ECTR DNA-タンパク質複合体の単離と
テロメア結合タンパク質の解析

2003

橘 典子
ECTR DNA-タンパク質複合体の単離とテロメア結合タンパク質の解析
目次

略語一覧 ... 4

緒論
1. 末端複製問題 .. 5
2. テロメアとは .. 6
3. テロメア結合タンパク質の同定と機能 ... 8
4. テロメラーゼの発現 .. 11
5. ALT 細胞の特徴 ... 14
6. 老化、がん化とテロメアの関係 ... 14
7. 本研究の目的 .. 15

I. ALT 細胞の特徴

序論 ... 16

材料及び方法
1. 細胞培養 ... 16
2. telomere PNA FISH (分裂期の細胞) ... 16
3. telomere PNA FISH (間期の細胞) ... 17
4. テロメアDNAとタンパク質の二重染色 .. 17
5. Southern blot解析 ... 18

結果及び考察
1. 分裂期の ALT 細胞を用いた telomere PNA FISH .. 19
2. 間期の ALT 細胞を用いた telomere PNA FISH .. 20
3. APBs に存在するタンパク質とテロメア DNA の共局在の検討 21
4. KMST-6 細胞の Southern blot 解析 ... 23

結論 ... 25

II. ECTR DNA-タンパク質複合体の單離と複合体の特徴

序論 ... 26

材料及び方法
1. 分裂期 同調培養の条件検討 ... 27
2. 細胞の調製 ... 27
3. ECTR DNA-タンパク質複合体の分離 ... 28
4. フラクションからの DNA と RNA の抽出 ... 28
5. Southern blot 解析 .. 29
6. rRNA の検出 .. 29

7. 各フラクションのタンパク質の濃縮、解析 A ... 29
8. 銀染色法 ... 30
9. 各フラクションのタンパク質の濃縮、解析 B ... 30
10. Western blot 解析 .. 30

結果及び考察
1. 分裂期同調培養の条件検討 ... 32
2. 細胞の調製 ... 33
3. 冷却遠心機による遠心分離 .. 33
4. ショ糖密度勾配遠心機による分離 .. 35
5. リポソームの除去 ... 37
6. 各フラクションのタンパク質解析 .. 40
7. ECTR フラクションの同定、解析 .. 42

結論 ... 43

III. ECTR フラクションに含まれるタンパク質の同定

序論 ... 44

材料及び方法
1. Western blot 解析 .. 44
2. 免疫沈降法 ... 45
3. 質量分析法 ... 45
4. テロメア DNA と Hsp70 の二重染色 .. 46

結果及び考察
1. TRF2 の検出 .. 46
2. ECTR フラクションに含まれるタンパク質の質量分析による同定 49
3. Hsp70 とテロメアの共局在の検討 ... 50

結論 ... 51

総括 ... 52

参考文献 ... 53

謝辞 ... 59
略語一覧

ACN : acetonitrile
AGPC method : acid guanidinium-phenol-chloroform method
ALT : alternative lengthening of telomeres
APBs : ALT-associated PML bodies
cycling-PRINS : cycling oligonucleotide-prime in situ synthesis
DAPI : 4',6-diamidino-2-phenylindole
DMEM : Dulbecco’s modified Eagle’s medium
ECTR DNA : extra-chromosomal telomere repeat DNA
ESI : electrospray ionization
EtBr : ethidium bromide
FBS : fetal bovine serum
FISH : fluorescence in situ hybridization
FITC : fluorescein isothiocyanate
IP : immunoprecipitation
MALDI-TOF : Matrix-assisted Laser Desorption Ionization-Time of flight
PBS : phosphate buffered saline
PC : positive control
PDL : population doubling level
PMF : Peptide Mass Fingerprint
PML : promyelocytic leukemia
PNA : peptide nucleic acid
SDS-PAGE : SDS-polyacrylamide gel electrophoresis
SSC : standard saline citrate
sup : supernatant
TAE buffer : Tris-Acetate-EDTA buffer
TCA : trichloroacetic acid
TRF : terminal restriction fragment
TRF1 : telomere repeat binding factor 1
TRF2 : telomere repeat binding factor 2

総論

1. 末端複製問題

生物の特徴は、遺伝情報を損なった DNA によって継承される。つまり、DNA が細胞分裂前に DNA ポリメラーゼによって半保存的に複製されることによって、生物の特徴が子孫に受け継がれている。DNA ポリメラーゼは 5'→3'方向に DNA を合成するため、非対称構造をとる反対方向での DNA 合成は制限的に行われるが、3'→5'方向の DNA 合成は 5'→3'方向に合成される側鎖フラグメントと呼ばれる短い DNA 分子を作ることによって不連続に行われる。連続的に合成される側鎖をリーディング鎖、不連続合成される側鎖をラッピング鎖という。また、DNA ポリメラーゼは、錐型と塩基配列を形成したポリヌクレオチド鎖の 3'-OH にしかヌクレオチドを加付することができないので、ラッピング鎖合成時には特別なプライマーが必要となる。そこで、ラッピング鎖では、プライマー型で短い RNA ブライマーが合成され、DNA ポリメラーゼがこれで伸長し、岡崎フライマーが合成される。その後、DNA 修復系によって、RNA ブライマーが除去され、DNA に置き換わられ、DNA リガーゼによってつながれ、長い DNA 鎖ができる。真核生物の染色体 DNA は線状であるため、リーディング鎖合成は染色体系端まで行われるが、ラッピング鎖合成は末端まで行われない可能性がある。これにより、岡崎フライマー合成が染色体の末端からおこることなく進み、最終的に染色体フライマー合成が終了する RNA ブライマーが最終的に DNA に置き換わる機構が知られている。これらは問題のため、DNA 後部ごとに染色体 DNA の末端の長さが短くなるという[1]。これを末端複製問題という（Fig. 1）。実際、正常な体細胞では、テロメアは完全には修復されず、細胞分裂に至るまで染色体末端が 50～200bp ずつ短縮する。末端複製問題による染色体末端のテロメアの短縮が、細胞の分裂寿命の限界の決定に関与し、細胞老化の機構となり得ると考えられている[2]。

そこで、このメカニズムではテロメアの合成が問題となり、リーディング鎖合成でできた末端は未熟であるのに対して、ラッピング鎖合成でできた末端は 3' 末端が末端を引き、全てのテロメアが不完全である結果となり、新たな末端複製問題が起こる。Fig. 1 の 3' 末端から 3' 末端までをつなぐ RNA ブライマーが形成された[3]。3' 末端から 3' 末端までをつなぐ RNA ブライマーが形成され、これにより、新たな分子鎖合成が可能である。DNA 伸長後、後者の錐型 5' 末端はエキソヌクレアーゼによって断ちられ、新たな 3' 末端が形成される。これらの結果、Fig. 1 に示すように、リーディング鎖合成で出来た染色体は、錐型となる親鎖が短いために、複製前の染色体よりも短縮したかたちになる。つまり末端複製問題は、リーディング鎖合成の問題となることができる。
Fig. 1. The end replication problem

2. テロメアとは

1930年代にMcCIntockやMullerらによって、末端部分が、染色体融合から染色体を保護し、染色体を安定に維持するために必要であることが報告され、Mullerは、ギリシャ語のtelos (ends) と meros (part) を組み合わせて染色体末端部分をtelomereと名付けた。1978年に、Blackburnらは、テトラヒメナ(Tetrahymena pyriformis)のテロメアが短いDNA配列の繰り返しになることを報告した[4]。テロメア部分には細胞が生存するまで重要な遺伝子は存在せず、代わりに、テロメアDNAという特殊な塩基配列が進化してきており、多くの動植物で類似の構造を持ち、テロメア構造は進化上良く保存されている。ヒトを含む脊椎動物の場合、テロメアDNAの配列は5' (TTAGGG)3'の繰り返しである。テロメアDNAの長さは生物学的に大きな違いがあり、ヒトの体細胞では約10 kb、マウス体細胞では30-150 kb程度の長さになる。テロメア配列の内側には、Gに富む配列が少しが不規則に
3. テロメア結合タンパク質の同定と機能

テロメアは、ゲノムDNAの末端部分とそれに付属するタンパク質等との機能的複合体である。これまでに同定されているヒトのテロメア結合タンパク質としては、テロメア二本鎖DNAに結合するTRF1, TRF2、それらと相互作用するタンパク質tankyrase, TIN2, PimX1, Ku, Rap1, MRE11/Rad50/NBS1complex、Gに富む一本鎖DNAに結合するPot1等が挙げられる（Fig. 2）。

de Lange らは、ヒトのテロメア結合タンパク質を初めて同定した。まず、TRF (TTAGGG repeat binding factor) 1 と呼ばれる、2本鎖テロメア繰り返し配列に結合する可能性のある因子の存在を明らかにした[11, 12]。テロメアプライオーネを用いたゲルシフトアッセイによって結合活性を示し、1本鎖テロメア配列には結合しないことも示した。また、2本鎖のテロメア配列特異的に結合する性質を利用して、アフィニティークロマトグラフィーによってTRF1を精製した。その後、間期と分裂期の両方の細胞で、テロメアプライオードを用いたFISH抗体を用いた免疫染色によって、TRF1がin vivoでテロメア領域に局在していることを示した[13]。TRF1は、Myb DNA結合ドメインをもつ、酵母のテロメア結合タンパク質であるRap1と弱いながらも相同性を示した。さらに、TRF1は、ラメラーゼによるテロメア伸長反応を制御することを示された[14]。ラメラーゼ活性でテロメア伸長性でテロメアの長さが一定に保たれている細胞でTRF1を過剰発現させると短縮した。一方、アミノ末端とカルボキシル末端間を欠損し、内在性のTRF1のテロメアへの結合を阻害するようなドミナントネガティブTRF1を発現させるとテロメアは伸長した。また、おそらく遺伝子子からalternative splicingによって20アミノ酸欠損したタンパク質が合成されており、これは、Pin2と呼ばれている。Pin2/TRF1が、細胞周期を制御している可能性も示されている[15, 16, 17]。

