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Abstract

This thesis presents automatic designs of controllers for a multi-legged robotic swarm. Swarm

robotics aims to generate desirable collective behaviors based on local interactions of numerous

autonomous robots. Many studies in swarm robotics have discussed how to design robot

controllers for defining the interactions of robots. However, in addition to the controller

settings, the local interactions between robots or robots and the environment also depend on

robot specifications, such as body structure, movability, and sensor settings. Based on this

point of view, we can find that studies in swarm robotics typically employed mobile robots

driven by wheels or vibrating rigid legs. In general, by using these types of robots, collective

behaviors are limited in two-dimensional space. To overcome this limitation, several studies

utilize different types of robots, such as unmanned aerial vehicles, underwater robots, and

multi-legged robots.

This thesis focuses on generating collective behaviors of a multi-legged robotic swarm.

Multi-legged robots are expected to operate in rough terrains that are difficult for wheeled-

mobile robots to move well. Additionally, multi-legged robotic swarms are expected to exhibit

novel collective behaviors inspired by the self-assembly of army ants. However, designing a

robot controller becomes a challenging problem because a controller decides not only how to

coordinate a large number of robots based on local observations, but also how to coordinate a

large number of actuators in individual robots. Therefore, multi-legged robotic swarms raise a

new problem domain as a combination of two types of large-degree-of-freedom controls. To

address this problem, this thesis employs automatic design methods used in swarm robotics.

This thesis contributes to the swarm robotics community by following two aspects.

First, this thesis presents evolutionary robotics approaches for designing controllers of a

multi-legged robotic swarm. Evolutionary robotics is a technique to utilize evolutionary

algorithms for designing robot controllers. In swarm robotics, evolutionary robotics have shown

promising results for designing collective behaviors. In addition, it has succeeded in designing

gaits for multi-legged robots. This thesis aims at the hybridization between evolving gaits

and collective behaviors. Experimental results showed that the evolutionary robotics approach

successfully designed controllers of a multi-legged robotic swarm in several task scenarios, such

as in rough terrains or generating a three-dimensional collective behavior.

Second, this thesis presents the reinforcement learning-based approach. Reinforcement

learning is the common machine learning method for obtaining an agent’s behaviors through

interactions with the environment. Generally, designing a controller for robotic swarms becomes

a challenging problem for reinforcement learning due to the dynamic environmental settings or

local observations. On the other hand, recent trends in reinforcement learning have achieved

remarkable results by employing deep neural networks as the function approximator for an

agent policy or value functions. This thesis shows that a deep reinforcement learning algorithm

successfully designed a controller of a multi-legged robotic swarm.





Acknowledgements

There are many people I would like to thank for their contributions to this thesis. This

work would not have been possible without their supports.

First and foremost, I would like to thank my supervisor, Prof. Kazuhiro Ohkura, for

helpful advice on research and for providing all kinds of supports during my academic life

at Hiroshima University. Also, I would like to thank the Ph.D. thesis committee members,

Prof. Soichi Ibaraki, associate Prof. Yu Kawano, and Prof. Yoshiyuki Matsumura, for revising

the thesis and providing insightful comments.

I would thank past and current members of Machine Intelligence and Systems A Laboratory

(formerly Manufacturing Systems A Laboratory) for many help and supports. I enjoyed my

wonderful time at Hiroshima University due to my friends and colleagues.

This work was partially supported by JSPS KAKENHI Grant Number JP21J23095.

At last, I would like to thank my family for many supports. Without their supports, it

would be impossible for me to complete my studies.

July 2023

Daichi Morimoto





vii

Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Automatic Design Methods in Swarm Robotics . . . . . . . . . 9

2.1 Evolutionary Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Neuroevolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Evolutionary Robotics Approach for Designing Controllers . . 13

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Basis for Reinforcement Learning . . . . . . . . . . . . . . . . . 14

2.2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . 20

2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 3 Experimental Study on Generating Collective Step-climbing

Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Settings of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Task Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Robot Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Experimental Conditions . . . . . . . . . . . . . . . . . . . . . 29

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



viii Contents

Chapter 4 Neuroevolution Approach for Generating Collective Behavior

of a Multi-Legged Robotic Swarm . . . . . . . . . . . . . . . . . 39

4.1 Settings of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Evolving a Gait for a Single Robot (Exp-0) . . . . . . . . . . . 46

4.3.2 Evolving a Collective Behavior (Exp-1) . . . . . . . . . . . . . 48

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 5 Evolving Collective Behavior in a Rough Terrain Environment 51

5.1 Settings of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Environmental settings . . . . . . . . . . . . . . . . . . . . . . 52

5.1.2 Robot settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.3 Incremental Evolution . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 6 Generating and Analyzing Collective Step-Climbing Behavior 61

6.1 Settings of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Measurement Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 7 Deep Reinforcement Learning Approach for a Multi-Legged

Robotic Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . . . . . . 70

7.2 Settings of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2.1 Task Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.2 Robot Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.3.1 Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



Contents ix

7.3.2 Learning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 73

7.3.3 Reward Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3.4 Measurement Factors for Collective Behavior . . . . . . . . . . 75

7.4 Experiments for Comparing Reward Settings . . . . . . . . . . . . . . 76

7.5 Experiments on Rough Terrain . . . . . . . . . . . . . . . . . . . . . . 80

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Chapter 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix A Supplemental Parts in Fitness Functions and Reward Function 99

A.1 Fitness Function (Chapter 4 to Chapter 6) . . . . . . . . . . . . . . . . 99

A.2 Reward Function (Chapter 7) . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix B Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.1 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Appendix C Publications Presented in the Thesis . . . . . . . . . . . . . . . . 105

Appendix D List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 107





xi

List of Figures

1.1 Examples of collective behavior exhibited by natural swarm systems . . . . . 2

1.2 The structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Artificial neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Standard structures of artificial neural networks . . . . . . . . . . . . . . . . . 13

2.3 Basic framework for reinforcement learning problems . . . . . . . . . . . . . . 15

2.4 Simple example of Markov decision process . . . . . . . . . . . . . . . . . . . 16

3.1 Experimental environments. Environment 1 (Env-1) has no step within the

environment, while environment 2 (Env-2) has a step with a height of 0.36 m 24

3.2 Snapshot of the multi-legged robot . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Settings of the robot. Cyan dotted lines indicate the movable range of the

joint. The gray circular sector shows the visible range of the camera. Yellow

lines are the sensor ranges of the distance sensors . . . . . . . . . . . . . . . . 25

3.4 Structure of the robot controller . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Fitness of the best individual across generations in Env-1. Lines indicate the

average over five trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Example of collective behavior in Env-1 . . . . . . . . . . . . . . . . . . . . . 30

3.7 Fitness of the best individual across generations in Env-2 . . . . . . . . . . . 31

3.8 Box plots for the number of robots that have climbed the step over 100 trials.

The best-evolved controller in each experimental setting is evaluated . . . . . 31

3.9 Example of collective step-climbing behavior generated in Env-2 . . . . . . . 32

3.10 Environmental settings for the scalability test. The steps have a different

height or shape from the original one (step 1) . . . . . . . . . . . . . . . . . . 32

3.11 Box plots for the number of robots that have climbed the step in each step

condition. The best-evolved controller in setting C is evaluated over 100 trials 33

3.12 The new environmental setting. The passage of Env-2 is divided into two

regions, α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.13 Box plots for the number of robots that have climbed the step in setting α

and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



xii List of Figures

3.14 Box plots for the number of robots that have climbed the step in setting I

and IX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 The settings of the task environments. Environment 0 (Env-0) is the flat field

that designs a gait of a single robot. Environment 1 (Env-1) has walls and

evolves collective behavior using 10 robots . . . . . . . . . . . . . . . . . . . . 40

4.2 Settings of the robot. The main changes from Chapter 3 are movable ranges

of joints; they become wider for the better movabilities of robots. As in

Chapter 3, cyan dotted lines indicate the movable range of joints. The gray

circular sector shows the visible range of the camera. Yellow lines are the

sensor ranges of the infrared sensors . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Structure of the robot controller . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 The x-coordinate value of the final robot positions in each generation. Lines

are the average over 5 trials. The error bar shows the standard deviation . . 46

4.5 Example of obtained behavior in Exp-0. In each setting, six pictures are taken

from fixed points of view. The white arrows in the pictures show the direction

the robot is waking. (a) The robot obtains backward walking through some

evolution trials. (b) The robot shows forward walking while swinging the

body around the roll angle. (c) The robot keeps posture while walking . . . . 47

4.6 The details of the fitness transitions. Note that fitness2 in Setting 1-C is not

used for the final fitness calculation(K2 = 0). In (b), the plot corresponding

to Setting 1-C is the supplemental data to compare the ability to follow other

robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 The mean x-coordinate value of 10 robots in each generation. Lines are the

average over 5 evolutionary trials . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8 Transitions of δs (supplemental fitness parts) in Exp-1 . . . . . . . . . . . . . 49

4.9 Robot trajectories observed in Exp-1. The circle markers show the robot

positions at 2000 timestep. The triangle markers show the robot positions at

4000 timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Environmental settings for the path formation task. Environment 1 (Env-1) is

a square arena with a flat field. Environment 2 (Env-2) has the rough terrain

field that consists of cuboid blocks . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 The setting for floor blocks in Env-2. Blocks are arranged to shape a sine

wave surface. The ∆h shows the height difference between the highest point

and the lowest point on the surface. The ω is the frequency of a sine wave . . 53



List of Figures xiii

5.3 The robot specifications. The main change from Chapter 4 is the visible range

of the camera; the robot has an omnidirectional camera with a longer sight

range. In addition, the bottom IR sensor obtains the new ability to detect

the target areas. On the other hand, robots lost an electric compass. These

settings are employed to discuss a path formation task . . . . . . . . . . . . . 53

5.4 Structure of the robot controller . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Fitness transitions. Each plot is averaged over five evolution trials . . . . . . 57

5.6 Example of observed behavior in Setting 1 . . . . . . . . . . . . . . . . . . . . 57

5.7 Example of observed behavior in Setting 2 . . . . . . . . . . . . . . . . . . . . 58

5.8 Example of observed behavior in Setting 3 . . . . . . . . . . . . . . . . . . . . 58

5.9 Boxplots for flexibility tests. The boxes with bold lines show the terrain

setting where controllers are obtained . . . . . . . . . . . . . . . . . . . . . . 58

5.10 Observed behavior in (∆h, ω) = (0.2, 1.0) (“A” in Fig 5.9(c)) . . . . . . . . . 59

5.11 Observed behavior in (∆h, ω) = (0.3, 1.0) (“B” in Fig 5.9(d)) . . . . . . . . . 59

6.1 The experimental environment. In this study, the evolution process starts

from the situation where the robots can walk along the x-axis and form a

line. The preliminary evolution for obtaining walking and forming a line was

conducted as in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Settings of the robot. Cyan dotted lines indicate the movable ranges of the

joints. The gray circular sector shows the visible range of the camera . . . . . 62

6.3 Illustrations about the measurement factors . . . . . . . . . . . . . . . . . . . 63

6.4 The number of robots that have climbed the step. The dashed lines are mean

values over ten evolution trials. The solid lines show the best run . . . . . . . 65

6.5 Observed behavior in the initial generation . . . . . . . . . . . . . . . . . . . 65

6.6 Observed behavior in the last generation . . . . . . . . . . . . . . . . . . . . . 66

6.7 The transitions of measurement factors. All measurement factors are calculated

as the mean value of the population. Dashed lines are the results of each trial.

The black solid line is the mean value over ten evolutionary trials . . . . . . . 67

6.8 The box plots of the correlation coefficients. Each box consists of 100 cor-

relation coefficients. Each coefficient is calculated by 100 scores of each

controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Overview of the task environment. Ten robots are aligned along the x-axis

with random directions. The cyan line shows the visible range of the camera

equipped with a robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xiv List of Figures

7.2 Settings of the robot. Cyan dotted lines indicate the movable range of the

joint. The gray circular sector shows the visible range of the camera. The two

sections of the visible range (“Afollow” in the left figure) are used to calculate

the reward for following other robots. Yellow lines are the sensor ranges of

the proximity sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3 Structure of the robot controller . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4 Reward transition through the learning process. In each figure, plots are

averaged over 10 robots, 16 parallel environments, and 10 learning trials. The

standard deviation is calculated for 10 learning trials. Note that r2 is not

used as the reward signal in Setting A . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Results of re-evaluation for obtained controllers. Boxes of the notation “10”

show the results of the best controllers in each of the 10 learning trials (each

box consists of 500 plots). The “champ” means the controller that shows the

best performance among the left box (each box consists of 50 plots) . . . . . 77

7.6 Examples of observed behaviors. The behavior is generated by the “champ”

controller from each reward setting . . . . . . . . . . . . . . . . . . . . . . . . 78

7.7 Robot trajectories over 5000 timesteps in the task. The circle, triangle, and

star makers show the robot positions at 1000, 2500, and 4000 timesteps,

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.8 Transitions of measurement factors through the task period. These are the

results of the best controllers in each of the 10 learning trials in Fig. 7.5 . . . 78

7.9 Setting of the rough terrain field. The field consists of cuboid blocks that

form a sinusoidal surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.10 Reward transitions in the rough terrain field . . . . . . . . . . . . . . . . . . . 79

7.11 Boxplots of r2 for varied ∆h and ω in the rough terrain field. These are results

of the best controllers in each of the 10 learning trials . . . . . . . . . . . . . 79

7.12 Examples of robot trajectories at (∆h, ω) = (0.15, 1.0) (“A” in Fig 7.11(b)).

The circle, triangle, and star makers show the robot positions at 1000, 2500,

and 4000 timesteps, respectively . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.13 Transitions of measurement factors at (∆h, ω) = (0.15, 1.0) (“A” in Fig 7.11(b)) 81

7.14 Examples of robot trajectories at (∆h, ω) = (0.30, 1.0) (“B” in Fig 7.11(c)) . 82

7.15 Transitions of measurement factors at (∆h, ω) = (0.30, 1.0) (“B” in Fig 7.11(c)) 82

7.16 Examples of robot trajectories at (∆h, ω) = (0.45, 1.0) (“C” in Fig 7.11(d)) . 82

7.17 Transitions of measurement factors at (∆h, ω) = (0.45, 1.0) (“C” in Fig 7.11(d)) 82



xv

List of Tables

3.1 Settings of the genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Parameter settings in Env-1 and Env-2. Bold font is used to emphasize the

changes in the two environments . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The number of controllers in which the performance significantly decreased

from setting I. There are 10 controllers for each evolution trial, with a total

of 50 controllers compared for each setting . . . . . . . . . . . . . . . . . . . . 34

4.1 Parameter settings of the (µ, λ)-ES . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Parameter settings of the (µ, λ)-ES . . . . . . . . . . . . . . . . . . . . . . . 55

B.1 Parameter settings in Exp-0 and Exp-1 of Chapter 4. The bold font shows

the changed parameters in Exp-1 . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 Parameter settings of PPO in Chapter 7 . . . . . . . . . . . . . . . . . . . . . 104

B.3 Parameters for reward settings in Chapter 7 . . . . . . . . . . . . . . . . . . . 104





1

Chapter 1

Introduction

Natural organisms have provided not only large interests in science but also great inspirations

for engineering. For example, in robotics, a variety of bio-inspired robots have been developed

in the past half-century, such as insects [15, 17, 91], quadruped mammals [13, 42, 125],

birds [33, 120], fish [9, 70], and snakes [68, 159, 162]. In the machine learning field, the

mathematical models for biological nerve systems (i.e., artificial neural networks) have shown

great success and raise recent artificial intelligence trends [46, 83]. Add to these examples,

bio-inspired engineering has shown a wide range of achievements such as in materials, textiles,

and chemistry [11, 126]. Nature and living things will give fruitful ideas for studies of

engineering.

One of the interesting phenomena in natural creatures is the ability to show collective

behaviors by forming a group of individuals [136, 143, 155]. Fig. 1.1 shows examples of

collective behaviors exhibited by natural swarm systems. In flocks of birds or schools of

fish, aggregation and coordinated motions are hypothesized to reduce the risk of attack by

predators. Ant shows cooperative transport behavior for heavy objects that are hard for a

single individual to bring back to the nest. Honey bee shows waggle dance to share useful

information for mates, such as direction and distance to flowers, or location of new nest

candidate. These phenomena are remarkable in that there is no central control mechanism

to supervise the system, and they emerged from the autonomous and decentralized actions

of individuals. A variety of collective behaviors and their honed mechanisms gathered large

interests from scientists, and raise a new research domain, swarm intelligence [12, 71] which

is a subfield of artificial intelligence. The studies of swarm intelligence include a wide of

examples, such as exploring the mechanism of collective behaviors [31, 82, 113], developing

numerical optimization algorithms [26, 69, 73], and applications for multi-robot systems [7, 8].

Swarm robotics is a promising approach to applying swarm intelligence to a large number

of physically-embodied autonomous robots [14, 27, 51, 123]. In [123], swarm robotics is

defined as the study of how large number of relatively simple physically embodied agents
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(a) Flock of starlings (by Airwolfhound, licensed

under CC BY-SA 2.0).

(b) School of fish (by Sam Howzit, licensed under

CC BY 2.0).

(c) Cooperative transport in a group of ants (by

Axel Rouvin, licensed under CC BY 2.0).

(d) Swarm of bees (by Martin LaBar, licensed

under CC BY-NC 2.0).

Fig. 1.1. Examples of collective behavior exhibited by natural swarm systems.

can be designed such that a desired collective behavior emerges from the local interactions

among agents and between the agents and the environment. Similar to biological swarms, the

robot system in swarm robotics (i.e., robotic swarm) is expected to show capability beyond

the single individual. In addition, the robotic swarm is also expected to show system-level

properties, such as (i) fault torrence: when some of the robots become failures, the system

keeps to operate in the task with degradation of performance, (ii) flexibility: the system

can work in different task scenarios from the design time, (iii) scalability: the system cope

with the changes about the number of robots. To realize these properties, maturing studies

have tried to emulate several collective behaviors, such as aggregation [29, 44], pattern

formation [124, 132], path formation [111, 137], collective transport [47, 48], and collective

decision making [141, 151].

