Nondestructive and Noncontact Measurement of Flesh Firmness of 6 Apple Cultivars by Laser Doppler Vibrometer (LDV)

Yoshie Motomura, Tamiko Nagao and Naoki Sakurai

Faculty of Agriculture and Life Science, Hirosaki University.
3, Bunkyo-cho, Hirosaki-shi, Aomori 036-8561
*Faculty of Integrated Art and Science, Hiroshima University,
1-7-1, Kagamiyama, Higashi-Hiroshima-shi, Hiroshima, 739-8511

For the investigation of non-destructive measurement of fruit firmness, 6 cultivars of apple fruit were stored at 20°C after harvest. Every week, using 5-10 fruits, the frequency of second resonance of individual fruit were measured by a Laser Doppler Vibrometer (LDV) non-destructively, and the elastic indexes were calculated with the second resonance and fresh weight. Thereafter, the flesh firmness was measured by ordinary destructive method with the Magnes-Taylor fruit firmness tester. From the correlation coefficient between the elastic indexes and the firmness, the possibility to measure the flesh firmness of 6 apple cultivars by LDV method was evaluated. As the result, in 'Natsumidori', 'Iwai', 'Tsugaru' and 'Starking Delicious', the correlation coefficients were over 0.89, a practical possibility of this method was suggested. In 'Fuj' and 'Golden Delicious', however, the correlation coefficients were lower than 0.73, and 0.66, respectively. In these two cultivars, further analysis on this method are proceeding for the practical application.

(Received Mar. 29, 2004; Accepted Jun. 1, 2004)
実験方法

1. 供試果実
弘前大学農学部附属市の収穫後保存研究センターの栽培農場で無酵栽培しているリンゴ（Malus pumila Mill. var. domestica Shneid）の「不知火」、「つがる」、「スタークリンガ・デリシャス」、「ゴールデン・デリシャス」及び「ふじ」の5品種、および弘前市近郊の農家で栽培している「夏霞」の合計6品種を用いた。2001年に品種ごとに通常の収穫時期に収穫し（表1）、収穫当日に0℃の貯蔵庫に搬入した。それぞれの品種で熟度や大きさの指摘果実55〜170果を探り、初回測定分の5〜10果を除いて半数ずつ2区に分けた。各区の果実2〜4果づつをポリエチレン袋（25×35 cm、厚さ0.03 mm）に入れて袋の口を閉め、1区を0℃、他区を20℃の恒温器に貯蔵した。貯蔵開始後、早生品種は3〜4日ごと、中晩生種は7日ごとに10果を恒温器から取り出しても以下の測定を行った。各品種の収穫日、貯蔵条件、測定日、測定個体数などを表1に示した。

2. レーザー・ドッパラー法による果実の弾性率の測定
果実を恒温器から取り出し、新鮮果を測定した後、Muramatsuらの方法に準じて振動測定装置（加振装置；振動試験装置 エミック株式会社製512A、增幅装置；増幅器 エミック株式会社製371-A、測定測定計；レーザー・ドッパラー振動計 株式会社小野測器製LV-1300、データ解析装置；マルチパラメータ FFT アナライザ、株式会社小野測器製CF-5210）を用い、10〜2000Hzまでの振動を与えて10Hzごとに振動強度を測定し、第2及び第3共鳴周波数を調査した（図1）。果実の新鮮果と第2または第3共鳴周波数を用いて以下の式で弾性率（E：Elastic index）を算出した[(15)]。

\[E_f = \frac{m^2}{f^2} \times E \]

