このエントリーをはてなブックマークに追加
ID 34675
file
creator
subject
ブラ・ケット表記
状態ベクトル
固有ベクトル
射影演算子
単位演算子
NDC
Physics
abstract
多くの量子力学のテキストに,波動関数の積の積分 ∫Ψm*Ψmdτ (1) がブラ・ケット表記 <Ψm|Ψm> (2) によりシンプルに表すことができると書かれている。その際,ブラ<Ψm|とケット|Ψm> はそれぞれ次のように <Ψm|=Ψm* (3) |Ψ>=Ψm (4) 波動関数と対応しており,互いに複素共役な波動関数を表していると説明される(ことが多い)。しかし,この解説に対して下記のような疑問(や要望)は生じないだろうか。 Q1. ブラとケットが互いに複素共役な波動関数を表すとして,その積である式(2)がなぜ積分という意味をもつのだろうか?ブラとケットが組み合わさるときだけ積分の意味をもつというルール3を設けるのだろうか? Q2. 波動関数群が正規直交系4をなすとき,波動関数自身の内積が1,異なる波動関数間の内積が0であることを, ∫Ψm*Ψmdτ=<Ψm|Ψm>=1 (5) ∫Ψm*Ψndτ=<Ψm|Ψn>=0 (6) と表す。式(5)や式(6)の左辺の積分は数学(代数学)の内積の定義を満たすから,波動関数もベクトルであるといえるが,波動関数がベクトル的に扱えることや“直交"することをもう少し(数ベクトルや幾何ベクトルのように)直感的に理解することはできないだろうか?本書は,上記2点に関連してブラ・ケット表記の意味を理解し,その有効性と威力を活用するために書かれたmonographである
description
第3版第3刷
publisher
漁火書店
date of created
2018-05-13
language
jpn
nii type
Book
HU type
Books
DCMI type
text
format
application/pdf
text version
publisher
rights
Copyright (c) 2018 Author
relation
第2版第6刷(2013)
第3版第1刷(2014)
第3版第2刷(2017)
relation url
department
Graduate School of Science



Last 12 months's access : ? times
Last 12 months's DL: ? times


This month's access: ? times
This month's DL: ? times