Designing interactions between robots or robots and environments is an essential part

to generate collective behaviors of robotic swarms. Many studies in swarm robotics have

discussed how to design a robot controller for defining the local interactions of robots. On the
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other side, robot specifications such as body structure, actuator settings, and sensor settings

are determined before or in parallel with the controller design. Obviously, interactions

between robots or robots and the environment depend on not only the controller setting

but also robot specifications. Based on this point of view, we can find that many studies in

swarm robotics have employed mobile robots driven by wheels or vibrating rigid legs, which

move on relatively flat surfaces [29, 47, 75, 96, 111, 122, 137, 141]. By using these types of

robots, researchers are able to focus on designing collective behavior because it is relatively

easy to modularize the primitive motions of each robot, such as moving forward or backward,

turning right or left, and stopping. On the other hand, collective behaviors generated by a

robotic swarm are usually limited in two-dimensional space. To overcome this limitation,

some studies in swarm robotics or multi-agent systems employed other types of robots,

such as underwater robots [9, 163], unmanned aerial vehicles [95, 154], and multi-legged

robots [114]. New types of robots will make it more difficult to control a single robot, while

they allow a robotic swarm to operate in a wider range of environments or tasks.

This thesis focuses on generating collective behaviors of a multi-legged robotic swarm. The

multi-legged robots show three-dimensional motions, such as climbing steps or obstacles by

coordinating a large number of joints in each leg. Therefore, the multi-legged robotic swarm

is expected to operate in rough terrain fields where wheeled mobile robots can not move

well. Additionally, the multi-legged robotic swarm is also expected to show novel collective

behaviors inspired by legged creatures. For example, army ants are known for self-assembly,

which is constructing huge structures such as walls, bridges, rafts, and bivouacs by using

their bodies [1]. By emulating this behavior, the multi-legged robotic swarm is expected

to show cooperative behavior in overcoming the terrain or obstacles that are difficult for a

single robot to traverse. These behaviors seem to be effective in various kinds of missions,

such as exploring or rescuing in unknown environments.

On the other hand, compared with wheeled-mobile robots, designing a controller for a

multi-legged robotic swarm becomes a challenging problem because the designer has to

consider not only how to coordinate a large number of robots based on local observations,

but also how to coordinate a large number of actuators in individual robots. Therefore, a

multi-legged robotic swarm raises a new problem domain as a combination of two types

of large-degree-of-freedom controls. As far as we know, only a few studies address this

problem [114]. Additionally, this issue seems to be hard and time-consuming for the common

approach in swarm robotics, which is behavior-based design methods [14]. In this method,

the trial and error process is conducted for designing a robot controller, where the designer

assumes the behaviors of each robot and updates them until the desired collective behavior

is obtained. In the multi-legged robotic swarm, the behavior-based design becomes an

extremely hard problem for the following reasons.



4 Chapter 1. Introduction

• It is too difficult to assume the modularized motions of each robot that are required for

the collective behavior; there are a huge number of robot states because interactions

among robots or robots and environments occur in three-dimensional space. If designing

self-assembling-like behavior, designers should consider overlapping among robots.

• Even if the required motions of each robot are already known, it is also hard to realize

the motion by coordinating a large number of joints in individual robots. When

climbing obstacles, how to move joints depends on the shape or height of the obstacles.

When climbing other robots, robots have to take into account the postures of robots

that act as stepping stones.

Therefore, this thesis focuses on another approach for designing controllers, automatic design

methods [14].

Automatic design methods are approaches to designing robot controllers automatically by

using several computation techniques. In this method, controller design problems are typically

cast into optimization problems. Therefore, designers only need to determine the final goal

or subgoals of the task; designers can reduce efforts in developing controllers. The most

used approach in automatic design methods is evolutionary robotics [35, 108] which utilizes

evolutionary computations to optimize the parameters of a robot controller. Evolutionary

robotics has achieved several collective behaviors [5, 29, 39, 47, 55, 137]. Another approach

is reinforcement learning which is a class of machine learning problems; an agent learns a

behavior during trial-and-error interactions with the environment. Reinforcement learning

is also applied to robotic swarms [60, 161], while it is a relatively minor choice due to the

difficulties of local observations or dynamic environmental properties. In addition, both

techniques have been utilized to design gaits for multi-legged robots [20, 49, 53, 107, 119,

148, 152]. With the rise of artificial intelligence fever, many researchers are interested in

these techniques for designing robot locomotions. However, it is unclear whether these

machine learning approaches are effective in the combination problem of designing a gait and

collective behavior. The main purpose of this thesis is to show that the automatic design

method is a promising way to design controllers of a multi-legged robotic swarm.

1.1 Aim and Objectives

This thesis presents automatic designs of controllers for a multi-legged robotic swarm. In

the swarm robotics community, few studies worked on a combination of a multi-legged robot

and a robotic swarm. This thesis contributes to the swarm robotic community to show the

effectiveness of the automatic design methods with the following aspects.

First, this thesis employs an evolutionary robotics approach to generate collective behaviors

of a multi-legged robotic swarm. Compared with the wheeled-mobile robots, multi-legged

robots required a complicated control scheme for basic movements. The evolutionary robotics
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Fig. 1.2. The structure of the thesis..

approach is succeeded in designing both gait of a single robot and collective behavior of

a robotic swarm. Therefore, hybridization between these results in evolutionary robotics

become a promising way. By applying the approach, this thesis aims to generate collective

behaviors in not only flat but also rough terrains. In addition, it aims to generate a three-

dimensional collective behavior inspired by the self-assembly of army ants. These novel

collective behaviors are expected to give insights into how to use robotic swarms in real-world

applications.

Second, this thesis examines the applicability of reinforcement learning to design a controller

of a multi-legged robotic swarm. So far, the swarm robotics problem seems to be hard to

solve with the reinforcement learning approach because the learning processes are typically

taken place at an individual level, while collective-level behaviors are finally required. On

the other hand, reinforcement learning has an advantage in computational cost compared

with the evolutionary robotics approach. Additionally, with the recent trend in artificial

intelligence, several novel and sophisticated reinforcement learning algorithms are proposed

[40, 50, 99, 129]. This thesis employs a proximal policy optimization algorithm [129] which

is one of the most popular reinforcement algorithms. This approach clarifies the potential of

reinforcement learning to design a controller of a multi-legged robotic swarm.

1.2 Structure of the Thesis

As described above, this thesis presents automatic design approaches for designing con-

trollers of a multi-legged robotic swarm. Fig. 1.2 illustrates an overview of the thesis structure.

This thesis is roughly composed of four parts. The first part (Chapters 1 and 2) describes
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the introduction of the thesis and computation techniques used in the thesis, respectively.

The second part (from Chapter 3 to 6) shows case studies based on evolutionary robotics

approaches for generating collective behaviors of a multi-legged robotic swarm. In addition,

the third part (Chapter 7) presents the reinforcement learning-based approach which is

an alternative to the evolutionary robotics approach. At last, the fourth part (Chapter 8)

concludes this thesis. The content of each chapter is briefly summarized as follows.

• Chapter 2 describes automatic design methods in swarm robotics. The first section

provides introductions to evolutionary robotics with some related topics, such as

evolutionary computations, neuroevolution, and related work. Second, this chapter

describes the overview of reinforcement learning with basic topics and recent trends.

• Chapter 3 shows the first example of the evolutionary robotics approach for the

three-dimensional collective behavior of a multi-legged robotic swarm. As mentioned

above, a combination of designing gait and collective behavior is a highly complex

problem. This chapter employs both the manual design and evolutionary design as

an experimental approach. In the studies of multi-legged robots, the central pattern

generator (CPG) which is inspired by spine creatures is a primary option for the robot

controller. Based on this background, the controller of a robotic swarm is developed by

connecting an artificial neural network (ANN) to the hand-tuned CPG. The synaptic

weights of ANN are optimized by evolutionary computation to that the output of ANN

affects the CPG signal and generates a collective behavior. The experimental results

showed that the proposed method successfully designed three-dimensional collective

behavior. Additionally, the analysis for the controller indicated that the independent

evolution trials show similar tendencies regarding obtained controller properties.

• Chapter 4 summarized the pure neuroevolution approach. The proposed method in

Chapter 3 could skip the evolution of basic gait. However, the tuning of CPG highly

depends on the robot’s specifications. Therefore, re-tuning takes a lot of time when

robot settings are updated. This chapter proposes the approach in which the basic

gait of single robots is also generated by evolutionary design: the pure neuroevolution

approach. In general, a multi-legged robot is viable for huge aspects of gaits due to

the large degrees of freedom, and sometimes shows unnatural (not similar to natural

creatures) gait which is may unsuitable to achieve the task by mimicking natural

creatures. In this chapter, the neuroevolution approach shows that robot gait which has

similar features to legged animals is successfully obtained by incorporating intuition-

based objective functions into the fitness evaluations. In addition, the neuroevolution

approach successfully designed a control scheme for collective behavior, i.e., how to

coordinate a large number of joints on legs based on local observations to show the

coordinated motion of robots.
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• Chapter 5 shows the collective behavior design in a rough terrain environment. The

multi-legged robotic swarm is expected to operate in fields with rugged surfaces or

uneven surfaces. Based on the result of Chapter 4, this chapter aims to achieve the

path formation task in not only flat but also rough terrains. In the experiment, the

rough terrain is developed by cuboid blocks that are arranged like a lattice. Therefore,

the terrain aspect is parametrized by the height of each block; the swarm performance

is quantitatively discussed with the terrain settings. The experimental results showed

the evolutionary robotics approach successfully achieved a path formation task in

rough terrain environments. The results also showed that incremental evolution is an

effective way to design a controller in a rough terrain setting.

• Chapter 6 focuses on generating and analyzing the collective step-climbing behavior.

The proposed approach in Chapter 4 is applied to generate a three-dimensional

collective behavior. In this task, robots aim to climb the step which is too high for

a single robot; robots have to utilize other robots as stepping stones. Therefore, the

robot controller is required to generate two types of actions: climbing the step or other

robots and acting as a stepping stone. This chapter shows that the neuroevolution

approach is a promising way to design a robot controller for the collective step-climbing

task. Additionally, evolved controllers are analyzed to clarify what kind of behaviors

are obtained. Based on the preliminary experiments, robots seem to show not only

climbing of other robots or steps but also developing helpful stepping stones for

achieving the task. In this chapter, measurement factors are designed to analyze

robot behaviors. The experimental results showed that the transitions of measurement

factors support the hypothesis about obtained behaviors.

• Chapter 7 discusses the reinforcement learning-based approach. In former Chapters,

evolutionary robotics approaches showed successful results on a multi-legged robotic

swarm, similar to traditional automatic design approaches in swarm robotics. On the

other hand, evolutionary computations are often denoted disadvantages with high

computational costs, such as massive resources for parallel evaluations or long-term

calculation due to the generation-based update. The automatic design methods of

swarm robotics also involve reinforcement learning which is a relatively minor approach;

the robotic swarm scenario seems a hard problem for reinforcement learning. However,

the computational cost required for RL is relatively lower than evolutionary robotics.

Moreover, recent trends in artificial intelligence grow novel deep reinforcement learning

(DRL) algorithms. This chapter examines the applicability of DRL for a multi-legged

robotic swarm. Proximal policy optimization (PPO) which is one of the most popular

DRL algorithms is applied to the task of forming a line. The result showed that the

PPO successfully designed the controller of a multi-legged robotic swarm.

• Chapter 8 concludes the thesis and discusses future research directions.
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Chapter 2

Automatic Design Methods in

Swarm Robotics

This chapter describes the automatic design methods, which are the main approaches to

designing robot controllers in this thesis. In swarm robotics, many researchers have discussed

the methodology of designing controllers of a robotics swarm to realize desirable collective

behaviors from local interactions among robots. The controller design methods are classified

into two categories: behavior-based design methods and automatic design methods [14]. The

behavior-based design method follows a trial-and-error process; the controller consisting of

the primitive actions of robots is improved by human designers until the desired collective

behavior is obtained. Generally, this approach is easily accomplished if the mathematical

model for the collective behavior is available, otherwise, it requires a human designer’s

intuitions or experiences. In contrast, the automatic design method employs computational

techniques to reduce efforts by the designer, while it sometimes suffers from computational

costs or the reality gap [63, 134]. This thesis employs automatic design methods for a

multi-legged robotic swarm problem because it seems a promising way to simultaneously

design a gait and collective behavior. The automatic design method is divided into two main

domains: evolutionary robotics and reinforcement learning. The remaining parts of this

chapter briefly describe both methods.

Section 2.1 introduces evolutionary robotics with related topics, such as evolutionary

computation, neuroevolution, and achievements in the method. Afterward, Section 2.2 briefly

describes reinforcement learning with basic ideas of the method and recent trends.

2.1 Evolutionary Robotics

Evolutionary robotics (ER) is defined as the research field or the approach to designing

robot properties, such as control software, body morphology, and sensor-motor properties
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by using evolutionary computation techniques [109, 149]. The rise of ER started at the

University of Sussex [19, 52], the Swiss Federal Institute of Technology in Lausanne [36],

and the University of Southern California [85] in the early 1990s. These studies gathered

a lot of attention from worldwide and initiated the research field. Up to the present, ER

approaches have been applied in a variety of domains, such as evolving gaits of multi-legged

robots [20, 59, 119, 152], designing collective behaviors of robotic swarms [29, 47, 137], and

morphogenetic evolution of robots [21, 76, 116]. In the rest of this section, the related topics

to the ER are described as follows; evolutionary computation in Section 2.1.1, neuroevolution

in Section 2.1.2, and applications of ER in Section 2.1.3.

2.1.1 Evolutionary Computation

Evolutionary computation is one of the subfields in computer science, which develops

computational techniques inspired by natural evolution. The main inspiration comes from the

Darwinian principle [23], i.e., natural selection or survival of the fittest; the differences among

individuals in a population of creatures are selected by nature based on whether adapt to

the environment. In general, the computational techniques inspired by the natural selection

mechanism are called evolutionary algorithms. The initial studies of evolutionary algorithms

appeared in the 1960s, such as evolutionary programming (EP) [37, 38], genetic algorithm

(GA) [45, 56], and evolutionary strategies (ES) [10, 130]. In the early 1990s, these methods

are categorized as part of evolutionary computations, and genetic programming (GP) [77, 78]

was proposed as the new method. At present, these four algorithms are fundamental parts

of the evolutionary algorithm. On the other side, several population-based optimization

algorithms have been proposed, such as differential evolution (DE) [117, 140], particle swarm

optimization (PSO) [72, 115], ant colony optimization (ACO) [24, 25], bat algorithm [160],

and grey wolf optimizer [98]. Not all these algorithms follow natural evolution mechanisms

(PSO, ACO, and ABC algorithms are categorized as swarm intelligence [16, 71]), although

they have a similar framework and processes to evolutionary algorithms. These techniques

have a lot of attention from researchers and form a large research community.

Algorithm 1 shows the typical process conducted by evolutionary algorithms. Generally,

the solution candidates for the target problem are called individual or phenotype inspired by

the biological terminology. The phenotype is constructed by decoding the genotype which is a

parameter vector for deciding phenotype properties (contrary, the mapping from phenotype

to genotype is called encoding). The evolutionary algorithms started with the initialization

of individuals. In the Evaluation phase, the performance of each individual is calculated by

the fitness function (i.e., objective function). Afterward, the algorithm starts a generational

loop. At first, a part of individuals are selected as parents based on their fitness values.

In the genetic operation phase, several operators (e.g., recombination or mutation) are
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Algorithm 1 Pseudo-code of a typical evolutionary algorithm.

1: Initialization: Generate an initial population of individuals;

2: Evaluation: Calculate the fitness value of each individual;

3: repeat

4: Selection: Select parents from the current population;

5: Recombination: Generate offspring by recombining parents;

6: Mutation: Mutate each offspring;

7: Evaluation: Calculate the fitness value of each offspring;

8: Selection: Select survivors for the next generation;

9: until Terminal condition;

applied to the genotypes of parents for generating offspring. Each offspring is also evaluated

for its performance by the fitness function. Finally, the survivor selection phase selects

the individuals among parents and offspring, which become parent candidates in the next

generation. These processes continue until the terminational conditions (e.g., desirable

performances or maximum loop number) are satisfied. In the algorithm, the genetic operator

corresponds to enlarge the exploring area in parameter space, whereas parent or survivor

selections are responsible for focusing the population in a promising area. By repeating

processes, the population probabilistically finds better solutions for the target problem.

These basic mechanisms of evolutionary algorithms are highly generalizable because the

algorithm only needs to obtain the fitness values.

2.1.2 Neuroevolution

Neuroevolution is one of the applications of evolutionary computation, which aims to

optimize artificial neural networks [34]. This thesis employs neuroevolution as a main

approach to designing a controller of a multi-legged robotic swarm. The rest of this section

describes related topics to neuroevolution: an artificial neural network and details of the

approach.

Artificial neural networks (ANNs) are known as mathematical models for the nerve systems

of natural creatures [46, 62]. In the ANNs, the artificial neurons are designed to emulate the

properties of neural cells. The important properties of neural cells are modeled in ANNs as

follows:

• The output of neural cells affects the membrane voltage of connected neurons.

• The synaptic connections are categorized into positive and negative connections; the

positive synapse increases the membrane voltage of connected neurons, and vice versa.

• Each neuron outputs a pulse signal if the voltage is higher than the threshold. The

threshold-based response of neurons acts as a non-linear function from input to output.
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Fig. 2.1. Artificial neuron model.

• The intensity or type of synaptic connections is updated according to the frequency of

receiving pulses; this property is called synaptic plasticity. The plasticity enables the

network to memorize information.

According to these properties, McCulloch and Pitts proposed a formal neuron model [94]

in 1943. Based on the formal model, the modern ANNs employ an artificial neuron model,

which is illustrated in Fig. 2.1. In this model, the output of neuron y is calculated by the

following equation:

y = f

(
n∑
i=1

wixi + b

)
, (2.1)

where x1, . . . , xn are input signals from other neurons, wi is the synaptic weight for xi, and

b is the bias. The function f is called the activation function that emulates a non-linearity

in neuron cells. Usually, the functions such as sigmoid, hyperbolic tangent, and rectified

linear units are employed as the activation function. The ANNs consist of numerous artificial

neurons as the directional network. Fig. 2.2 shows the commonly used ANNs, which have

layered structures with input, hidden, and output layers. The standard structure is the

feedforward neural network (Fig. 2.2(a)), in which the computational process for output is

conducted in a single direction (from input to output layer). In contrast, the recurrent neural

network (Fig. 2.2(b)) has recursive connections among neurons, which take into account the

past neuron’s states. Therefore, the recurrent network is employed for tasks with sequential

data, such as text classification or speech recognition.

Due to the synaptic plasticity, the ANNs show learnability; the output value corresponding

to the input can be changed by arranging the synaptic weights. To obtain the desired

output of ANNs, the network parameters such as synaptic weights or biases have to be

updated; parameter updates are called training. The most common method for training

ANNs is stochastic gradient descent (SGD) with backpropagation (BP) [87, 93]. The

SGD is a powerful method for rapid training of ANNs, while it sometimes suffers from
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(a) Feedforward neural network. (b) Recurrent neural network.