表1 供試果実の概要

<table>
<thead>
<tr>
<th>品種名</th>
<th>収穫日 (年月日)</th>
<th>測定期間 (2001-2002)</th>
<th>貯蔵温度 (℃)</th>
<th>測定間隔 (日)</th>
<th>1回の測定個体数</th>
<th>測定回数</th>
<th>全測定個体数</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏霞</td>
<td>2001. 8. 3</td>
<td>8/6〜8/23</td>
<td>0, 20</td>
<td>3または4</td>
<td>7</td>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td>祖</td>
<td>2001. 8. 22</td>
<td>8/31〜9/20</td>
<td>0, 20</td>
<td>3または4</td>
<td>10</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>つがる</td>
<td>2001. 9. 19</td>
<td>10/4〜11/ 8</td>
<td>0, 20</td>
<td>7</td>
<td>10</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>スターキング</td>
<td>2010. 10. 25</td>
<td>12/28〜2/ 8</td>
<td>0, 20</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>ゴールデン</td>
<td>2011. 11. 13</td>
<td>2/6〜3/18</td>
<td>0, 20</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>65</td>
</tr>
<tr>
<td>ふじ</td>
<td>2011. 11. 8</td>
<td>12/27〜2/22</td>
<td>0, 20</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>170</td>
</tr>
</tbody>
</table>
3. 破壊法による果肉硬度の測定
果実赤道部付近の 2 個所の果皮を直径約 2 cm の円形に除去した。Magnes-Taylor 型果実硬度計（Penetrometer, Fruit tester FT-323, FACCHINI 製, Italy）に直径 11 mm、高さ 22 mm の円筒形プランジャーを装着し、果肉に常法により深さ 6 mm までプランジャーを侵入させたときの破断強度（最大抵抗）を測定し、果肉硬度とした。

4. 果実比重の測定
上記の項目について測定した後、個々の果実を適宜の大きさに分割し、一定量の水を入れたメスシリンダーに入れ、果実全体を水面下まで沈め、果実体積を測定した。新鮮重と体積の値から果実の比重を算出した。

実験結果及び考察

1. 各品種の果実の第 2、3 共鳴周波数及び弾性率
本実験で、個々の果実を LDV 法で非破壊的に測定したときの波形から、第 2 共鳴周波数 (f1) 及び第 3 共鳴周波数 (f2) を調査したところ、20℃貯蔵ではどの品種でも、貯蔵期間が長いためほど低下値を示した（表 2-7）。 F2 と果実の新鮮重を用いて算出した弾性率（第 2 弾性率（EF2））も貯蔵期間が長くなるほど、低い値を示した。また、0℃貯蔵果に比べて、20℃貯蔵果では、貯蔵期間が長くなると F1 及び F2 の低下、及び EF2 の低下が顕著であった。F2 を用いて同様に弾性率（EF2）を算出したが、EF1 とほとんど同様の傾向を示した。0℃貯蔵果では、どの品種でも F1 や F2 の低下は少なくなった、EF1 や EF2 の変化も小さかった。

EF1 の変化を品種間で比較すると、20℃貯蔵果では、「夏緑」、「祝」、「つがる」、「スターキング・デリシャス」では比較的低下速度が速かったが、「ぶじ」では変化が最も少なかった。0℃貯蔵果では、EF1 の変化はすべての品種で 20℃貯蔵果に比べて小さかった。

