来の理科教育研究では、CIE映画の実態についても不明であり、映像による米国科学教育情報がどのようにわが国にもたらされ、影響を及ぼしたのかという点については未踏同然である。

以上の様々な問題意識に立って、本研究は、現在徳島県立文書館において所蔵されている自然科学関係のCIE映画の内容分析、徳島県郷内のCIE映画の視聴者数、巡回上映の実態などを明確にすることによって、先の疑問に答えるための知見を得ることを目的とした。

I. 徳島県立文書館所収の理科関係のCIE映画

1. 同文書館におけるCIE映画所蔵の実態

CIE映画はGHQ/SCAPの第八軍施設命令「民間情報活動」(1947.8.16)、「地方軍政部の利用に供すべき映画用機材の件」(1948.5.26)、「日本の視覚教育計画」(1948.10.25)に基づき、1948(昭和23)年から日本人の国際認識に対する啓蒙と民主化を図るため、CIEを通じて都道府県に映写機材とフィルムを貸与することに始まった。映画フィルムは主に、アメリカ国内で製作され、一本の上映時間は数分から数十分までまちまちで、日本語に吹き替えられていた。機材としては、「ナトコ」(NATCO：米国ナショナルカンパニー社製六軸発声映写機)と呼ばれた16ミリ・トーキー映写機が約1,300台貸与された。「ナトコ」には、1ヶ月20回以上の上映義務が課され、都道府県の軍政部、都道府県視覚教育係及び同フィルム・ライブラリーなどがその運営に当たった。CIE映画の巡回上映は、戦後わが
柴 一実

国の各都道府県視聴覚ライブラリーセントラル設立の契機になり、視聴覚教育の整備となった。しかし、対日講和後、CIE映画はUSIS (United States Information Services) 映画として、米駐日大使館文化交流団に引き継がれ、1965（昭和40）年頃には、大部分のフィルムは役目が終了したとして処分された。

こうした状況において、今回、徳島県立文書館で多数のCIE映画の所蔵及び保管が確認された。同館の所蔵目録に記載されているCIE映画及びUSIS映画は表1の通りである。

表1 徳島県立文書館所蔵のCIE映画及びUSIS映画の本数

<table>
<thead>
<tr>
<th>映画の区別</th>
<th>種類数</th>
<th>本数</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE映画</td>
<td>158</td>
<td>407</td>
</tr>
<tr>
<td>USIS映画</td>
<td>83</td>
<td>181</td>
</tr>
<tr>
<td>不明の映画</td>
<td>25</td>
<td>30</td>
</tr>
</tbody>
</table>

181本のCIE映画と196本のUSISの映画のうち、自然科学関係では7本のCIE映画と1本のUSIS映画が所蔵されている。これらの題名は「水から力へ」、「火の化学」、「火の用心」、「健康は清潔から」、「ネズミの防止」、「アメリカ自然科学博物館」、「児童博物館」、「十二指腸炎」である。これらのCIE及びUSIS映画はどのような内容であったのか。これらの映画を取り寄せて、映像を視聴し、内容分析を試みた。

2. 「火の化学」の内容分析

「火の化学」は上映時間43分である。同映画は、燃料、酸素及び温度という燃焼の三条件と、火災、火災という5つの部分から構成されている。同映画は1949.50（昭和24.25）年、札幌国立一中学校や東京都立黒田十四中学区の理科授業で利用されていた181。「火の化学」の映像内容は次の通りである。

（テロップ）U.S.I.S. 提供

火の自然現象を良く理解して、防火火消して日本を守れることが日本の全消防員にとって、最も大切なことである。

（ナレーション）

火災、猛り狂うこの炎、その破壊の強烈さ、その残酷さ。火災はいつどこにでも起こります。火はどこに起こるのですか？

（テロップ）第一の条件－燃料について

（ナレーション）

ある寒い日に、暖炉の中で燃えている薪。この薪の様子を良く覚えて下さい。薪が燃えているようですが、実際は薪から出るガスが燃えていているんです。分かりますか？では、ある研究所の簡単な実験で、もっとも分かりよく皆さんにお目にかけましょう。観察をプラスコに入れてバーナーで熱してみます。さあ、ガスが出て来ました。そして、点火しますと、火元でこのような燃え出しました。（1.ガスの燃焼実験）可燃物と呼ばれるものは、固形でも液体でもどちらでもあります。このようなガスからもガスが出て、このガスが燃え上がります。（2.木炭の燃焼実験）

ここには紙があります。一般にはガスが出ないと思われるでしょう。ガスが出たと思われます。紙は燃えることなく、燃え上がります。紙が燃える実験を試みます。（6.紙の燃焼実験）多くの固体は燃える前に液になることはない。ガスは、「ガスの発見」を実験してみましょう。ガスを生産する機械は、固形ガスは通常燃焼してない。燃焼は熱エネルギーが発生することを意味します。さらに、この液体は灯笼を伝って空に気中に膨張し、発生するガスへと込めます。ガスが燃える実験を試みます。（5.ガスの発生実験）

（テロップ）第二の条件－酸素について

（ナレーション）

燃焼のための第二の条件、それは酸素です。非常に燃えやす
いガスでも、酸素を含まない純粋なガスは燃えることができません。このように、普通の状態の炎は、燃焼に必要な酸素を空気から吸収します。しかし、ここに見えるように、限られた場所で燃える炎は、……酸素だと急速に燃え去って行きます。この原理のよく分かる実例は、酸素の発熱機である。

