Three-dimensional bone architecture around submerged commercially pure titanium implant after bone healing in monkeys

Limin Guan, Yuuji Sato*, Masayoshi Wadamoto*, Kazuhiro Tsuga*, Yasumasa Akagawa* and Zhi Qing Chen

(Received for publication, March 12, 1997)

INTRODUCTION

Since Bränemark et al.1) demonstrated bone anchorage termed as osseointegration could be maintained adequately around loaded commercially pure (CP) titanium dental implant, the bony interface of the implant has been well recognized to be the most essential for the predictable long-term success for the implant. This osseointegrated implant has been widely used not only in the field of dentistry but also in orthopedics2,3) and otolaryngology4,5) and special attention has been paid to clarify the aspect of osseointegration. In terms of clarification of osseointegration, numerous histological and histomorphometrical evaluations with interfacial bony profile and percentage of bone contact length fraction or affinity index have been well reported6-19). However, results from these studies have been derived from the analysis of only several two-dimensional histologic specimens and comprehensive knowledge on bone structure around the osseointegrated implant is still lacking.

Recently, initial three-dimensional bony interfaces of hydroxyapatite (HA)-coated osseointegrated implants have been introduced and such interfacial bone was structured to be direct contact to the implant in any directions with some variations16-18). However, these findings are only available for the use of HA-coated implant and there is a need for more detailed information on the bone structure around the CP titanium implant which has been more commonly used today.

The present study was, therefore, designed to evaluate visually and quantitatively the three-dimensional bone architecture around submerged CP titanium implant after three months of insertion into the edentulous mandible of monkeys without any loading, and to compare the results with those of HA-coated implant previously reported18).

MATERIALS AND METHODS

Three CP titanium screw implants(Goei Inc., Akitsu-Hiroshima, Japan) were used in this study. Each implant possessed a diameter of 4 mm and a length of 9 mm with one longitudinal groove (1 mm in width and 1 mm in depth) for better bone retention (Fig. 1).

Edentulous area for implant placement was prepared in the mandible of three female adult monkeys (Macaca fuscata), where first, second premolars and first molar were extracted and the site was allowed to heal for three months. After 3 months of tooth extraction, an implant was inserted into the edentulous area of each monkey. The insertion site was randomly assigned among 3 monkeys to minimize the different bone quality of the edentulous area among the animals. One implant was inserted at the second premolar and first molar area on the left side (designated as implant # T1), another at the second premolar and first molar area on the right side (designated as implant # T2) and the other at the first and second premolar area on the left side (designated as implant # T3) in three monkeys. The surgical operations were done under intramuscular anesthesia with 5 mg/kg of ketamine hydrochloride, 0.05 mg/kg of atropine sulfate and 0.5 mg/kg of chlorpromazine hydrochloride. A mucoperiosteal flap was raised at the edentulous area and then, a bone threaded socket was made by use of the sequential drills
Fig. 1 A CP titanium screw implant used in this study. It is 4 mm in diameter and 9 mm in length. A longitudinal groove (arrow) and horizontal grooves at the bottom (2 arrows) were designed for better bone retention.

with 1.6 mm, 2.2 mm, 3.1 mm and finally threaded by a manual screw-stock with a diameter of 3.8 mm. To minimize surgical trauma to the bone tissue, low speed and pressure on the drilling instrument and outer cooling with physiologic saline were applied during bone preparation. The implant was inserted into the threaded socket by manual tapping and then this was completely covered by oral mucosa. After three months of implant insertion, the animals were perfused with 10% neutral formalin and then the mandibles were removed. The tissue block containing the implant was dehydrated through a series of graded ethanol and cleared with styrene monomer and embedded in polyester resin (Rigolac resin, Oken, Tokyo). The block was trimmed at 1 mm from the mesio-distal implant surface and the distal surface of the block was glued to the plastic plate for placement fixation. The block was then ground automatically at 75 μm intervals in the bucco-lingual direction by use of a grinding machine (Exakt Micro-Grinding System, Exakt Apparate-bau, Norderstedt, Germany). Then each ground surface

