このエントリーをはてなブックマークに追加
ID 15025
file
creator
Yanagida, Takayuki
Kasama, Daisuke
Kokubun, Motohide
Makishima, Kazuo
Yanagitani, Takagimi
Yagi, Hideki
Shigeta, Takashi
Ito, Takashi
subject
Ce3+
Ceramic
Quenching
Scintillators
emperature dependence
Y3Al5O12 (YAG)
NDC
Physics
abstract
The temperature dependence (from -20 to +20 degrees C) of gamma-ray irradiated light outputs, energy resolutions, and decay time profiles of three YAG:Ce poly-ceramic scintillators are studied. The Ce concentrations are 0.5, 0.05, and 0.005 mol%.0 The relative light yield of the YAG:Ce with 0.5 mol% with a 2 μs shaping time was measured as 1 : 1.08 : 1.14 at +20, 0, and -20 degrees C, respectively, including the temperature dependence of the phototube (-0.2% /degree). The energy resolution stays almost constant at 7.2-1.984238or 662 keV gamma-rays. The ceramic with 0.05 mol??к_?ۿ?Sڟ?hows the almost same properties, while the light yield of that with 0.005 mol-1230736516s 2-4 times lower (hence the energy resolution becomes 14-19%). All the scintillators exhibit good linearities within ∼ 1 % between the light output and the irradiated gamma-ray energy from 59.5 keV to 662 keV. The decay time constants of the dominant decay components are about 80 ns and 300 ns at +20 degrees C. As the temperature increases from -20 to +20 degrees C, the effective decay of all the ceramics becomes faster, because the decay time constants and fractions of the slower components shorten and decrease, respectively. This result suggests that carriers which are captured in shallow traps before transferring excitation to Ce ions can escape the traps more easily at higher temperatures. Considering the decrease of the total light yield toward higher temperatures, it is thought that thermal quenching starts to dominate the temperature dependence of the ceramic YAG:Ce around the room temperature. The 0.5 mol?ڿ?R?@ʿ???S?cintillator shows a lower quenching energy than the 0.05 mol1001122502ne. This can be explained in terms of self absorption of Ce emission.
journal title
IEEE Transactions on Nuclear Science
volume
Volume 53
issue
Issue 4
start page
2404
end page
2408
date of issued
2006-08
publisher
IEEE
issn
0018-9499
ncid
publisher doi
language
eng
nii type
Journal Article
HU type
Journal Articles
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
relation is version of URL
http://dx.doi.org/10.1109/TNS.2006.878575
department
Graduate School of Science