Direct evidence for critical exchange coupling via Al layers in the heavy-fermion compound CePd$_2$Al$_3$

S.A.M. Mentink, G.J. Nieuwenhuys, A.A. Menovsky, and J.A. Mydosh
Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

H. Tou and Y. Kitaoka
Department of Material Physics, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
(Received 30 November 1993)

The long-range planar-type antiferromagnetic ordering in the heavy-fermion compound CePd$_2$Al$_3$ is shown to critically depend on the exact occupation and distribution of aluminum atoms over their available lattice sites. A polycrystalline sample ($T_N = 2.7$ K) is systematically compared with a nonordering single crystal, by means of susceptibility, specific heat and site-specific Al-NQR/NMR experiments. Implications for other Al-containing heavy-fermion systems are discussed.

I. INTRODUCTION

The hexagonal intermetallic compound CePd$_2$Al$_3$ is characterized as a heavy-electron antiferromagnet1,2 with $\gamma \approx 340$ mJ/mol K,2 and belongs to the same family as the magnetic superconductor UPd$_2$Al$_3$.3 The PrNi$_2$Al$_3$-type crystal structure consists of cerium-palladium layers, alternating along the c direction with isolated aluminum layers. Antiferromagnetic (AF) ordering below $T_N = 2.7$ K of cerium moments ($\approx 0.5 \mu_B$) was found in annealed polycrystals, whereas single crystals remain paramagnetic down to 0.4 K.4,5 The other relevant energy scales, as could be estimated from bulk experiments, are the Kondo temperature $T_K = 19$ K and crystal-field splitting energy $\Delta_1 = 33$ K and $\Delta_2 \gtrsim 600$ K. Here we report on the origin of the striking differences between polycrystal- and single-crystal samples of CePd$_2$Al$_3$.6 While metallurgical analysis and neutron diffraction only hint at the role of Al, it is the splitting of the 27Al nuclear quadrupole resonance (NQR) frequency in zero field that demonstrates a subtle distinction in Al-site occupation between the polycrystal- and single-crystal samples.

The magnetism of CePd$_2$Al$_3$ belongs to the planar class with weak interplane magnetic exchange coupling, J_z. We therefore ascribe the criticality of J_z to a different occupation and distribution of Al atoms over two possible sites. The same effect is proposed for the different superconducting transition temperatures T_c in various UPd$_2$Al$_3$ samples.7 The ferromagnetic (FM) character of CePd$_2$Ga$_3$ (Ref. 8) and pressure experiments on CePd$_2$Al$_3$ (Ref. 9) are taken as further evidence for our model.

II. CRYSTALLOGRAPHIC AND MAGNETIC STRUCTURE

Polycrystalline (PC) samples of CePd$_2$Al$_3$ were prepared by arc melting the pure (Ce:4N, Pd:5N, Al:6N) elements, with initial stoichiometry 1:2:3, one of which (PC1) was annealed at 800 °C for 1 week. Two single crystals, SC1 and SC2, were grown with the tri-arc Czochralski method, using 2% excess of aluminum in the starting material to compensate for Al evaporation. No effect of heat treatment was observed in any of the experimental properties of single crystals. Annealed SC1 was used for bulk experiments and neutron diffraction, while SC2 was studied by NMR and μ^+/SR.10 Table I lists the various samples with analyzed composition and lattice parameters. Single crystals are homogeneous and contain approximately 3 at.% less aluminum than polycrystals.

Structure refinement of powder neutron diffraction, performed on annealed polycrystalline samples from different sources, have been published by Dönni et al.11 The neutron diffraction results were indexed with the ideal PrNi$_2$Al$_3$-type crystal structure and correct 1:2:3 stoichiometry, and are in good agreement with the x-ray data. Note that the absolute compositions of Table I determined by electron probe microanalysis (EPMA) slightly differ from 1:2:3, probably due to complicated corrections inherent to this method. We therefore stress that only the relative compositions among the various samples of Table I should be considered as significant. The AF structure below $T_N = 2.8(1)$ K, determined by Mitsuda et al.12 and Dönni et al.11 resembles that of