2. 果肉貯蔵中の果肉硬度の変化
果肉硬度を表す場合、単位面積あたりの応力を N などの単位で表すのが一般的である。しかし、Magnes-Taylor

表 2 '夏緑' の共鳴周波数、弾性率及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵時間 (日)</th>
<th>果実 (g)</th>
<th>第 2 共鳴周波数 (Hz)</th>
<th>第 2 弾性率 (EF2) (Hz)</th>
<th>第 3 共鳴周波数 (Hz)</th>
<th>果肉硬度 (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>136.6</td>
<td>965</td>
<td>24.78</td>
<td>1422</td>
</tr>
<tr>
<td>3</td>
<td>126.2</td>
<td>1010</td>
<td>25.59</td>
<td>1483</td>
<td>59.6 (13.4)</td>
</tr>
<tr>
<td>7</td>
<td>126.2</td>
<td>1020</td>
<td>26.69</td>
<td>1520</td>
<td>49.4 (11.1)</td>
</tr>
<tr>
<td>10</td>
<td>125.7</td>
<td>1027</td>
<td>26.19</td>
<td>1513</td>
<td>48.5 (10.9)</td>
</tr>
<tr>
<td>14</td>
<td>125.2</td>
<td>977</td>
<td>24.13</td>
<td>1430</td>
<td>48.5 (10.9)</td>
</tr>
<tr>
<td>17</td>
<td>125.4</td>
<td>1015</td>
<td>25.62</td>
<td>1494</td>
<td>43.1 (9.7)</td>
</tr>
<tr>
<td>20℃</td>
<td>3</td>
<td>140.4</td>
<td>981</td>
<td>26.21</td>
<td>1450</td>
</tr>
<tr>
<td>7</td>
<td>140.1</td>
<td>884</td>
<td>20.93</td>
<td>1299</td>
<td>32.1 (7.2)</td>
</tr>
<tr>
<td>10</td>
<td>138.8</td>
<td>793</td>
<td>16.85</td>
<td>1022</td>
<td>29.8 (6.7)</td>
</tr>
<tr>
<td>14</td>
<td>143.8</td>
<td>826</td>
<td>18.83</td>
<td>1086</td>
<td>32.1 (7.2)</td>
</tr>
<tr>
<td>17</td>
<td>132.4</td>
<td>774</td>
<td>15.77</td>
<td>1149</td>
<td>29.4 (6.6)</td>
</tr>
</tbody>
</table>

表 3 '祝' の共鳴周波数、弾性率及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵時間 (日)</th>
<th>果実 (g)</th>
<th>第 2 共鳴周波数 (Hz)</th>
<th>第 2 弾性率 (EF2) (Hz)</th>
<th>第 3 共鳴周波数 (Hz)</th>
<th>果肉硬度 (N)</th>
<th>比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>202.4</td>
<td>925</td>
<td>29.35</td>
<td>1451</td>
<td>63.2 (14.2)</td>
</tr>
<tr>
<td>3</td>
<td>191.3</td>
<td>946</td>
<td>29.58</td>
<td>1473</td>
<td>64.5 (14.5)</td>
<td>0.799</td>
</tr>
<tr>
<td>6</td>
<td>184.1</td>
<td>969</td>
<td>29.98</td>
<td>1509</td>
<td>62.7 (14.1)</td>
<td>0.799</td>
</tr>
<tr>
<td>10</td>
<td>176.6</td>
<td>970</td>
<td>29.76</td>
<td>1515</td>
<td>60.5 (13.6)</td>
<td>0.799</td>
</tr>
<tr>
<td>13</td>
<td>177.7</td>
<td>957</td>
<td>28.72</td>
<td>1504</td>
<td>60.1 (13.5)</td>
<td>0.811</td>
</tr>
<tr>
<td>17</td>
<td>187.2</td>
<td>946</td>
<td>29.45</td>
<td>1485</td>
<td>57.4 (12.9)</td>
<td>0.806</td>
</tr>
<tr>
<td>20</td>
<td>180.1</td>
<td>943</td>
<td>27.57</td>
<td>1462</td>
<td>52.1 (11.7)</td>
<td>0.808</td>
</tr>
<tr>
<td>20℃</td>
<td>3</td>
<td>198.1</td>
<td>880</td>
<td>26.08</td>
<td>1370</td>
<td>49.4 (11.1)</td>
</tr>
<tr>
<td>6</td>
<td>177.4</td>
<td>835</td>
<td>21.78</td>
<td>1277</td>
<td>37.8 (8.5)</td>
<td>0.781</td>
</tr>
<tr>
<td>10</td>
<td>204.6</td>
<td>776</td>
<td>20.55</td>
<td>1191</td>
<td>31.6 (7.1)</td>
<td>0.781</td>
</tr>
<tr>
<td>13</td>
<td>206.8</td>
<td>750</td>
<td>19.28</td>
<td>1175</td>
<td>27.6 (6.2)</td>
<td>0.779</td>
</tr>
<tr>
<td>17</td>
<td>196.1</td>
<td>716</td>
<td>16.89</td>
<td>1110</td>
<td>25.8 (5.8)</td>
<td>0.776</td>
</tr>
<tr>
<td>20</td>
<td>170.4</td>
<td>735</td>
<td>15.81</td>
<td>1097</td>
<td>30.2 (6.8)</td>
<td>0.755</td>
</tr>
</tbody>
</table>
表 4 'つがる'の共鳴周波数、弾性率及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵温度 (℃)</th>
<th>貯蔵期間 (日)</th>
<th>果重 (g)</th>
<th>第2共鳴周波数 (Hz)</th>
<th>第2弾性率 (k)</th>
<th>第3共鳴周波数 (Hz)</th>
<th>果肉硬度 (N)</th>
<th>比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>303.8</td>
<td>27.92</td>
<td>1169</td>
<td>46.3 (10.4)</td>
<td>0.796</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>307.9</td>
<td>26.61</td>
<td>1158</td>
<td>45.4 (10.2)</td>
<td>0.804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>295.7</td>
<td>26.72</td>
<td>1135</td>
<td>43.1 (9.7)</td>
<td>0.801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>320.6</td>
<td>26.53</td>
<td>1120</td>
<td>44.9 (10.1)</td>
<td>0.817</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>288.4</td>
<td>24.98</td>
<td>1140</td>
<td>40.5 (9.1)</td>
<td>0.796</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>325.2</td>
<td>23.42</td>
<td>1063</td>
<td>33.4 (7.5)</td>
<td>0.785</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>281.3</td>
<td>23.41</td>
<td>1120</td>
<td>35.1 (7.9)</td>
<td>0.795</td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>7</td>
<td>306.9</td>
<td>22.18</td>
<td>1063</td>
<td>35.1 (7.9)</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>263.5</td>
<td>20.26</td>
<td>1008</td>
<td>33.8 (7.6)</td>
<td>0.792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>272.1</td>
<td>19.32</td>
<td>1026</td>
<td>31.6 (7.1)</td>
<td>0.799</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>327.1</td>
<td>15.79</td>
<td>899</td>
<td>28.9 (6.5)</td>
<td>0.783</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>319.8</td>
<td>13.86</td>
<td>838</td>
<td>25.4 (5.7)</td>
<td>0.788</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>308.5</td>
<td>16.09</td>
<td>904</td>
<td>29.8 (6.7)</td>
<td>0.789</td>
<td></td>
</tr>
</tbody>
</table>