Fig. 2.2. Standard structures of artificial neural networks.

gradient vanishing problems, local optimums, and computational complexity for recurrent

connections [46, 83]. As another approach, neuroevolution utilizes evolutionary algorithms

(i.e., population-based optimization process) to train ANNs. In this approach, the genotype

typically consists of synaptic weights and biases of ANNs. The fitness is given by the

performance of ANNs on the target problems. Typically, neuroevolution approaches are

conducted with fixed network topologies. On the other hand, advanced approaches are

proposed to evolve not only synaptic weights but also network structure; the human designer

can reduce efforts on exploring network topology for the task [138].

2.1.3 Evolutionary Robotics Approach for Designing Controllers

In this section, applications of the evolutionary robotics approach are described with the

topics of sections 2.1.1 and 2.1.2. Evolutionary robotics (ER) is a technique to design robot

controllers or even robot embodiment by using evolutionary algorithms. The evolutionary

computation described in section 2.1.1 is a fundamental technique to execute an ER approach.

The neuroevolution described in section 2.1.2 is a common option of ER; many studies employ

ANNs as robot controllers. According to algorithm 1 in section 2.1.1, the genotype consists

of parameters that determine the robot controller or morphological aspects of the robot. The

decoded phenotype (i.e., robot controller or the robot itself) is evaluated in the task; the

fitness corresponds to the performance of the robot. The rest of this section shows the some

of achievements that are related to this thesis: evolving gait and collective behavior.

The evolutionary robotic approach has been employed for designing the gait of multi-legged

robots [20, 59, 119, 148, 152]. Hornby et al. [59] designed a gait of the AIBO robotic dog.

The robot controller is represented by locomotion module software composed of mathematical

functions. A total of 25 parameters are optimized. Valsalam et al. [152] evolved a modular
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neural network controller for the gait of the quadruped robot. Symmetry and modularity

are introduced into the network to cope with the reality gap. Clune et al. [20] employed

the Hyper-NEAT algorithm to evolve the gait of a quadruped robot. This work is more

challenging because they evolved not only synaptic weights but also the topology of the

network. In all of these works, the main topic is how to coordinate a large number of legs and

joints to generate a gait of a robot. Therefore, the evolutionary processes were conducted

with a single robot scenario.

The evolutionary robotics approach also succeeded in designing collective behaviors of

robotic swarms [5, 29, 47, 137]. In [29], Dorigo et al. evolved an aggregation behavior. The

robot controller was represented by a simple neural network that has only input and output

layers. Baldassarre et al. [5] generated a flocking behavior of a robotic swarm. The controller

also consists of only input and output layers. In [47], Groß et al. generated a collective

transport behavior with the recurrent neural network. The controller was evolved by the

algorithm based on (µ+ λ) evolution strategies. Sperati et al. [137] evolved a robotic swarm

in the path formation task. The controller was represented by the feedforward neural network

that has a single hidden layer and direct connections from the input to the output layer. In

swarm robotics, the most of evolutionary robotics approaches have been conducted with

wheeled-mobile robots. In this thesis, the unit robot of the collective systems consists of

a large number of legs and joints (i.e., a large degree of freedom). This thesis presents a

hybrid approach between designing the gait of a multi-legged robot and designing collective

behavior of a robotic swarm in evolutionary robotics.

2.2 Reinforcement Learning

This section briefly describes reinforcement learning (RL). In general, RL is categorized

as one of the machine learning methods [66, 145]. In addition, the RL is utilized as the

automatic design method in the swarm robotics field (although evolutionary robotics is a

major approach). This thesis also employs RL for the controller design of a multi-legged

robotic swarm. The rest of this section describes RL as follows: basic topics of RL in

section 2.2.1, and recent trends of deep reinforcement learning in section 2.2.2.

2.2.1 Basis for Reinforcement Learning

This section describes the basic idea, terminologies, and framework of reinforcement

learning (RL). RL is categorized as one of the machine learning methods; the third party

to supervised learning and unsupervised learning. In contrast to supervised learning, the

learning subjective (the learner) does not perceive which option is the correct answer for

the input data. Instead of that, the learner gets the scalar value which indicates how the

selected option is good; the scalar value is usually called a reward. Typically, the framework
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Fig. 2.3. Basic framework for reinforcement learning problems.

of RL is illustrated as Fig. 2.3. Most RL problems are modeled with two fundamental factors:

agent and environment. The agent is defined as the subjective that observes the state of

the environment, decides the action, and interacts with the environment. The environment

transits its state based on the agent’s action and returns the reward to the agent. Generally,

the learning process of RL is conducted as follows:

• The agent observes the environment state st at timestep t, and decides action at. 　

• The environment transits its state st to st+1 based on the agent’s action and returns

reward rt to the agent.

• Update timestep (t← t+ 1) and go back to the first step.

The objective of RL is to train the agent for maximizing cumulative reward. To achieve

the objective, the agent is required to explore what behavior sequence obtains a maximum

reward. In addition, the agent has to take into account that an action selected at a timestep

will affect consequent rewards. These two features (trial-and-error exploration and delayed

reward) are important to characterize RL in the machine learning field.

In [145], Sutton and Barto noted the principle components of RL: the Marcov-decision

process, policy, reward signal, value function, and model of the environment. The rest of

this section briefly describes these key components. In addition, several categorizations for

RL are introduced.

Markov decision process

Markov decision process (MDP) is the stochastic process that presents the state transition

by the selected actions [6]. Fig. 2.4 illustrates a simple example of MDP with three states

and two actions. Especially, the MDP with a finite number of states is called finite MDP

(FMDP). Most RL problems are categorized as FMDP. In MDP, the state transition follows

Markov property; the next state only depends on the current state (not affected by past

states). Therefore, the next state shows conditional independence to states and selected

actions in the past. The MDP is recognized as the extended version of the Markov chain [110]
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Fig. 2.4. Simple example of Markov decision process.

with the agent’s action and reward that motivate the action. The FMDP is defined by

the set of environmental states (s ∈ S), the set of agent’s actions (a ∈ A), the probability

of environmental transition, and the reward function. The probability of environmental

transition is defined as follows:

Pass′ = Pr{st+1 = s′|st = s, at = a} (2.2)

where t is the index of the timestep. In addition, the expectation of reward is represented as

follows:
Rass′ = E{rt+1|st = s, at = a, st+1 = s′}. (2.3)

Pass′ and Rass′ are important factors to characterize the FMDP. The objective of MDP (or

RL problem) is defined as maximizing long-term cumulative rewards.

Policy

The policy decides how the agent behaves in each timestep. Formally, the policy is

defined as the mapping from the observed state of the environment to the agent’s action.

In the psychological field, the role of policy corresponds to the stimulus-response rules or

associations. In some cases, the policy is represented by a mathematical function or lookup

table, in others it also includes additional calculations such as a search process.

Reward function

The reward function detects the pair of an environmental state and an agent’s action,

then returns the reward signal which is a scalar value. The reward signal indicates how the

selected action suppose to the environmental state is desirable to achieve the task. The goal
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of the RL agent is to find the policy that maximizes cumulate reward in the task period. In

biological systems, the reward can be analogous to the experiences of pleasure or pain.

Value function

In the RL field, the value is defined as the expectation of cumulative reward when the

agent is in the state s and follows the policy π. In contrast to the reward function that shows

the immediate evaluation, the value function indicates the long-term expectation. Formally,

the value function is represented as follows:

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
(2.4)

where the π is the agent’s policy, and Rt =
∑∞
k=0 γ

krt+k+1 (called returns) is defined as the

function of the reward sequence. The γ is the discount rate parameter that decides how

the agent takes into account the future reward at the current timestep (γ = 0 means the

agent only focuses on the immediate reward). The V π(s) is called the state-value function

for policy π. Similar to V π(s), another value function is formalized as follows:

Qπ(s, a) = Eπ{Rt|st = s, at = a} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
. (2.5)

The Qπ(s, a) also take into account the selected action a with the state s. The Qπ(s, a) is

called as the action-value function for policy π.

Generally, the values of V π(s) and Qπ(s, a) are estimated based on the rewards that the

agent iteratively experienced. For arbitrary state s and policy π, the value function satisfies

the recursive form as follows:

V π(s) = Eπ{Rt|st = s} = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γkrt+k+2|st = s

}

=
∑
a

π(s, a)
∑
s′

Pass′

[
Rass′ + γEπ

{ ∞∑
k=0

γkrt+k+2|st+1 = s′

}]
=
∑
a

π(s, a)
∑
s′

Pass′ [Rass′ + γV π(s′)].

(2.6)

Eq. 2.6 is called as Bellman equation for V π(s). This equation means the value of state s

is equal to the summation between the expected reward and the expectation of discounted

value in the next state. The RL solver is translated as finding optimal policies *1 which

*1 There may be more than one optimal policy.
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obtain the maximum cumulative reward. For FMDP (i.e., if the number of states is not

infinite), the optimal policies π∗ can be defined by the value functions. The π∗ share the

optimal -state-value function V ∗ as follows:

V ∗(s) = max
π

V π(s) = max
a

∑
s′

Pass′ [Rass′ + γV ∗(s′)]. (2.7)

Similarly, the optimal action-value function Q∗ is also shared as follows:

Q∗(s, a) = max
π

Qπ(s, a) =
∑
s′

Pass′ [Rass′ + γmax
a′

Q∗(s′, a′)]. (2.8)

These equations for the optimal value functions are called Bellman optimal equations.

Furthermore, the V ∗ and Q∗ satisfy the following relation:

V ∗(s) = max
a

Q∗(s, a). (2.9)

Categorizations for RL algorithms

In [145], Sutton and Barto noted the most fundamental categorization for RL: dynamic

programming (DP), Monte Carlo method, and temporal-difference (TD) learning. Typically,

DP methods assume that the agent has a precise environment model. This setting is a

mismatch to the many real-world problems, while DP supplies a lot of important theoretical

aspects. Monte Carlo method uses the experience of the agent for training instead of the

perfect environment model. TD learning involves both features of DP and Monte Carlo

method; “update estimates based on other estimated values (i.e., use bootstrapping)” of DP

and “not use a perfect environmental model” of Monte Carlo method. TD learning method is

the hottest topic in the RL field; this thesis also employs the RL algorithm from TD learning.

The following part exemplifies the TD learning concept on the value function update with

the comparison to the Monte Carlo method. Both Monte Carlo method and TD-learning

update the estimated V (st) using an obtained experience. Typically, Monte Carlo method

uses the following value update:

V (st)← V (st) + α[rt − V (st)] (2.10)

where rt corresponds to the obtained reward at timestep t. On the Monte Carlo method,

the reward history (r1, r2, ...) is available at the end of the episode (i.e., unit task period).

Therefore, the value update has an episodic interval. In contrast, the TD-learning employs

estimated V (st+1) and immediate reward rt+1 for updating V (st). TD(0), the simplest

TD-learning method use the following update:

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]. (2.11)

Based on this mechanism (temporal-difference-based update), TD learning realizes a relatively

quick training process.
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In addition to the most fundamental categorization, the rest of this section describes useful

terminology for the RL. The features in the following part are important to characterize the

algorithms in the RL (especially, TD-learning).

• Value-based vs Policy-based

The value-based method mainly focuses on improving the value functions (V (st),

Q(st, at)). In this method, the policy is defined based on the value functions (e.g.,

greedy: deterministically select the action that maximizes Q(st, at), ε-greedy: prob-

abilistically select the action that maximizes Q(st, at)). Several algorithms such as

Q-learning [157], and SARSA [144] are categorized into the value-based method. On

the other side, the policy-based method typically defines the parametrized policy sepa-

rate from the value function. Based on the policy gradient [146], the agent behaviors

are improved by directly updating policy parameters. Examples of the method are

REINFORCE [158], and natural policy gradient [67]. In addition, the policy-based

methods often employ the value function update beside the policy update. This style

is called the actor-critic [145]. 　

• On-policy vs Off-policy

On-policy and off-policy methods are distinguished whether the value function updates

are based on the current policy or not. SARSA [144] is categorized into the on-policy

method; the off-policy method includes Q-learning [157]. The rest part exemplifies

the difference between on-policy and off-policy methods by using the SARSA and

Q-learning. On the SARSA algorithm, the Q-function update is represented as follows:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]. (2.12)

Contrary, the Q-function update in Q-learning is represented as follows:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)]. (2.13)

On the RL algorithms, the agent experiences are sampled as the set of (s: current

state, a: selected action, r: obtained reward, s′: next state, I: additional informa-

tion(typically termination for task period)). Note that the Q(s′, a′) in Eq. 2.12 requires

a′ following the current policy, while the maxa′ Q(s′, a′) in Eq. 2.13 not depends on the

current policy. This difference categorizes the SARSA and Q-learning into on-policy

and off-policy, respectively. In general, the off-policy algorithms are good at sampling

efficiency for agent experiences because the past experiences which not follow the

current policy are reusable. The on-policy algorithms are less than the on-policy for

experiences sampling efficiency, while they are good at stable training.
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2.2.2 Deep Reinforcement Learning

In recent years, deep reinforcement learning (DRL) which is a combination of RL and

deep neural networks (DNNs) has received a lot of attention from academies and industries.

Typically, DRL employs DNNs as the function approximator for V (s), Q(s, a), and agent

policy π. The rest of this section briefly describes the history of DRL.

In 2012, AlexNet [80] recorded a remarkable improvement in the image classification task.

This achievement has started the era of deep learning [46, 83] which is an artificial intelligence

field related to DNNs. In 2015, Mnih et al. propose the deep-Q-network (DQN) [100, 101]

which is the method of approximating Q-function by DNNs. DQN has much attention due

to the performances on computer games of Atari 2600; performances are equal or superior

to the human players. Consequently, several improved techniques are proposed such as

double-DQN[153], dueling network[156], general reinforcement learning architecture[105], and

prioritized experience replay[127]. In 2017, several improving techniques are combined as the

Rainbow algorithm[54], and it outperform the former methods. The Ape-X algorithm [58]

in 2018 uses a distributed sampling mechanism and shows significant improvement in

the performance of game AI. Finally, the Agent57 algorithm [2] recorded super-human

performances in all of the Atari 57 games. These are the brief history of value-based methods

which are mainly used for discrete action space.

On the other hand, the policy-based method of DRL started from the deterministic

policy gradient (DPG) algorithm [135] in 2014. This algorithm became the base of some

famous algorithms, such as deep deterministic policy gradient (DDPG) [86], soft actor-critic

(SAC) [50], and twin-delayed DDPG (TD3) [40]. Another flow originated from the natural

policy gradient algorithm [67]. In 2015 and 2017, Schulman et al. proposed trust region

policy optimization (TRPO) [128] and proximal policy optimization (PPO) [129], respectively.

The PPO algorithm becomes one of the most popular DRL algorithms. In contrast to the

value-based methods, the policy-based methods are good at continuous control problems

due to the independent-defined policy from the value function. This thesis also employs

a policy-based method for a multi-legged robotic swarm. Typically, the benchmarks and

application of continuous control become agent locomotion problems including multi-legged

robots [53, 81, 97, 118]. In addition, both value-based and policy-based methods were utilized

to train controllers of robotic swarms [60, 161], where there are relatively few examples. This

thesis shows the first example of a combination of controlling multi-legged robots and robotic

swarm on DRL.

2.3 Conclusions

This chapter presented a brief introduction to automatic design methods in swarm robotics.

The automatic design methods are divided into two main domains: evolutionary robotics
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and reinforcement learning. Evolutionary robotics is a common approach; typically, artificial

neural networks are employed as the robot controller. In addition, this approach also

succeeded in the design of gait for a multi-legged robot. Contrary, reinforcement learning is

a more minor approach for robotics swarms, while recent developments are remarkable. The

reinforcement learning also succeeded in designing locomotions with single-agent scenarios.

This thesis employs both approaches for the automatic design of controllers for a multi-

legged robotic swarm: the hybridization problem of designing gait and collective behavior.

Chapters 3 to 6 show that the evolutionary robotics approach successfully designs collective

behavior of a multi-legged robotic swarm in several task scenarios. Additionally, Chapter 7

shows that reinforcement learning becomes an alternative to evolutionary robotics.
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Chapter 3

Experimental Study on Generat-

ing Collective Step-climbing Be-

havior

This chapter presents an experimental study on generating collective step-climbing behavior

of a multi-legged robotic swarm. The multi-legged robots can show physical interactions

in three-dimensional space by using their legs and bodies. Therefore, the robotic swarm is

expected to generate novel collective behaviors inspired by the self-assembly of army ants. In

this chapter, a robotic swarm aims to achieve a collective step-climbing task; robots utilize

other robots as stepping stones to climb over a step that is too high for a single robot. The

robot systems for climbing other robots are discussed in self-assembling robots or modular

robots [64, 92, 112, 121]. In most of these studies, connection rules between robots are

determined by human designers; unit robots tend to have a simple shape and show relatively

low movability. Contrary, multi-legged robots are good at the movability of a unit robot.

Thus, they are expected to operate in exploring or transporting tasks. On the other hand,

connection rules between robots (i.e., how to use legs on the other robot) are unpredictable

for human designers.

In this study, the evolutionary robotics approach is employed to design a robot controller.

A huge number of trial-and-error processes with parallel calculation become a promising way

to design complicated control software. As mentioned in Chapter 1, the controller manages

two types of actions: the basic gait for moving in the environment and the gait for climbing

the step. In this study, the basic gait is realized by a central pattern generator (CPG) which

is a common option for designing gaits of multi-legged robots [61, 88, 106]. The controller

of a robotic swarm is developed by connecting an artificial neural network (ANN) to the

hand-tuned CPG. The synaptic weights of ANN are optimized by evolutionary computation
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Fig. 3.1. Experimental environments. Environment 1 (Env-1) has no step within the

environment, while environment 2 (Env-2) has a step with a height of 0.36 m.

Fig. 3.2. Snapshot of the multi-legged robot.

to that the output of ANN affects the CPG signal and generates a collective behavior. The

experiments are conducted in computer simulations. In addition, the obtained controllers

are analyzed to check which sensor inputs are critical to achieving the task.

The remainder of this chapter is organized as follows. Section 3.1 describes the settings of

experiments, and Section 3.2 presents methods for designing the robot controller. Section 3.3

shows the results obtained from the experiments. Section 3.4 shows the discussion about the

obtained behavior of robots. Finally, Section 3.5 concludes this chapter.

3.1 Settings of Experiments

The collective step-climbing task requires the robots to climb a step, which is too high for

a single robot to climb up. The robots utilize other robots as stepping stones for achieving

the task. The experiments are carried out in computer simulations with the PyBullet physics

engine [22].
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Fig. 3.3. Settings of the robot. Cyan dotted lines indicate the movable range of the joint.