<table>
<thead>
<tr>
<th>Sample</th>
<th>Composition</th>
<th>Heat treatment</th>
<th>a (Å)</th>
<th>c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>Ce${0.98}$Pd${1.92}$Al$_{3.10}$</td>
<td>800 °C/1 week</td>
<td>5.470</td>
<td>4.216</td>
</tr>
<tr>
<td>PC2</td>
<td>Ce${0.98}$Pd${1.94}$Al$_{3.09}$</td>
<td>as-cast</td>
<td>5.477</td>
<td>4.222</td>
</tr>
<tr>
<td>SC1</td>
<td>Ce${1.03}$Pd${0.06}$Al$_{2.97}$</td>
<td>1000 °C/1 week</td>
<td>5.473</td>
<td>4.216</td>
</tr>
<tr>
<td>SC2</td>
<td>Ce${1.06}$Pd${0.99}$Al$_{2.96}$</td>
<td>as-grown</td>
<td>5.469</td>
<td>4.214</td>
</tr>
<tr>
<td>PC3</td>
<td>La${0.99}$Pd${1.92}$Al$_{3.09}$</td>
<td>800 °C/1 week</td>
<td>5.500</td>
<td>4.224</td>
</tr>
</tbody>
</table>

TABLE I. Electron probe microanalysis, heat treatment, and lattice parameters indexed by the PrNi$_2$Al$_3$ structure (x-ray diffraction) of various samples of CePd$_2$Al$_3$ and annealed polycrystalline LaPd$_2$Al$_3$.
III. RESULTS

The susceptibility, \(\chi \equiv M/H \), was measured on PC1 and SC1 along the a and c axes of the hexagonal lattice, in an external field of 0.5 T. Figure 1 displays the various \(\chi(T) \) up to 25 K. The strong anisotropy of the magnetic moment is reflected in the large response along the a axis compared to the c axis. For PC1, a downward kink signals long-range AF order below \(T_N = 2.7 \) K. Above 100 K (not shown) \(\chi \) is proportional to \(1/T \), with effective moment 2.37 \(\mu_B/\text{f.u.} \) and Curie-Weiss temperature \(-30.3 \) K. As the reference compound LaPd_{2}Al_{3} is Pauli paramagnetic with small \(\chi_P = 2.3 \times 10^{-9} \text{ m}^3/\text{mol} \), this moment can be fully assigned to cerium. Figure 1 shows the ever-increasing paramagnetic behavior of SC1 down to 1.6 K. As-cast PC2 behaves similarly.\(^2\) \(\chi \) can be satisfactorily described by a crystal-field-split ground state \(\Gamma_7 = |\pm 1/2 \rangle \) and excited states \(\Gamma_9 = |\pm 3/2 \rangle \) at 33 K and \(\Gamma_8 = |\pm 5/2 \rangle \) at 800 K. Inelastic neutron scattering confirmed the lower excitation energy and placed a lower limit of \(\approx 600 \) K on the overall splitting.\(^10\)

CePd_{2}Al_{3} is classified as a heavy-fermion antiferromagnet\(^{12}\) by its large electronic specific heat coefficient \(\gamma \approx 340 \text{ mJ/mol K}^2 \). Figure 2 depicts \(c/T \) versus temperature below 10 K for both PC1 and SC1. Note the sharp peak at \(T_N \) for PC1 and the increasing \(c/T \) for SC1. The estimated entropy released in the magnetic transition, \(S_{\text{ord}} = 0.35 R \ln 2 \) (indicating reduced-moment ordering), is smeared out in single crystals. Here \(c/T \) reaches 900 mJ/mol K\(^2\) at 1.5 K. The proximity to a magnetic transition suggests that the entropy involved is mainly of magnetic origin, stemming from in-plane magnetic fluctuations, in accordance with the slowly increasing zero-field \(\mu^+ \)-relaxation rate.\(^10\)

Its site-specific nature makes NMR and NQR the ideal techniques to probe the influence of the isolated aluminum layer on the magnetic and superconducting properties of 1:2:3 materials.\(^14,15\) A 1/T\(_1\) study on polycrystalline CePd_{2}Al_{3} was performed in Ref. 16, where a Kondo temperature \(T_K = 20 \) K was estimated. The NMR spectra on fine powders of PC1, PC2, and SC2 were obtained by tracing the spin-echo intensity as a function of magnetic field at a fixed frequency, while the NQR spectra result from the spin-echo signal as a function of frequency in zero field. Due to the electric quadrupole moment of \(^{27}\text{Al} \), any inhomogeneous internal electric-field gradient in the lattice will affect the NQR lines. A single line from the transition of \(m_I \) states \(|\pm 3/2 \rangle \leftrightarrow |\pm 5/2 \rangle \), will (i) split if there is more than one unique field gradient (this may be interpreted as the occurrence of more than one Al site with different point symmetries) and (ii) broaden if the electric-field gradient is inhomogeneous.