表 5 'スターキング・デリシャス'の共鳴周波数、弾性率及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵温度 (℃)</th>
<th>貯蔵期間 (日)</th>
<th>果重 (g)</th>
<th>第2共鳴周波数 (Hz)</th>
<th>第2弾性率 (k)</th>
<th>第3共鳴周波数 (Hz)</th>
<th>果肉硬度 (N)</th>
<th>比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>306.7</td>
<td>30.01</td>
<td>1271</td>
<td>57.4 (12.9)</td>
<td>0.911</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>313.7</td>
<td>31.91</td>
<td>1247</td>
<td>54.7 (12.3)</td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>296.2</td>
<td>29.08</td>
<td>1252</td>
<td>52.9 (11.9)</td>
<td>0.888</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>308.7</td>
<td>29.05</td>
<td>1235</td>
<td>48.5 (10.9)</td>
<td>0.867</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>293.2</td>
<td>28.99</td>
<td>1282</td>
<td>52.1 (11.7)</td>
<td>0.871</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>290.7</td>
<td>29.22</td>
<td>1283</td>
<td>48.1 (10.8)</td>
<td>0.881</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>293.8</td>
<td>30.94</td>
<td>1301</td>
<td>47.6 (10.7)</td>
<td>0.859</td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>7</td>
<td>283.1</td>
<td>25.48</td>
<td>1247</td>
<td>48.5 (10.9)</td>
<td>0.855</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>295.8</td>
<td>28.26</td>
<td>1252</td>
<td>36.5 (8.2)</td>
<td>0.814</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>286.9</td>
<td>20.77</td>
<td>1235</td>
<td>32.1 (7.2)</td>
<td>0.816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>297.3</td>
<td>15.91</td>
<td>1282</td>
<td>23.1 (5.2)</td>
<td>0.806</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>217.3</td>
<td>10.93</td>
<td>1283</td>
<td>18.2 (4.1)</td>
<td>0.732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>298.1</td>
<td>16.89</td>
<td>968</td>
<td>24.9 (5.6)</td>
<td>0.781</td>
<td></td>
</tr>
</tbody>
</table>