The gray circular sector shows the visible range of the camera. Yellow lines are the sensor

ranges of the distance sensors.

3.1.1 Task Settings

Fig. 3.1 shows the environmental settings used in the experiments. The evolution processes

are executed in two different environments, i.e., environment 1 (Env-1) and environment 2

(Env-2). Env-1 has no step within the environment; the robotic swarm aims to walk in a

specific direction and form a trail like ants. Robots are placed at the initial position in a

random direction in Env-1. In Env-2, the step is placed within the environment. Robots have

to utilize other robots as stepping stones to climb over the step. When the robot succeeded to

climb the step, it will be repositioned at 5 m in front of the step and join the task again. The

initial directions of the robots are determined randomly with a smaller variance compared

with Env-1 to make the robotic swarm focuses on acquiring the step-climbing behavior. The

height of the step is 0.36 m, which is almost twice as high as the robot.

3.1.2 Robot Settings

The snapshot of the multi-legged robot is shown in Fig. 3.2. Additionally, configurations

of the robot are illustrated in Fig. 3.3. Each robot has a shell and tail parts to support
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Fig. 3.4. Structure of the robot controller.

other robots to climb the step. In addition, the robot is equipped with LEDs, a camera,

infrared (IR) sensors, and touch sensors. Two LEDs are attached to the front and rear parts

of the shell. The camera has a visible range divided into six regions, as illustrated in Fig. 3.3.

Each region can detect the colored LEDs on the front and back of the robot independently.

The camera obtains the existence of colored LEDs by binary signals; in total, twelve binary

signals are obtained from the camera. The value from the IR sensor is normalized into the

range of [0,1]. Infrared sensors can distinguish between robots and other objects, and return

values independently. Touch sensors are equipped at the end of each leg. Each touch sensor

returns 1 when it detects collisions with other objects and 0 otherwise.

3.2 Methods

The evolutionary robotics approach is a promising method to design controllers for a

robotic swarm. Typically, robot controllers in evolutionary robotics are represented by

artificial neural networks. This study proposes a robot controller that combines the neural

network with the simple oscillator (central pattern generator: CPG) and the finite state

machine. The remaining part of this section describes the details of the controller and the

evolutionary algorithm.
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Table 3.1. Settings of the genetic algorithm.

Parameter Value

total generations 1000

population size 50

tournament size 2

elite size 1

scaling parameter σ 0.02

3.2.1 Controller

The robot controller is illustrated in Fig. 3.4. The controller consists of three parts; the

finite state machine, the neural network, and the oscillator. The finite state machine is

composed of two states: the bridge state and the walking state. The bridge state is designed

based on [92], and it is originally inspired by the behavior of ants in natural systems. In

the bridge state, the robot stops walking to act as a stepping stone with keeping the body

posture.

The walking state is composed of the neural network and the oscillator. The neural network

is used to process signals from sensors. The input layer of the neural network consists of

56 neurons. Inputs are obtained from a camera, distance sensors, touch sensors, angles and

velocities of joints, roll and pitch angles of the torso, and the compass. The output layer has

14 neurons. Twelve of them are involved in determining target angular velocities of joints,

and the remaining two control the activation of LEDs. The oscillator is tuned to make the

robot walk by tripod gait. The outputs of the neural network are multiplied by the oscillator

signal to determine the target angular velocities of joints.

3.2.2 Evolutionary Algorithm

The evolutionary algorithm optimizes the synaptic weights of the neural network. The

mutation-based genetic algorithm is employed, which is designed based on [142]. The

mutation is represented by the following equation:

θn ← θn−1 + σε (3.1)

where θn is the synaptic weights of the neural network in the nth generation, ε is a noise

vector sampled from a normal distribution, and σ is the scaling parameter that takes a scalar

value. The parent controllers are selected using the tournament selection. Additionally, the

elite selection is employed to reserve the controller that obtained the highest fitness value

within the population. Table 3.1 summarizes the parameter settings of the evolutionary

algorithm.
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3.2.3 Fitness Function

The controller is evaluated by fitness function which is based on the performance of a

robotic swarm. The fitness function consists of three parts; the first part is for walking in a

specific direction, the second part is for following the other robots, and the third part is for

climbing up the step. The first part is represented by the following equations:

fitness1 = max

( Nr∑
i

1

c1 + |xt − x̃i|α
− c2, 0

)
· δ1 · δ2 (3.2)

x̃i = (min(xi, S), yi, zi)

where Nr is the number of robots, xt is the vector of the target point, and x̃i is the position

vector of the ith robot. The position vector x̃i has the upper limit of S in the x coordinate.

The c1 is the constant value to prevent a division by zero. The c2 is the constant value for

the pseudo-linearization of the inverse proportionality. This function will make robots walk

in a specific direction by setting xt as sufficiently far from the initial positions of robots.

The δ1 and δ2 are supplemental parts to realize the realistic ant-like gait. These values are

calculated based on the cosine similarity between the ideal and actual states of robots. The

δ1 is set for the robots to walk forward, and the δ2 makes robots move each leg equally.

The second part is for following other robots, which is represented by the following

equations:

fitness2 =
T∑
t

Nr∑
i

f2,t,i (3.3)

f2,t,i =

1 if the ith robot detects LEDs in front two regions
of the camera at the timestep t and xi > I

0 otherwise

where T is the timesteps per generation and I is the threshold for activating this fitness

function. This part is activated when the x coordinate of the ith robot is higher than I.

The third part is the fitness for climbing the step, which is defined as follows:

fitness3 =

Nr∑
i

f3,i (3.4)

f3,i =

{
1 if xi > xstep

0 otherwise.

where xstep is the threshold to regard that the ith robot has climbed up the step.

The total fitness value is calculated by the weighted summation of three parts, which is

described as follows:

Fitness =
1

M

M∑
i

3∑
j

Kj · fitnessj (3.5)

where M is the number of evaluations and Kj is the constant value for scaling the corre-

sponding part.
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Table 3.2. Parameter settings in Env-1 and Env-2. Bold font is used to emphasize the

changes in the two environments.

Parameter Environment 1 Environment 2

timesteps per generation 1000 800

Nr 10 10

c1 1.0 1.0

c2 9.895×10−2 9.895×10−2

α 0.5 0.5

S 45.0 45.0

I 20.0 12.5

xstep 16.5 16.5

K1 50.0 50.0

K2 2.0× 10−3 4.0× 10−4

K3 0.0 3.0

M 1 3

3.2.4 Experimental Conditions

The process of artificial evolution is divided into two phases. First, the robot controllers are

evolved in Env-1. Next, evolved controllers are set as the initial population and re-evolved in

Env-2. The parameter settings for Env-1 and Env-2 are shown in Table 3.2. The parameter

settings in Env-2 are adjusted to address the step-climbing task.

In Env-1, two types of controllers will be evolved: one with the oscillator and one without

the oscillator. After that, four experiments with different controller settings are conducted

in Env-2 to compare the performance. The settings are described as follows:

Setting A: The standard settings with using all of the parts in the controller.

Setting B : The controller without the oscillator to test the effect of the oscillator.

Setting C : The controller with only the walking state and without the bridge state.

Setting D : The supplementary experiment, which is conducted using one robot to

confirm the difficulties of the task.

Controllers with the oscillator evolved in Env-1 are used as the initial population at setting A,

C, and D. Controllers without the oscillator are used at setting B. Five trials are performed

for each setting.
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Fig. 3.5. Fitness of the best individual across generations in Env-1. Lines indicate the

average over five trials.

Fig. 3.6. Example of collective behavior in Env-1.

3.3 Results

The fitness transitions in Env-1 are shown in Fig. 3.5. Each line indicates the average of

the best individual across generations over five evolutionary trials. The figure shows that

the oscillator contributed to accelerating the evolution and improving the final performance.

Fig. 3.6 shows the example of generated behavior in Env-1 by using the best-evolved controller.

The multi-legged robotic swarm could keep a line formation and move in a direction along

the x-axis.
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Fig. 3.7. Fitness of the best individual across generations in Env-2.

Fig. 3.8. Box plots for the number of robots that have climbed the step over 100 trials.

The best-evolved controller in each experimental setting is evaluated.

The fitness transitions in Env-2 are shown in Fig. 3.7. Each line indicates the average of

the best K3 ·fitness3 value over five evolutionary trials. Additionally, the re-evaluation using

the best-evolved controller was performed for 100 trials. The results of the re-evaluation are

shown in Fig. 3.8. The results show that the oscillator also improves the performance in

Env-2. Moreover, the controller without the bridge state scored the highest fitness values.

It seems that the bridge state is not contributing to improving performance. It can be
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Fig. 3.9. Example of collective step-climbing behavior generated in Env-2.

Fig. 3.10. Environmental settings for the scalability test. The steps have a different height

or shape from the original one (step 1).

assumed that the task scenario is relatively simple and the robots did not need to take

explicit altruistic behavior of becoming a stepping stone. The robot in setting C kept walking

toward the step, and therefore, it becomes a more stable and higher stepping stone by

pressing its shell against the step. On the other side, the results of setting D show that the

K3 · fitness3 is always zero. This means the robot could not achieve the task alone. Fig. 3.9

shows the example of generated behavior in Env-2 by using the best-evolved controller of
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Fig. 3.11. Box plots for the number of robots that have climbed the step in each step

condition. The best-evolved controller in setting C is evaluated over 100 trials.

Setting C. The multi-legged robots could climb the step using the robots in front of the steps

as stepping stones.

Additionally, a flexibility test for the robotic swarm was conducted with different heights

and shapes of steps. The best-evolved controller of Setting C was applied to six different

steps. The settings of the steps are shown in Fig. 3.10. In steps 2 and 3, the height is

increased to 0.45 and 0.54 m, respectively. Steps 4 and 5 are set as advanced tasks compared

to the standard settings in step 1. In steps 6 and 7, the shape is changed to have an acute and

obtuse angle. Fig. 3.11 shows the results obtained in the flexibility test. The performance

in each step was evaluated 100 times, which is the same as Fig. 3.8. The robotic swarm

succeeded in climbing up the step in all environments. The robotic swarm showed low

performance in steps 2, 3, 4, and 5. These results showed that the height of the step seriously

affects the performance of the robotic swarm. The results also showed that the robotic

swarm is robust to the shape of the step.

3.4 Discussion

For further understanding of the obtained behaviors, evolved controllers are tested in

Env-2 with deactivating sensors on robots. By performing this test, we can predict the

contributions of each sensor in the task and analyze actions obtained by robots. A total of

eight settings are defined as follows:

Setting I : The default setting (with activating all sensors).
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Table 3.3. The number of controllers in which the performance significantly decreased from

setting I. There are 10 controllers for each evolution trial, with a total of 50 controllers

compared for each setting.

Settings

Evolution Trials II III IV V VI VII VIII

Trial1 9 0 7 0 1 1 1

Trial2 5 0 1 6 0 0 0

Trial3 9 0 0 9 1 0 0

Trial4 3 1 1 3 2 1 1

Trial5 8 1 10 7 2 0 5

Total 34 2 19 25 6 2 7

Setting II : Deactivate the camera.

Setting III : Front IR sensors can detect only robots.

Setting IV : Front IR sensors can not detect robots.

Setting V : The bottom IR sensor can detect only robots.

Setting VI : The bottom IR sensor can not detect robots.

Setting VII : IR sensors on the shell can detect only robots.

Setting VIII : IR sensors on the shell can not detect robots.

When the sensor is deactivated, it returns a signal as if it is not detecting the object. The

input neurons that correspond to the deactivated sensors will receive zero values. In each

test setting, controllers evolved with Setting C are tested 100 times. As mentioned in section

4, evolution processes were conducted five times. Controllers with the top 10 fitness values

are selected from each trial, in a total of 50 controllers are tested.

The results of the test are shown in Table 3.3. This table summarizes the number of

controllers out of 50 in which the performance significantly decreased from setting I (Mann-

Whitney U test, p-value <0.05). The results show that the performance was most affected by

the camera; 34 out of 50 controllers significantly decreased performance when deactivating the

camera. The second was setting V , with 25 out of 50 controllers showing a lower performance.

Deactivating the bottom sensor will make the robot difficult to measure the distance between

the floor and the body, which leads to the robots having lower body postures. In setting IV ,

19 out of 50 controllers showed a significantly lower performance. Settings II and IV have a

similar role by making the robot difficult to detect other robots in the front. Since setting II

has the largest influence on performance, we focus on setting II and perform the additional
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Fig. 3.12. The new environmental setting. The passage of Env-2 is divided into two regions,

α and β.
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Fig. 3.13. Box plots for the number of robots that have climbed the step in setting α and

β.

test.

One possible effect of deactivating the camera is that it becomes difficult for robots to

form a line. Deactivating the camera may lead to increase collisions and overlaps between

robots and decrease performance. To test this hypothesis, the new environmental setting is

introduced, as shown in Fig. 3.12. This environment is divided into two regions, α and β.

The new sensor settings are introduced considering the two regions, which are defined as

follows:

Setting α: Deactivate the camera at the region α.

Setting β: Deactivate the camera at the region β.

These settings are designed for inspecting the importance of forming a line within the task.
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Fig. 3.14. Box plots for the number of robots that have climbed the step in setting I and

IX.

If forming a line is important to the task, the score for setting α is likely to be lower than

for setting β because region α is much longer than region β. A total of 50 controllers from

setting C are applied for setting α and β, similarly to the previous test. The results of this

test are shown in Fig. 3.13. The results show that the hypothesis is not appropriate, i.e., the

detection of robots just in front of the step is more important for achieving the task. It can

be assumed that the robots seem to be locating other robots in front of the step to utilize

them as stepping stones.

Finally, the contributions of the robot embodiment and evolved controllers on the perfor-

mance are analyzed. The additional sensor setting is introduced as follows:

Setting IX: Use Setting II – VIII together (deactivate the camera and all of the IR

sensors).

This setting is designed to test the contribution of an embodiment because robots have

to address the task by only walking in a specific direction. Similar to the other settings

I–VIII, setting IX is applied for a total of 50 controllers from setting C. The results of the

experiments using setting IX are shown in Fig. 3.14. The results show that the task could

be achieved to some extent by only walking toward the step. However, the performance of

climbing the step was decreased. This loss of performance shows that the evolved controller

has contributed to the step-climbing behavior.
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3.5 Conclusions

This chapter presented an experimental study on the collective step-climbing behavior

of the multi-legged robotic swarm. The evolutionary robotics approach was employed to

design the neural network within the robot controller. Computer simulations showed that

the proposed method successfully achieves the step-climbing task. Additionally, the evolved

controller was able to achieve the task with steps that are different heights and shapes.

Furthermore, the analysis for obtained controllers showed that the performance of the robotic

swarm depends on robot embodiment. However, the results also showed the robot controllers

evolved to contribute to the performance.
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Chapter 4

Neuroevolution Approach for

Generating Collective Behav-

ior of a Multi-Legged Robotic

Swarm

This chapter focuses on a pure neuroevolution approach for a multi-legged robotic swarm.

In Chapter 3, the proposed method employed CPG for the basic gait of a single robot. This

method successfully established a hierarchical design of single robot action to collective

behavior due to the simple mechanism of CPG. However, the gait itself became monotonous

and follows a fixed cycle. In addition, if the robot settings (e.g., the movable range of joints,

the friction coefficient of legs) are changed, the CPG needs to be re-tuned.

This chapter proposes a new method of pure neuroevolution: the basic gait of a single robot

is also designed by a neural controller with an evolutionary robotics approach. Generally,

a multi-legged robot shows enormous aspects of gaits due to the large degrees of freedom.

Additionally, several gaits are not similar to natural creatures; they are may unsuitable to

achieve the task by mimicking natural creatures. In this study, intuition-based fitness parts

were designed to make robot gaits similar to legged animals. As Chapter 3, the experiment

for designing collective behavior was conducted in computer simulation with the physics

engine. The robotic swarm was evolved in the task of forming a line. The evolution was

conducted with a hierarchical process: the first for evolving the gait of a single robot and

the second for evolving collective behavior. The results showed that the neuroevolution

approach successfully designed both a basic gait and collective behavior of a multi-legged

robotic swarm.

The rest of this chapter is organized as follows. Section 4.1 presents experimental settings.
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Fig. 4.1. The settings of the task environments. Environment 0 (Env-0) is the flat field

that designs a gait of a single robot. Environment 1 (Env-1) has walls and evolves collective

behavior using 10 robots.

Section 4.2 describes the details of the neuroevolution approach. Section 4.3 shows the

results and discussion. Finally, Section 4.4 presents the conclusion.

4.1 Settings of Experiments

This section describes the experimental settings. The experiments in this study aim to

generate collective behavior of a multi-legged robotic swarm based on the neuroevolution

approach. A total evolution process is divided into two stages. The first stage is for designing

a gait of a single robot. The second stage requires robots to form and keep a line while they

are moving. As in Chapter 3, the experiments are carried out in computer simulations.

Fig. 4.1 shows the settings of the task environments. The evolution processes are executed

in two environments, i.e., environment 0 (Env-0) and environment 1 (Env-1). Env-0 is the

flat field represented by z = 0. In Env-0, a single robot is evolved to walk in a direction

along with the x-axis. After the evolution in Env-0, the obtained controllers are re-evolved

in Env-1 with ten robots. Env-1 has two walls that continue until x = 45.0. In Env-1, robots

are evolved to follow other robots and form a line.

In addition, the robot configurations are illustrated in Fig. 4.2. The body structure of the
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Fig. 4.2. Settings of the robot. The main changes from Chapter 3 are movable ranges of

joints; they become wider for the better movabilities of robots. As in Chapter 3, cyan dotted

lines indicate the movable range of joints. The gray circular sector shows the visible range of

the camera. Yellow lines are the sensor ranges of the infrared sensors.

robot is similar to Chapter 3 except for the movable ranges of joints. The joints have wider

movable ranges than in Chapter 3 for increasing the movability. The basic mechanism and

role of sensors are also the same to Chapter 3.

4.2 Methods

The neuroevolution approach is employed to design the controller for a robotic swarm.

The remaining part of this section describes the details of the controller and the evolutionary

computation method.

4.2.1 Controller

The robot controller is illustrated in Fig. 4.3. The recurrent neural network with a single

hidden layer is employed as the robot controller. The network has recurrent connections at

the hidden layer and direct connections from the input layer to the output layer. The input

layer consists of 56 neurons. Inputs are obtained from a camera, IR sensors, touch sensors,

angles and angular velocities of joints, roll and pitch angles of the torso, and the compass.