Both effects combine into split, broadened lines when multiple positions are inequivalently occupied and the surrounding charges are inhomogeneously distributed. Figure 3, which displays a systematic variation of the NQR spectra for PC1, PC2, and SC2, shows precisely this effect. All spectra are composed of two peaks at 2.01 and 1.91 MHz. However, the linewidth and relative intensity of the lower satellite peak significantly increase as summarized in Table II. Surprisingly and in contrast with the structure refinements, the split transition in the NQR spectrum proves that the aluminum atoms experience two inequivalent electric-field gradients, most likely associated with the Al-site occupation. A similar but smaller effect is found in UT_{2}Al_{3} (\(T = \text{Ni, Pd} \)) compounds.\(^15\) As neutron diffraction rules out any structural symmetry lowering or atomic-site interchange, within the inherent detection limit, a more subtle deviation from the ideal PrNt_{2}Al_{3} structure must be in-
ferred. We propose that the Al atoms can rearrange over two sites, induced by either disorder (PC2) or vacancies (SC2). The lattice symmetry remains unchanged if the Al atoms slightly displace in the c direction, previously indicated from the single-crystal neutron diffraction. Then the satellite peak in the NQR frequency is due to the change of the electric-field gradient at the Al nucleus caused by the surrounding Al atoms and/or the mixing effect with Ce-4f states.

Our NMR data in the field (not shown) on PC1 agree with Ref. 16. However, as-cast PC2, which does not undergo a long-range AF transition, exhibits a large distribution of spin-lattice relaxation times T_1 below the same $T_N \approx 2.7$ K. This reflects the presence of short-range magnetic correlations and the proximity of the AF ordering.

IV. DISCUSSION

In order to construct a suitable model for the magnetism of CePd$_2$Al$_3$, we use the following ingredients.

(i) The cerium atoms form a regular hexagonal lattice, with the magnetic moments directed parallel to the hexagonal plane.

(ii) The palladium atoms are very close to cerium (much closer than in, e.g., the CeT$_2$X$_3$ series), implying strong in-plane f-d hybridization, J_{f-d}.

(iii) The aluminum atoms are situated close to the $z = 1/2$ plane, isolated from the other atoms.

(iv) The aluminum atoms can occupy two sites, depending on the degree of disorder and the amount of Al vacancies.

The magnetic ordering temperature in the Doniach model for a one-dimensional array of Kondo ions is governed by the competing Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, leading to the "Kondo-necklace" phase diagram. We earlier determined that CePd$_2$Al$_3$, if placed in this phase diagram, should be situated on the right-hand side of the maximum ordering temperature, close to the magneton-magnetic phase boundary, due to the large in-plane hybridization J_{f-d}. The large J_{f-d} is used here only to explain the reduced ordered moment and rather large Kondo temperature. The reduced cerium moments are confined to the basal plane and are magnetically correlated in these planes at low temperatures. However, long-range three-dimensional magnetic order can only be generated by the magnetic exchange parameter J_z, which couples the magnetic planes via the aluminum layer. This coupling involves RKKY-type interactions between the partially hybridized magnetic f electron of cerium with the s,p-electron cloud of the aluminum atoms.

The Doniach phase diagram is a one-dimensional model, in which anisotropic exchange is not incorporated. Therefore, our results cannot be understood by the Doniach model alone. We propose that the large anisotropy of CePd$_2$Al$_3$, to a first approximation, allows for a separate treatment of the two interactions: the f-d electron-band hybridization J_{f-d} in the basal plane, and the magnetic exchange, J_z, between the planes. This analysis is similar to the existence of two nearly separate subsystems of (hybridized) 5f-quasiparticle states in homologous UPd$_2$Al$_3$, proposed to cause the increase of both T_N and γ with increasing hydrostatic pressure. Obviously, in a more sophisticated description of Kondo lattices, the effects of the different anisotropic exchange interactions should be connected. To the best of our knowledge such a theory has not yet been developed. In the favorable cases of CePd$_2$Al$_3$ and UPd$_2$Al$_3$ with their large crystallographic and magnetic anisotropy, the conjecture of two nearly independent exchange parameters is believed to be justified.