Fig. 2 Computer graphics of bone and a CP implant. A graphic (left) is illustrated at four portions in horizontal direction and a graphic (right) at four portions in bucco-lingual direction. Note that osseointegration is achieved around the implant surface with some variations.
was stained with toluidine blue and placed on a profile projector (V-16E, Nikon, Tokyo). Bone architecture around the implant was traced at a magnification of $\times 10$ and each trace was digitized on the digitizer (Gradimate SQ-3000, OSCON, Osaka). This procedure was repeated to obtain total 80 figures of ground surface. After completion of this procedure, these figures were serially accumulated in the computer to produce three-dimensional (3D) computer graphics by use of originally programmed software.

Sectional graphics in any directions were obtained and the bone contact ratio (BCR) around the implant at each area (Fig. 2) was calculated by the formula with the use of this computerized 3D graphics of bone architecture.

\[
BCR = \frac{\text{area contacted by bone}}{\text{all area of the implant}} \times 100 \quad (\%)
\]

The bone volume ratio (BVR) was also calculated to evaluate the bone volume around the implant at the zone 300 μm apart from the surface of the implant (Fig. 3).

\[
BVR = \frac{\text{volume filled by bone}}{\text{total volume of the zone}} \times 100 \quad (\%)
\]

Mann-Whitney U-test was used to analyze the results statistically and these were compared with the values of HA-coated implants previously reported18 to evaluate the difference of the interfacial bone structure around the CP titanium and HA-coated implants.

RESULTS

The three-dimensional graphic of bone architecture around one implant (# T1) is illustrated (Fig. 4). The bony architecture around the implant in bucco-lingual, mesio-distal directions and at four horizontal portions are shown respectively (Fig. 5 and 6). Variation of bony contact was quite obvious among directions and portions of the implant. Values of BCR and BVR of each implant are shown in Table 1 and 2. Although differences were detected among the directions and portions in each implant, total BCR values in three implants ranged between 38.0 and 52.0% and total BVR (0–300 μm) did between 51.6 and 57.5%. Figure 7 shows the comparison of the values between the CP titanium and HA-coated implants18. In the CP titanium implants, BCR values were lowered gradually from upper to bottom portions, and the lowest was seen at mesial direction, while these values of HA-coated implants were shown to be similar at all portions (upper, middle, lower and bottom) and directions (buccal, mesial, distal and lingual). Moreover, in all directions, BCR values of the CP titanium implant were detected lower than those of HA-coated implant. In BVR, the CP titanium implant had lower values at the near zones (0–75 μm and 75–150 μm) than the far zones (150–225 μm and 225–300 μm) compared with the values of the HA-coated implant (Fig. 8). However, no significant differences were shown at the far zones between these two implants.

DISCUSSION

In this study, the three-dimensional bony architecture around unloaded CP titanium implant was clarified. Histomorphometrical data indicated that BCR values of the
CP titanium implant were lower than those of the HA-coated implant except for the upper portion and the BVR values of CP titanium implant were especially lower than those of HA-coated implant. In the literature, BCR values around the titanium screw implants have been documented to be 50% or more in monkeys19, while 40 to 70% in dogs15,20 and 50 to 75% in rabbits14,21. The results of total BCR values (38 to 52\%) in this study are well accorded with the values in a monkey reported by Lum19. Moreover, in this study, the three-dimensional
Fig. 6 Bone architecture around implant in one bucco-lingual section (upper) and at the four portions of the horizontal direction of that bucco-lingual section (lower). It is evident that more bone contact with the implant at upper and middle portions, whereas less bone contact at lower and bottom portions.