The output layer has 14 neurons. Twelve of them decide the target angular velocities of
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Fig. 4.3. Structure of the robot controller.

Table 4.1. Parameter settings of the (µ, λ)-ES.

Parameter Value

Number of parents µ 20

Number of offspring λ 64

Initial mutation step size 0.005

Mutation step size ∈ [0.0005, 0.15]

Terminate generation Gmax 1000

Proportional constants (c, c′) (0.5, 2.5)

joints, and the remaining two control the activation of LEDs.

4.2.2 Evolutionary Algorithm

A total of 9360 synaptic weights in the controller are optimized by the (µ, λ)-evolution

strategies (ES)[30]. Algorithm 2 shows the pseudocode of the (µ, λ)-ES. In addition,

parameter settings are summarized in Table 4.1. In several studies, the ratio of µ and λ is

set as 1/7[30]. This experiment employs weaker selection pressure (µ/λ ≈ 1/3) to satisfy

multiple objectives in the fitness function (described in 4.2.3). The parameter setups in

Table 4.1 are determined based on preliminary experiments with Exp-0.

4.2.3 Fitness Function

The fitness function consists of two parts; fitness1 for walking in a specific direction, and

fitness2 for following the other robots. The role of each fitness part is similar to Chapter 3,
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Algorithm 2 Pseudocode of (µ, λ)-ES.

Input:

1: fitness function F (x) : Rn → R
2: number of parents µ

3: number of offsprings λ

4: constants of proportionality c, c′

5: terminate generation Gmax

Define:

6: τ = c√
2
√
n

, τ ′ = c′√
2n

Initialize:

7: generation counter G← 0

8: for i← 1,. . . , λ do

9: individual X (i) = {
(
θ(i),σ(i)

)
| θ(i),σ(i) ∈ Rn}

10: end for

11: initial population PG ← {X (1), . . . ,X (λ)}
12: fitness of individuals FG ← {F (θ(1)), . . . , F (θ(λ))}

13: while G < Gmax do

14: Select µ individuals with the highest fitness from PG
15: for i← 1,. . . , λ do

16: Select the X (i) randomly from µ individuals

17: σ′(i) ← eτ
′·N(0,1) · σ(i) � eτ ·Nn(0,I)

18: θ′(i) ← θ(i) + σ′(i) �Nn(0, I)

19: X ′(i) ← {(θ′(i),σ′(i))}
20: end for

21: FG ← {F (θ′(1)), . . . , F (θ′(λ))}
22: PG ← {X ′(1), . . . ,X ′(λ)}
23: G← G+ 1

24: end while

while several updates are introduced. Each fitness part is described below.

・fitness1

The fitness1 is the product of the base function and supplemental parts. The base

function of fitness1 is represented by the following equations:

f1 = max

( Nr∑
i

1

c1 + |xt − x̃i|α
− c2, 0

)
(4.1)
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x̃i = (min(xi, S), yi, zi)

where Nr is the number of robots, xt is the vector of the target position, and x̃i is the

position vector of the ith robot. The f1 has a similar form to the function used in Chapter 3.

The x̃i has the upper limit of S in the x coordinate. c1, c2, and α are constant values. This

function will make robots walk in a specific direction by setting xt as sufficiently far from

the initial positions of robots.

When only using f1, the robot controller often shows unnatural gaits (such as backward

walking, shaking the torso frequently, and using few legs) due to a large degree of freedom.

To solve this problem, a total of five supplemental fitness parts (δ1 ∼ δ5) are introduced;

they design the robot’s gait similar to natural organisms. δ1 is for walking forward, which is

represented by the following equation:

δ1 = Kδ1 ·max

(
1

Nr

Nr∑
i

f · vi
|f ||vi|

, 0

)
(4.2)

where Kδ1 is the constant value, vi is the velocity vector of robot i, and f = (0, 1, 0) is the

vector indicating the front direction on the local coordinate of robots. δ1 is the function of

cosine similarity for the vi and the f . The value of δ1 increases when robots show forward

walking.

δ2 is for driving joints, which is represented as follows:

δ2 = Kδ2 ·
1

Nr

Nr∑
i

|φi|
|φi|+ c3

·
(
φi · 1
|φi||1|

)β
(4.3)

where Kδ2 , c3, and β are constant values, φi is the vector indicating the rotation angles of

joints. The detail of the φi is described in Appendix A. The 1 is a vector whose elements

are all 1. The value of δ2 increases when robots move each leg equally.

δ3, δ4, and δ5 are represented by the following equation:

δj =
1

Nr

Nr∑
i

{
min

(
c4,δj

1 + c5,δjχ
γδj
i,δj

, 1

)
· aδj + bδj

}
, j ∈ {3, 4, 5} (4.4)

where c4,δj , c5,δj , γδj , aδj , and bδj are constant values. χi,δj is the scalar value that shows

the robot state to be minimized. In δ3, χi,δ3 is the amount of change in the roll and pitch

angles from standard values. Therefore, δ3 requires the robot to keep orientation. In δ4,

χi,δ4 is the amount of change in the bottom IR sensor from the standard value to keep the

distance between the body and the floor. In δ5, χi,δ5 is the number of times the direction of

the rotating joint has changed to prevent vibrations on joints. The details of the χi,δj are

also described in Appendix A. The maximum values of δs are arranged to balance the effects

of each part. Appendix B summarizes the parameter values used in the experiment.

The fitness1 is calculated by the following equations:

fitness1 = f1δ1δ2 · g(f1δ1δ2,
5∏
k=3

δk, ρ) (4.5)
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g(x, y, ρ) =

{
y if x ≥ ρxmax
1 otherwise

where ρ is the constant value, and xmax is the theoretical maximum of x. The function

g(x, y, ρ) is introduced for the incremental evolution based on fitness functions [104]. By

using g(x, y, ρ), it becomes easy to satisfy all requirements of δs.

・fitness2

The fitness2 is for following other robots, which is represented by the following equations:

fitness2 =
T∑
t

Nr∑
i

f2,t,i (4.6)

f2,t,i =


1 if the ith robot detects LEDs in front two regions

of the camera at the timestep t and xi > I

0 otherwise

where T is the timesteps per generation, and I is the threshold for activating this fitness

function. This part is activated when the x coordinate of the ith robot is higher than I.

◇Total fitness

The total fitness value is calculated by the weighted summation of two parts, which is

described as follows:

Fitness =
1

M

M∑
i

2∑
j

Kj · fitnessj (4.7)

where M is the number of evaluations and Kj is the constant value for scaling the corre-

sponding part. The parameter values in the fitness function are summarized in Appendix B.

4.2.4 Experimental Setup

The experiment process is divided into two parts, i.e., experiment 0 (Exp-0) and experi-

ment 1 (Exp-1). The rest of this section describes the details of each part.

・Exp-0

Exp-0 is conducted in Env-0. The purpose of Exp-0 is to evolve the gait of a single robot.

Therefore, Exp-0 uses only fitness1. To check the effect of supplemental fitness parts, three

settings are introduced as follows:

Setting 0-A: fitness1 = f1

Setting 0-B : fitness1 = f1δ1δ2

Setting 0-C : fitness1 = f1δ1δ2 · g(f1δ1δ2,
∏5
k=3 δk, ρ)
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Fig. 4.4. The x-coordinate value of the final robot positions in each generation. Lines are

the average over 5 trials. The error bar shows the standard deviation.

・Exp-1

Exp-1 is conducted in Env-1. The purpose of Exp-1 is to evolve a collective behavior of

a multi-legged robotic swarm. The evolved controllers in Setting 0-C are set as the initial

population in Exp-1 for accelerating the evolution process. Three experimental settings are

conducted as follows:

Setting 1-A: The standard setting.

Setting 1-B : The setting without using evolved controllers in Exp-0.

Setting 1-C : The setting without using fitness2.

Setting 1-B is for checking the effect of the incremental evolution based on environments.

Setting 1-C tests how does fitness2 affects the gait of robots.

4.3 Results and Discussion

4.3.1 Evolving a Gait for a Single Robot (Exp-0)

In Exp-0, different fitness functions are used in Settings 0-A, 0-B, and 0-C respectively.

Therefore, instead of fitness transitions, Fig. 4.4 shows the x-coordinate values of the final

robot positions in each generation. Fig. 4.4 shows that the line in Setting 0-A converged

to a slightly higher value than in other settings. This means that the supplemental fitness

parts slightly affect the travel distance of the robot. Fig. 4.5 shows the examples of obtained
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(a) Setting 0-A.

(b) Setting 0-B.

(c) Setting 0-C.

Fig. 4.5. Example of obtained behavior in Exp-0. In each setting, six pictures are taken

from fixed points of view. The white arrows in the pictures show the direction the robot is

waking. (a) The robot obtains backward walking through some evolution trials. (b) The

robot shows forward walking while swinging the body around the roll angle. (c) The robot

keeps posture while walking.

behaviors in Exp-0. Fig. 4.5(a) shows that the evolution process without δ1 to δ5 sometimes

generates backward walking. Fig. 4.5(b) shows the example of robot behavior in Setting 0-B.

By using δ1, robots obtained forward walking in all five trials. However, the robot tends

to swing the body around the roll angle while walking. Fig. 4.5(c) shows the example of

robot behavior in Setting 0-C. The robot keeps the orientation and position of the body.

Supplemental fitness parts successfully designed the gait similar to a natural organism.
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(a) fitness1 (for moving along x-axis).
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(b) fitness2 (for following other robots).

Fig. 4.6. The details of the fitness transitions. Note that fitness2 in Setting 1-C is not

used for the final fitness calculation(K2 = 0). In (b), the plot corresponding to Setting 1-C

is the supplemental data to compare the ability to follow other robots.
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Fig. 4.7. The mean x-coordinate value of 10 robots in each generation. Lines are the

average over 5 evolutionary trials.

4.3.2 Evolving a Collective Behavior (Exp-1)

Fig. 4.6 shows fitness transitions in Exp-1. Settings 1-A and 1-C use controllers evolved

in Setting 0-C of Exp-0 as the initial population. Therefore, Setting 1-B is conducted until

1100 generation to equalize the computational cost. In Setting 1-C, only fitness1 is applied

during the evolution. Fig. 4.6(a) shows that fitness1 in Setting 1-C becomes the highest in

all settings. In Setting 1-A, fitness1 stopped increasing around 400 generations and slightly

decreased. Instead of fitness1, fitness2 increased until the last generation, as can be seen
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(a) Setting 1-A.
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(b) Setting 1-B.
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(c) Setting 1-C.

Fig. 4.8. Transitions of δs (supplemental fitness parts) in Exp-1.
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(c) Setting 1-C.

Fig. 4.9. Robot trajectories observed in Exp-1. The circle markers show the robot positions

at 2000 timestep. The triangle markers show the robot positions at 4000 timestep.

from Fig. 4.6(b). In Setting 1-A, the value of fitness1 is higher than fitness2. On the other

hand, in Setting 1-B, the value of fitness2 is slightly higher than fitness1 in the latter half

of the evolution. The difference between Settings 1-A and 1-B is whether or not pre-evolved

controllers are used as the initial population. The results of Settings 1-A and 1-B show that

the prior evolution leads to a different evolution path in Exp-1.

Fig. 4.7 shows the final x-coordinate values of robots in each generation. Fig. 4.7 shows that

the setting with higher fitness2 tends to show shorter traveled distances of robots. Fig. 4.8

shows the transitions of δ1 to δ5 in Exp-1. Fig. 4.8 shows that the values of δ5 (prevent

vibrations on joints) in Setting 1-A and 1-B become lower than Setting 1-C. Additionally,

the values of δ2 (move each leg equally) and δ4 (keep the distance between the body and

the floor) in Setting 1-B are lower than Setting 1-A. This means the setting with higher

fitness2 tends to show lower values in some δs. From the results of Fig. 4.6 (the higher

fitness2, the lower fitness1), Fig. 4.7 (the higher fitness2, the shorter traveled distance),

and Fig. 4.8 (some δ values become low in the settings of obtaining fitness2), robots seem
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to change their gaits that contribute to fitness1 for obtaining fitness2. For following other

robots (i.e., for keeping relative position and direction to a preceding robot), robots are

required to obtain different behaviors from a single robot scenario, such as limiting a walking

velocity, adjusting moving direction more frequently, and so on. Obtaining both fitness1

and fitness2 at high levels becomes a future challenge.

Fig. 4.9 shows examples of robot trajectories in each setting. These plots show the

effect of fitness2. In Settings 1-A and 1-B (evolved with fitness2), all robots show similar

trajectories, but in Setting C (evolved without fitness2), the robots have spread out. By

using fitness2, the gaits of robots were evolved to follow other robots while robots were

moving. The results of Exp-1 showed that the ER approach successfully designed how to use

each joint for collective behavior of a multi-legged robotic swarm.

4.4 Conclusions

This chapter focused on the neuroevolution approach for generating collective behavior of

the multi-legged robotic swarm. The recurrent neural network was employed as the robot

controller. Computer simulations showed that the proposed fitness functions successfully

designed the robot’s gait similar to natural organisms. The results also showed that the

neuroevolution approach designed the controller to generate collective behavior of the

multi-legged robotic swarm.
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Evolving Collective Behavior in

a Rough Terrain Environment

This chapter focuses on evolving collective behavior in a rough terrain environment. In

Chapter 4, the neuroevolution approach successfuly designed collective behavior in flat

surface. This result is extended to the advanced task: path formation task in rough terrains

with 20 robots. The multi-legged robots show three-dimensional behaviors, such as climbing

steps or obstacles by coordinating thier legs. Therefore, the multi-legged robotic swarm is

expected to exhibit collective behaviors in rough terrains. However, in these task scenarios,

the robot controller has to adapt to height difference on the floor beside the original task

requirement. This implies the controller design becomes more challenging than the flat

surface. In this chapter, incremental evolution with environmental transitions was employed

to achieve the task in the rough terrain. The similar approach to Chapter 4 was employed to

evolve a robotic swarm. The results of computer simulations showed that the neuroevolution

is also promising to the rough terrain scenario.

This chapter is organized as follows. Section 5.1 describes experimental settings. Section 5.2

describes the details of the neuroevolution approach. Section 5.3 shows the experimental

results. Section 5.4 discusses the adaptability of obtained controllers. Finally, Section 5.5

present the conclusion.

5.1 Settings of Experiments

This section describes the task settings including environment and robot specifications.

The experiment of this chapter aims to generate collective behavior of a multi-legged robotic

swarm in a rough terrain environment. The robot controller is obtained by a neuroevolution

approach. The performance of a robotic swarm is evaluated in a path formation task. The

experiment is conducted by computer simulations as in the former chapters.
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Fig. 5.1. Environmental settings for the path formation task. Environment 1 (Env-1) is

a square arena with a flat field. Environment 2 (Env-2) has the rough terrain field that

consists of cuboid blocks.

5.1.1 Environmental settings

Fig. 5.1 shows the environmental settings of the path formation task. The evolution

processes are executed in two environments, i.e., environment 1 (Env-1) and environment 2

(Env-2). Env-1 and Env-2 are square arenas that include two target areas. In the task,

robots are required to visit two target areas alternately. The landmark is placed at the center

of a target area. Landmarks are equipped with a colored LED that can be detected by a

robot. In Env-1, the floor is a flat field, while Env-2 has a rough terrain field that consists of

cuboid blocks. Fig. 5.2 shows the settings of the block arrangement in Env-2. Blocks are

positioned to shape a sine wave surface. The difficulty of moving in the rough terrain field is

determined by ∆h and ω in Fig. 5.2. In both environments, a total of 20 robots are placed

with random initial facing directions. The task period is set as 5000 timesteps. The robot

controller gets sensor inputs and decides the output at each timestep.
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Fig. 5.2. The setting for floor blocks in Env-2. Blocks are arranged to shape a sine wave

surface. The ∆h shows the height difference between the highest point and the lowest point

on the surface. The ω is the frequency of a sine wave.

Fig. 5.3. The robot specifications. The main change from Chapter 4 is the visible range of

the camera; the robot has an omnidirectional camera with a longer sight range. In addition,

the bottom IR sensor obtains the new ability to detect the target areas. On the other hand,

robots lost an electric compass. These settings are employed to discuss a path formation

task.

5.1.2 Robot settings

Fig. 5.3 illustrates the robot specifications. The body structure of the robot is similar to

Chapter 4, while sensor settings are slightly changed. The first change is the visible range

of the camera; the omnidirectional camera is employed. As in former chapters, the camera

range has six sections. Each section detects the colored LEDs on the front and back of the

robot independently. In total, twelve binary signals are obtained from the camera. The

second change is in the bottom IR sensor; it also acts as the “ground sensor”. The ground

sensor returns 1 when detects the target area and 0 otherwise. Finally, the electric compass

is removed because the compass makes the task significantly easy.
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Fig. 5.4. Structure of the robot controller.

5.2 Methods

The neuroevolution approach is employed to design a robot controller. This section

describes the method to apply neuroevolution for the path formation task of the multi-legged

robotic swarm.

5.2.1 Controller

Fig. 5.4 illustrates the structure of the robot controller. The controller structure is similar

to Chapter 4 except for the number of neurons on input and hidden layers. The input layer

consists of 55 neurons which obtain inputs from a camera, IR sensors, a ground sensor, touch

sensors, angles and velocities of joints, a roll angle of the torso, and a pitch angle of the torso.

The output layer has 14 neurons. Twelve of them decide to target angular velocities of joints.

The remaining two turn on LEDs if the output values are larger than 0.5. A total of 4002

synaptic weights are optimized. This study also employs (µ, λ)-ES as in Chapter 4. Table 5.1

summarizes the parameter settings of the (µ, λ)-ES. The main change from Chapter 4 is

tripled population size; λ = 192 is determined by preliminary experiments for more difficult

tasks than Chapter 4.

5.2.2 Fitness Function

The performance of a robotic swarm on the task is evaluated by the fitness function. The

fitness function consists of two parts; fitness1 is for walking around in an environment,

and fitness2 is for visiting target areas. The fitness1 has a similar structure to Chapter 4,
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Table 5.1. Parameter settings of the (µ, λ)-ES.