酸素の量を制限したこのアセチレンガス下で、何の作用もできません。酸素を加えると、ガスは炎を発すると、この炎は強く、たとえば、銅板を焼き切って行きます。このように燃える炎は、空気中の酸素とガスが適当に混合しているのです。空気中で放出されるガスは、必要とするだけの空気の量と混合して行きます。この実験例はガス灯の炎です。（15. ガス灯の燃焼実験）

このようにガスの放出を多くすると、……炎は大きくなりますが、この動作では、炎の温度を加減します。そして炎から熱い空気が上昇すると、空気の対流によって、酸素を火元にとどめ、酸素の補給が行えます。しかし、このコンターの上には、ガスは空気の空間に閉じられています。ガスは酸素の補給を汚損されません。そこで、燃え切れないガスが黒煙となって上昇しますが、上空に酸素の補給がつくと、このガスは爆発して、激しく燃え上って行く。

これにガソリンがあります。発散したガソリンはガス中の酸素と混合して、容器の付着を洗っています。この混合状態を、三段に分けることができます。ここでは酸素に対し、ガスが濃厚過ぎて、その混合は不完全で燃えません。上層では逆に、酸素に対して、ガスが薄過ぎます。この中間では、ガスと酸素の混合が適当で、少し火を起こすと、すぐに火を消してしまうことがあります。このようなスパークを起こし、このように実験してみましょう。（16. スパークによるガソリンの燃焼実験）混合不良のものは、このように燃焼することはありません。上層では火の延焼に繋がりません。しかし、この中に爆発を起こすことができる。ですから、ガソリンの密閉されている付近は、爆発する混合ガスが発生していることが分かります。

この村の村を、シャドーグラフを使って見てみましょう。（17. シャドーグラフによるガソリンの発散実験）このようにどんなに寒い日にしても、空気より早くガソリンガスは容器から爆発して、気流に乗って、相当な速い距離まで拡散しています。この性質のため、ガソリンは危険です。その実験を、この装置で実に手にかけましょう。（18. 発散したガソリンによる炎の発散実験）炎はこうして上を移ります。シャドーグラフを使って、このガスの運動の有無を再び、目をかしてみましょう。（19. シャドーグラフによるガソリンの発散の様子）この実験用のガソリンで、ガスと酸素の混合が不完全であれば、燃焼しないという実験をお目にかけましょう。（20. タンク内のスパークによるガソリンの燃焼実験）タンクの中ですべてが発散されましたが、このまでには酸素が少ないのです、点火されません。今、この容器の中のガソリンを少なくしてみましょう。代わりに新しい空気が入れて、タンクのガソリンが蒸発して、ガスになり、かの新しい酸素を吸収して、爆発ガスを作成します。今度はスパークによって、その爆発を見ることができます。空気が入るのを防いでいた蓋を開放してしまいます。点火が起こります。多量の酸素が混合して、急速に燃え上ります。今後は新しい問題として、ガソリンの発熱の問題を次のように考えることを知りました。このため、ほとんど全ての燃料は引火点まで、燃えないことが分かりました。中には爆発性燃料と呼ばれ、大変引火点が低くて、常温で燃えて発火するものもあります。燃料の第二条件として、酸素も十分供給されなければならぬことも分かりました。そして、第三の条件、それは燃焼のための温度です。

（テロップ）第三の条件温度について（ナレーション）

この燃料の上にできている混合ガスは、燃火点に達しています。（21. 燃料油の燃焼実験）しかし燃焼には、発火点より高い温度が必要なことを、前にお話ししました。（22. スパークによるガソリンの燃焼実験）今、このビーカーで、点火のために高熱のスパークをますます。しかしながら、このガソリンガスは、これほどは熱は必要ありません。例えば、ガソリンの場合には、この小さな電気コイルによっても点火できます。（23. 電気コイルおよび半田にてガソリンの燃焼実験）この熱が、ガソリンガスを点火させるほどの熱を持っていますか。しかし、ガソリンよりも燃焼温度が低いものは、燃えたりこともできました。ブラシで紙につけると、（24. 紙の燃焼実験）このガスとその燃焼温度が常温より低いので、特に暖めると空自でいただけながら燃えありません。

ずっと以前から多くの燃料は、その燃焼温度が決まっていました。この実験装置を、その温度の幅を教えてくれます。ガソリン、アルコールの引火点は常温よりも低いので、燃えめる必要がありません。ガソリン壁が24.2℃、アルコール倉が12.8℃です。次の二つは引火点まで燃えなわけではありません。標準型燃料油は65.6℃、亜麻仁油は32.2℃です。ビーカーの上に吊ったコイルは、抵抗器によって調整されています。そして、それぞれの燃料の温度までコイルが熱されると燃えます。ガソリン倉が257.2℃、亜麻仁油倉が343.3℃、アルコール倉が371.1℃、標準型燃料油倉が398.9℃。このような燃料の引火点と燃焼温度には、それぞれ大きな差があることに注意してください。