表 6 'ゴールデン・デリシャス'の共鳴周波数、弾性率及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵温度 (℃)</th>
<th>貯蔵期間 (日)</th>
<th>果重 (g)</th>
<th>第2共鳴周波数 (Hz)</th>
<th>第2弾性率 (k)</th>
<th>第3共鳴周波数 (Hz)</th>
<th>果肉硬度 (N)</th>
<th>比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>240.3</td>
<td>26.87</td>
<td>1300</td>
<td>44.9 (10.1)</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>230.9</td>
<td>18.55</td>
<td>1056</td>
<td>49.8 (11.2)</td>
<td>0.771</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>224.8</td>
<td>20.97</td>
<td>1226</td>
<td>44.9 (10.1)</td>
<td>0.779</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>227.9</td>
<td>23.41</td>
<td>1221</td>
<td>42.7 (9.6)</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>248.5</td>
<td>25.71</td>
<td>1240</td>
<td>44.9 (10.1)</td>
<td>0.781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>247.2</td>
<td>22.81</td>
<td>1177</td>
<td>42.7 (9.6)</td>
<td>0.781</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>262.9</td>
<td>23.65</td>
<td>1182</td>
<td>41.8 (9.4)</td>
<td>0.772</td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>7</td>
<td>245.2</td>
<td>21.49</td>
<td>1151</td>
<td>42.3 (9.5)</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>247.2</td>
<td>19.12</td>
<td>1041</td>
<td>36.1 (8.1)</td>
<td>0.765</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>242.6</td>
<td>19.49</td>
<td>1100</td>
<td>34.7 (7.8)</td>
<td>0.772</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>223.7</td>
<td>18.98</td>
<td>1026</td>
<td>36.1 (8.1)</td>
<td>0.763</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>233.9</td>
<td>10.44</td>
<td>893</td>
<td>36.1 (8.1)</td>
<td>0.776</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>223.1</td>
<td>9.81</td>
<td>—</td>
<td>35.1 (7.9)</td>
<td>0.762</td>
<td></td>
</tr>
</tbody>
</table>
（47）
元村・他：リンゴ硬度の非破壊・非接触測定

型硬度計で測定した値が実用場面では広く一般に用いられている。本研究は、LDV法の実用化の可能性を検討することを視野に入れたものなので、表2～7では果肉硬度とし
てMagnes-Taylor型硬度計による測定値（lb）を付記した。また、図2では同硬度計による測定値（lb）を用いた。

6品種のリンゴ果実を0℃または20℃で貯蔵した時の果肉硬度の変化（表2～7）を見ると、どの品種でも、0℃貯
蔵果では果肉硬度はほとんど変化しなかったが、20℃では

貯蔵期間が長くなると低下した。品種間で比較すると、
20℃貯蔵では「夏緑」や「祝」では果肉硬度は急速に低下し、「ふじ」では変化が最も少なく、その他の品種ではそれ
らの品種の中間的な変化を示した。表2～7の結果では、果肉硬度と前記の第2弾性率はともに低下したが、品種に
よって、両者の低下速度が必ずしも一致しないことが判