もう一つの2本鎖テロメア結合タンパク質であるTRF2は、TRF1に類似したMybモチーフをコードするcDNAフランゲメントの情報を基に同定された[18, 19]。TRF2は、TRF1と同様、カルボキシル末端にMyb DNA結合ドメインをもつが、アミノ末端はTRF1が酸性、TRF2が塩基性である。TRF1, TRF2共に、温帯的に発現し、分裂期の酵母でヒトのすべてのテロメアに局在する。また、アミノ末端と二重体を形成するためのドメインを持ち、ホモ二重体を形成するが、TRF1とTRF2でのヘテロ二重体は形成しない。

機能的には、TRF2は、染色体末端の分裂からテロメアを保護する[20]。アミノ末端の塩基性ドメインとカルボキシル末端のMyb DNA結合ドメインを欠損し、内在性のTRF2のテロメアへの結合を阻害するようなドミナントネガティブTRF2を発現させると染色体末端のわれが見られ、細胞が老化様の特徴を示して、増殖が停止する。TRF2は、Tループ形成を阻害し、増殖を抑制するが、TRF2を欠損するとループがはずれ、染色体末端が露出して、末端融合を生じるのかもしれない[7]。また、一部の細胞では、TRF2を欠損するとDNAダメージチェックポイントの活性化と同様のATM, p53を介したアポトーシスが誘導される[21]。

Tankyrase (TRF1-interacting, ankyrin-related ADP-ribose polymerase) は、TRF1をbaitとして用い、ヒト胎児肝臓の形質転換体のツーワイプライプラライブラリーから、酵母ツーワイプライプラライブラリー法によって同定された[22, 23, 24]。tankyrase は、TRF1と相互作用するためのアンキリンリピートを含み、TRF1をADP (adenosine diphosphate) ポリポルボ化することによりテロメア二本鎖DNAへの結合を阻害することで、TRF1の機能を制御していると言われている。

TIN2 (TRF1-interacting nuclear protein 2) は、TRF1をbaitとして用い、ヒトの細胞線維芽細胞の酵母ツーワイプライブラリーcDNAライブラリーをスクリーニングすることによって同定された[25]。TIN2は、テロメアDNAの長さを調節しており、アミノ末端を欠損させたTIN2
は、テロメラーゼに依存した方法でテロメアを伸長した。

PinX1 は、Pin2 を bait として用い、HeLa 細胞の酵母ツーハイブリット cDNA ライブラリーをスクリーニングすることによって同定された[26]。PinX1 は、テロメラーゼ活性を阻害し、さらに、tumor suppressor として腫瘍形成能に影響を及ぼしている。PinX1 は、テロメラーゼと協力して hTERT に結合し、その活性を阻害する。PinX1 の通過発現はテロメラーゼ活性を阻害し、テロメアを縮短させ、トランスフォーム細胞の増殖抑制 (crisis) を誘導した。内在性の PinX1 の抑制は、テロメラーゼ活性を増加させ、テロメアを伸長した。

DNA-PK (DNA-dependent protein kinase) と Ku ヘテロダイマー（70 kDa と 80 kDa のサブユニット）の複合体で、DNA 二本鎖切断部に結合して非相同期末端結合にかかわることが知られている。一方で、Ku70 と Ku80 と DNA-PKcs は、テロメアの保護にも貢献している[27, 28, 29, 30]。DNA-PKcs はマウス由来の MEFS (mouse embryo fibroblasts) では、染色体末端の融合が増加した。同様に Ku70 と Ku80 はマウス由来の MEFS でも、染色体末端の融合が増加した。この複合体は、TRF1 または TRF2 と相互作用し、染色体末端に存在すると考えられているが、染色体末端に直接結合する可能性もある。

hRap1 (human repressor/activator protein 1) は、TRF2 を bait として用い、HeLa 細胞 cDNA の酵母ツーハイブリットスクリーニングによって同定された[31]。hRap1 は、酵母のテロメアアタックファクターである scRap1 (Saccharomyces cerevisiae Rap1) の同定ルートである。しかし、scRap1 は、テロメアと直接結合するが、hRap1 は、TRF2 を介してテロメアに局在する。hRap1 を細胞内で透刺発現させるとテロメアが伸長したことから、hRap1 は、scRap1 と同様にテロメアの長さを調節する因子であると考えられている。

HeLa 核抽出物をヘブロンセンサファイバースクリーンで分画し、免疫沈降によって TRF2 複合体を単離し、質量分析によって含まれるタンパク質を同定した結果、TRF2, Rap1 の他に Rad50 が同定された[32]。同様に Rad50 と Mre11 が、テロメアに局在することが示されたが、Nbs1 は、S 期特異的に TRF2 に結合し、S 期のみにテロメアに局在した。Mre11/Rad50/Nbs1 complex は、二本鎖切断の修復で、相間組み換えと非相同期末端結合の両方の過程に関与し、減数分裂期組み換えに関与することが知られている[33, 34]。テロメアにおいては、Mre11 complex のエキソスタイルアーゼ活性が TR ループの形成に関与していると考えられている。

組織細胞類 (hypoxic tissue cells) のテロメアは 50 bp と短く、ループを形成するには短すぎると考えられている。しかし、3' 突出末端は、ssDNA (single strand DNA) 結合タンパク質によって保護されている[35, 36]。この一見テロメア DNA に特異的に結合するタンパク質は、α β タンパク質である。データベース探索によって、Oxytricha 他の組織細胞類のテロメアタンパク質の αサブニュートに同定性のあるタンパク質 Pot1 (protection of telomeres 1) が、分裂酵母とヒトで同定された[37, 38]。Pot1 は、それぞれのテロメア配列の G に対し一本鎖 DNA に結合し、分裂酵母で染色体末端を保護していることが示された。さらに、ヒトの Pot1 は、TRF1 複合体と相互作用し、テロメラーゼを介したテロメア伸長をコントロールすることが示された[39, 40]。この調節は、酵母のテロメラーゼ調節タンパク質である Cdc13 と同様に、ポジティブとネガティブを調節的両方であると考えられている[41, 42, 43]。Lange らは、TRF1 複合体と POT1 の相互作用が POT1 の一本鎖 DNA とテロメア DNA との間に影響し、その結果、テロメア長についての情報を、テロメラーゼが調節される部位であるテロメア末端に伝達しているという仮説をたてている[39]。

4. テロメラーゼの発現

1985 年に、Greider らは、染色体末端の一塩基を 5'→3' 方向に、銅型 DNA なしに伸長する酵素、テロメラーゼの活性をテラヒトメタクレイン中で検出した[44]。テロメラーゼは、5'→3' のテロメア DNA 配列に対する銅型 RNA を含んだ逆転写酵素である。1994 年に、テロメラーゼ活性を容易に高感度に測定できる方法として、PCR を応用した TRAP (telomeric repeat amplification protocol) 法が報告された[45]。様々な細胞で活性が測定されるようになった。ヒトの正常体細胞ではテロメラーゼは発現しておらず、DNA 複製のたびにテロメア DNA が短縮する。一方、幹細胞ではわずかにテロメラーゼ活性が存在し、テロメア DNA の短縮を多少補うが、完全ではなく、徐々にテロメア DNA が短縮する。これに対して、無限分裂寿命をもつ生殖細胞やがん細胞の一部では、末端複製問題を回避するためにテロメラーゼがテロメア DNA を伸長する。ところが、腫瘍と腫瘍由来の cell line と in vitro で不変化した cell line のいくつかは、テロメラーゼ活性を示さないにも関わらず、テロメアを維持、不変化していることが明らかになった[46, 47, 48]。

5. ALT 細胞の特徴

テロメラーゼは、無限増殖のために必要と考えられているが、テロメラーゼ活性を示さないにも関わらず、テロメアを維持し、不変化している細胞も存在する[46, 47]。これらのテロメラーゼ陰性不変性細胞は、Alternative Lengthening of Telomeres (ALT) と呼ばれるメカニズムを利用したテロメアを維持している[48, 49, 50]。具体的なメカニズムは、明らかにされていないが、組み換えによりテロメアが維持されている可能性がいくつか示されている。テロメラーゼを欠損した酵母では、組み換えを利用してテロメアを維持し、生成しているという証拠が示されている[51, 52, 53]。Dunnan らはヒトの ALT 細胞で、テロメアに DNA タグをつけることによってテロメア間での組み換え (inter-telomeric recombination)
がおこることを示した[54]。PDL（population doubling level）が増加することを FISH（fluorescence in situ hybridization）によって示した。さらに、Varley らは、染色体特異的でテロメアに接近するプライマーと TTAGGG, TGAGGG, TCAGGG, TTGGGG, それぞれにアミノールテロメアに散在しているパターンに依存した長さの塩基を生物するプライマーを用いた TVR（telomere variant repeat）PCR によって、ALT の活性化の前後のサブテロメアの領域の配列を決定した[55, 56, 57]。その結果、ALT 細胞のみで観られるテロメア間の変異（inter-telomere mutation）とテロメア内での変異（intra-telomere mutation）が明らかにされた。異なるテロメアに分布する配列との間の互換性によってテロメアの変化がおこっていると考えられる。また、テロメア内での変異（欠失や TTAGGG が TGAGGG や TTGGGG に変化すること）は、ALT 細胞でテロメア不安定性に貢献していると考えられる。

ヒトの ALT 細胞の特徴としては、テロメアの長さが不均一であるということが挙げられる。ヒトの生殖細胞のテロメアは、約 15 kb で維持されている。また、正常な体細胞で 142、45 kb まで短縮し、3.8 kb 位まで短縮すると細胞は分裂活性化できない。さらに、ほとんどのテロメラーゼ陽性不死化細胞のテロメアは、平均 10 kb 未満で、比較的短い。これに対して、ALT 細胞のテロメア長は不均一である。Southern blot 解析で、末端に長い TRF（terminal restriction fragment）細胞から長い TRF 長で、広い範囲に採用される長さの TRF 長が示されることも知られている[46, 47]。それは、細胞によっても異なるが、3 kb 未満から 50 kb 以上を含むともわれている。FISH によっても、いくつかの染色体末端は、テロメアシグナルが検出されるが、同じ細胞で他の染色体末端はアイテロメアシグナルを持つことが示されている[50]。in vitro で培養中に不死化し、ALT メカニズムが活性化される細胞では、細胞の不均一化と同様に、ALT 細胞に特異的なテロメア長が示されるようになる[58]。