燃焼温度はそれがどのような形で作り出されたか、混合ガスを発火させることができます。例えば、もし燃料を極端に低くすると、この燃料がガソリンの燃焼温度に達することで、ガソリンガスを発火させることができます。（25. 加熱された燃料によるガソリンの燃焼実験）発火点の差は、ほとんど全ての燃料の燃焼温度よりも高いものです。そのため、このように温度が上がると、燃焼が起こり、変化に付加の燃料を発火させ、急速に燃えます。発火点の高い標準燃料油では前で熱れておかないと、小さな火では燃えません。ガソリンを入れて火をつけますと、ガソリンの燃焼のこの程度の火の引火点までで、発火させることになります。（26. ガソリンと標準型の混合物の燃焼実験）しかし、その燃え方、表面積によっていることから、これは実験をお目にかけましょう。

この小さなビーカーに入ったガソリンは小さな火で、徐々に消費されます。手に大きく開けられた同量のガソリンは、急速に燃え上がります。（27. 表面積の逆によるガソリンの燃焼実験）それは発熱が大きいほど、十分に酸素が供給される
たまえなです。同じ大きさの二つの木材で、別の場合をもう一つ、実験してみましょう。この木材の片方を削って、たくさんの薪ににしてきましょう。こうして一方は、その空気中に触れ
面積が大きくなりましょう。一方の、点火してみましょう。燃
熱はほとんど木炭に吸収されて、このようにわずかしか焦げま
せん。しかし、薪はすぐ燃え出します。（28、角材と板属の燃
焼の比較実験）
（テロップ）火災
（ナレーション）
発火現象は三つの要素、即ち燃料、酸素、燃焼温度がちょう
ど合致したときに生じます。これはそのように、ちょっと三角
形の三点で表現することができます。この三つの条件は、これ
までの実験でお分かりになったと思います。ではこれから、火
災の発生をこの三角定規によって、説明させましょう。

巻きパラは不注意に投げられ、紙くずがここの中に落ちま
し、紙はこのように、ごく低い燃焼域で発生しました。そこでタバ
コの灰は、燃料である紙を吸収して、ガスを発生させ、酸素を
吸収した紙の爆発は炎を立て、燃え上がって行きます。
炎が大きくなるにつれ、温度が増加するので、次々に付近の
高欄からガスが発生し、炎が上がって来ます。そしてこの、炎
の熱は薪の空気を上昇させ、空気の対流が酸素の吸収を活発
にするので、燃焼は盛んになって行きます。

ガスゾンの蓄積や給油作業をしているとき、このガソリン
ガスの爆発による火災がしばしば起こることもあります。流れ
出る液体の摩擦によって発生する静電気がその原因です。注ぎ口
が油タンクに接触して、アースされていると、地上に排出され
て行きます。注ぎ口がこのように接触していない場合には、アー
スされないので、電気は放電しないので、蓄電されて行きます。
このとき、タンクの口が最も近いタンクの装飾物となり、
端と端の間にスパークを起こし、ガスが爆発することになりま
す。

船底で起こる火災の多くは油布やその他の材料が捨てられた
り、また偶然近づいた場所に落ちた布のようであると常套してお
りましょう。その布は燃えるかないにせよ、火災がおこりたい
と、バウラウから傾斜しているガスが、ガスの中に蓄積して行
火を起こす可能性がある。そこで、慎重にした鈍行を、千鳥並
行で火を消すことが、火災を防ぐ一つの方法となります。

一方、船底に火が広がると、大抵機械油が温まっているものの、それ故燃
え落ちた布の炎は、この油の火引点まで燃えます。火災、こう
して起こる船火は、その船底の油面の面積が大きくなると、火災に
広がって行きます。まず、ガスの燃焼が進み、混合ガスでも、
モーターからの小さなスパークとショートでも発火をさせられる
ものです。火災の起こる部位にたいして消防活動を、ただちに
に行うことが必要です。火災の原因の防止のためには、火災の
発生を防ぐことが重要です。火災の原因を防ぐためには、火災の
防止のための準備を、充分にすることになります。

（テロップ）火災
（ナレーション）
その原因で、酸素と燃焼温度が必要です。その
ため火災には、二つの方法が考えられます。一つは酸素を供給
しないこと。もう一つは、温度を火災点より下げることです。
この実験で酸素を制限して、炎が窒息される様子を観察しま
しょう。（29、ガソリンの燃焼実験）

酸化炭素を使用する火災は、窒息法の原則となっています。
（30、火消し器による実験）携帯用の酸化炭素火消し器は酸素を
燃焼域から商かするために、早くして簡単な役目を果たしま
す。今、化学変化を起こさぬガス、即ち酸化炭素が空の入れ
物に入れられています。どうでしょう。火消しの効果がよく出るか}
でしょう。（31、酸素化炭素によるガソリンの燃焼）酸素化炭
素は空気より重い体です。そこでこのガスは空気の下に沈
んで、炎の範囲に一枚の膜を作り、酸素を遮断した火は消げる
でしょう。（32、ビーカー内消火の実験）酸化炭素による
火消し実験）この種の携帯用消火器の価値は、その操作が手早く、
また簡単なので、狭い場所の初期火災や他の強力な火消し器が
到着するまで、火災を大きくするのを防ぐことに役立ちます。
またこのガスは電気器具や機械の火災に効果があります。この
ガスが電気の不導体なので、後でこれらの機械を損なうことが
ないからです。

