このエントリーをはてなブックマークに追加
ID 46213
file
creator
Antoku, Daiki
Satake, Shuhei
Mae, Tomoya
subject
fullerenes
liposomes
energy transfer
photodynamic therapy
photosensitizers
NDC
Chemistry
abstract
The weak absorbance of pristine C60, C70, and fullerene derivatives at wavelengths over 600 nm hampers the use of these molecules as photosensitizers (PSs) for photodynamic therapy (PDT). The coexistence of light-harvesting antenna molecules with a fullerene derivative in lipid membrane bilayers solved this issue. By controlling the location of the C60 derivative in the lipid membrane, the liposomal dyad system for PDT improved the photodynamic activity via an efficient photoenergy transfer from antenna molecules to the fullerene derivative. The photodynamic activity was found to be much higher than those of dyad systems using pristine C60 and C70.
description
This work was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No. JP16H04133) and a Grant-in-Aid for Challenging Exploratory Research (Grant No. JP16K13982).
journal title
Chemistry - A European Journal
volume
Volume 24
issue
Issue 29
start page
7335
end page
7339
date of issued
2018-05-23
publisher
Wiley-VCH
issn
0947-6539
1521-3765
publisher doi
pubmed id
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
author
rights
Copyright (c) 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
This is the peer reviewed version of the following article: D. Antoku, S. Satake, T. Mae, K. Sugikawa, H. Funabashi, A. Kuroda, A. Ikeda, Improvement of Photodynamic Activity of Lipid-Membrane-Incorporated Fullerene Derivative by Combination with a Photo-Antenna Molecule, Chem.-Eur. J., 24, 7335−7339, 2018, which has been published in final form at https://doi.org/10.1002/chem.201800674. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
department
Graduate School of Engineering
Graduate School of Advanced Sciences of Matter
note
Post-print version/PDF may be used in an institutional repository after an embargo period of 12 months.