他の ALT 細胞の特徴として、間接的のが ALT-associated PML（promyelocytic leukemia）bodies (APBs) これが核内 γ-actin を含む核の集積を示す[52]。PML は、正常な細胞ではあるが見られるドナッック状の構造を、PML と他のタンパク質を含む[59, 60]。PML タンパク質の核内の位置は、基底線維性白血病（promyelocytic leukemia）で、染色体の転座によって生じた融合タンパク質の一部として発見されたとの知られる。PML 的機能は明らかにされているが、細胞核の核の泡状化、細胞周期制御、老化、アポトーシス、免疫と炎症応答、タンパク質のリポリティック、分化、分化に関与していると考えられている。APBs は、ALT 細胞に特異的なタンパク質や DNA を含む PML 細胞で、大きなドナッック状の構造を示し、有限寿命細胞やテロメラーゼ陽性不生化細胞では、見られない。Yeager らは、間接的 ALT 細胞を用いて、APBs には、FISH によってテロメア複製配列が存在することを明らかにし、さらに、免疫染色によってテロメア结合タンパク質である TERR1、TERR2、組み換えと複製に関与しているタンパク質 Rad52、Rad51、RPA が共存することを示した[58]。さらに、不死化の段階で、ALT 細胞に特異的なテロメア長が示されるのと同
7. 本研究の目的
テロメアはゲノムDNAの末端部分とそれに付属するタンパク質等との機能的複合体であり、染色体末端を安定に保つために必要な構造である。これまでに2本鎖テロメア繊り返し配列特異的に結合するTRF1、TRF2、それらと相互作用するタンパク質、CTーGに富む一
本鎖DNAに結合するタンパク質等いくつかのテロメア結合タンパク質が明らかにされている。しかし、テロメアはヘテロクロマチンを形成しており、ヘテロクロマチンを形成す
るにはさらに多くのタンパク質が必要と考えられることから、同定されていないタンパク質が存在する可能性がある。なお、染色体末端のテロメアを分離し、直接テロメア結合
タンパク質を解析することが困難である。制限酵素で切断してテロメア領域の染色体を分
離することは可能かもしれないが、ここにはサブテロメア領域の結合タンパク質も含まれ
るからである[69]。
そこで、当研究室のTokutakeらが存在を明らかにした、extra-chromosomal telomere repeat (ECTR)DNAを染色体末端のテロメア解析のモデルとして用いていることを考えた(Fig.2)。
ECTR-DNAは、染色体末端のテロメアDNAの配列と同様5’T(AGGCG)3’の繊り返しである
ことから、2本鎖テロメア繊り返し配列特異的に結合するTRF1、TRF2と結合している
可能性がある。染色体末端のテロメア複合体に含まれるタンパク質を明らかにすることによって、
これらのタンパク質が、実際にECTR複合体で5’T(AGGCG)3’の繊り返し配列に結合し
ていることを示すことができる。さらに、これらのタンパク質が相互作用する新たなタン
パク質を定義することが可能である。また、TRF1、TRF2以外のテロメア繊り返し配列特異
的に結合するタンパク質が同定されることも期待できる。本研究の最終的な目的は、同
定されたタンパク質が染色体末端のテロメアに結合しているタンパク質であることを確認
し、モデルで得られた結果を基にして染色体末端のテロメア結合タンパク質複合体の構成
と機能を明らかにすることである。また、ECTR-DNAがALTメカニズムに関与している
という仮説が提唱されている。ECTR複合体に含まれるタンパク質を同定することによっ
て、同定されたタンパク質の機能からECTR複合体の機能の解明と同時にALTメカニズ
ムの解明が進むことが期待される。

6. 老化、がん化とテロメアの関係
テロメアの長さは細胞分裂速度との関係が示唆されており、ヒトの正常細胞で、繰代を
続けるに従ってテロメアは短縮すること、ヒトの組織の細胞で、年齢とともにテロメアが
短縮することが示唆されている[67, 68]。個体の老化は、様々な要因によって起こると考え
られるが、ヒト細胞が短いテロメアを持つことから、テロメア短縮による細胞老化もその
一因に含まれると考えられる。また、がん細胞は細胞分裂の制御機構から逃脱し、永久
に増殖する能力を獲得しているが、細胞が不死化するためにはテロメアが維持されること
が不可欠である。よって、テロメアの制御のメカニズムの解明は、老化、がん化現象の研
究において重要な位置を占めると考えられる。
ALT細胞の特徴

序論

ヒトのALT細胞の特徴としては、1．テロメラーゼの活性不均一であること、2. ECTR-DNAを持つこと、3. 関連性は、APBsと呼ばれる核内aggregateを持つことなどが挙げられる。本研究を始めるにあたり、まず、これらのALT細胞の特徴を示し、同時にECTR-DNAタンパク質複合体の単離に使用するKMST-6細胞がECTR-DNAを持つことを確認した。

材料及び方法

1. 細胞培養

＜使用細胞＞

KMST-6：ヒト全胎児由来継続細胞 KMS-6を“ガンマ線照射によって変異させることで樹立された不不死細胞株。テロメラーゼ陰性でALTメカニズムを用いてテロメアを維持[70]。

SUSM-1：ヒト胎児肝由来継続細胞 D387を4-nitroquinoline 1-oxide処理によって変異させることで樹立された不不死細胞株。テロメラーゼ陰性でALTメカニズムを用いてテロメアを維持[46,70]。

TIG-3：東京都老人総合研究所で樹立された正常ヒト胎児肝由来継続細胞。分裂寿命は約80PDL（population doubling level）。

＜培養方法＞

細胞は、10% FBS（HyClone）、0.5% antibiotic-antimycotic（GIBCO）を添加したDulbecco's Modified Eagle's Medium - high glucose（SIGMA）を用いて、CO₂インキュベーター（5% CO₂, 37℃）中で培養した。

2. Telomere PNA FISH（分裂期の細胞）

対数増殖期にある細胞に終濃度100 ng/mlのcolcemidを加え、1.5時間培養した。物理的な力によって、分裂期細胞を遊離させ、回収し、2mlの低張液（75 mM KCl）を加えて細胞を懸濁し、37℃で15-20分間放置した。2mlの固定液（methanol: acetic acid = 3:1）を以下の手順で加えた。バスツールピペットで1滴とし、遠心チューブを指ではなく圧を10回ほど繰り返した後、0.5mlの固定液を加えて懸濁し、次に残りの固定液を加えた。1.200 rpm, 5分間遠心し、上清を除いた。さらに、2mlの固定液を加え、懸濁液を懸濁し、1.200 rpm, 5分間遠心し、上清を除いた。この操作をさらに2回繰り返し、50-200μlの固定液で細胞を懸濁した。90% ethanolで洗い、純水に浸して6-10℃で保存していたスライドグラスを37℃ウォーターバスの中に置いた試験管立てての上に平置した。表面が乾燥した状態のスライドグラス上で、細胞懸濁液1滴を落とし、風乾した。65℃, 2-3時間処理後、2x SSCで2分間洗浄し、70% EtOH (-20℃)、100% EtOH (-20℃)に2分間ずつ浸し、風乾した。70% formamide/2x SSCを用いて、72℃で2分間処理後、70% EtOH (-20℃)，100% EtOH (-20℃)に2分間ずつ浸し、風乾した。80℃ブロックにスライドグラスを5分間のせ、hybridization mixtureも80℃のブロックで加熱した。スライドグラスに加熱したhybridization mixtureを30μlのせ、すばやくカバーガラスをのせ、ベーパーボードでシールした。加温チャンバーに移し、37℃で14時間ハイブリダイズさせた。50% formamide/2x SSCに室温で15分間浸した後、0.05% Tween20/PBSで5分間の洗浄を2回繰り返し、PBSで1回洗浄した。0.1μg/ml DAPI/fluorescent mounting medium (DAKO)で封入した[71,72]。

[hybridization mixture]
0.3 μg/ml FITC-labeled telomere (C,T)_A, PNA probe
70% formamide
33 μg/ml salmon testis DNA
10 mM Tris (pH7.2)

3. Telomere PNA FISH（分裂期の細胞）

細胞をMASコースライドグラス（MATSUNAMI）に播種し、methanol: acetone = 1:1を用いて20℃で10分間処理することによって固定し、風乾した。プラスチックコップリングに冷蔵の0.1 M citrate buffer (pH 6.0)を70ml入れ、その中にスライドグラスを入れ、さらにコップリングをクップで立てて周りに水をいれ、マイクロエコーブングで500 W, 2450 MHz, 5分間の加熱をした。5分間室温に放置し、さらに3分間の加熱をした。10分間室温に放置後、cold PBSでリングした。スライドグラスをcold 70% EtOH, cold 85% EtOH, cold 99% EtOHに順番に1分間ずつ浸した後、乾燥させた。hybridization mix（1.2μg/ml FITC-labeled telomere PNA probe, 70% formamide, 100 μg/ml salmon testis DNAを含むPBS）を作成し、80℃ブロックにスライドグラスを5分間載せ、hybridization mixも80℃のブロックで加熱した。スライドグラスに70% formamideを20μlのせ、すぐに加熱したhybridization mixを10μlのせ、すばやくカバーガラスをのせ、加温チャンバーに移し、室温で37℃で14時間ハイブリダイズさせた。50% formamide/2x SSCに室温で15分間浸した後、0.05% Tween20/PBSで5分間の洗浄を2回繰り返し、PBSで1回洗浄した。0.1 μg/ml DAPI/fluorescent mounting medium (DAKO)で封入した。

4. テロメラーゼDNAとタンパク質の多重染色

細胞をMASコースライドグラス（MATSUNAMI）に播種し、3.7% PFA（paraformaldehyde）を用いて室温で10分間処理することによって固定し、0.1% Triton X-
100/PBS を用いて室温で 2 分間処理することによって細胞膜の透過性を亢進させた。3% BSA, 0.05% Tween20/PBS でプロッキング後、室温で 1 時間、2次抗体反応を行った。洗浄は 0.05% Tween20/PBS で 5 分間を 3 回行った。2次抗体反応は、室温で 1 時間行った。洗浄は 0.05% Tween20/PBS で 5 分間を 2 回と PBS で 1 回行った。3.5% formaldehyde/PBS をのせ、インキュベート後、PBS で 3 回洗浄した。テロメラ DNA の検出は、「3．telomere PNA FISH（間期の細胞）」を参照して行った。