ガソリン、油などの火災の火消しには、他の方法として、特
殊な液体によって作られた泡を使用する窒息法があります。

良い注意で見ると、泡沫消火は油の中に打ち込まれています
ません。それはその内の内側を流れ、静い油の表面に広がっ
て行きます。泡表面を覆った泡の膜が酸素の補補を止め、消
火させるわけです。ですからこの泡の膜は破られると、再火
消しし、また早く低血圧にならぬうちに、ガスがこの膜の隙間
から逃げ、自由に酸素と混合すると、再び火災を起こすこと
になります。この泡消火装置をはなしで実験で良好お分かりに
するでしょう。（33、泡消火の実験）

この泡消火は高温で近寄りにくい、火の火事に効果的な方法で
す。ここでは泡消火がスッキリ強い火災から注目され行われ
ますが、それは壁や、さらに火災を伝えて、だんだん火災
地域に入れて行きます。そして最も密な細かいうちは、泡消
火は、容易に油の表面に浮かび、進行を妨害するものを取り除かし
てしまいます。しかしこの消火法で重要なことは、十分に厚いも
のを用意して火を消す、とーむで行うことが、泡消火の目的を果たすことに
なります。

蒸気による消火の実験をお見せしましょう。（34、蒸気による
消火実験）それは普通、機関室に敷設されているもので、蒸
気によって酸素を除く窒息法の一つです。圧力と温度でタック
に押し込まれた蒸気はその隙に流れ、その隙に火災の表面
から酸素を断熱して、火災を消滅させます。これは油やその他の液
体による火災に効果があり、限られた場所でののみ使用される方
法です。

しかしこのように液体ではない筋膿の場合はどうでしょう。
（35、蒸気による排火の実験）蒸気はその炎を消火します

-94-
戦後理科教育改革関係資料の研究（1）

が、鰹屑の中には、なお相当の酸素が残っているため、根強く
燃りながら燃焼しているもので、それで発熱を消すため、新
しい酸素の補給を受けて、再び燃え上がってしまいます。

火災の第二の方法が燃焼温度を引き下げる方法、即ち冷却法です。
火災用に長く使われている水。しかし、その効果は一般
的に理解されている、別の方法で、その水が火災の状況に
対して使うと、同じ分量の水で急激に消火することができる
んです。それは冷やされる面積が広くなるからです。流れ
の水が浸せきられた板にかかれて、少しの蒸気しか立ちませ
ん。これは小さな面積しか冷却できなかったからです。しかし
同量の水で噴霧すると、冷やされる面積が広くなることが分
かります。この温度を下げる方法は今、あらゆる火災の冷却法に
取り入れられています。例えば、この油タンクに噴霧した水を
使用しますと、容易に消火することができますが、それは細か
い粒子となった水が油の燃焼熱を吸収して、急激にその温度を
下げるのです。水が直ちに消えてきますので、その上、さらに
水の粒子が炎の熱によって蒸気の膜となり、上昇する油のガス
を寄せ書きさせるので、ガスの再発は防止されています。こ
うして、この方法が温度の冷却作用と同時に、窒息作用をも果
たしているわけです。

また、水が熱を吸収する性質は、消防士たちが燃えている建
物や部屋に入ることに、十分な保護作用をしてくれます。それ
は被災された水が消防士と炎の間に、ちょっと一枚の水の
幕を張ったようになるからです。喷霧を採用すると、このよ
うに風下から火災に当たることができるので、二つの噴霧口
を使用したこの消防士たちは火災に抵抗し、確実に火災を防
ぐことができます。温度を下げるこの方法は、いろいろな形の
火災に使用されていますが、ガソリンなどの揮発性の軽油に
果を発揮するためには、およそ100ポンドの高圧を必要として
います。

この火災で燃えている建築物、衣類、木材、麻などから上昇す
ガスは、他のものよりも燃焼するため、急速に増し、て、完
全に燃焼させることができることが大切です。これらの燃焼物の結
晶はもともと空気中に十分に漂っているため、酸素を吸っている
ためです。そのために内部深くで、ふとん燃焼しながら、燃え
ています。その上、燃焼物質も燃焼温度が低いので、熱がそ
のまま蓄積されて行くと、再び燃え上がりがすることになります。

喷霧による窒息作用と冷却作用は一応の火災消火に成功しますが、水を内部まで染み込ませない、このために危険です。そ
のために、懸念されている部分を焼いて、水の中に冷やすことは
その燃焼温度を奪い取って、完全消火をする大切な方法です。
冷却物を使用したときの効果をこの火災で実験してみましょう。

（37. ドライアイスの有無による無煙火災の燃焼の比較実験）
この無煙火災の粒子は、このように広がるごとでは、ま
でに普通の燃料のように燃えます。しかし、普通の燃料と
の大きな違いがあります。それは火災自体で酸素を持っている
ことです。ですから、火災は他のいかなる燃料よりも、急激に
燃焼します。そのために限られたで発火すると、爆発す
るんです。こうした性質は、火災の他にも携帯用などでも同
じです。しかし、片方のドライアイスで冷やされている火災は
どうでしょう。点火させても、その炎は剣々しく、爆発を起こ
すような激しい性質は、低温度になったために失われてしまっ
ています。