表7：「ふじ」の共鳴周波数、第2弾性率、及び果肉硬度の変化

<table>
<thead>
<tr>
<th>貯蔵温度</th>
<th>貯蔵期間 (日)</th>
<th>果実 (g)</th>
<th>第2共鳴周波数 (Hz)</th>
<th>第2弾性率 (E12)</th>
<th>第3共鳴周波数 (Hz)</th>
<th>果肉硬度 N (lb)</th>
<th>比重</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>0</td>
<td>294.5</td>
<td>830</td>
<td>30.49</td>
<td>1291</td>
<td>68.1 (15.3)</td>
<td>0.866</td>
</tr>
<tr>
<td>7</td>
<td>292.2</td>
<td>878</td>
<td>32.92</td>
<td>1352</td>
<td>65.4 (14.7)</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>273.7</td>
<td>876</td>
<td>32.21</td>
<td>1346</td>
<td>68.9 (15.5)</td>
<td>0.863</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>269.1</td>
<td>880</td>
<td>31.47</td>
<td>1370</td>
<td>67.6 (15.2)</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>278.7</td>
<td>914</td>
<td>35.41</td>
<td>1374</td>
<td>63.2 (14.2)</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>287.8</td>
<td>904</td>
<td>35.25</td>
<td>1378</td>
<td>61.4 (13.8)</td>
<td>0.851</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>298.7</td>
<td>890</td>
<td>34.97</td>
<td>1358</td>
<td>60.9 (13.7)</td>
<td>0.861</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>277.8</td>
<td>888</td>
<td>34.21</td>
<td>1348</td>
<td>61.4 (13.8)</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>291.1</td>
<td>874</td>
<td>35.43</td>
<td>1250</td>
<td>56.1 (12.6)</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>7</td>
<td>306.6</td>
<td>821</td>
<td>30.65</td>
<td>1257</td>
<td>64.5 (14.5)</td>
<td>0.854</td>
</tr>
<tr>
<td>14</td>
<td>317.1</td>
<td>759</td>
<td>26.79</td>
<td>1162</td>
<td>65.1 (12.6)</td>
<td>0.841</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>317.1</td>
<td>748</td>
<td>26.01</td>
<td>1161</td>
<td>57.4 (12.9)</td>
<td>0.856</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>304.3</td>
<td>717</td>
<td>23.26</td>
<td>1103</td>
<td>54.3 (12.2)</td>
<td>0.841</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>290.1</td>
<td>710</td>
<td>22.00</td>
<td>1101</td>
<td>56.5 (12.7)</td>
<td>0.849</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>273.1</td>
<td>688</td>
<td>19.91</td>
<td>1037</td>
<td>50.3 (11.3)</td>
<td>0.851</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>286.1</td>
<td>634</td>
<td>17.43</td>
<td>958</td>
<td>54.3 (12.2)</td>
<td>0.844</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>289.6</td>
<td>634</td>
<td>17.61</td>
<td>978</td>
<td>56.9 (12.8)</td>
<td>0.841</td>
<td></td>
</tr>
</tbody>
</table>