[1次抗体液、2次抗体液、プロープの濃度]
primary antibody
2 μg/ml mouse anti-Rad50 monoclonal antibody (Gene Tex), 1% BSA/PBS
2.5 μg/ml mouse anti-RPA monoclonal antibody (Oncogene), 1% BSA/PBS
2 μg/ml mouse anti-PML monoclonal antibody (Santa Cruz), 1% BSA/PBS
1/500 rabbit anti-Rad51 polyclonal antibody (Oncogene), 1% BSA/PBS
1/1000 rabbit anti-hMre11 polyclonal antibody (Novus Biologicals), 1% BSA/PBS
1/1000 rabbit anti-NBS1 polyclonal antibody (Novus Biologicals), 1% BSA/PBS
4 μg/ml goat anti-TRF2 polyclonal antibody (Santa Cruz), 1% BSA/PBS
secondary antibody
5 μg/ml Alexa Fluor 488 goat anti-mouse IgG (Molecular Probes), 1% BSA/PBS
5 μg/ml Alexa Fluor 594 goat anti-rabbit IgG (Molecular Probes), 1% BSA/PBS
5 μg/ml Alexa Fluor 568 donkey anti-goat IgG (Molecular Probes), 1% BSA/PBS
probe
0.4 μg/ml Cy3-labeled telomere PNA probe (FASMAC)
0.4 μg/ml FITC-labeled telomere PNA probe (Sawady)

5．Southern blot解析
細胞からの全DNA抽出は、DNA isolation kit MagExtractor (Toyobo)を用いて行った。Southern blot解析は、TeloTAGGG TeloMer Length Assay (Roche)を応用して行った。1 μgのゲノムDNAを20 UのHindIIIで用いて37 °Cで一晩、制限酵素処理した。制限酵素処理したゲノムDNAと処理していないゲノムDNAを1 x Tris-Acetate-EDTA (TAE) buffer中で0.7% アガロースゲルを用いて電気泳動した。0.5 μg/ml EtBr (ethidium bromide)で染色後、ゲル中のDNAを0.25 M HClで5-10分間処理し、0.5 M NaOH-1.5 M NaClで15分間の処理を行うことでよりアルカリ変性させ、0.5 M Tris-HCl (pH7.5)、1.5 M NaClで15分間の処理を2回行うことにより希釈させた。その後、DNAをカジリブロッキング法により20 x SSC (3 M NaCl, 0.3 M sodium citrate)を用いて一晩、nylon membrane Hybond-N (Amersham Biosciences)へトランスファーし、UVクロスリンクした。
Aluフラグメントはplasmid Blur8 [73, 74]からBanHIで切り出し、アガロースゲル電気泳動によってベクター領域と分離し、QIA quick Gel Extraction Kit (QIAGEN)を用いて精製した。
Aluフラグメントと(TTAGGG), telomeric oligonucleotideは、DIG oligonucleotide tailing kit (Roche)を用いてジゴミクシゲンでラベルし、ハイブリダイゼーションプロープとして用いた。テロメアプロープは1 pmol/mlの濃度で、Aluプロープは0.1 pmol/mlの濃度で用いた。
テロメアプロープでのハイブリダイゼーションは、DIG Easy Hyb (Roche)中で、42 ℃で一夜を行った。メンプレンは、0.1% SDS/2 x SSCに浸し、室温で5分間の洗浄を2回行い、その後、0.1% SDS/0.2 x SSCに浸し、50 ℃で20分間の洗浄を2回行った。テロメアプロープは、TeloTAGGG TeloMer Length Assayに従ってアルカリフスファターゼ標識されたアゴミクシゲン抗体との結合後、化学発光反応によって検出した。

次に、ハイブリダイゼーション後を未反応液を除いて温水で1分間洗い、0.2 N NaOH-0.1% SDSで37 ℃、20分間のインキュベーションを2回行い、2 x SSCで洗い、プロープを除去した。
Aluプロープでのハイブリダイゼーションの前に、Aluプロープを5分間温水で再染色させ、直ちに氷水で急冷した。ハイブリダイゼーションは、DIG Easy Hyb (Roche)中で、42 ℃で2時間行った。メンプレンは、0.1% SDS/2 x SSCに浸し、室温で5分間の洗浄を2回行い、その後、0.1% SDS/0.2 x SSCに浸し、50 ℃で20分間の洗浄を2回行った。Aluプロープは、TeloTAGGG TeloMer Length Assayに従ってアルカリフスファターゼ標識されたアゴミクシゲン抗体との結合後、化学発光反応によって検出した。

結果及び考察

1．分裂期の ALT 細胞を用いた telomere PNA FISH
ALT 細胞の特徴を示すために、分裂期の細胞でテロメアプロープを用いて FISH を行った。Toku take らは、cycling-PRINS (cycling oligonucleotide-primed in situ synthesis)によって、ECTR-DNA の存在を明らかにし[65]。さらに、5'-ビオチン化 (TTAGGG)、プロープを用いた FISH によっても ECTR-DNA を示した[75]。そこで今回は、さらに異なる方法、PNA (peptide nucleic acid) プロープを使用した telomere PNA FISH によって、分裂期の細胞でこれを示した。PNA は、塩基がリン酸結合ではなくヘプチド結合によってつながる化合物であり、相補的な塩基配列を持つ核酸に対して、非常に特异性でかつ強力に結合する[76]。PNA/DNA 複合体の安定性は DNA/DNA 複合体よりも高いことが知られている。
分裂期の細胞を用いた telomere PNA FISH の結果から、ALT 細胞が染色体外に ECTR-DNA を持つことが確認できた（Fig. 4）。同時に、染色体末端のシグナルの強さが様々であることも確認できた。そのシグナルは、強いものから弱いものまであり、また、シグナル
が認められない染色体も見られた。このことは、ALT 細胞が不均一な長さのテロメア長を持つことを示している。

Fig. 4. FISH on metaphase ALT cells with a telomere probe
分裂期のALT細胞で、FITC標識したtelomere PNA probeを用いてFISHを行った。矢印で示したのがECTR-DNAである。

2. 間期の ALT 細胞を用いた telomere PNA FISH
　次に、間期の細胞でテロメアプローブを用いて FISH を行った(Fig. 5)。コントロールとして、テロメラーゼ陰性で、ECTR-DNA を含んでいない normal human fibroblast である TIG-3 細胞を用いた。TIG-3 では、比較的均一の小さなテロメアシグナルが認められた。これに対して、ALT 細胞である KMST-6, SUSM-1 の核内では、巨大なシグナルから小さなシグナルまで様々な大きさのテロメアシグナルが認められた。これは、ALT 細胞が不均一な長さのテロメア長を持つことと矛盾しない。また、巨大なテロメアシグナルは、分裂期の細胞でみられた ECTR-DNA を表しているとも考えられている。

Fig. 5. FISH on interphase cells with a telomere probe
間期の細胞で、FITC標識したtelomere PNA probeを用いてFISHを行った。KMST-6は、2つの異なる視野を示した。ALT細胞であるKMST-6, SUSM-1の核内では、様々な大きさのテロメアシグナルが認められた。

3. APBs に存在するタンパク質とテロメア DNA の共集在の検討
　間期の ALT 細胞で見られる APBs には、FISH と免疫染色によって、PML、テロメア繊り返し配列、テロメア結合タンパク質 (TRF1, TRF2), 組み換えと複製に関係しているタンパク質 (Rad52, Rad51, RPA, MRE11/Rad50/NBS1 complex) が共存することが示されている [58, 61]。この APBs に存在するテロメア繊り返し配列は、ECTR-DNA に相当すると考えることができる。そこで、本研究で使用する KMST-6 細胞を用いて、タンパク質とテロメア DNA の二重染色を行い、これらのタンパク質とテロメア配列が共存することを確認した。
　確認したタンパク質は、TRF2, PML, NBS1, Mre11, Rad50, RPA, Rad51 である。これらのタンパク質のシグナルと巨大なテロメアシグナルは共存していた(Fig. 6)。この結果から、これらのタンパク質が ECTR DNA-タンパク質複合体に含まれる可能性が考えられる。
Fig. 6. Double staining of interphase KMST-6 cells with a telomere probe and antibodies of proteins found in APBs

KMST-6 細胞を用いて、APBs 含まれるタンパク質の免疫染色と telomere FISH による二重染色を行い、これらのタンパク質とテロメア配列が共存することを確認した。

4. KMST-6 細胞の Southern blot 解析

テロメアプローブと Alu プローブを用いて Southern blot 解析を行った。解析には、ALT 細胞の中で ECTR-DNA が多いことが知られており、本研究で使用する KMST-6 細胞を用いた。

はじめに、テロメアプローブを用いた Southern blot 解析でテロメアの長さを測定した(Fig.
ALT 細胞の3つの特徴を示すことができた。特に、本研究で使用する KMST-6 細胞は、分裂期の細胞を用いた telomere PNA FISH と Southern blot 解析の結果から、ECTR-DNA を持つことが確認できた。また、TRF2, PML, NBS1, Mre11, Rad50, RPA, Rad51 のシグナルと ECTR-DNA を表していると考えられる巨大なテロメアシグナルが共存していることが確認。この結果から、ECTR DNA-タンパク質複合体に上記のタンパク質が含まれることが期待される。

Fig. 7. Southern blot analysis of KMST-6 cells

制限酵素（Hinf1）処理したゲノム DNA と処理していないゲノム DNA で、テロメアプローブを用いて Southern blot 解析を行い、その後 Alu プローブを用いてレプリピングした。コントロールとして用いた TIG-3 は、49PDL (population doubling level) である。
II. ECTR DNA-タンパク質複合体の単離と複合体の特徴