火災の自然現象についての知識を持つことは、消火に当たる全
ての人々に大切なことです。この知識さえあれば、火災が発生し
ても小部分で止め、防災され、消火することができます。この
ためには、「聞く合わせた対策を冷やし、また燃料が気化
する前に他に移し、その場をかせご火災として発火点以下
にすることです。高熱になり燃焼しきるまでを検査することを
忘れないようにしましょう。火種はこの三角形が一格になったら
限め、起こらぬものでした。そして消火法には、窒息法と冷
却法の二つがあることを思い出してください。二酸化炭素による
窒息法、それは換気された場所で機械で燃やしやすい空気を小さ
い火事に最も効果的であったことを忘れまいとください。沸和
水は可燃性の液体による大火災を消火する窒息法でした。蒸
霧による消火方法の効果は可燃性のガソリン、油などの火災に冷
却と窒息の二つの役割を果たしています。二度と、……しか
し、いかなる時でも、この消火の原則を適用することはできま
す。いつ、そしてどこに起こる火災にも。

（テロップ） 終 連合軍司令部 民間情報教育局 教育映
画編製部 提供

このように、「火の化学」には、「1. 木ガスの燃焼実験」
から「37. ドライアイスの有無による無煙火災の燃焼の比
較実験」まで、37に及ぶ本格的な実験が盛り込まれています。
実験の中には、ガソリンの燃焼実験や高密度燃料によるロ
ウソクの燃焼実験など、危险な実験で子どもが燃料の様子を
手に取るように見えるよう実験上の工夫が含まれていました。
これらは学部の教室では、実験することができないもので
あった。「火の化学」は実験の映像を通して、燃焼に関す
る科学的な知識を習得させ、これに基づいて、火災や防火
に対する意識を高め、日常生活を見直すことのできる人間
の育成を意図した、優れた映像教材であったのである。

3.「火の用心」の内容分析

「火の用心」は上映時間17分であります。映画は、日本映
画社がアメリカ国防省製作によるCIE映画「火の化学」
の一部を抜粋し、わが国で新たに撮影したものを加えて、
編集制作したものである。映画は、新潟市立白山小学校
で利用されていました、「火の用心」の映像内容は次の通り
である。

（テロップ）U.S.I.S. アメリカ文化映画 米国国防省提供
火の用心 N.1079 NM.1079 アメリカ国防省製作 "火の
化学"より抜粋 製作担当 高橋 俊 演出 村田一 制作 日
本映画社 撮影 高木正 幹 録音 松崎新一 照明 日野正男
選曲 正木文魚 製作 増田貞一 原作 教師（T）：火事、すばらしい。
子ども（C）：どうして火事になったのだろう。
T：そうですね。原因は何だろう。きっと不注意だよ。こうやって
見ていると、柱や板が燃えているように見えますが、本当
は柱や板から出るガスが燃えているんです。
C：本当にですか。
T：実験室で実験してみましょう。
T：西川村、フラックスやビーカーを出して準備して下さい。
C：はい。
T：マッチは。
T：まず燃料、即ちガスの実験からやってみましょう。
（これから、CIE映画「火の化学の画面に移る。」）
（ナレーション）
（1. 動くのが燃料燃焼実験）動くのがフラックスを入れて、バーナーで燃めます。ガスが立ち上がり来て来たでしょう。口元に火をつけると、ばっと燃え尽きます。（2. 紙の燃焼実験）私たちが見え段、ガスが出ないと思っている紙を、こんなようにガスが出て、燃え尽きます。（3. バラフィンの燃焼実験）バラフィンを入れたプラスチックを暖めます。バラフィンは溶けて行くのが良く見えますね。大半の固体は、ガスになって行く前に液体になりま
す。固体がガスになって行こうとして、火になっているロウソクを見え、と良く見えます。4. (ロウソクの燃焼実験）バラフィンが溶けて、液体になります。液体は芯を伝って、ガスになって燃えます。カバーを取ると、煙と一緒に、ガスを伝って芯に燃えます。もう一度火をつける実験を高速度撮影という特別の機械で撮影してみましょう。（5. 高速度撮影によるロウソクの燃焼実験）ガスは芯と一緒に上昇しているので、芯からこんなに離れるとところからでもつけることができます。
次に大気なもののは、酸素であります。（6. ガソリンの燃焼実験）酸素がないと、燃えたいがガソリンさえも燃えていません。燃えているロウソクに火をかかせてみましょう。（7. 火をかかせたロウソクの燃焼実験）そうすると、中の酸素が希薄に少なくなって行くので、炎がだんだんに弱くなって、遂には消えてしまいます。鉄板を焼き切るときに、アセチレンガスだけを使って切ろうとしても、なかなか切れない。（8. アセチレンガスによる鉄板の切断）圧力の強い酸素を加えると、ガスが適当に混ざって、方が強く、鉄板を焼き切ることができます。ガスの出力が多いければ、酸素の量も多くなり、次第に炎も大きくなり、こうして強くなります。この作用は酸素の密度に関係してきます。（9. ガス灯の燃焼実験）炎から出る酸素の空気は上昇します。これにつれて、酸素は検知されず空気中に、炎なみいれされてきます。