表8：各品種の果肉硬度と第2弾性率との相関係数の変化

<table>
<thead>
<tr>
<th>貯蔵温度</th>
<th>累積測定回数</th>
<th>夏緑</th>
<th>祝</th>
<th>つがる</th>
<th>スターキング・デリシャス</th>
<th>ゴールデン・デリシャス</th>
<th>ふじ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0℃</td>
<td>1回目まで</td>
<td>0.892**</td>
<td>0.044</td>
<td>0.611*</td>
<td>-0.208</td>
<td>0.611*</td>
<td></td>
</tr>
<tr>
<td>2回目まで</td>
<td>0.901**</td>
<td>0.325</td>
<td>0.673*</td>
<td>0.374</td>
<td>-0.306</td>
<td>0.324</td>
<td></td>
</tr>
<tr>
<td>3回目まで</td>
<td>0.871**</td>
<td>0.475</td>
<td>0.674*</td>
<td>0.572*</td>
<td>-0.336</td>
<td>-0.146</td>
<td></td>
</tr>
<tr>
<td>4回目まで</td>
<td>0.882**</td>
<td>0.468</td>
<td>0.651*</td>
<td>0.592*</td>
<td>-0.345</td>
<td>-0.272</td>
<td></td>
</tr>
<tr>
<td>5回目まで</td>
<td>0.871**</td>
<td>0.477</td>
<td>0.573*</td>
<td>0.545*</td>
<td>-0.359</td>
<td>-0.354</td>
<td></td>
</tr>
<tr>
<td>6回目まで</td>
<td>0.829**</td>
<td>0.434</td>
<td>0.692**</td>
<td>0.542*</td>
<td>-0.278</td>
<td>-0.365</td>
<td></td>
</tr>
<tr>
<td>7回目まで</td>
<td>-</td>
<td>0.577*</td>
<td>0.703**</td>
<td>0.487*</td>
<td>-0.296</td>
<td>-0.355</td>
<td></td>
</tr>
<tr>
<td>8回目まで</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.227</td>
<td></td>
</tr>
<tr>
<td>9回目まで</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.205</td>
<td></td>
</tr>
<tr>
<td>20℃</td>
<td>2回目まで</td>
<td>0.894**</td>
<td>0.803**</td>
<td>0.845**</td>
<td>0.638*</td>
<td>0.371</td>
<td>0.555*</td>
</tr>
<tr>
<td>3回目まで</td>
<td>0.878**</td>
<td>0.921**</td>
<td>0.895**</td>
<td>0.836**</td>
<td>0.561*</td>
<td>0.729**</td>
<td></td>
</tr>
<tr>
<td>4回目まで</td>
<td>0.881**</td>
<td>0.948**</td>
<td>0.901**</td>
<td>0.836**</td>
<td>0.604*</td>
<td>0.692**</td>
<td></td>
</tr>
<tr>
<td>5回目まで</td>
<td>0.862**</td>
<td>0.946**</td>
<td>0.904**</td>
<td>0.878**</td>
<td>0.655*</td>
<td>0.661**</td>
<td></td>
</tr>
<tr>
<td>6回目まで</td>
<td>0.860**</td>
<td>0.928**</td>
<td>0.902**</td>
<td>0.914**</td>
<td>0.526*</td>
<td>0.621**</td>
<td></td>
</tr>
<tr>
<td>7回目まで</td>
<td>-</td>
<td>0.881**</td>
<td>0.913**</td>
<td>0.907**</td>
<td>0.543*</td>
<td>0.583*</td>
<td></td>
</tr>
<tr>
<td>8回目まで</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.495*</td>
<td></td>
</tr>
<tr>
<td>9回目まで</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.462*</td>
<td></td>
</tr>
</tbody>
</table>

*：それぞれ5%，1%レベルで有意であることを示す。
3. 果実の第2弾性率と果肉硬度の相関

貯蔵中の果実について、各果肉硬度と E2 値の平均値の経時変化を見ると、概略的には類似の傾向を示すよう
に思われた。しかし、本研究の目的から、果実の破壊測定において、個々の果実の果肉硬度が、LDV の測定結果
から推定できるかどうかが問題である。そこで、品種ごと
に 20℃貯蔵果について測定した個々の果実について、果肉硬度と LDV 法で測定した弾性率（E2）との関係を図 2
に示した。この図で、20℃貯蔵果ではどの品種で果肉硬度
と第2弾性率との間には有意な相関があることが示され
た。特に、「夏緑」、「祝」、「つがる」、「スターキング・デリ
シッシュ」では高い相関が見られた。

次に、両者の関係を相関係数を用いて数値的に検討した
（表 8）。本実験では、貯蔵中測定回数を重ねることに 5～10
果分づつ測定結果の累積される。そこで、貯蔵期間ごとに
累積された結果を用いて相関係数を算出したところ、20℃
貯蔵の「夏緑」では 2 回目（3 日目）、「祝」では 5 回目（13
日目）、「つがる」では 7 回目（6 週間目）、「スターキング・
デリシッシュ」では 6 回目（5 週間目）、「ゴールデン・デリ
シッシュ」では 5 回目（4 週間目）、「ふじ」では 2 回目（2 週
間目）に最高の値を示し、それ以降及びそれ以降では次第
に低下する傾向が認められた。最も高い相関係数を比較す
ると（表 8）、「祝」、「つがる」、「スターキング・デリシッシュ」
の 3 品種ではそれぞれ約 0.9 以上、「夏緑」では 0.89 以上の
高い値を示したが、「ゴールデン・デリシッシュ」と「ふじ」
ではそれぞれ 0.655 及び 0.729 と、比較的低い値であった。