Parameter Value

Number of weights n 4002

Number of parents µ 192

Number of offspring λ 64

Mutation step size σ ∈ [0.0005, 0.15]

Initial mutation step size ∼ U(0.004, 0.006)

Terminate generation Gmax 1000

Proportional constants (c, c′) (0.5, 2.5)

which is represented as follows:

fitness1 = fv · δ1δ2 · g(fvδ1δ2, δ3δ4δ5). (5.1)

fv = min (av̄, a(2vmax − v̄), vmax)

v̄ =
1

Nr

Nr∑
i

||vi||2
(5.2)

where a, Nr, and vmax are constant values. The Nr is the number of robots. The vmax is

the target speed of walking robots. The vi is the velocity vector of a robot i. The fv has a

trapezoid shape that is centered at vmax. The fv requires robots to move at the approximate

speed vmax. In Eq. 5.1, δ1 to δ5 are supplemental parts to make a robot’s gait similar to

natural organisms. The representations of δ1 to δ5 are the same to Chapter 4. The roles of δ1

to δ5 are as follows: δ1 is for walking in the front direction of the robot, δ2 is for using each

leg equally, δ3 is for keeping roll and pitch angles of the body, δ4 is for keeping the distance

between the body and the floor, and δ5 is for preventing vibrations on joints. Finally, the

function g(x, y) in Eq. 5.1 is given as follows:

g(x, y) =

{
y x ≥ α
1 otherwise

(5.3)

where α is the constant value. The g(x, y) realizes a hierarchical training by using α as

a threshold. The δ3, δ4, and δ5 become available after fv, δ1, and δ2 are trained to some

extent. This setting is also similar to Chapter 4. Consequently, fitness1 requires robots to

walk around the environment.

The fitness2 (for visiting target areas) is represented as follows:

fitness2 =

Nr∑
i=1

ftarget,i (5.4)
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ftarget,i (t) = ftarget,i (t− 1) +

{
1 if robot i enters a target area,

0 otherwise

where t shows the timestep. The fitness2 requires robots to visit two target areas alternately.

At last, the total fitness is represented as follows:

F = K1 · fitness1 +K2 · fitness2 (5.5)

where K1 and K2 are constant values.

5.2.3 Incremental Evolution

Incremental evolution is a promising method to generate complex behavior in robots [104].

This study employs incremental approaches based on staged evolution and environmental

complexification [104]. Before the path formation task, preliminary evolution is conducted

using a single robot with fitness1 (i.e., K2 = 0) in Env-1. The preliminary evolution aims to

make a robot walk in a flat field. The robot controllers that pass the preliminary evolution

are set as the initial population PG of the path formation task. The three evolution settings

are applied for the PG as follows:

Setting 1 : Evolve for 1000 generations in Env-1.

Setting 2 : Evolve for 1000 generations in Env-2

((∆h, ω) = (0.2, 1.0)).

Setting 3 : Evolve for 250 generations in Env-1, and use Env-2 (250 generations for

(∆h, ω) = (0.1, 1.0) and 500 generations for (∆h, ω) = (0.2, 1.0)).

Setting 1 is for achieving the path formation task in the flat field. Setting 2 and Setting 3 are

for achieving the task in the rough terrain field. Setting 2 uses a direct evolution in Env-2

with the terrain setting (∆h, ω) = (0.2, 1.0). Setting 3 uses an incremental evolution based

on environmental transitions. In the evolution process, fitness1 becomes a supplemental

part (i.e., K2 · fitness2 � K1 · fitness1).

5.3 Results

In the experiment, five evolution trials are conducted for Setting 1 to Setting 3. The fitness

transitions are shown in Fig. 5.5. Lines plotted the max and mean fitness of a population in

each generation. Each line is averaged over five evolution trials. In Fig. 5.5(a), the value

of fitness1 decreased in the initial phase of evolution. After that, the value of fitness1

slightly increased. This phenomenon could be caused by the prioritization of fitness2 over

fitness1. Fig. 5.5(a) also shows that the fitness1 of Setting 3 increased after using Env-2

from the 250 generations ((∆h, ω) = (0.1, 1.0)). However, the value decreased again after
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(b) K2 · fitness2.

Fig. 5.5. Fitness transitions. Each plot is averaged over five evolution trials.

(a) 2000 step. (b) 3000 step. (c) 4000 step.
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Fig. 5.6. Example of observed behavior in Setting 1.

the 500 generations ((∆h, ω) = (0.2, 1.0)). These results indicate the field with small steps is

easier for robots to move than the fully flat field.

In the experiment, the value of K2 is set as 1.0. Therefore, K2 · fitness2 in Fig. 5.5(b)

shows the number of arrivals to target areas. In Setting 1, fitness2 increased gradually

and converged around 1000 generations. The best controllers of Setting 1 recorded about

200 times of arrivals. In Setting 2, the fitness2 also converged around 1000 generations,
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(a) 2000 step. (b) 3000 step. (c) 4000 step.
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Fig. 5.7. Example of observed behavior in Setting 2.

(a) 2000 step. (b) 3000 step. (c) 4000 step.

6 3 0 3 6
x [m]

6

3

0

3

6

y 
[m

]

0

25

50

75

100

125

150

175

200

fre
qu

en
cy

(d) heatmap.

Fig. 5.8. Example of observed behavior in Setting 3.

(a) ∆h = 0.0. (b) ∆h = 0.1. (c) ∆h = 0.2. (d) ∆h = 0.3.

Fig. 5.9. Boxplots for flexibility tests. The boxes with bold lines show the terrain setting

where controllers are obtained.

while the fitness value is lower than in Setting 1. The best controllers of Setting 2 recorded

about 140 times of arrivals. The curve of Setting 3 shows a sharp decline corresponding

to the environmental transitions. However, in the last generation, Setting 3 shows better

performance than Setting 2 despite the same terrain setting. This result showed that

incremental evolution is effective for a multi-legged robotic swarm in rough terrain fields.

Fig. 5.6 to Fig. 5.8 show the observed behaviors of the robotic swarm in each setting. Add

to snapshots, the long-term records about robot positions are summarized as two-dimensional

histograms. Fig. 5.6 shows that the multi-legged robotic swarm successfully forms a path
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(a) Setting 1. (b) Setting 2. (c) Setting 3.

Fig. 5.10. Observed behavior in (∆h, ω) = (0.2, 1.0) (“A” in Fig 5.9(c)).

(a) Setting 1. (b) Setting 2. (c) Setting 3.

Fig. 5.11. Observed behavior in (∆h, ω) = (0.3, 1.0) (“B” in Fig 5.9(d)).

formation in the flat field. Fig. 5.7 and Fig. 5.8 show that path formations are also achieved

in the rough terrain field. These results showed that the neuroevolution approach successfully

designed path formation behavior in the flat field and the rough terrain field.

5.4 Discussion

This section discusses the flexibility of the robotic swarm for terrain variations. The robot

controllers are applied for terrain settings where controllers are not evolved. The ∆h in

Env-2 is varied as {0.0, 0.1, 0.2, 0.3}. The ω is also varied as {0.5, 1.0, 1.5}. A total of 10

terrain settings (ω is irrelevant when ∆h = 0.0) are employed. The robot controller with

the best performance is selected from each evolution trial. The five controllers from each

Setting 1, 2, and 3 are applied to 10 terrain settings. Each controller is evaluated 30 times.

The results are summarized in Fig. 5.9. Each box consists of 150 scores (30 plots × 5

controllers). Fig. 5.9 shows that the performance of the robotic swarm decreased as ∆h

increased. In addition, changes of ω from 0.5 to 1.0 are not critical to the performance, while

1.0 to 1.5 seriously affect the performance. In terrain settings except (∆h, ω) = (0.2, 0.5)

and (0.2, 1.5), controllers of Setting 1 and Setting 2 showed significant differences among

performances (Kruskal-Wallis test, pKW < 0.05 and Bonferroni-corrected Mann-Whitney U
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test, pU < 0.05/3). When the terrain setting is close to the flat field (∆h = 0, (∆h, ω) =

(0.1, 0.5), (0.1, 1.0)), controllers of Setting 1 show better performances, whereas controllers of

Setting 2 are better in rougher terrain settings. Additionally, in all terrain settings, controllers

of Setting 3 showed better performances than Setting 1 and 2(pKW < 0.05, pU < 0.05/3).

This shows the incremental evolution approach designs controllers which can cope with a

wide range of terrain settings.

Fig. 5.10 shows the example of observed behavior in the terrain setting of (∆h, ω) =

(0.2, 1.0) (“A” in Fig 5.9(c)). The background pictures show the robot’s positions at the final

timestep of the task. The robot trajectories are plotted for the last 500 timesteps. Fig. 5.10

shows that the controller of Setting 1 could generate a path formation. This means the

controllers evolved in a flat field can cope with a rough terrain field. Additionally, Fig. 5.11

shows the example of observed behavior in (∆h, ω) = (0.3, 1.0) (“B” in Fig 5.9(d)). In this

field, controllers from Setting 2 and Setting 3 outperform the controllers of Setting 1. In

Fig. 5.11, some robots of Setting 1 could not move in the environment sufficiently while

robots of Setting 2 and Setting 3 keep a path formation. The controllers evolved in a rough

terrain field show better flexibility for more difficult terrain settings.

5.5 Conclusions

This chapter focused on evolving collective behavior in a rough terrain environment. The

neuroevolution approach proposed in Chapter 4 was extended to a path formation task with

20 robots. The experimental results showed that the neuroevolution succeeded in generating

collective behavior not only on a flat but also on rough terrains. The results also showed

that incremental evolution is an effective approach for a multi-legged robotic swarm in rough

terrain scenarios.
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Chapter 6

Generating and Analyzing Col-

lective Step-Climbing Behavior

This chapter presents the neuroevolution approach for generating and analyzing collective

step-climbing behavior. The method in Chapter 4 retries to achieve the step-climbing task.

In addition, this chapter aims to analyze what kinds of behaviors are obtained through the

evolution process. The task setting seems to evolve an ability to climb the step or other

robots. On the other hand, preliminary experiments imply that robots show several altruistic

behaviors such as keeping postures in front of the step, and making wide stepping stones;

these behavior seem to contribute to achieving the task. To examine the obtained behavior

of robots, four measurement factors are proposed. The evolution process is evaluated by

the performance of robots and the values of measurement factors. The experimental results

showed that the transitions of measurement factors support the hypothesis about obtained

behaviors.

The rest of this chapter is organized as follows. Section 6.1 describes experimental settings

on computer simulation. Section 6.2 describes the details of measurement factors. Section 6.3

shows the experimental results and discussion. Finally, Section 6.4 conclude this chapter.

6.1 Settings of Experiments

This experiment aims to generate collective step-climbing behavior of a multi-legged robotic

swarm by using the neuroevolution approach. The experiment also focuses on analyzing

the obtained behavior. Fig. 6.1 shows the environmental settings of the experiment. In

this study, the evolution process starts from the situation where the controller can make

robots walk and form a line; this setting focuses on evolving step-climbing behavior. The

preliminary evolution for obtaining walking and forming a line was conducted as in Chapter 4.

The target step is higher than a single robot. Therefore, robots have to utilize other robots
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Fig. 6.1. The experimental environment. In this study, the evolution process starts from

the situation where the robots can walk along the x-axis and form a line. The preliminary

evolution for obtaining walking and forming a line was conducted as in Chapter 4.

Fig. 6.2. Settings of the robot. Cyan dotted lines indicate the movable ranges of the joints.

The gray circular sector shows the visible range of the camera.

as stepping-stones for achieving the task. The target step has an acute angle on the surface.

The robots should keep their posture for becoming a stepping stone. If the robot climbs the

step, it will be replaced at 5 m in front of the step and join the task again.

Fig. 6.2 illustrates the robot configuration. The robot specifications are similar to Chapter 4

except for the thickness of the shell. Robots use a thicker shell than Chapter 4 for more

stable simulation. Additionally, the controller setting and evolutionary algorithm setting

are also similar to Chapter 4. However, the population size is changed. As in Chapter 5,

the numbers of parents(µ) and offspring(λ) are set as 64 and 192 for the difficulty of the

task. In this experiment, the fitness function consists of three parts; fitness1 for walking,

fitness2 for following the other robots, and fitness3 for climbing the step. Fitness settings

are designed based on Chapter 3 and Chapter 4. This experiment mainly uses fitness3 for

evolving step-climbing behavior (i.e., K3 · fitness3 � K1 · fitness1,K2 · fitness2).
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(a) The cuboid space specified by Σ. (b) Measurement factors for robot states.

Fig. 6.3. Illustrations about the measurement factors.

6.2 Measurement Factors

This study also focuses on analyzing obtained behavior of robots. The action of robots

in front of the step is important to understand the physical interactions between robots.

Therefore, Σ is introduced to describe the position and orientation of robots in front of the

step, which is defined as follows:

Σ =

1 if xΣ < x and z < zΣ and
|θroll| < θr Σ and |θpitch| < θp Σ and |θyaw| < θy Σ

0 otherwise

(6.1)

where x and z are the coordinate values of the robot. The θroll, θpitch, and θyaw are the

orientation angles of the robot. The xΣ, zΣ, θr Σ, θp Σ, and θy Σ are threshold values. The

Σ judges whether or not the robot is standing in front of the step and facing toward the

step. Fig. 6.3(a) shows the cuboid space specified by Σ. The thresholds are set as follows;

xΣ = 15.2[m], zΣ = 0.19[m], θr Σ = 40[deg], θp Σ = 30[deg], θy Σ = 60[deg].

Four measurement factors are introduced for detecting the situations of robots. Fig. 6.3(b)

illustrated the robot’s situations corresponding to measurement factors. These situations

are determined by the observation of robots in preliminary experiments. The Mkp is the

measurement of keeping the posture of the robot, which is calculated by the following

equations:

Mkp =
1

Nr

T∑
t

Nr∑
i

fkp,t,i (6.2)

fkp,t,i =

{
θpitch,i if the robot i satisfies Σ = 1 at the timestep t

0 otherwise

where θpitch,i is the pitch angle of the ith robot. Mkp is the average pitch angle among

robots that satisfy Σ = 1. If the robots keep their posture, Mkp will become negative or

close to zero based on the pitch angle defined in Fig. 6.2.

The Mpn2 and Mpn3 are measurements for the spatial arrangement of robots in front of
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the step. Mpn2 is calculated by the following equations:

Mpn2 =
T∑
t

fpn2,t (6.3)

fpn2,t =


1 if robot i, j(i 6= j) satisfy Σ = 1 and

θpitch,i, θpitch,j ∈ (θp pn, θp pn) and
||xi − xj ||2 < rpn2

0 otherwise

where θp pn and θp pn are thresholds about the pitch angle. The rpn2 is the threshold for the

distance between robot i and j. The absolute values of θp pn and θp pn are set to smaller

values than the θp Σ. Therefore, Mpn2 sets a more narrow range about the pitch angle than

Σ. The Mpn2 detects the situation where two robots are positioned next to each other, as

illustrated at Mpn2 of Fig. 6.3(b). The Mpn2 is calculated when just two robots satisfy Σ = 1.

Each thresholds are set as follows; θp pn = −45[deg], θp pn = 15[deg], rpn2 = 0.8[m].

The Mpn3 detects the situation where three robots are positioned next to each other, as

illustrated in Fig. 6.3(b). Mpn3 is calculated by the following equations:

Mpn3 =
T∑
t

fpn3,t (6.4)

fpn3,t =


1 if robot i, j, k(i 6= j 6= k) satisfy Σ = 1 and

θpitch,i, θpitch,j , θpitch,k ∈ (θp pn, θp pn)

0 otherwise.

The values of θp pn and θp pn are the same as Mpn2. The Mpn3 is calculated when just three

robots satisfy Σ = 1. The Mpn2 and Mpn3 show the total timesteps that robots are placed

like Mpn2 and Mpn3 in Fig. 6.3(b).

The Mto detects the turnovered robots, which is calculated by the following:

Mto =
1

Nr

T∑
t

Nr∑
i

fto,t,i (6.5)

fto,t,i =

{
1 if θr to < |θroll,i|
0 otherwise

where θroll,i is the roll angle of the ith robot. The θr to is the threshold of the turnover. θr to

is set to 135[deg]. The Mto is calculated regardless of the Σ.

6.3 Results and Discussion

In this study, a total of ten evolutionary processes are conducted. Fig. 6.4 shows the

number of robots that have climbed the step in each generation. In addition, Fig. 6.5 and

Fig. 6.6 show observed behaviors in the initial and last generations, respectively. In Fig. 6.5,

robots could not achieve the task; some of the robots did not keep postures in front of the



6.3. Results and Discussion 65

0 500 1000 1500 2000
Generation

0

10

20

30

40

50

Nu
m

be
r o

f R
ob

ot
s

best_run(pop_max)
mean(pop_max)

best_run(pop_mean)
mean(pop_mean)

Fig. 6.4. The number of robots that have climbed the step. The dashed lines are mean

values over ten evolution trials. The solid lines show the best run.

Fig. 6.5. Observed behavior in the initial generation.

step. On the other hand, the robots in Fig. 6.6 succeeded in achieving the task by building

stable stepping stones. These results showed that the neuroevolution approach succeeded in

designing the robot controllers for achieving the task.

Additionally, Fig. 6.7 shows the transitions of measurement factors. In Fig. 6.7, the mean

value of Mkp decreased. This means the robots stopped tilting forward at the front of the

step and kept their posture flat or behaved like a slope. This behavior seems to be better

for achieving the task because the robot tilting forward becomes an additional obstacle. In

addition, the figures show that the value of Mpn3 becomes higher than Mpn2. This shows that

the situation of Mpn3 occurred more frequently in evolutionary processes. In Fig. 6.7, the

value of Mto increased steeply in the initial generations and slightly decreased after around

500 generations. In the initial generation, the robots cannot climb the step. Therefore, robots
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Fig. 6.6. Observed behavior in the last generation.

do not turn over frequently. Through the evolution process, robots tried to climb other

robots or the step, and the risk of turnover also has increased. Subsequently, the turnovers

are decreased by the selection pressure. The result of measurement factors shows that the

robot obtained behavior to support other robots along with behavior to climb objects.

For further understanding of the behavior, evolved controllers are re-evaluated. The

controllers with the best 10 fitnesses in each evolutionary process are selected. A total of

100 controllers are tested for 100 trials. The correlation coefficients between measurement

factors and the performance of the task are summarized in Fig. 6.8. The result shows

that the correlation between Mpn2 and the performance is relatively weaker than other

measurement factors. Fig. 6.7 shows that the situation of Mpn3 occurs more frequently

than Mpn2. Therefore, Mpn2 seems to have little effect on the performance. The remaining

factors(Mkp, Mpn3, and Mto) indicate a correlation coefficient of approximately 0.4 with a

positive or negative sign. Fig. 6.8 shows that the robot behaviors corresponding to Mkp,

Mpn3, and Mto contribute to achieving the task. However, correlations are not so strong.

6.4 Conclusions

This chapter focused on generating and analyzing a collective step-climbing behavior.

The neuroevolution approach was applied to designing a robot controller. In addition,

four measurement factors were proposed to analyze what kind of behaviors were obtained.