もう一の大気のことは、ものを燃やすには適当な温度が必要です。（10. コイル及び半田ごてによるガソリンの発火実験）例えば、ガソリンの場合には、小さな火をコイルから出る熱で燃えます。ガソリンの中に半田ごてを入れても、ガソリンは燃えません。しかし、紙を燃やすだけの温度を持っていま
す。（11. リンの燃焼実験）これはリンです。リンは空気中に取り出されると、低温でも燃えてしまいます。
T：西川村、今実験したようにねえ、ものが燃えるには三つの要素がありますねえ。何ですか。
C：燃料、酸素と温度。
T：そう、その三つが一緒になって、初めて燃えるわけですね。
（映画映画）
土人は笛、右に槍、左に「燃料」、「酸素」、「温度」と書いた笛を持った三人の土人が登場する。土人は笛の周りを踊る。三つの笛を揺れ、笛の上にかざしたとき、火が燃え
上がる。
C：先生
T：はい。
C：今の日本では、どうして家を建てることが、燃え易い木材ばかり使われているのですか。
T：それは安くて、便利だからですよ。
C：じゃ、私たちの家を火事から守るには、どのようにしたら良いでしょう。
T：そうですね、火事の防ぐのに一番良いのはコンクリートです。それによって建物が造られ、軍事による攻撃に備えます。だからコンクリートが使われるのです。コンクリートが使われるのです。それによって建物が造られ、軍事による攻撃に備えます。だからコンクリートが使われるのです。
（幻滅）
（ナレーション）
（建築現場でモルタルを塗っている場面）セメントと混ぜたモルタルを塗り、壁や柱を塗って塗ります。耐火木部材を使います。耐火木部材というのは、火を防ぐのに効果のある強化ガラス、六角、リん酸アンモニアなどで作込まれた木材、これに普通の木材を加えて………しかし、これでも完全とは言えません。高い、燃えないな、防ぎ切れません。ですから、日本でもセメントや煉瓦をたくさん使っても、コンクリートや煉瓦で家を建てるようにしましょう。
T：じゃ、今度はね、実際に火事になる原因の例を見てみましょう。
（ナレーション）
私たちは火をいろいろな方法で自由に使っています。だから、うっかり、その火を逃がしたら大変なことになります。ですから、一人ひとりが自分の家を使って火に対して、責任を持
たなければならない。古所の油絵による火事の現場）水は大変です。手は油です。おぶい、落ち着いて下さい。
もう一つ、野菜でも粉で投げ込んで、 Lanceをして空気を遮断する
ことです。（電気タツによる火事の現場）壊し、たいへん。電気タツの説明をつけ行って下さい。壊し、壊し、野菜は次の順です。どうしようもない。壊し、壊し、電気タツから離れるときは、必
ず遠くから外して下さい。ライン後、今までに損をした袋だけの木を約
4個に切るが、火の不注意から火灾に向かって燃えてしま
いました。（野山での焚き火による火事の現場）消して行って
下さいね。とうとう燃え出てしまいました。（農家の火だめから
火事の現場）お婆さん、その次の火の火の粉を撫仔してい
ませんか。まだ寒いかはありません。完全に冷めてから、
灰を火入れて下さいよ、あぶくてすんな。ほら、さっきの
実験を思い出して下さい。（ガソリンの焼却実験）建築現場
での焚き火による火事の現場）大工さん、大工さん、それでは
まだ消えていますよう。今日は屋もありませんから、責任をせっ
て完全に消して下さい。（投げ捨ての煙草による火事の現場）火
行人が何気なしに捨てた吸殻、このように小さな火が、
そのまま温度も下がって消えて行きますが、火に燃え易い紙
があるため、しかも酸素が十分でないため、だんだん温度が
高くなって、遂に燃え出しました。（長野県飯田市の大火
の現場）ご覧なさい。この飯田市の大火やその他の大火も。
みんな一斉した火の不始末から起こったんです。
T：良く分かりましたね。
C：はい。
T：私たちが十分に注意すれば、こんな大きな火災や被災に合わなくても済むのです。
C：良く分かりました。じゃ、これから僕たちも良く注意しましょう。
T：火は私たちの生活になってはならないものです。ですから、火の性質を良く知っておいて、めいめいが責任をもって火事起こさないように注意しましょう。
C：はい、分かりました。