序論
新たなテロメア解析の方法として、ECTR DNA-タンパク質複合体を単離し、モデルとして用いることを考えた。ECTR DNA-タンパク質複合体は、染色体外に存在し、染色体に比べてサイズが小さい。そこで、ECTR DNA-タンパク質複合体と染色体のピークが異なるクオテーションにあらわれるような条件で選び出すことによって、ECTR 複合体と染色体の分離が可能であると考えられる（Fig. 8）。細胞は、ALT 細胞の中でも ECTR-DNA が多いことが知られている KMST-6 細胞を用いた。ECTR 複合体分離の概要は Fig. 9 に示す通りである。今回、選択によってこの複合体を分離する条件を決定し、同時にこれからまで明らかにされていなかった ECTR DNA-タンパク質複合体の特徴も示した。

Fig. 8. Prediction of ECTR fraction
ECTR DNA-タンパク質複合体と染色体のピークが異なるクオテーションにあらわれるような条件で選び出すことによって、ECTR 複合体と染色体の分離が可能であると考えられる。

Fig. 9. Separation of ECTR DNA-protein complexes
0.5% Triton X-100 を用いて、分裂期の KMST-6 細胞を破壊し、2 回の了と RNase 処理によって ECTR 複合体を分離した。

材料及び方法

1. 分裂期同調培養の条件検討
細胞分裂阻害剤として、TN-16, Colcemid, Nocodazole を用いて条件検討を行った[77]。まず、薬剤処理後、位相差顕微鏡下で、一定の周期内（dish にマーク）の球形化した細胞の数を数え、同時に死細胞の量も観察し、大体の条件（処理時間、濃度）を決めた。次に、全細胞を回収し、1 の「2. telomere PNA FISH (分裂期の細胞)」を参照して、等張液処理後、methanol : acetic acid =3:1 で固定し、染色体標本をつくり、0.1 μg/ml DAPI で 染色し、分裂指数（分裂期にある細胞の全細胞に占める割合）を算定した。

2. 細胞の調製
100 mm ディッシュに 0.5×10⁶個の対数増殖期にある KMST-6 細胞を植え込み (20 枚),
約60時間培養した。培地を吸引除去し、細胞をPBSで1回洗浄後、終濃度100 nMのTN-16を加えた新しい培地で、8時間培養した。ピペットで液を吹きつけて、ディッシュを覆って液面をよく動かすなどの物理的な力によって、分裂期細胞を遊離させ、浮遊した分裂期細胞を遠心（1000 rpm, 5 min）して回収した。PBSで細胞を洗った後、1 mlの低張液（75 mM KCl）を加えて細胞を懸濁し、on iceで30分間静置した。2.500 rpm, 5 min遠心後、KClを除き、チューブの底を叩いてペレットを浮遊させてから、リシスバッファー（Triton X-100）を1 ml加え、細胞を懸濁した。その後、終濃度0.5%のTriton X-100を加え、時々混和しながら、4℃に10分間懸濁細胞懸漿とした。

[リシスバッファー]
10 mM HEPES-KOH（pH7.5）
3 mM Mg(OAc)2
0.3 mM EDTA
10% glycerol
50 mM KCl
7 mM 2-mercaptoethanol
0.5% Triton X-100
1x Complete Mini Protease inhibitor cocktail（Roche）

3. ECTR DNA-タンパク質複合体の分離
はじめに、エッペンドルフ浴槽遠心機S417Rを用いて遠心を行った。14,000 rpm（20,800 x g）、15, 30, 60 min、4℃と12,000 rpm（15,300 x g）、20, 28, 40 min、4℃の条件で条件検討を行い、冷却遠心の条件は12,000 rpm, 40 min、4℃で決定した。RNase処理をする場合は、上清をチューープに取つ後、終濃度2 mg/mlのRNaseを加え、4℃で1時間インキュベートした。

超速遠心は、日立分離用超速遠心機55P-72で行った。日立製造フラクションケーブ（DG-F-U）を用いてリシスバッファー（Triton X-100）で5-20%ショック密度勾配を作成し、冷却遠心の上清を重層した。P285スイングロータによって遠心後、DG-F-Uを用いて2.5 ml毎に分画（計14サンプル）し、-80℃に保存した。17,000 rpm（52,000 x g）、1 hr、10℃、20,000 rpm（72,000 x g）、8 hr、4℃、20,000 rpm（72,000 x g）、24 hr、4℃の順に条件検討を行い、超速遠心の条件は20,000 rpm（72,000 x g）、24 hr、4℃に決定した。

4. フラクションからのDNAとRNAの抽出
各フラクションに、終濃度0.5%のSDS、100 μg/mlのproteinase K、10 mMのEDTAを加え、時々よくかき混ぜながら、55℃で1時間インキュベート後、37℃で一夜インキュベートした。等量のTris 飽和フェノール（pH 8.0）を加え、充分混ぜた3,000 rpm、20 min、4℃遠心した。水層を新しいチューブに移し、等量のPCI（phenol:chloroform:isoamyl alcohol =25:24:1）を加え、充分混ぜ、3,000 rpm、20 min、4℃遠心した。水層を新しいチューブに移し、終濃度0.3 M NaClと等量のisopropanolを加え、-20℃に一夜間冷凍した。遠心（15,000 rpm、30 min、4℃）し、上清を除去後、70% ethanolで沈澱と管壁を洗い、ペレットを乾かし、20 μlのTE buffer（10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0）に溶解した。

5. Southern blot解析
フラクションから抽出したDNAを用いて、Iの「5. Southern blot解析」を参照して行った。

6. rRNAの抽出
total RNAは、AGPC（acid guanidinium-phenol-chloroform）法によって抽出した[78]。培地を取り除いた後、dishに直接10℃で10 mlの変性溶液を加え、ピペットを用いて数回ピピティングを行い、高分子量のDNAを切断した。チューブに移し、0.1 mlの2 M sodium acetate (pH4.0)、1 mlのH2O 飽和フェノール、0.2 mlの chloroform/isoamyl alcohol (49:1)の順に加え、それぞれの段階で良く振って、水中で15分間インキュベート後、10,000 rpm、20 min、4℃で遠心した。中間層を取りないように上清を新しいチューブに移し、1 mlのisopropanolを加えて、-20℃で20分間冷凍した。14,000 rpm、15 min、4℃遠心後、上清を捨て、0.3 mlの変性溶液を加えて沈澱を溶かした。0.3 mlのisopropanolを加えて、-20℃で30分間冷凍した。14,000 rpm、15 min、4℃遠心後、上清を捨て、75% ethanolを0.5 ml加えて、沈澱を溶かした。14,000 rpm、5 min、4℃遠心後、上清を捨てて乾燥させ、100 μlのH2Oに溶かした。

フラクションから抽出した核酸とtotal RNAは1%非変性アガロースゲルを用いて電気泳動し、0.5 μg/ml ethidium bromideで染色し、UVトランスイルミネーターで可視化した。

【変性溶液】
- 4 M guanidinium thiocyanate
- 25 M sodium citrate (pH7.0)
- 0.1 M 2-mercaptoethanol
- 0.5% sarcosyl

7. 各フラクションのタンパク質の濃縮、解析A
各フラクションを Ultrafree-4 Centrifugal Filter Biomax-10K NMWL Membrane（Millipore）を用いて限外濾過濃縮法によって濃縮し、さらにTCA沈澱法によって濃縮した。TCA沈澱

は以下の手順で行った。限外濾過濾縮法によって濃縮したタンパク質溶液と等量の冷却
20 % (w/v) TCA (trichloroacetic acid)/acetone 溶液を加え、攪拌後、-20 ｐで数時間冷却した。さらに、タンパク質溶液の 3～5 倍量の冷却 acetone を加え、攪拌後、-20 ｃで数時間冷却した。10,000 rpm, 15 min, 4 ｃで遠心後、上清を丁寧に除き、diethyl ether で洗浄した。10,000 rpm, 15 min, 4 ｃで遠心後、上清を丁寧に除き、乾燥させ、1 x SDS-PAGE sample buffer に溶解させた。SDS-PAGE は、Laemmli の方法に従って行った[79]。サンプルを 3 分間熱湯につけた後、8.0％の SDS-polyacrylamide gel を用いて電気泳動し、銀染色し、

[1 x SDS-PAGE sample buffer]
62.5 mM Tris-HCl (pH6.8)
1% SDS
1% 2-mercaptoethanol
0.002% bromophenol blue
10% glycerol

[SDS-PAGE泳動 buffer]
25 mM Tris
192 mM glycine
0.1% SDS

8. 銀染色法
Silver Stain kit (ATTO)を用いてキットの説明書に従って行った。

9. 各フラクションのタンパク質の濃縮、解析 B
各フラクションを上記の TCA 沈殿法によって濃縮した。その後、acetone に溶解しなかったショ糖が原因で形成されたと考えられる下層を残し上層を除去した。等量の冷却 10% TCA/H2O を加え、攪拌後、on ice で 15 分以上冷却した。10,000 rpm, 15 min, 4 ｃで遠心後、上清を丁寧に除き、diethyl ether で洗浄した。10,000 rpm, 15 min, 4 ｃで遠心後、上清を丁寧に除き、乾燥させた。1 x SDS-PAGE sample buffer に溶解させた後、SDS-PAGE を行った。サンプルを 3 分間熱湯につけた後、8.0％の SDS-polyacrylamide gel を用いて電気泳動し、銀染色し、

10. Western blot 解析
ポジティブコントロールとしては、KMST-6 細胞に SDS extraction buffer を加え、3 分間熱湯につけた後、14000rpm、5 分間、4 ｃで遠心し、上清を回収したものを用いた。タンパク濃度の測定の可能なサンプルは、CBB 色素試液（ナカライテスク）を用いて Bradford 法に従って測定した。SDS-PAGE は、Laemmli の方法に従って行った。サンプルに 4 x SDS-PAGE sample buffer を加え、3 分間熱湯につけた後、8.0％の SDS-polyacrylamide gel を用
結果及び考察

1. 分裂期同調培養の条件検討

同調培養は、細胞集団を細胞周期のある時期にそろえて培養することである。ECTR-DNAは、分裂期には染色体外に存在し、間期には、ほとんどが核内に存在していると考えられている。間期の細胞では ECTR 複合体と染色質が互いに交差する可能性があることから、ECTR 複合体を分離するためには、大量の分裂期の細胞が必要になると考えられる。そこで、同調培養の条件検討を行い、大量の分裂期の細胞を回収できる条件を検討した。