The results of computer simulations showed that the neuroevolution successfully generated

collective step-climbing behavior as in Chapter 3. This result showed the great potential of

neuroevolution for designing complicated control software. In addition, the transitions of

measurement factors indicated that the robots evolved to show behaviors that support other

robots and contribute to achieving the task.
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Chapter 7

Deep Reinforcement Learning

Approach for a Multi-Legged

Robotic Swarm

This chapter presents an approach based on deep reinforcement learning. In Chapters 3 to 6,

all of the experiments were conducted by evolutionary robotics approaches. Evolutionary

robotics is a common approach in automatic design methods due to the learnability for

dynamical environmental settings; the evolutionary approaches have shown successful results

in the former chapters. However, this approach often suffers from the high computational

costs which are used for a huge number of performance evaluations. This chapter employs

reinforcement learning as an alternative to evolutionary robotics. In general, the designing

collective behavior of robotic swarms becomes a challenging problem for reinforcement

learning due to the local observability of agents or the dynamical environment by numerous

agents. On the other hand, recent trends in the machine learning field have proposed powerful

deep reinforcement learning algorithms [50, 54, 101, 129]. Most of these algorithms were

benchmarked with single-agent problems; applicability for multi-robot scenarios is unclear.

This chapter employs proximal policy optimization [129] which is one of the most popular

deep reinforcement learning algorithms to design a controller of a multi-legged robotic swarm.

The rest of this chapter is organized as follows. Section 7.1 briefly describes the PPO

algorithm. Section 7.2 shows experimental settings. Section 7.3 describes methods of applying

PPO for a multi-legged robotic swarm. Section 7.4 shows the results of the experiments

for comparing reward settings. Section 7.5 shows the experiments in rough terrain fields.

Finally, Section 7.6 concludes this chapter.
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7.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is one of the most popular deep reinforcement

learning algorithms. The PPO is categorized as a policy gradient method in reinforcement

learning. In addition, the PPO usually adopts an actor-critic style. In policy gradient

methods, the policy is updated using the gradient of the objective function with respect to

the policy parameters. Typically, policy update is represented by the following equation:

θ′ = θ + η∇θJ(θ) (7.1)

where θ is the parameter vector of the policy, J(θ) is the objective function parameterized by

θ, and η is the learning rate of the policy update. In the PPO, the main objective function

is the following clipped surrogate objective function:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
(7.2)

where Â and Ê denote the empirically obtained estimates of the advantage function and

expectation, respectively. The rt(θ) is the probability ratio calculated by the following

equation:

rt(θ) =
πθ(at|st)
πθold(at|st)

(7.3)

where πθ is the agent policy. st and at are observed state and selected action of the agent at

timestep t, respectively. The θold is the vector of policy parameters before the update. In

Eq. (7.2), ε is the hyperparameter that restricts the changes of rt. The clip term in Eq. (7.2)

indicates that the ratio of πθ(at|st) to πθold(at|st) is restricted to the range [1− ε, 1 + ε]. By

using the minimum function, the final objective becomes the lower bound of the unclipped

objective. The lower bound is also called as pessimistic bound [129]. This implies that the

relatively large changes in the probability ratio (determined by ε) are ignored when the

objective is improved. The policy gradient method often leads the policy to destructively

large updates. PPO prevents the large policy update by using the clipped surrogate objective

function. The basic idea of PPO originated from the trust region policy optimization (TRPO)

algorithm [128]. The PPO is a simplified implementation of the TRPO. PPO has succeeded

in a variety of control problems, including multi-legged robots [53, 81, 97, 118]. Most studies

on PPO have been conducted with a single agent, which means in a static environment. This

study employs the PPO to design a robot controller for a multi-legged robotic swarm.

7.2 Settings of Experiments

The aim of this experiment is to generate collective behavior of a multi-legged robotic

swarm by using the PPO. The robot controller is trained through the task that requires

robots to walk and form a line. The experiment is conducted by computer simulations as in

the former chapters.
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Fig. 7.1. Overview of the task environment. Ten robots are aligned along the x-axis with

random directions. The cyan line shows the visible range of the camera equipped with a

robot.

Fig. 7.2. Settings of the robot. Cyan dotted lines indicate the movable range of the joint.

The gray circular sector shows the visible range of the camera. The two sections of the

visible range (“Afollow” in the left figure) are used to calculate the reward for following other

robots. Yellow lines are the sensor ranges of the proximity sensors.

7.2.1 Task Settings

The task environment is shown in Fig. 7.1. A total of 10 robots are aligned along the x-axis.

The initial directions of robots are determined randomly at the beginning of each episode.

One episode consists of 5000 steps (166 s in the physics simulation). In this environment,

robots are trained to form a line while walking. Robots are trained to walk in the positive

direction of the x-axis. Additionally, robots are also trained to follow other robots and form

a line. In this task, robots are required to keep relative positions to other robots using local

observation and appropriate gait.

7.2.2 Robot Settings

The robot settings are illustrated in Fig. 7.2. The body structure of the robot is similar to

Chapter 4, while the visible range of the camera doubled from Chapter 4. The robot has six

legs, each leg consisting of two joints. In Fig. 7.2, the cyan dotted lines indicate the movable

ranges of joints. Each robot is also equipped with LEDs, a camera, proximity sensors, touch
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Fig. 7.3. Structure of the robot controller.

sensors, and an electric compass. Two LEDs are attached to the front and rear parts of

the robot. The robot controller decides to turn on/off LEDs. The camera is attached to

the center of the torso. The visible range of the camera is divided into two sections in the

radial direction, and divided into six sections around the angle of the robot, as illustrated in

Fig. 7.2. The camera has a total of twelve sections within the visible range. Each section

can independently detect the colored LEDs on the front and back of the robot. In total,

twenty-four binary signals are obtained from the camera. Additionally, the two sections in

front of the robot (Afollow in the left figure of Fig. 7.2) are used to calculate the reward for

following other robots. Proximity sensors detect other robots or objects within sensor ranges.

The values from the proximity sensors are normalized into [0,1]. In this experiment, the

proximity sensors are supposed to distinguish between robots and other objects, and return

values independently. Touch sensors are equipped at the end of each leg. Each touch sensor

returns 1 when it detects collisions with other objects and 0 otherwise. The electric compass

outputs sine and cosine values of the direction the robot is facing.

7.3 Methods

The controller of a multi-legged robotic swarm is trained by the PPO algorithm. This

section describes the details of a robot controller, a learning algorithm, reward functions,

and measurement factors for collective behavior.

7.3.1 Controller

The robot controller (i.e., the policy network) is illustrated in Fig. 7.3. The feedforward

neural network with two hidden layers (similar to the structure in [129]) is employed as
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the robot controller. The input layer consists of 68 neurons. Inputs to the controller are

obtained from a camera, proximity sensors, touch sensors, angles and angular velocities of

joints, roll and pitch angles of the torso, and the compass. The output layer consists of 14

neurons. As in [128, 129], the output layer determines the means of Gaussian distributions.

The agent action (at) is sampled from the distribution with variable standard deviations.

The final outputs are obtained by clipping the at within the range of [−1, 1]. Twelve of

outputs determine the target angular velocities of joints. The remaining two decide to turn

on/off LEDs. The learnable parameters of the policy network include synaptic weights W (l)

in each layer, bias b(l) in each layer, and variance parameter s in the output layer. The

value network has similar a structure to the policy network except for the output layer. The

output layer of the value network has a single neuron that predicts the value V (st).

Algorithm 3 PPO algorithm for a robotic swarm

1: for iteration=1, 2, . . . do

2: for actor=1, 2, . . . , N do

3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, . . . , ÂT based on a robot i

5: if an episode is the end then

6: Re-select the robot i from a robotic swarm randomly

7: end if

8: end for

9: Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
10: θold ← θ

11: end for

7.3.2 Learning Algorithm

The robot controller is trained by the PPO algorithm. In this study, the learning objective

is set as follows:
LCLIP+V F
t = Êt

[
LCLIPt (θ)− LV Ft (θ)

]
. (7.4)

The LCLIP (θ) in Eq. (7.2) is employed as LCLIPt (θ) without any changes. The LV Ft (θ) is

the squared-error loss of the value function (Vθ(st)− V targ
t )2. The notation of Eq. (7.4) is

based on [129].

The PPO algorithm often employs parallel environments (actors) for sampling data. In

each environment, data for learning (such as an observation, selected action, reward, and

next state) are sampled from a single agent. In a robotic swarm scenario, each environment

includes numerous robots (agents). In this study, a single robot in a robotic swarm is

randomly selected for sampling data. Therefore, the original PPO can be applied to train
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a robotic swarm without any changes. On the other hand, the action of each robot is

determined based on local observation (i.e., without using the other robot’s observation).

This means all robots have the same policy independently. This method is an example of a

“centralized training with decentralized execution” framework in multi-agent reinforcement

learning [90]. The pseudocode is presented in Algorithm 3. This study employs the PFRL

library [41] for PPO implementation. The parameter setup of the algorithm is summarized

in Appendix B. The values of parameters are tuned by preliminary experiments. The most

important factor for successful learning in the dynamic environment seems a small clipping ε.

The small ε realizes stable learning, while the learning process progressed more slowly.

7.3.3 Reward Settings

This study employs two types of rewards: r1 for walking and r2 for following other robots.

The r1 is represented by the following equation:

r1 = K1 · fvx ·
5∏
k=1

δk (7.5)

where K1 is the constant value for scaling, and fvx is the function of the robot velocity. The

fvx is represented as follows:

fvx = min (vmax, avx, a(2vmax − vx)) (7.6)

where a and vmax are constants. The vmax (m/step) is the target speed of walking robots. The

vx is the robot velocity along the x-axis. The reward based on vx is inspired by benchmarks

in MuJoCo.*2 The fv has a trapezoid shape that is centered at vmax. In Eq. 7.5, δ1 to δ5

are supplemental parts to make a robot’s gait similar to natural organisms, as in Chapter 4.

The details of δ1 to δ5 are described in Appendix A. Finally, the r1 requires robots to walk

in a positive direction of the x-axis at the approximate speed vmax.

The r2 is represented as follows:

r2 = K2 · rfollow (7.7)

rfollow =


1 if colored LEDs are detected in

Afollow of the camera

0 otherwise

where K2 is the constant value for scaling. The value of rfollow is determined by the sensing

results of Afollow in Fig. 7.2. The mechanism of r2 is also similar to fitness2 in Chapter 4.

The r2 requires robots to follow other robots and maintain a line formation.

The total reward is designed by combining r1 and r2. In the experiment, four reward

settings are prepared as follows:

*2 Available at https://www.gymlibrary.dev/environments/mujoco/.
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Setting A: r = r1

Setting B : r = r1 + r2

Setting C : r =

r1 if episode < Er change

r1 + r2 otherwise

Setting D : r = r1 + g(r1) · r2

where r denotes the total reward for robots. Setting A is prepared to check the effect of r2.

Setting B is the simple implementation for using both r1 and r2. Setting C and Setting D

employ hierarchical learning processes about r1 and r2. In Setting C, the r is changed based

on the elapsed learning steps. The Er change is the episode in which the reward function is

switched. In Setting D, r2 is multiplied by the function g(r1). The g(x) is given as follows:

g(x) =

{
1 x ≥ α
0 otherwise

(7.8)

where α is the constant value. The g(x) is a kind of step function that uses α as a threshold.

By using the g(r1), r2 becomes available after r1 is trained to a certain extent. This approach

is based on a similar idea to the constrained optimization methods [147]. The parameter

settings of the reward functions are summarized in Appendix B.

7.3.4 Measurement Factors for Collective Behavior

Measurement factors are employed to evaluate the achievement of the task (i.e., whether

robots form a line while they are walking). The remaining part of this section describes

details of measurement factors.

1. The NLargest Cluster is the number of robots that belong to the largest cluster [3, 150].

Robot i and j (i 6= j) are regarded as “connected” if the distance between robot i

and j is shorter than the threshold (in this study, the threshold is set as 4.5 m). The

connections among robots are represented by an adjacency matrix. If there is a path

from robot i to j, they belong to the same cluster (paths among robots are represented

by a reachability matrix). The NLargest Cluster detects whether robots keep distances

relatively close to other robots.

2. The x̄ is the mean x-coordinate value of robots that belong to the largest cluster. The

x̄ detects whether the group of robots moves along the x-axis.

3. The dMajor and dMinor are the major and minor diameters of the minimal ellipse

(Löwner-John ellipsoid [65]) that includes the largest cluster. The ellipse shows the

approximated shape of the largest cluster to detect whether robots form a line.

Based on these metrics, the desirable behavior should show: (1) a high value of NLargest Cluster,

(2) increasing x̄, (3) a high value of dMajor, and (4) a low value of dMinor.
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Fig. 7.4. Reward transition through the learning process. In each figure, plots are averaged

over 10 robots, 16 parallel environments, and 10 learning trials. The standard deviation is

calculated for 10 learning trials. Note that r2 is not used as the reward signal in Setting A.

7.4 Experiments for Comparing Reward Settings

This section describes experiments for comparing reward settings in Section 7.3.3. In

each reward setting, a total of 10 learning trials are conducted. The reward transitions

during the learning process are shown in Fig. 7.4. The above plots of Fig. 7.4 show that

Setting A exhibits the best performance for obtaining r1. In contrast, r1 does not increase in

Setting B. This indicates that robots in Setting B do not walk well in the environment. This

phenomenon seems to originate from the reward scales or the fact that r2 is denser than r1.

The plots also show that the cumulative r1 in Setting C decreased after the episode Er change,

whereas r1 in Setting D increased consistently. This indicates that Setting D shows a better

performance of r1 than Setting C. Additionally, the below plots of Fig. 7.4 show that Setting

D recorded the best performance of r2 around the 90th episode. Setting D also showed better

performance for obtaining r2 than Setting C.
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Fig. 7.5. Results of re-evaluation for obtained controllers. Boxes of the notation “10” show

the results of the best controllers in each of the 10 learning trials (each box consists of 500

plots). The “champ” means the controller that shows the best performance among the left

box (each box consists of 50 plots).

For statistical comparison, obtained controllers are re-evaluated. The controller with

the best performance was recorded in each learning trial. A total of 10 controllers were

obtained from each setting. Each controller was re-evaluated 50 times in the task. The

results of re-evaluations are summarized in Fig. 7.5. The results from Fig. 7.5 confirm that

the tendency of obtained rewards among settings is similar to Fig. 7.4 (e.g., Setting A is the

best for r1, and Setting D shows better performance than Setting C).

Examples of observed behaviors are shown in Fig. 7.6. The robot behaviors are generated

by using the “champ” controllers in Fig. 7.5. Fig. 7.6 shows that robots in Setting A spread

out while walking because Setting A does not use r2. In Setting B, robots almost stayed at

the initial positions because controllers primarily received r2. In Setting C and D, robots

succeeded in forming a line while moving in the right direction. Additionally, Fig. 7.7 shows

more long-term results for obtained behaviors as robot trajectories. Fig. 7.7 shows that the
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Fig. 7.6. Examples of observed behaviors. The behavior is generated by the “champ”

controller from each reward setting.

Fig. 7.7. Robot trajectories over 5000 timesteps in the task. The circle, triangle, and star

makers show the robot positions at 1000, 2500, and 4000 timesteps, respectively.

Fig. 7.8. Transitions of measurement factors through the task period. These are the results

of the best controllers in each of the 10 learning trials in Fig. 7.5.

behaviors shown in Fig. 7.6 continued until the end of the task. These results showed that

Setting C and Setting D succeeded in maintaining the line formations of robots.

The transitions of measurement factors are summarized in Fig. 7.8. The measurement

factors show the statistical aspects of robot behaviors. Fig. 7.8 shows that Setting D seems to

have the best performance for achieving the task (a high value of NLargest Cluster, increasing

x̄, a high value of dMajor, and a low value of dMinor). The results from Fig. 7.4 to Fig. 7.8

show that the PPO algorithm successfully designed how to coordinate joints on legs to form
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Fig. 7.9. Setting of the rough terrain field. The field consists of cuboid blocks that form a

sinusoidal surface.

Fig. 7.10. Reward transitions in the rough terrain field.
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Fig. 7.11. Boxplots of r2 for varied ∆h and ω in the rough terrain field. These are results

of the best controllers in each of the 10 learning trials.

a line based on local observations of robots. The results also indicate that the hierarchical

learning for rewards is effective for training the multi-legged robotic swarm.
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7.5 Experiments on Rough Terrain

This section presents the experiments conducted in the rough terrain field. The multi-

legged robotic swarm is expected to operate not only on the flat surface but also on rough

terrains. Fig. 7.9 shows the environmental settings. The rough terrain field consists of cuboid

blocks that form a sinusoidal surface. The terrain settings are similar to Chapter 5. The ∆h

is the height difference between the highest and the lowest points. The ω is the frequency of

a sine wave. In the learning process, ∆h and ω are set as (∆h, ω) = (0.3, 1.0). Blocks are

placed in {(x, y)| − 30 ≤ x ≤ 30,−10 ≤ y ≤ 150}.
During the experiments in Section 7.4, Setting D exhibited the best performance for

achieving the task. Therefore, learning processes based on Setting D are conducted in the

rough terrain field. The settings of experiments are designed as follows:

Setting D’ : Start training on the rough terrain field

with the reward of Setting D

Setting D”: Start training on the flat field and

switch to the rough terrain field

(the reward setting is also Setting D).

These settings verify the effects of environmental transitions on the learning process. Setting

D” employs hierarchical training from flat to rough terrain. In Setting D”, the rough terrain

field is used after the 70th episode based on the results of Section 7.4. In both settings, the

same parameter settings as Section 7.4 are used for learning.

The reward transitions during the learning process are summarized in Fig. 7.10. The

results of Setting D in Section 7.4 are also plotted for comparison. In Fig. 7.10, the r1 of

Setting D” decreased when changing the flat field to the rough terrain field. The r2 of Setting

D” also decreased when changing the field. However, Setting D” shows a better performance

of r2 than Setting D’.

The controllers obtained from the rough terrain field were applied to various terrain settings

to check the controller’s adaptability. Additionally, controllers of Setting D (trained in the

flat field) were also tested on rough terrains. The ∆h was varied as {0.0, 0.15, 0.3, 0.45}. The

ω was also varied as {0.5, 1.0, 1.5}. A total of 10 terrain settings (ω is irrelevant when ∆h

= 0.0) were employed. Fig. 7.11 summarizes the results of cumulative r2 for varied terrain

settings. Fig. 7.11 indicates that the cumulative r2 decreased as the ∆h and ω increased.

This tendency is similar to the results in Chapter 5.