アメリカ製作の「火の化学」は、教師が燃焼の三条件を子どもに説明するときに、実験場面として導入されている。「火の化学」と比較して、「火の用心」に特徴的なことは次の通りである。第一に、教師と子どもと対話形式で、ストーリーを進めて行く。第二に、燃焼の三条件に関する子どもの興味関心を高め、理解を図るために、漫画映画が導入されている。第三に、わが国における家屋の防火対策、日常生活での人々の不注意に起因する火災の発生例。例えば油紙、電気コンタック、燃え火及び煙草の投げ捨てなどが取上げられている。「火の用心」は日常生活で頻繁に発生する火災を、燃焼という化学現象として理解させ、防火上の問題を発見させ、自分の生活を見直すという意図において、教育的価値の高い映像教材であった。

4.「水から力へ」、「健康は清潔から」、「ネズミの防止」、「アメリカ自然科学博物館」、「十二指腸虫」の内容

CIE映画「水から力へ」、「健康は清潔から」、「ネズミの防止」、「アメリカ自然科学博物館」及び「十二指腸虫」の映像内容の概要は次の通りである。
(1)「水から力へ」の概要
「水から力へ」の上映時間は16分である。カナダのサンモリス川上流に巨大なグリーンダムが建設された。このダムの水を用いて、1899年、チャレンジンバックスに水力発電所が設けられ、その後次々に発電所が建設され、1940年、パッチに最新の発電所が設置された。カナダの豊かな森林資源と水資源、発電所から供給される電力を利用して、製紙工業が発展し、新しい産業都市が誕生した。その後、電力は重工業だけでなく、皮工業、繊物工業などにも利用され、これらの産業を基盤とする都市は近代都市として生まれ変わり、住民の生活水準の向上が図られたのである。
(2)「健康は清潔から」の概要
「健康は清潔から」の上映時間は9分である。米国ウォルト・ディズニー製作のカラー映画である。「清潔好きで健康的トミー家と不潔であるために病気を患っているジョニ家を比較しながら、家庭での衛生管理、病気の予防について解説している。台所の調理台と土間での調理、入浴習慣の有無、清潔なトイレとトウモロコシ畑の利用、手洗いの横的、無、蓄養物の洗濯の困難、台所の皿類の清潔な保管の有無、調理による汚染の処理の有無。これらを利用点を通じて、不潔な生活態度が病気を蔓延させ、病気の原因となることを描いている。」
(3)「ネズミの防止」の概要
「ネズミの防止」の上映時間は15分である。アメリカの一都市の衛生部と市民が協力して、ネズミの駆除を行う物語である。ネズミの被害に悩むブランシー家族や食品工場の支配人の訴えによって、市衛生部の調査官がネズミの発生区域、活動範囲、通路などを詳細に調査し、それに基づいてネズミ駆除の方策を確実にとられ、実施に移されている。例えば、ネズミの通路の特定、おびき寄せの防範、毒入りの防除、ネズミ取り器の設置などが描かれている。
(4)「アメリカ自然科学博物館」の概要
「アメリカ自然科学博物館」の上映時間は16分である。アメリカ、ニューヨーク市のセントラルパークに面して建てられている自然科学博物館は24エーカーの広い敷地を有している。この映画では、博物館の歴史、展示内容、学校利用及び研究活動などが次々と紹介されている。毎年約7万人の子どもが自然科学博物館を訪れ、遠隔地の子どもには、巡回する移動博物館も用意されている。博物館は世界中に採集団を派遣し、貴重な恐竜の卵の化石を発見したり、珍しい動物を見つけ出している。博物館が蓄積している研究成果は一般市民だけでなく、専門家も利用できるよう公開されている。
(5)「十二指腸虫」の概要
「十二指腸虫」の上映時間は10分である。米国ウォルト・ディズニー製作のカラー映画である。寄生虫の一種である十二指腸虫。十二指腸虫に侵された「うち加工厂」一家がこの虫を駆除して、健康を取り戻す物語である。チャーリー家は戸外で用を足し、猫足で屋外を歩行していたため、足の皮膚から十二指腸虫が身体に侵入した。この虫は人間の腸に寄生し、血を吸ったり、毒素を出すので、チャーリー家は病気になったのである。医師の勧めにより、虫下しの薬を飲み、野外では車を蔽うことを慣習し、トイレの改善を行った。その結果、チャーリー家は健康を回復することができたのである。病気克服のプロセスが漫画で分かりやすく描かれている。
二．CIE映画「児童博物館」の内容と同映画の「研究と討論の案」

1．「児童博物館」の概要
「児童博物館」の上映時間は18分である。アメリカ、ニューヨーク市のブルックリン区に建設されている子供のための博物館を紹介している。児童博物館は学校旅行を通じて子供に開放されており、さまざまな利用されている。同博物館では、科学の原理を理解した機械類の模型を実際に手で触れ、博物館で育っている動物に直接触れることができるのである。子ども達によって、博物館内情報も発表されている。子どもが楽しい仕事を分担し、記事書き、写真撮影、絵を描く入ることはあらゆる。イーハは映画担当、ジョンは日本の紙芝居について調べている。

児童博物館には、七つのアートクラスがある。人形クラスでは、子ども達は世界の形の物語を学んでおり、科学クラスの子ども達は、蒸気圧の原理を利用した小学校実験を観賞したり、模型の機関車を使って実験したり、実物の機関車を見学するのである。美術クラブの子ども達は、水彩画や木炭画を描いている。こうした子ども達の活動を、新聞クラブの子ども達は取材し、記事にして行くのである。

2．「児童博物館」の「研究と討論の案」
通常、CIE映画には「研究と討論の案（study-discussion guide）」というパンフレットが添付されていた。このパンフレットは、教師が映画の内容を理解し、子どもが興味を持ち、学びを深めることができるように作られたものである。「CIE」が主催し、研究と討論の案は、本映画の上映を目的としている。この研究と討論の案は、映画の上映後の実践的な活用を支援するために作られたものである。この研究と討論の案は、映画の上映後の実践的な活用を支援するために作られたものである。

表2 "児童博物館"の「研究と討論の案」的内容

1．「児童博物館」の概要 2．「児童博物館」の観客層 3．「児童博物館」の上映の目的 4．映写会の企画 5．予備知識 A．米国博物館の歴史 B．米国博物館の精神 C．米国博物館の種類 D．児童博物館 E．ブルックリン児童博物館 F．博物館 G．世界的な見学プログラム H．博物館のサイクル 1．米国博物館 H.1．アメリカ・インディアン・クラス 2．写真クラブ 3．写真クラブ 4．アメリア・インディアン・クラス

III．徳島県におけるCIE映画の上映実態と巡回上映

1．徳島県におけるCIE映画「火の化学」及び「火の用心」の上映実態
徳島県におけるCIE映画「火の化学」及び「火の用心」の上映例報告は表3の通りである。
表3 徳島県におけるA「火の化学」及びB「火の用心」上映に関する月例報告（抜粋）