分裂期停止剤として、TN-16 (3-(1-Anilinoethylidene)-5-benzylpyrroloidine-2,4-dione), Colcemid, Nocodazole を用いた。薬剤処理後、相差顕微鏡で、球状化した細胞の数を数え、大体の条件を決定した。その後、Table 1 に示した条件下で 12 時間培養し、染色体標本を DAPI 染色後、分裂指数を算定した。400 nM TN-16, 60 ng/ml Colcemid, 320 ng/ml Nocodazole の条件では、相差顕微鏡で観察時、他と比べ断片化された細胞の量が多くかったため選択からは除外した。死細胞の数が比較的少なくて、分裂指数が高かった 100 nM TN-16, 15 ng/ml Colcemid, 40 ng/ml Nocodazole の条件を選択し、さらにこれらの条件下で 8 時間培養後、分裂指数を算定した(Table 2)。その結果、どの条件下でも 10%以上の分裂指数が得られたため、その中でも比較的断片化された細胞の数が少なく KMST-6 細胞に対する毒性が低い TN-16 を用いて 100nM で 8 時間処理するという条件を選択した。

Table 1. Mitotic index of KMST-6 cells after 12h of continuous exposure to the various concentrations of three drugs

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
<th>Mitotic index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>TN-16</td>
<td>25 nM</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>100 nM</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>400 nM</td>
<td>17.3</td>
</tr>
<tr>
<td>Colcemid</td>
<td>3.75 ng/ml</td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>15 ng/ml</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>60 ng/ml</td>
<td>13.2</td>
</tr>
<tr>
<td>Nocodazole</td>
<td>5 ng/ml</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>40 ng/ml</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>320 ng/ml</td>
<td>9.9</td>
</tr>
</tbody>
</table>

KMST-6 細胞を TN-16, Colcemid, Nocodazole で 12 時間処理し、分裂指数を算定した。

2. 細胞の調製

分裂期細胞の集積したシャーレに培地をふきつけ、分裂期細胞が剥がれ易いことを利用して、間期細胞と分けて採取した。次に、分裂期細胞を 75 mM KCl 溶液中で脱穫させ、細胞内の染色体と ECTR 複合体を分散させた。脱穫させた細胞を 0.5% Triton X-100 を用いて、細胞膜は破さず核膜は破らない条件で細胞崩壊した。

3. 冷却遠心機による遠心分離

はじめに、エッペンドルフ冷却遠心機 5417R を用いて遠心分離し、間期の核や大部分の染色体を沈澱させ、ECTR 複合体を含む上清を回収した。

回転数を一定にし、遠心時間を以下のよう変えて条件検討をした。回転数は 14,000 rpm (20,800 x g), 温度は 4 ℃ で 15 分、30 分、60 分間遠心した(Fig. 10, a)。上清とベレットを回収し、DNA を抽出後、テロメアプローブを用いた Southern blot 解析を行った結果、上清のリーニーで低分子側にスムースなシグナルが認められた。このシグナルが、ECTR-DNA であると考えられる。このシグナルは、遠心条件下で強くなるに従って弱くなった。60 分遠心では上清からテロメアシグナルがほとんど消失し、ECTR-DNA がほとんど上清に回収されなくなると考えられる。また、ヒトゲノムのマーカーである Afl アプローブを用いてリプローブした結果、ベレットからの高分子 DNA 領域に Afl シグナルが認められた。このことは、染色体と核がベレットに回収されたことを意味していると考えられる。しかし、上清のリーニーの高分子側にもシグナルが認められることから染色体の一部が上清に回収されたと考えられる。このシグナルは、遠心条件下で強くすることによって軽減した。そこで、
ゲノムの混入は認められるが，ECTR-DNA の回収率の悪い 15 分と 30 分の間でさらに条件検討を行うことになった。

14,000 rpm, 60分の遠心条件では，ECTR複合体がほとんど沈殿に回収されるため，条件が最良であることが明らかである。そこで，さらに弱い条件で検討するため，今回は，12,000 rpm (15,300 x g) 条件を検討を行った。回転数は12,000 rpm (15,300 x g) で固定し，温度は 4°C で20分，28分，40分間遠心し(Fig. 10, b)。Southern blot解析の結果から，ゲノムの混入がなるべく少なく，ECTR-DNAの回収率が比較的高い条件で，12,000 rpm, 40 min, 4°Cで遠心し，この遠心によって得られた上清を回収することにした。

4. ショ糖密度勾配遠心による分離
上記で得られた上清を回収後，5-20%ショ糖密度勾配に重層し，遠心した。この遠心の目的は，ECTR 複合体を精製するために，Triton 可溶性タンパク質と ECTR 複合体を分離することである。

はじめに，10°C で 52,000 x g, 1 時間の遠心を行い，各フラクションを回収し，DNA を抽出後，テロメアプローブを用いた Southern blot 解析で ECTR 複合体を確認した(Fig. 11, a)。

トップフラクション周辺に ECTR-DNA のシグナルが認められたことから，ここに ECTR 複合体が回収されたと考えられる。しかし，トップフラクション周辺には，Triton 可溶性のタンパク質が多数に含まれていると予測できるため，遠心条件をさらに強くした。4°C で 72,000 x g, 8 時間遠心では，ECTR 複合体が充分沈殿しなかったが(Fig. 11, b)。この結果から，さらに遠心条件を強くすることによって，ECTR 複合体を中間よりやや下のフラクションにまで沈殿させることができるが予測できる。2 回の条件検討の結果を基に遠心時間を 3 倍にし，4°C で 72,000 x g, 24 時間遠心した(Fig. 11, c)。その結果，ECTR 複合体を遠心スチューブの中間よりも下層 (フラクション 8-11) まで沈殿させることができた。また，Alu シグナルはほとんど検出されなかったが，これは，エッペンドルフ冷却遠心機 5417R を用いた遠心でかなり除かれたためで，多少混入した染色体はボトムフラクションに回収されていると考えられる。

Fig. 10. Examination of the centrifugal conditions
回転数を一定にし，遠心時間を変えて条件検討を行った。上清とペレットを別々に回収し，DNA を抽出後，テロメアプローブとAluプローブを用いてSouthern blot解析を行った。S は上清(supernatant)，P はペレット (pellet) を示す。

a) 回転数は 14,000 rpm (20,800 x g)，温度は 4°Cで15分，30分，60分間遠心し，条件検討した。上清のレーンで，細胞数に換算するとペレットのレーンの15倍に相当する量のDNAを検出した。

b) 回転数は 12,000 rpm (15,300 x g)，温度は 4°Cで20分，28分，40分間遠心し，条件検討した。上清のレーンで，細胞数に換算するとペレットのレーンの15倍に相当する量のDNAを検出した。
5. リポソームの除去

Fig. 12 は、Fig. 11 の Southern blot 解析時のアガロースゲル電気泳動後等の ethidium bromide 染色の結果だが、ECTR-DNA のシグナルが認められるフライションと、やや下のフライションに核酸のシグナルが認められる。DNA 抽出過程で RNase 惜しを行っていないことから、特に Fig. 12c に見られるシグナルは、rRNA と考えられる。

そこで、リポソームとの不純物を検討するため、各フライションから核酸を抽出し、total RNA と同時に泳動し、28S, 18S rRNA のバンドを確認した (Fig. 13)。28S, 18S rRNA のバンドの頂端が、フライション 12-14 に認められ、リポソームがポット近付近まで落ちていることがわかった。フライション 8-11 に 18S RNA のみが認められ、リポソームの small subunit が全て存在したモデルと考えられた。Fig. 11c の結果では、ECTR 複合体は、透性チャネルの図中に外観 (フライション 8-11) に認められ、上記の結果と比較すると ECTR 複合体は、リポソームの small subunit にはわからないサイズをもつと考えられる。一方、Fig. 7, 10, 11 の Southern blot 解析の結果から、ECTR-DNA のサイズは不均一であるが、約 1kb 以下と小さいことがわたった。これらの結果から、ECTR-DNA は、タンパク質と相互作用し、その結果大きな複合体を形成していると考えられる。また、Takuta が示したアルカリアガロースゲル電気泳動と Southern blot 解析の結果で、ECTR-DNA のシグナルは2〜6 kb 付近に認められた [65]。しかしながら、今回のフェノール抽出と Southern blot 解析の結果から、ECTR-DNA のサイズは約 1kb 以下であることが示された。この現象の原因は、アルカリアガロースゲルでは、タンパク質が完全に除けず、ECTR-DNA の移動度が変化したためではないかと考えられる。この結果からも ECTR-DNA とタンパク質が相互作用し、大きな複合体を形成していると考えられる。

以上のことから、透性によって ECTR フライションからリポソームを除くのは困難であると考えられる。そこで、RNase 惜しを行い、RNA を除去することによってリポソームの立体構造を挙げ、リポソームが ECTR フライションに存在しないようにした。まず、4℃での RNase 惜しの条件を検討を行い、最終的に 2mg/ml の RNase by 1時間処理することによって、rRNA が、ETBr では検出不可能レベルになり分解されることを確認した。エッペンドルフ冷却透性機 5417R を用いた透性の上清を上記の条件で RNase 惜し後、透性密度配分に重層した。4℃で 72,000 rpm, 24時間透性した後の各フライションの RNA について調べた結果、RNA は全く認められなかった (Fig. 14)。この結果、ECTR フライションに存在していたリポソームはほとんど除けたと考えられる。

また、同じサンプルを用いた Southern blot 解析で、テロメー配列は、フライション 8-14 に認められた (Fig. 15)。Fig. 11 c に比べて、ポット近付近まで分布が広がっており、これは、実験上の誤差かもしれないが、リポソームを除くことによって ECTR 複合体の沈降に何らかの影響があったのかもしれない。しかし、テロメー配列が認められるフラクションの幅に関しては、Fig. 15 の結果でも Fig. 11 と同様、幅が広かった。これらの結果から ECTR 複合体のシグナルは不均一であるということが考えられる。この結果は、分裂期の細胞の
FISH (Fig. 4)で染色体外のシグナルである ECTR-DNA のシグナルの大きさが様々であったこととも矛盾しない。