Table 1 Bone contact ratio (BCR) around the CP titanium implant

<table>
<thead>
<tr>
<th>Implant No.</th>
<th>Buccal</th>
<th>Lingual</th>
<th>Mesial</th>
<th>Distal</th>
<th>Upper</th>
<th>Middle</th>
<th>Lower</th>
<th>Bottom</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>53.7</td>
<td>53.2</td>
<td>38.4</td>
<td>49.0</td>
<td>69.9</td>
<td>63.3</td>
<td>32.0</td>
<td>27.8</td>
<td>52.0(%)</td>
</tr>
<tr>
<td>T2</td>
<td>25.2</td>
<td>54.2</td>
<td>13.9</td>
<td>34.4</td>
<td>36.3</td>
<td>33.9</td>
<td>24.4</td>
<td>32.1</td>
<td>38.0</td>
</tr>
<tr>
<td>T3</td>
<td>44.4</td>
<td>61.5</td>
<td>31.0</td>
<td>49.9</td>
<td>66.6</td>
<td>44.9</td>
<td>40.9</td>
<td>32.4</td>
<td>50.5</td>
</tr>
<tr>
<td>Mean</td>
<td>41.1</td>
<td>56.3</td>
<td>27.8</td>
<td>44.4</td>
<td>57.6</td>
<td>47.4</td>
<td>32.4</td>
<td>30.8</td>
<td>46.9</td>
</tr>
<tr>
<td>± SD</td>
<td>±14.5</td>
<td>±4.5</td>
<td>±12.6</td>
<td>±8.7</td>
<td>±18.5</td>
<td>±14.9</td>
<td>±8.3</td>
<td>±2.6</td>
<td>±7.8</td>
</tr>
</tbody>
</table>

Table 2 Bone volume ratio (BVR) around the CP titanium implant

<table>
<thead>
<tr>
<th>Implant No.</th>
<th>0–75 μm</th>
<th>75–150 μm</th>
<th>150–225 μm</th>
<th>225–300 μm</th>
<th>0–300 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>52.0</td>
<td>53.5</td>
<td>52.2</td>
<td>48.8</td>
<td>51.6(%)</td>
</tr>
<tr>
<td>T2</td>
<td>38.0</td>
<td>59.2</td>
<td>66.6</td>
<td>66.0</td>
<td>57.5</td>
</tr>
<tr>
<td>T3</td>
<td>50.5</td>
<td>58.0</td>
<td>60.8</td>
<td>60.6</td>
<td>57.5</td>
</tr>
<tr>
<td>Mean</td>
<td>46.9</td>
<td>56.9</td>
<td>59.9</td>
<td>58.5</td>
<td>55.5</td>
</tr>
<tr>
<td>± SD</td>
<td>±7.8</td>
<td>±3.0</td>
<td>±7.2</td>
<td>±8.8</td>
<td>±3.4</td>
</tr>
</tbody>
</table>

Morphometric analysis showed the whole aspect of BCR clearly with a quite variation among the portions and directions.

The difference of BCR values around the CP titanium implant existed among directions and portions due to the difference of bone structure in the implant site. Cortical bone is generally more dense and easier to be healed around an implant than spongy bone is. It may well
Fig. 7 Bone contact ratio (BCR) around the CP titanium (Ti) and HA-coated implants (HA)

*: P < 0.05

be understood that higher BCR of each CP titanium implant observed in lingual direction and at upper portion was due to more cortical bone contact and lower BCR of each implant in mesial direction and at lower and bottom portions was due to more spongy bone contact. On the other hand, in terms of HA-coated implant the differences of BCR values were previously reported not to be detected. It is well recognized that bone apposition to the HA-coated implant was achieved even around the poor trabecular bone due to high osteoconductivity of HA. The different ability of osteoconductivity between CP titanium and HA may cause the results of BVR. Bone formation around the CP titanium implant was not well performed in near zones than far zones, while fully achieved bone formation was observed even near zone around HA-coated implant. These findings suggest that bone structure at insertion site around the CP titanium implant is more critical to achieve predictable initial osseointegration during the healing period.

Clinically, it is quite important to diagnose bone quality and to make the treatment planning of implant insertion under the consideration of the direction of insertion, implant diameter and length. The 3D morphometric method used in this study can provide not only the graphics of bone architecture around the implant but also quantitative analysis of bone quality. Since the bone-implant interface may be altered as bone remodeling by functional loading, further studies are needed to evaluate the three-dimensional bone architecture around the implant after long-term of loading.

REFERENCES

8) Deporter, D.A., Watson, P.A., Pilliar, R.M., How-