<table>
<thead>
<tr>
<th>上時期</th>
<th>上映回数（回）</th>
<th>観客数（人）</th>
<th>全CIE映画上映回数（回）</th>
<th>全CIE映画観客数（人）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1949.11</td>
<td>ND 8</td>
<td>ND 3,790</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>1950.1</td>
<td>1 6</td>
<td>60 1,384</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td></td>
<td>2 3</td>
<td>300 1,000</td>
<td></td>
<td>365</td>
</tr>
<tr>
<td></td>
<td>1 2</td>
<td>1,485 300</td>
<td></td>
<td>361</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>ND 300</td>
<td></td>
<td>583</td>
</tr>
<tr>
<td>1951.1</td>
<td>ND 21</td>
<td>ND 5,035</td>
<td></td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>2 10</td>
<td>ND 4,022</td>
<td></td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>3 4</td>
<td>ND 1,100</td>
<td></td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>4 1</td>
<td>ND 420</td>
<td></td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>5 3</td>
<td>ND 800</td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>合計</td>
<td>9 57</td>
<td>3,065 17,331</td>
<td></td>
<td>6,539</td>
</tr>
</tbody>
</table>

（但し、表中のNDは記載がないことを示す。）

表3が示すように、「火の化学」は1950年5月を例に取ると、合計3回上映され、1,485人が視聴していた。また、「火の用心」は1ヶ月平均で約6回上映され、1回平均、約1,296人が視聴していたことが分かる。

それでは、CIE映画は実際にどのように上映されていたのか。次に、徳島県南部郡の例を紹介したい。

２．徳島県南部郡におけるCIE映画の巡回上映
元徳島県南部郡ゆき町立ゆき中学校であった六反ヶ丘（1920.）は、1952年昭和27年5月から1955年昭和30年9月まで、徳島県南部郡内で、ナントコ映写機を用いたCIE映画の巡回上映に携わっていた。1950年昭和25年6月、六反ヶ丘は30才の時に、徳島県庁海部県出張所で研修を受け、ナントコ映写機取扱い技術者の資格を取得した。当時は、同校は徳島県南部郡立徳河内中学校に、社会及び技術の教育として勤務していた。その後、1952年昭和28年4月から1956年昭和31年9月まで、徳島県教育庁海部出張所教育監督として勤務し、この時期に、CIE映画の巡回上映を行ったのである。

当時の状況について、六反ヶ丘は、「私は、徳島県の東端に位置する海部郡六ヶ町村に担当し、三十数カ所の山間部の会場を巡回し、ナントコ映画を実施しました。当時の苦労の思い浮かべると、当時無名な者でありま
す。各会場で、娘さんが婦人会の方々が『パンカチ』を振って送ってくれた音楽がとても懐かしく忘れることができません。」と書き記している。CIE巡回映画が如何に山間の村々で歓迎されたのか、その様子の一端を伺うことができる。同校が巡回した地域は徳島県南部郡由岐町阿部、伊座谷、由岐、田井、木岐、同郡日和佐町赤松、西河内、同郡由岐町辺川、由岐浦、内川、同郡海南町御川、大里、神野、小川、相川、同郡由岐町野江、黒川、同郡実施町木屋台、木根に、船津などであった。

また、六反ヶ丘は電話インタビュー（2001年9月21日実施）で、「CIE映画の上映が終了すると、夜の10時半、11時になり、帰宅するのがやっとであった。上映後に討論して、映画の内容を深めることはほとんどできなかった。後日、帰宅会などで討論することはあったようである。」と語っている。先に述べた討論の実施については、時間的制約などからやむを得なかったことが分かる。

このように、徳島県でも南部郡に位置し、南は太平洋、北は剣山地を囲まれた海部郡の山間部の村々でも、CIE映画は上映され、学校及び社会教育として利用されたのである。

おりに
自然科学関係のCIE映画の実態が、一部ではあるが、明らかになった。「火の化学」は普通教室ではできない本格的かつ危険な実験を豊富に取り入れていること、子どもが理解しやすいイラストを導入していることなどの特徴を有する優れた教育映画であった。「火の化学」の一部を採録した「火の用心」は日本製ではあるが、「火の化学」に劣らず、秀逸な映画であった。徳島県の地域の事例ではあったが、教育関係者の熱意と努力がCIE映画の運営を支えていた。

なお、本研究に当たり、徳島県立文書館、六反ヶ丘氏にご協力を戴いた。本研究は、GHT/SCAP Recordsの閲覧に関して、国立国会図書館歴政資料室のご高配を得た。記して深謝申し上げたい。

注及び引用文献
1）阿部 彦『戦後地方教育制度成立過程の研究』東京：風間書房、1983，pp. 685・742。
2）阿部 彦『人間形成と学習環境に関する映画史料
情報集成』東京：風間書房、1993。p.139。
3）米国外では USIS 映画であるが、米国内では USIA（United States Information Agency）映画と呼ばれています。
4）札幌市立一条中学校『聴視覚教育の実践』東京：明治図書、1950。p.125。
5）波多野実治編『聴視覚教育新書第1巻・映画』東京：金子書房、1950。p.212。
6）新潟県教育庁指導課編『カリキュラムと結びついた視覚教材教具の充実と活用』新潟県教育庁指導課、1950。pp.5f。
7）阿部 彰、前掲書、1983。p.721。
8）“CIE Film Guide”，GHQ / SCAP CIE Records，Box no. 5968。
9）Ibid.
10）Ibid.
11）“Reports-Film Showing”，GHQ / SCAP CAS Records, Box no. 3077。
12）六反 功氏からの私信による。