Fig. 12. Electrophoresis of nucleic acid fractionated on sucrose gradients

Fig. 11 の Southern blot 解析時のアガロースゲル電気泳動後の ethidium bromide 染色の結果を示した。

a) 17,000 rpm (52,000 x g), 1 hr, 10 °C で凍結した。
b) 20,000 rpm (72,000 x g), 8 hr, 4 °C で凍結した。
c) 20,000 rpm (72,000 x g), 24 hr, 4 °C で凍結した。

Fig. 13. Detection of rRNAs

Fig. 11 の同じサンプルの一部と total RNA を同時に電気泳動し、0.5 μg/ml ethidium bromide で染色後、28S, 18S rRNA のバンドの位置を確認した。

Fig. 14. Detection of rRNAs after RNase treatment

冷却下の上清を RNase 処理後、ショック凍結去背に凍結し、4 ℃ で 72,000 x g, 24 時間凍結した後、各フラクションを回収し、DNA と RNA を抽出後、total RNA と同時に電気泳動し、0.5 μg/ml ethidium bromide で染色した。

Fig. 15. Southern blot analysis of DNA from ECTR complexes fractionated on sucrose gradients after RNase treatment

Fig. 14と同じサンプルで、テロメアプローブとAluプローブを用いてSouthern blot解析を行った。
6. 各フラクションのタンパク質解析
各画分を Ultrafree-4 Centrifugal Filter Biomax-10K NMWL Membrane (Millipore) を用いて限外濾過濃縮法によって濃縮し、サンプルのボリュームを減少させた。しかし、限外濾過濃縮後では、サンプル中のショ糖が原因で膜透過性が悪く、濃縮にも長時間を要し、さらに、TritonX-100 が濃縮されてしまうといった問題点がある。そこで、限外濾過濃縮法によって濃縮したサンプルを 10% TCA/acetone を用いて沈殿させることによって濃縮した。SDS-PAGE 後、銀染色し、各フラクションのタンパク質を検出した。トップフラクション周辺では、多数のバンドが認められ、ボトムに近づくに従ってバンドの数、シグナル強度共に減少した（Fig. 16）。また、ECTR フラクションには、この条件では、ほとんどバンドが認められなかった。このことから、高濃度に存在する Triton 可溶性タンパク質は、密度差の上層部に回収されたと考えられる。この結果を Fig. 15 の結果、さらにフラクション 14 には染色体が含まれている可能性があることから、ECTR 複合体のタンパク質の解析にはフラクション 8-13 を用いることにした。

しかし、限外濾過濃縮法は、膜への非特異的な吸着が多く、ある程度のロスを考慮に入れなければならない。さらに、核内タンパク質は特異的に吸着される可能性があり、注意が必要である。そこで、TCA 沈殿法のみでの濃縮を行った。各画分を 10% TCA/acetone を用いて濃縮した。その後、acetone に溶解していったショ糖が原因で形成されたと考えられる下層を回収し、10% TCA/H₂O を用いて沈殿させることによって濃縮した。SDS-PAGE 後、銀染色し、各フラクションのタンパク質を確認した結果、ボトムに近づくに従ってバンドの数、シグナル強度共に減少しているが、フラクション 8-13 にも多数のバンドが認められた（Fig. 17）。これは、濃縮方法を変えたため、前回に比べてタンパク質の回収率が良くなったことを意味していないと考えられる。さらに、銀染色での発色段階の時間の違いも関係しているかもしれない。この多数のバンドは、高濃度に存在する Triton 可溶性タンパク質が、タンパク質の質量の増加としてボトムにまで落ちてくることによって、細胞内に多く存在するタンパク質のバンドが検出され進めたと考えられる。さらにこれを分離するために再検討にすることにした。

しかし、その前に、各画分の一部を用いて Western blot 解析を行った。1 の「3. APBs に存在するタンパク質とテロメア DNA の共局在の検討」で、Mre11 が、KMST-6 細胞の間期核で ECTR-DNA に相当すると考えられるショ糖と共局在することを示した。この結果から、ECTR フラクションにバンドが認められることが期待されだが、今回の条件では認められなかった（Fig. 18）。しかし、今回は、用いたサンプル量が数mgであったため ECTR フラクションに Mre11 が存在するかどうかは判断できないと考えられる。また、トップフラクションを中心にバンドが認められボトムに近づくに従ってシグナル強度が減少した。Fig. 16の結果から、この付近のフラクションには、Triton 可溶性のタンパク質が多数に含まれていると考えられる。Mre11 は細胞質に存在し、DNA 二重鍵切断が発生すると NBS1 によって、細胞質から切断部位にリクルートされる。これらのことから、細胞質に存在する Mre11 が認められたか、もしくは、操作途中で DNA からははずれた Mre11 が認められたのではないかと考えられる。

Fig. 16. Silver staining of proteins fractionated on sucrose gradients
各フラクションを回収し、限外濾過濃縮後、10% TCA/acetone を用いて沈殿させることによって濃縮した、SDS-PAGE 後、銀染色した。

Fig. 17. Silver staining of proteins fractionated on sucrose gradients
各フラクションを回収し、10% TCA/acetone を用いて沈殿させることによって濃縮した、SDS-PAGE 後、銀染色した。
7. ECTR フラクションの再遠心、解析

Fig. 17 で示したように、高濃度に存在する Triton 可溶性タンパク質が、タンパク質の分布の幅野としてポットにまで落ちているのが確認されたため、ECTR フラクションを再度遠心分離した。限外透析濃縮法は、タンパク質を変性させることなく濃縮が可能であることから、ECTR 複合体の存在するフラクション 8-13 をまとめて、限外透析濃縮法によって濃縮した。このサンプルを再度、5-20%のショ糖密度勾配に重層し、20,000 rpm (72,000 x g), 24 hr, 4℃で遠心後、分画した。その後、各フラクションを TCA 沈殿法によって濃縮し、タンパク質を解析した。濃縮されたサンプルを使用し、SDS-PAGE を行い、銀染色した結果、フラクション 8-11 を中心にタンパク質のバンドが認められ、トップフラクション周辺にはほとんどバンドが認められなかった (Fig. 19)。幅野として混入していたタンパク質は、ほとんど除くことができたと考えられる。遠心後に用いたフラクション 8-13 のうち、バンドが多数認められたフラクション 8-11 に、遠心後もバンドが多数認められたのは、多少データが極端であるが、納得の行く結果である。

Fig. 18. Detection of Mrel11 fractionated on sucrose gradients

Fig. 19. Silver staining of proteins fractionated on sucrose gradients

ECTR フラクション (8-13) をまとめて 1 につき、限外透析濃縮法によって濃縮し、再度、ショ糖密度勾配相遠心によって分画した。10% TCA/acetone を用いて沈殿させることによって濃縮後、SDS-PAGE を行い、銀染色した。

結論

今回、遠心によって ECTR 複合体を分離することが可能であることを示した。決定した ECTR 複合体の分離の条件をまとめると以下のようになる。まず、エッペンドルフ冷却遠心機 5417R を用いて、4℃で 12,000 rpm, 40 分間遠心し、核及び染色体を含む画分を沈殿させ ECTR 複合体を含む画分を上清として分離した。遠心上清を終濃度 2 mg/ml の RNase で 4℃, 1 時間処理後、ショ糖密度勾配に重層した。超遠心は、4℃で 72,000 x g, 24 時間行い、Triton 可溶性タンパク質から ECTR 複合体を分離した。

遠心によって ECTR 複合体を分離した結果、これまで明かにされていなかったこの複合体の特徴がいくつか明らかになり、その結果から以下のことが考えられた。テロメアシグナルが認めるられるフラクションの幅が広いことから、ささまな大小の ECTR 複合体が存在すると考えられる。また、ECTR-DNA のサイズは不均一であるが約 1 kb 以下と小さいこと、ECTR 複合体のサイズはリボソームの small subunit に近いことから、ECTR-DNA は、タンパク質と相互作用し、いくつかの ECTR-DNA とタンパク質によって大きな複合体を形成していると考えられる。
材料及び方法

1. Western blot 解析

II の「10. Western blot 解析」を参照して、TRF2 の検出を行った。また、検出後のメンブレンを抗体除去パッファーオで、50 ℃で30 分間インキュベート後、PBS-T で10 分間の洗浄を2 回行った。その後、II の「10. Western blot 解析」のブロッキング以降を参照して Mre11 の検出を行った。

[1 次抗体、2 次抗体の濃度]

primary antibody : 1 μg/ml mouse anti-TRF2 antibody (Transduction Laboratories)
secondary antibody : 1/100,000 Anti-Mouse Ig, HRP-Linked whole antibody (Amersham Biosciences)

2. 免疫沈降法

60 μl の Protein G Sepharose (Amersham Biosciences) を加え、4 ℃で2 時間、レーダーで懸濁後、2,000 g, 5 min, 4 ℃で遠心し、上清を回収することによって、非特異的に免疫沈降物に混入する物質を除いた。mouse anti-TRF2 antibody (Transduction Laboratories) を2 μg 加え、4 ℃で一夜、レーダーで懸濁することによって、抗原-抗体複合体を形成させた。その後、60 μl の Protein G Sepharose を加え、4 ℃で2 時間、レーダーで懸濁することによって、生じた複合体を吸着させた。免疫沈降物はII の「2. 細胞の調製」と同様の lysis buffer で5 回洗浄することによって、非特異的に吸着したものに用いた。免疫沈降物を等量の 2 X SDS-PAGE sample buffer で懸濁し、3 分間煮沸することで免疫複合体を分解した後、遠心(15,000 rpm, 5 min) 上清をサンプルとして用いた。免疫沈降物を用いて Western blot 解析および、銀染色を行った。
化させた。操作はまず、濃縮した試料に 1-5% TFA を約 1/10 量加え、TFA の終濃度を 0.1% 0.5% とした。P20 のマイクロビペットを 10 μl に合わせ、ZipTip をつけて、50% ACN を吸い上げ、廃液用のチューブに捨てる操作を 3 回繰り返し、樹脂を前処理した。0.1% TFA を吸い上げ、廃液用のチューブに捨てる操作を 3 回繰り返し、平衡化後、試料をゆっくり 5 回ビペットで吸い上げ、廃液用のチューブに捨てその操作を 3 回繰り返し、塩等を洗い流した後、マトリックス溶液（2 mg/ml CHCA in 50% ACN、0.1% TFA）2 μl 中でゆっくり 5 回ビペットで溶媒に溶かし、プレート上でマトリックスを結晶化させた。MALDI（Matrix-assisted Laser Desorption Ionization）-TOF（Time of flight）型の質量分析計 BiFlex（BRUKER）を使用し質量を測定後、PMF（Peptide Mass Fingerprint）法によってデータベース検索（Mascot Search, http://www.matrixscience.com）し、タンパク質を同定した。