The extreme sample dependence of AF ordering and the small value of $T_N = 2.7$ K of CePd$_2$Al$_3$ indicate that J_z is small, as opposed to the large J_{f-d}. As the magnetic correlations build up because of the polarization of the (mainly) aluminum s,p-like conduction-electron cloud between two magnetic layers, any irregularity in that layer will obstruct magnetic ordering.

The differences in magnetic behavior between the various samples in Tables I and II can now be explained.

(i) In annealed polycrystals (PC1) a stoichiometric amount of Al is almost fully distributed over the 3(g) site in the PrNi$_2$Al$_3$ structure. This produces a well-defined electronic environment in which long-range antiferromagnetism can develop. The magnetic correlation length along the c axis, ξ_c, is infinite.

(ii) In as-cast polycrystals (PC2) there are clearly two
Al sites (Fig. 3) with random occupation. This leads
to an irregular electronic environment, thereby reducing
the average coupling strength between the planes, \(J_z \).
Here magnetic correlations exist, but long-range order is
prevented and \(\xi_c \) remains finite.\(^2\)\(^6\)
(iii) In annealed (SC1) or as-grown (SC2) single crys-
tals it is the Al deficiency which generates two Al sites
with highly inhomogeneous local electronic environment.
This diminishes the interplanar coupling strength \(J_z \)
below its critical value; thus \(\xi_c \rightarrow 0 \).

The above model is consistent with two independent
experiments. First, if an atom with both a larger spatial
extension and density of conduction-electron states (e.g.,
Ga) is substituted for Al, the coupling strength should
increase.\(^20\) The observed FM ground state of CePd\(_2\)Ga\(_3\)
below \(T_C = 6 \) K (Ref. 8) indicates a twice stronger \(J_z \).
Note that the crystalline electric field (CEF) splitting
and moment direction are similar to that of CePd\(_2\)Al\(_3\).

Second, the application of hydrostatic pressure influ-
ences both magnetic coupling and the hybridization. If
the pressure dependences of \(J_z \) and \(J_{f-d} \) have opposite
sign, an anomalous pressure dependence of \(T_N \) may
result. An increase of pressure leads to an increase of
the hybridization \(J_{f-d} \). The pressure dependence of \(J_z \)
may have positive or negative sign, depending on the
details of the damped oscillatory RKKY interaction. The
influence of hydrostatic pressure on both resistivity and
specific heat has been investigated on annealed sam-
pleS from different sources.\(^9\)\(^21\) A moderate pressure of
5.4 kbar enhances \(T_N \) of PC1 from 2.7 K to 2.8 K (with
rate +0.02 K/kbar), without affecting the magnetic en-
tropy, \(S_{\text{ord}} \). Above 8 kbar, \(T_N \) starts to decrease by
0.1 K/kbar, and \(S_{\text{ord}} \) falls rapidly to zero. This non-
monotonic behavior of \(T_N \) suggests the presence of two
competing effects, which can be readily explained by our
model with near-independent anisotropic exchange. It
suggests a large positive pressure dependence of \(J_z \), caus-
ing the initial increase of \(T_N \). The subsequent decrease of
\(T_N \) is proposed to result from an increasing \(J_{f-d} \), which
reduces both \(\mu_{\text{ord}} \) and \(S_{\text{ord}} \).