Fig. 7.12 shows the examples of robot trajectories in the field of (∆h, ω) = (0.15, 1.0) (“A”

in Fig 7.11(b)). In Fig. 7.12, the right plots show that robots of Setting D (trained on the flat

field) can maintain a line on the rough terrain field. Additionally, transitions of measurement

factors are summarized in Fig. 7.13. The x̄ of Setting D showed worse performance than
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Fig. 7.12. Examples of robot trajectories at (∆h, ω) = (0.15, 1.0) (“A” in Fig 7.11(b)). The

circle, triangle, and star makers show the robot positions at 1000, 2500, and 4000 timesteps,

respectively.

Fig. 7.13. Transitions of measurement factors at (∆h, ω) = (0.15, 1.0) (“A” in Fig 7.11(b)).

other settings. However, the remaining measurement factors of Setting D showed similar or

better performances than others. These results indicate that the controllers trained on the

flat field can cope with the rough terrain field that is relatively close to the flat (i.e., small

∆h and ω).

Fig. 7.14 shows the examples of robot trajectories in the field of (∆h, ω) = (0.30, 1.0) (“B”

in Fig 7.11(c)). The transitions of measurement factors are also summarized in Fig. 7.15.

Compared with Fig. 7.12, the right plots of Fig. 7.14 show that it is difficult for robots of

Setting D to maintain a line. Fig. 7.15 also shows that the performance in Setting D is

inferior to other settings. On the other hand, the center of Fig. 7.14 shows that the robots

of Setting D” maintain lines in the terrain setting where the learning process was conducted.

The result of Fig 7.10 and Fig. 7.14 indicates that the PPO algorithm also succeeded in

training a robot controller in the rough terrain field.

Fig. 7.16 and Fig. 7.17 show the results in (∆h, ω) = (0.45, 1.0) (“C” in Fig 7.11(d)).

This terrain setting makes it difficult for all of the controllers to maintain a line. However,

Fig. 7.17 shows that Setting D’ and Setting D” perform better than Setting D. This indicates

that the controllers trained in the rough terrain field exhibited higher adaptability for rougher

terrain settings.

7.6 Conclusions

This chapter demonstrated a collective behavior of a multi-legged robotic swarm by

using deep reinforcement learning. The proximal policy optimization (PPO) algorithm was

employed as an alternative to the evolutionary robotics approach. The PPO algorithm was
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Fig. 7.14. Examples of robot trajectories at (∆h, ω) = (0.30, 1.0) (“B” in Fig 7.11(c)).

Fig. 7.15. Transitions of measurement factors at (∆h, ω) = (0.30, 1.0) (“B” in Fig 7.11(c)).

Fig. 7.16. Examples of robot trajectories at (∆h, ω) = (0.45, 1.0) (“C” in Fig 7.11(d)).

Fig. 7.17. Transitions of measurement factors at (∆h, ω) = (0.45, 1.0) (“C” in Fig 7.11(d)).

slightly extended for the multi-robot scenario. The results of computer simulations showed

that the proposed algorithm and reward functions have succeeded in generating collective

behavior of a multi-legged robotic swarm as evolutionary methods.
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Chapter 8

Conclusions

This thesis presented automatic designs of controllers for a multi-legged robotic swarm. Multi-

legged robotic swarms are expected to operate in rough terrains or show novel collective

behavior inspired by army ants. However, designing controllers becomes a challenging

problem because a controller decides not only how to coordinate a large number of robots,

but also how to coordinate a large number of actuators in individual robots. Therefore,

multi-legged robotic swarms raise a combined problem between two types of large-degree-of-

freedom controls. To solve this problem, this thesis focused on the potential of automatic

design methods. In swarm robotics, automatic design methods are divided into two main

domains: evolutionary robotics and reinforcement learning. This thesis employed both

approaches to generate collective behaviors of a multi-legged robotic swarm. This thesis

contributes to the swarm robotics community by following two aspects.

First, this thesis presented evolutionary robotics approaches for designing controllers of a

multi-legged robotic swarm. Chapter 3 proposed the method of combining the perceptron

with the central pattern generator (CPG). The evolutionary robotics approach was applied to

the synaptic weights of the perceptron. The experimental results showed that the proposed

method successfully designed a collective step-climbing behavior. Chapter 4 provided the pure

neuroevolution approach instead of the hand-designed CPG. In this chapter, the evolution

process with the proposed fitness function succeeded in generating robot gaits similar to

natural organisms. Additionally, the neuroevolution approach generated a basic collective

behavior of a robotic swarm. In Chapter 5, multi-legged robots are applied to the path

formation task on rough terrains. The performance of a robotic swarm was discussed with

the terrain settings. The results showed that the incremental evolution was effective to

design a collective behavior in rough terrains. Chapter 6 focused on generating and analyzing

collective step-climbing behavior. The measurement factors were proposed to examine what

kind of behaviors were obtained through the evolution process. The results indicated the

robots act as stepping stones that contribute to achieving the task. These results showed
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that the evolutionary robotics approach was promising to design collective behaviors of a

multi-legged robotic swarm.

Second, this thesis presented the reinforcement learning-based approach as an alternative to

evolutionary robotics. Reinforcement learning is a common approach to obtaining an agent’s

action, while it often suffers from dynamic environmental settings with multiple agents. In

Chapter 7, the proximal policy optimization (PPO) algorithm was slightly extended for a

multi-agent scenario. Experimental results showed that the PPO succeeded in generating

collective behavior of a multi-legged robotic swarm. The results also indicated that the

performance of a robotic swarm on rough terrains had a similar tendency to the evolutionary

robotics approach. Chapter 7 implied the potential of reinforcement learning for more

advanced tasks.

8.1 Future Work

First, one of the future directions for swarm robotics is developing real-world applica-

tions [28]. So far, automatic design methods have shown promising results for designing robot

controllers. Also in this thesis, the automatic design methods showed great potential for

designing sophisticated controllers (i.e., coordinating a large number of joints for generating

collective behavior) in physics simulations. However, physics engines do not emulate all of

the properties of real-world phenomena; therefore, the reality gap [63, 134] is still a critical

problem. To overcome this issue and operate robotic swarms in the real world, it important

to focuses on promising topics such as digital twins [43] or cyber-physical systems [102].

Another advanced direction is discussing interactions between two types of algorithms:

evolutionary robotics and reinforcement learning. This thesis showed the potential of both

methods for a multi-legged robotic swarm, while not yet achieving fair comparison. In

robotic swarm problems, these methods typically showed a trade-off between computational

cost and performance; evolutionary robotics is computationally expensive but shows better

performances, and vice versa. Hybridization of both methods becomes the next direction for

establishing more powerful algorithms [4, 74]. In addition, it is insightful to discuss both

algorithms with biological terminologies such as Lamarckism or Baldwin effect [32].

Finally, for more fundamental and general goals, it is time to discuss the methodology of

how to coordinate a large number of elements to realize desirable properties in the system.

Obviously, most things in the real world can be regarded as the composite of smaller elements

(f.g., cells making creatures consist of smaller elements such as molecules or atoms). In the

engineering field, the artifacts consisting of numerous components involve a large degree of

freedom; these systems are expected to operate in a wide range of environmental conditions

(f.g., redundant robots [18, 133] or soft robots [84, 131]). Generally, it is highly difficult to

predict or control the aspect of the system which consists of enormous elements [57, 89, 139].
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On the other hand, the coordination of a huge number of elements has shown remarkable

results in the recent machine learning field [46]. Based on these ideas, one of the future

directions related to this thesis is like a morphogenetic evolution [21, 76]; discuss how to

build a unit robot of the swarm from primitive components. Additionally, this approach also

needs to discuss the transferability to the real world [79, 116].
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Appendix A

Supplemental Parts in Fitness

Functions and Reward Function

This appendix describes supplemental parts (δ1 ∼ δ5) used in fitness functions (Chapter 4

to Chapter 6) and reward functions (Chapter 7) to make the robot gait similar to legged

animals. Both methods (i.e., evolutionary robotics and reinforcement learning) employed

almost similar forms. The difference came from the frequency of calculation; fitness was

calculated with relatively long-term results of robots, while reward was calculated in each

timestep.

A.1 Fitness Function (Chapter 4 to Chapter 6)

The φi in (4.3) of Chapter 4 is represented by follows:

φi = (φi,1, . . . , φi,j , . . . , φi,NJ ) (A.1)

φi,j =

T∑
t=1

|θi,j,t − θi,j,t−1|
θ{i,j}max − θ{i,j}min

where NJ is the number of joints equipped in the robot. The T is the number of simulation

timesteps in each generation. The θi,j,t[rad] is the angle of joint j in the robot i at timestep

t. The θ{i,j}max and θ{i,j}min(θ{i,j}max > θ{i,j}min) are maximum and minimum angles in a

movable range of joint j.

For δ3, χi,δ3 in (4.4) of Chapter 4 is the amount of change in the roll and pitch angles

from baseline values. The χi,δ3 is calculated by the following equation:

χi,δ3 =
T∑
t=1

(|broll − θroll,i,t|+ |bpitch − θpitch,i,t|) (A.2)

where broll and bpitch are standard values for roll and pitch angles of the robot. The θroll,i,t

and θpitch,i,t are roll and pitch angles of robot i at timestep t. In this paper, broll = bpitch = 0.

Therefore, robots are required to keep their posture parallel to the ground.
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For δ4, χi,δ4 is the amount of change in the bottom IR sensor from the standard value.

The χi,δ4 is calculated by the following equation:

χi,δ4 =
T∑
t=1

|bIRb − IIRb,i,t| (A.3)

where bIRb is a standard value for the bottom IR sensor of the robot, and IIRb,i,t is the

sensor value from the bottom IR sensor of the robot i at timestep t. In this paper, bIRb is

set as 0.5224 to make the distance between the floor and the body of robots around 0.1 m.

For δ5, χi,δ5 is based on the number of times the direction of the rotating joint has changed.

The χi,δ5 is calculated by the following equation:

χi,δ5 =
1

NJ

NJ∑
j=1

T∑
t=1

fs(θ̇i,j,t, θ̇i,j,t−1) (A.4)

fs(x, y) =

1 if sign(x) 6= sign(y)

0 otherwise

where θ̇i,j,t, is the angular velocity of joint j in the robot i at timestep t. The sign(x) returns

whether an argument x is positive or negative.

A.2 Reward Function (Chapter 7)

In Eq. 7.5, δ1 to δ5 are supplemental parts to make the robot’s gait similar to natural

organisms. The δ1 to δ5 are designed as in Chapter 4 (or [103]) to avoid unnatural gaits, for

instance, shaking the torso frequently or using only a few legs. The δ1 is for walking forward,

which is represented by the following equation:

δ1 = Kδ1 ·
t+Tr1−1∑

t

max

(
f · vt−Tr1+1

|f ||vt−Tr1+1|
, 0

)
(A.5)

where vt≤0 = 0. The Kδ1 is a constant value, vt is the velocity vector of a robot, and

f = (0, 1, 0) is the vector indicating a front direction on the local coordinate of robots. The

Tr1 is the number of latent timesteps for calculating r1. δ1 is the function of cosine similarity

for the vt and the f . The value of δ1 increases when a robot shows walking forward.

The δ2 is for driving joints equally, which is represented as follows:

δ2 = Kδ2 ·
|φ|
|φ|+ c

·
(
φ · 1
|φ||1|

)β
(A.6)

where Kδ2 , c, and β are constant values, and 1 is a vector whose elements are all 1. The φ

is the vector indicating the rotation angles of each joint. The φ is represented by follows:

φ = (φ1, . . . , φi, . . . , φNJ )

φi =

t+Tr1−1∑
t

|θi,t−Tr1+1 − θi,t−Tr1 |
θi,max − θi,min

(A.7)
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where θi,t≤0 = 0. The NJ is the number of joints equipped in the robot. The θi,t[rad] is the

angle of joint i in a robot at timestep t. The θi,max and θi,min(θi,max > θi,min) are maximum

and minimum angles in a movable range of joint i. The φi showed the rotated amount of

joint j in recent Tr1 timesteps. The value of δ2 increases when robots move each leg equally.

The δ3, δ4, and δ5 are represented by the following equations:

δj = min

(
c′δj

1 + c′′δjχ
γδj
δj

, 1

)
· aδj + bδj , (A.8)

where j ∈ {3, 4, 5}. The c′δj , c
′′
δj

, γδj , aδj , and bδj are constant values. The χδj is the scalar

value that shows the robot state to be minimized. For δ3, χδ3 is the amount of change in the

roll and pitch angles from standard values. The χδ3 is calculated by the following equation:

χδ3 =

t+Tr1−1∑
t

(|broll − θroll,t−Tr1+1|+ |bpitch − θpitch,t−Tr1+1|) (A.9)

where θroll,t≤0 = broll, and θpitch,t≤0 = bpitch. The broll and bpitch are the standard values for

the roll and pitch angles of the robot. The θroll,t and θpitch,t are the roll and pitch angles of

a robot at timestep t. The χδ3 counts the changes of roll and pitch angles from broll and

bpitch in recent Tr1 timesteps. In this paper, broll = bpitch = 0. Therefore, robots are required

to keep their posture parallel to the ground.

For δ4, χδ4 is the amount of change in the bottom proximity sensor from the standard

value. The χδ4 is calculated by the following equation:

χδ4 =

t+Tr1−1∑
t

|bpb − Ipb,t−Tr1+1| (A.10)

where Ipb,t≤0 = bpb. The bpb is a standard value for the bottom proximity sensor of the

robot, and Ipb,t is the sensor value from the bottom proximity sensor of a robot at timestep

t. In this paper, Ipb,t is set as 0.5224 to make the proximity between the floor and the body

of robots around 0.1 m.

For δ5, χδ5 is based on the number of times the direction of the rotating joint has changed.

The χδ5 is calculated by the following equation:

χδ5 =
1

NJ

NJ∑
i=1

t+Tr1−1∑
t

fs(θ̇j,t−Tr1+1, θ̇j,t−Tr1 ) (A.11)

fs(x, y) =

1 if sign(x) 6= sign(y)

0 otherwise

where θ̇i,t≤0 = 0. The θ̇i,t is the angular velocity of joint i in a robot at timestep t. The

sign(x) returns whether an argument x is positive or negative. From δ1 to δ5 are available

when t > Tr1 .
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Appendix B

Parameter Settings

B.1 Chapter 4

The parameter values used in Chapter 4 are summarized in Table B.1. Most parameters

are shared in Chapter 5 and Chapter 6 except for K1 and K2.

Table B.1. Parameter settings in Exp-0 and Exp-1 of Chapter 4. The bold font shows the

changed parameters in Exp-1.

Parameter Exp-0 Exp-1 Parameter Exp-0 Exp-1

T 5000 (166[s]) 5000 c4,δ4 300.0 300.0

Nr 1 10 c5,δ4 2.0× 10−3 2.0× 10−3

c1 1.0 1.0 γδ4 2.0 2.0

c2 1.0×10−3 0.01 aδ4 0.66 0.66

xt (1000, 0, 0) (1000, 0, 0) bδ4 0.94 0.94

α 0.5 0.5 c4,δ5 4.0× 1011 4.0× 1011

S 80.0 80.0 c5,δ5 8.0× 10−8 8.0× 10−8

Kδ1 1.0 1.0 γδ5 6.0 6.0

Kδ2 1.0 1.0 aδ5 1.1 1.1

c3 200.0 200.0 bδ5 0.9 0.9

β 4.0 4.0 ρ 0.6 0.6

c4,δ3 10.0 10.0 I - 40.0

c5,δ3 1.5× 10−4 1.5× 10−4 M 1 1

γδ3 2.0 2.0 K1 3190.7 3190.7

aδ3 0.7 0.7 K2 0.0 4.0× 10−4

bδ3 0.9 0.9



104 Appendix B. Parameter Settings

Table B.2. Parameter settings of PPO in Chapter 7.

Parameter Value

Horizon (T ) 128

Adam stepsize 3.0×10−4

Num. epochs 10

Minibatch size 64×16

Discount (γ) 0.995

GAE parameter (λ) 0.97

Number of actors 16

Clipping ε 0.05

Learning steps 1.6×107

Table B.3. Parameters for reward settings in Chapter 7.

Parameter Value Parameter Value

K1 1.0 γδ3 2

a 1.25 aδ3 0.7

vmax 0.024 bδ3 0.9

K2 0.3 c′δ4 300.0

Erchange
50 c′′δ4 0.2

α 0.04 γδ4 2

Kδ1 0.02 aδ4 0.66

Tr1 50 bδ4 0.94

Kδ2 1.0 c′δ5 4.0× 1011

c 2.0 c′′δ5 8.0× 10−6

β 4 γδ5 6

c′δ3 10.0 aδ5 1.1

c′′δ3 1.5× 10−2 bδ5 0.9

B.2 Chapter 7

The parameter setting of PPO is summarized in Table. B.2. The parameters for the reward

setting are summarized in Table. B.3.
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Appendix C

Publications Presented in the

Thesis

This appendix provides a list of publications that are presented in the thesis. This appendix

only shows a list of work published as the first author in academic journals and international

conferences. The full list of publications is in Appendix D.

Chapter 3

• Daichi Morimoto, Motoaki Hiraga, Naoya Shiozaki, Kazuhiro Ohkura, and Masaharu

Munetomo. Evolving collective step-climbing behavior in multi-legged robotic swarm

Artificial Life and Robotics, Vol. 27, No. 2, pp. 333–340, 2022.

• Daichi Morimoto, Motoaki Hiraga, Kazuhiro Ohkura, and Masaharu Munetomo.

Generating collective step-climbing behavior using a multi-legged robotic swarm. In

Proceedings of the 4th International Symposium on Swarm Behavior and Bio-Inspired

Robotics, pp. 590–601, 2021.

Chapter 4

• Daichi Morimoto, Motoaki Hiraga, Naoya Shiozaki, Kazuhiro Ohkura, and Masaharu

Munetomo. Generating collective behavior of a multi-legged robotic swarm using

an evolutionary robotics approach. JArtificial Life and Robotics, Vol. 27, No. 4, pp.

751–760, 2022.

• Daichi Morimoto, Motoaki Hiraga, Naoya Shiozaki, Kazuhiro Ohkura, and Masaharu
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Chapter 5
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rough terrain environment. In Proceedings of the 6th International Symposium on
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Chapter 6

• Daichi Morimoto, Motoaki Hiraga, Kazuhiro Ohkura, and Masaharu Munetomo. Gen-
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In Proceedings of the Thirteenth International Conference on Swarm Intelligence, pp.

324–331, 2022.

Chapter 7

• Daichi Morimoto, Yukiha Iwamoto, Motoaki Hiraga, and Kazuhiro Ohkura. Gener-

ating collective behavior of a multi-legged robotic swarm using deep reinforcement

learning. Journal of Robotics and Mechatronics, accepted.
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