4. テロメア DNA と Hsp70 の二重染色

「4. テロメア DNA とタンパク質の二重染色」を参照して行った。

[1次抗体、2次抗体、プローブの濃度]

- primary antibody: 5 μg/ml Anti-Hsp70 monoclonal antibodies (Calbiochem)
- secondary antibody: 5 μg/ml Alexa Fluor 488 goat anti-mouse IgG (Molecular Probes)
- probe: 0.4 μg/ml Cy3-labeled telomere PNA probe

結果及び考察

1. TRF2 の検出

ECTR 複合体は、テロメア結合タンパク質のうちの 1 つである TRF2 を含んでいることが予測されるため、このことを確認した。II の「7. ECTR フラクションの再処理、解析」で再処理後濃縮されたサンプルのうちフラクション 8-11 を用い、各フラクションを 1 つにまとめ、抗 TRF2 抗体を用いて Western blot 解析を行った。その結果、薄いながらも TRF2 のバンドが検出された（Fig. 20）。

次に、エッベンドルフ冷却遠心機 5417R を用いた遠心の上清を用いて、抗 TRF2 抗体で免疫沈降を行い、抗 TRF2 抗体を用いた Western blot 解析によって免疫沈降物を解析した結果、TRF2 のバンドが認められた（Fig. 21）。冷却遠心の上清には、染色体末端のテロメアとも ECTR-DNA とも結合していない TRF2 も含まれていると考えられるが、検出された TRF2 の一部は、ECTR 複合体に含まれる TRF2 である可能性がある。また、この抗体を用いて TRF2 の免疫沈降が可能であることも確認できた。しかし、TRF2 タンパク質の量はかなり少なく、銀染色では、非特異的なバンドのみで、予想分子量付近にはバンドは認められなかった。

次に、Fig. 20 とは異なる方法でフラクションを濃縮し、TRF2 の存在を確認した。ECTR 複合体の存在するフラクション 8-13 をまとめて 1 つにし、抗 TRF2 抗体で免疫沈降を行い、抗 TRF2 抗体を用いた Western blot 解析によって免疫沈降物を解析した。その結果、わずかではあるが TRF2 のバンドが認められた（Fig. 22）。また、抗体除去後、同じメプランで抗 M62 抗体を用いた Western blot 解析を行ったが、バンドは認められなかった。

ECTR 複合体に M62 抗体が存在するか否かを確認した場合、存在量は TRF2 に比べかなり少ないと考えられることから、これは妥当な結果である。Fig. 20 と Fig. 22 の結果から ECTR フラクションでの TRF2 の存在することがわかった。この TRF2 は、ECTR 複合体に含まれているものであることが期待される。

II の「5. リポソームの除去」で、ECTR-DNA のサイズが小さいこと、ECTR 複合体はリポソームの small subunit に近い沈降定数をもとと考えられることから、ECTR-DNA は、タンパク質と相互作用し、その結果大きな複合体を形成していると考えられたと考察した。その後、異なる 2 つの方法でフラクションを濃縮し、ECTR フラクションに TRF2 が存在することを確認した。間接的であるが、これらの結果から、TRF2 を含むいくつかのタンパク質と ECTR-DNA が大きな複合体を形成していることを考えることができる。

Fig. 20. Detection of TRF2 after TCA concentration in ECTR fractions

再処理後、フラクション 8-11 のみ用い、抗 TRF2 抗体を用いて Western blot 解析を行った。KMST-6 細胞から SDS によってタンパク質を抽出し、ポジティブコントロール（PC）として用いた。PC は 20 μg、PC 2 は 1 μg 添加した。
2. ECTR フラクションに含まれるタンパク質の質量分析による同定

Fig. 17. Fig. 19 で ECTR-DNA のピークと類似した位置に現れる共通のバندが認められる。Fig. 17 ではフラクション 8-11, Fig. 19 ではフラクション 8-11 の分子量 66 kDa 付近のバンドは、ECTR-DNA タンパク質複合体組成成分の一つと考えられる。そこで、Fig. 17 の分子量 66 kDa 付近のバンドをゲルから切り出し、質量分析によってタンパク質を同定した。その結果、このタンパク質は Hsp70 であることがわかった。Hsp70 は、新生タンパク質のフォールディングや会合、変性タンパク質の凝集阻止と修復など細胞内タンパク質品質管理を行っていることから、Hsp70 が ECTR 複合体の構成成分であるとすれば、複合体の構造を維持するための役割を持っている可能性がある[80]。真核生物の Hsp70 は、細胞内での役割が十分には解明されていない。今後、ECTR 複合体の中での Hsp70 の役割が解明されることによって、Hsp70 の機能の解明に貢献することが期待される。

Fig. 22. Detection of TRF2 after immunoprecipitation in ECTR fractions

ECTR フラクション(8-13)をまとめ1つにし、抗TRF2抗体で免疫沈降を行い、抗TRF2抗体を用いたWestern blot解析によって免疫沈降物を解析した。IPは免疫沈降物を解析した。supは免疫沈降物を解析した。supは免疫沈降後の上清(supernatant produced by IP)を示す。フラクション14,フラクション14, supは免疫沈降個体によって濃縮後、一部を示した。

Fig. 23. MALDI-TOF-MS analysis of ECTR fraction

66 kDa 付近のバンドを切り出し、質量分析によってタンパク質を同定した。
3. Hsp70 とテロメアの共局在の検討

KMST-6 細胞を用いて、Hsp70 とテロメア DNA の二重染色を行い、これらの共局在を検討した。今回の結果からは、Hsp70 とテロメアの共局在は確認されなかった(Fig. 24)。これは、Hsp70 が細胞内に豊富に存在するタンパク質であるため、たとえテロメアに局在するものがあっても、細胞質等に局在する Hsp70 のシグナルにくるべると、シグナルが弱すぎて確認できなかった可能性がある。

Fig. 24. Double staining of interphase KMST-6 cells with a telomere probe and an antibody of Hsp70

KMST-6細胞を用いて、Hsp70の免疫染色とtelomere PNA FISHによる二重染色を行い、Hsp70とテロメア配列の共局在を検討した。

結論

ECTR フラクションに TRF2 が存在することから、ECTR-DNA が TRF2 を含むいくつかのタンパク質と相互作用をし、その結果大きな複合体を形成していると考えることができる。また、ECTR-DNA のピークと比較的類似した位置に現れるタンパク質のバンドを質量分析によって同定した結果、Hsp70 であることがわかった。Hsp70 とテロメアの共局在は確認できなかったが、ECTR 複合体が Hsp70 を含む可能性が完全に否定されたわけではない。ECTR 複合体の構造を維持するために Hsp70 が複合体に含まれている可能性はある。
総括
ECTR複合体は、テロメラーゼ陰性不死化細胞にのみ存在し、染色体外にあり、テロメア繊り返し配列を持つECTR-DNAを含む。今回の結果から明らかにされたEC TR複合体の特徴をまとめると以下のようになる。
1. ECTR-DNAは約1kb以下と小さく、サイズが不均一である。
2. ECTR複合体のサイズは不均一であるが、リポソームのsmall subunitに近い沈降定数を持つと考えられる。
3. 分画したEC TRフラクションはTRF2を含む。
4. ECTR-DNAは約1kb以下と小さいこととEC TR複合体のサイズはリポソームのsmall subunit程度であることから、ECTR-DNAがタンパク質と相互作用し、その結果大きな複合体を形成していると考えられる。
5. 分画したECTR複合体はHsp70を含む可能性がある。

ところで、OginoらによってECTR-DNAの大多数が直線状であることが示されている[66]が、ECTR-DNAは約1kb以下であり、ループを形成するの是不可能であると考えられる。
よって、ECTR-DNAの末端がDNAダメージチェックポイントを活性化する可能性があり、また、今回、ECTR-DNAがタンパク質と相互作用していることを示しており、短いテロメアを持つ細胞において適応的に、ECTR-DNAの末端がタンパク質によって保護されている可能性も考えられる。

また、ECTR-DNAは、ALT細胞にのみ存在し、有限寿命細胞やテロメラーゼ陰性不死化細胞では、認められないことから、ECTR-DNAがALTメカニズムに関与している可能性がある。ALTメカニズムでは、組み換えによりテロメアが維持されている可能性がいくつか示されているが、ECTR複合体に含まれるタンパク質を明らかにすることによって、ECTR複合体の機能が明らかにされると同時にALTメカニズムの解析もさらに進むと考えられる。ALTメカニズムの分子機構が解明され、さらに正常細胞での抑制機構が解明されることによって、がん治療に大きく貢献することが期待される。

一方、分画されたECTR複合体は、さらに精製が必要かもしれないが、分画が困難な染色体末端のテロメアに代わって、テロメア結合タンパク質複合体の解析のモデルとして利用可能であると考えられる。テロメア結合タンパク質間の関連が進み、テロメア構造がより明らかにされることによって、テロメアの生体内での役割もさらに明確になり、その結果、老化、がん性のメカニズムの解明に寄与すると考えられる。

参考文献

for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271-1274.
謝辞

本研究を進めるにあたり、終始御指導をしていただきました広島大学大学院医歯薬学総合研究科の井出利憲先生に心から感謝申し上げます。

本論文の審査にあたり、適切な御助言をしていただきました広島大学大学院医歯薬学総合研究科の杉山政則先生、藤元貴啓先生に心から感謝申し上げます。

また広島大学大学院理学研究科の武俊駿先生に実験上の御指導をいただきました。心から感謝申し上げます。

最後に、困難な状況で研究を続けることに対して、暖かく見守って下さった友人達に心から感謝いたします。

75. 徳武巧記 (1998). ウエルナー遺伝子領域のゲノム解析と不死化細胞のテロメア解析、学位論文