In conclusion, we have demonstrated the close rela-
tionship between subtle structural effects and magnetic
ordering in CePd\(_2\)Al\(_3\) by macroscopic and microscopic
experimental methods. The presented model incorpo-
rates a second magnetic exchange parameter \(J_z \), in addi-
tion to the \(f-d \) electron-band hybridization \(J_{f-d} \). Our
model is thought to be valid in the limit of strong crys-
tallographic and magnetic anisotropy. It is suggested to
be applicable to all 1:2:3 materials with nearly local mo-
mments, viz., CePd\(_2\)Al\(_3\), CePd\(_2\)Ga\(_3\), and UPd\(_2\)Al\(_3\), where
the superconducting transition temperature strongly de-
dpends on Al concentration.\(^7\)\(^10\) A similar situation exists
in CeAl\(_3\) where single crystals having one Al-NMR signal
show AF order,\(^22\) while polycrystals with more than one
NQR component do not.\(^23\)

ACKNOWLEDGMENTS

This work was partially supported by the Dutch Foun-
dations FOM and NWO. We acknowledge P. Fischer and
P. Böni for valuable discussions and C. Wassilew for mak-
ing available the unpublished pressure data.

\(^1\) Also at Van der Waals–Zeeman Laboratory, University of
Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam,
The Netherlands.

\(^2\) H. Kitazawa, C. Schank, S. Thies, B. Seidel, C. Geibel, and

\(^3\) S.A.M. Mentink, N.M. Bos, G.J. Nieuwenhuys, A.A. Menos-

\(^4\) C. Geibel, C. Schank, S. Thies, H. Kitazawa, C.D. Bredl,
A. Böhm, M. Rau, A. Grauel, R. Caspary, R. Helfrich,

\(^5\) S.A.M. Mentink, N.M. Bos, G.J. Nieuwenhuys, A. Drost,
F.Friekke, L.T. Tai, A.A. Menovsky, and J.A. Mydosh,

\(^6\) H. Kitazawa, A. Morii, S. Takano, T. Yamada, A. Mat-
sushita, T. Matsumoto, N. Sato, T. Komatsubara, C.
Schank, C. Geibel, and F. Steglich, Physica B 186-188,

\(^7\) S.A.M. Mentink et al. (unpublished).

\(^8\) T. Sakon, K. Imamura, N. Takeda, N. Sato, and T. Kom-

\(^9\) E. Bauer, R. Hauser, E. Gratz, G. Schaudy, M. Rotter,
A. Lindbaun, D. Gignoux, and D. Schmitt, Z. Phys. B 92,

\(^10\) F. Nolting, A. Eichler, S.A.M. Mentink, and J.A. Mydosh,
Physica B (to be published).

\(^11\) S.A.M. Mentink, G.J. Nieuwenhuys, A.A. Menovsky, J.A.
Mydosh, A. Drost, F. Friekke, Y. Bando, T. Takahatake,
P. Böni, P. Fischer, A. Furrer, A. Amato, and A. Schenk,
Physica B (to be published).

\(^12\) A. Dönni, P. Fischer, B. Roessli, and H. Kitazawa, Z. Phys.
B 93, 449 (1994).

\(^13\) S. Mitsuda, T. Wada, K. Hosoya, H. Yoshizawa, and H.

\(^14\) A. Krimmel, P. Fischer, B. Roessli, H. Maletta, C. Geibel,
B 86, 161 (1992); A. Krimmel, A. Loidl, P. Fischer,
B. Roessli, A. Dönni, H. Kita, N. Sato, Y. Endoh, T. Komat-
subara, C. Geibel, and F. Steglish, Solid State Commun.
87, 829 (1993).

\(^15\) Y. Kitaoka, K. Ueda, T. Kohara, Y. Kohori, and K.
Asayama, in *Theoretical and Experimental Aspects of Va-
lence Fluctuations and Heavy-fermions*, edited by L.C.

\(^16\) M. Kyogaku, Y. Kitaoka, K. Asayama, C. Geibel,
(1993).

\(^17\) F. Fujiwara, Y. Yamanashi, and K. Kumagai, Physica B
(to be published).

\(^18\) T. Endstra, G.J. Nieuwenhuys, and J.A. Mydosh, Phys.

\(^19\) S. Doniach, in *Valence Instabilities and Related Narrow-
Band Phenomena*, edited by R.D. Parks (Plenum, New
20 Strong support for this idea is found in the increasing T_N with Ga concentration in CeAl$_{2-x}$Ga$_x$: M.A. Fremy, D. Gignoux, D. Schmitt, and A.Y. Takeuchi, J. Magn. Magn. Mater. 82, 175 (1989), and references therein.
21 C. Wassilew (private communication).