表 2 ～7 の結果を見ると、20℃貯蔵で軟化が急速に進む
品種である「夏緑」、「祝」、「つがる」、「スターキング・デリ
シッシュ」では、比較的高い相関を示す傾向が認められた。
「ゴールデン・デリシッシュ」と「ふじ」で比較的相関が低
かったのは、これらの品種では軟化が緩慢であり、本実験
期間中の硬度変化が少なかったことが影響していると考え
られる。リング果実の軟化程度の測定や肉質（粉質化的程
度）の官能検査は、生産・出荷現場では日常的に行われて
いるが報告は非常に少ない。本報で測定した 6 品種中
「ゴールデン・デリシッシュ」以外の 5 品種については報告
があり 27 、これらの品種の軟化速度は本報の結果（表 2, 3,
4, 5, 7）とよく一致している。これらの果実を 20℃で本実
験の期間以上貯蔵を続けた場合、果皮の破壊や果実内膜
変化が高い頻度で発生したので、それぞれの品種の貯蔵期間は
貯蔵可能期間であった。これらの結果から、前の 4 品種に
ついては LDV 法で果肉硬度の測定が充分可能であると考
えられる。しかし、後の 2 品種については今後の検討が必要
である。

本法は内部が均質な理想的果体では理論値に非常に近い
値が得られることが報告されている。しかし、リングなど
天然の果実の形は理想的果体ではなく、内部は均質ではない
ので、それらが測定値に影響している可能性が考えられ
る。表 8 で、貯蔵期間によって相関が変化するとは、果実
内部の動的な変化を反映している可能性があると考えられ
る。また、果実内部は均一ではなく、果肉の部位によって
軟化（粉質化）の進行に遅れがあることも知られている 28 。

図 2 各品種の果肉硬度と第2弾性率との関係
（かっこ内の数字は測定中の最高相関係数）
そこで、果実内部にある測定値に影響する因子を検出したところ、リンゴ果実は品種によっても、成熟の程度によっても、果実の表面性状が異なることが明らかになった。この結果は、果実の形状、表面性状、成熟の程度など、果実内部の果肉の物理的性質を検討する必要があることを示している。

今回実験した果実の形状で、「赤皮」、「紅色」「ゴールデン・デリシャス」、「ぶどう」では、果実の形状においても「ぶどう」と何れも果実の形状が良いものの果実内部の果肉の物理的性質を検討する必要があると考えられる。

現在の実験で、果実の形状においても、「ぶどう」、「ゴールデン・デリシャス」、「ぶどう」では、果実の形状においても「ぶどう」と何れも果実の形状が良いものの果実内部の果肉の物理的性質を検討する必要があると考えられる。

現在の実験で、果実の形状においても、「ぶどう」、「ゴールデン・デリシャス」、「ぶどう」では、果実の形状においても「ぶどう」と何れも果実の形状が良いものを果実の形状においても「ぶどう」と何れも果実の形状が良いものであることを示している。

従って、この方法では果実全体の形状を検討しているとは限らない。今後、果実の形状の検討部位や測定方法を検討する必要があると考えられる。

現在の実験で、果実の形状においても、「ぶどう」、「ゴールデン・デリシャス」、「ぶどう」では、果実の形状においても「ぶどう」と何れも果実の形状が良いものを果実の形状においても「ぶどう」と何れも果実の形状が良いものであることを示している。

従って、この方法では果実全体の形状を検討しているとは限らない。今後、果実の形状の検討部位や測定方法を検討する必要があると考えられる。

従って、この方法では果実全体の形状を検討しているとは限らない。今後、果実の形状の検討部位や測定方法を検証する必要があると考えられる。
19) 慶田正昭, 元村佳惠, 桜井雅裕, 無袋リンゴ 「ふじ」 果実の果肉硬度、果皮硬度および果肉の弾性に及ぼす影響, 食料工. 50 (5), 254-258 (2003).