
Doctoral Thesis

Optimizing Controllers of Swarm Robotic

Systems with Deep Reinforcement Learning

深層強化学習によるスワームロボットの
コントローラの最適化

D202275　NIE XIAOTONG

Graduate School of Advanced Science and Engineering

Hiroshima University
September 2023

Abstract

This thesis focuses on optimizing controllers of Swarm Robotics Systems (SRS) with Deep

Reinforcement Learning (DRL). While DRL has demonstrated great potential in designing

controllers for various static environment tasks, such as video games, it faces challenges

in learning effective policies in dynamic environments due to incomplete observability and

non-stationarity. SRS is a field that involves the coordination of multiple robots working

in a decentralized manner. SRS present a highly dynamic environment since each robot

only observes a partial view of the environment, and seen other robots as part of the

environment. To address this challenge, one of the efficient ways is to integrate DRL

with other algorithms, such as curriculum learning. On the other perspective, enhancing

the understanding of DRL through explainable algorithms is also critical. Understanding

decision-making processes can discover and improve the potential problems. In this thesis,

three contributions are presented to the field of SRS and DRL.

Firstly, this thesis presents a novel automatic curriculum learning method called Self-

Teaching Automatic Curriculum Learning. Curriculum learning is a promising solution

to the issue that DRL is insufficient for training end-to-end controllers in a dynamic envi-

ronment. However, traditional manually designed curriculums limit the pace of training

and heavily rely on the designer’s experience. Therefore, the proposed method integrates

robot training with curriculum scheduling in one neural network, which can select the

subtask to be trained automatically. The proposed method ensures the neural network

learning in an optimal state, improves the controller’s performance and efficiency.

Secondly, this thesis presents how DRL is utilized to address a decision-making prob-

lem in a multi-autonomous vehicle task, where autonomous vehicles are formulized as a

SRS. Environmental vehicles are part of the environment. The positions and actions of

environmental vehicles are unpredictable, which makes the environment more dynamic

and dangerous. Therefore, it is necessary to equip autonomous vehicles with a security

assurance mechanism. The proposed method utilizes time-to-collision (TTC) as the fea-

ture representation and proposes a TTC-based safety check system. The action output by

the DRL would be replaced with a safer action chosen by the safety check system when

an agent detects a potential collision, which can improve the safety of the system.

Thirdly, this thesis presents an Explainable Reinforcement Learning approach. De-

convnet and a saliency map method Grad-CAM are utilized to enhance comprehension of

the control strategy for SRS trained by deep Q-network. The proposed approach is able

to interpret the control strategy and evaluate the fault tolerance of the controller.

Overall, the proposed methods can optimizing controllers of SRS with DRL, provide

promising solutions for addressing complex tasks in dynamic environments that traditional

DRL approaches struggle with.

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Thesis Objectives . 3

1.3 Structure of the Thesis . 4

2 Literature Review on Swarm Robotic System and Deep Reinforcement

Learning 7

2.1 Swarm Robotic System (SRS) . 7

2.1.1 Collective Bahivor of SRS . 7

2.1.2 Design Methods of SRS . 9

2.1.3 Challenges of SRS Control . 10

2.2 Deep Learning (DL) . 11

2.2.1 DL Techniques for SRS . 11

2.2.2 Deep Neural Network (DNN) . 12

2.2.3 Convolutional Neural Network (CNN) 13

2.3 Deep Reinforcement Learning (DRL) . 15

2.3.1 Markov Decision Process (MDP) 15

2.3.2 Exploring Model-free DRL for SRS 17

2.3.3 Value-based Methods . 19

2.3.4 Policy Gradient-based Methods . 22

2.3.5 Actor-Critic Methods . 24

2.4 Advanced Techniques for Optimizing DRL 25

2.4.1 Curriculum Learning for Reinforcement Learning 25

2.4.2 Automatic Curriculum Learning for Reinforcement Learning 27

2.4.3 Explainable Reinforcement Learning (XRL) 29

3 Generating Collective Wall-Jumping Behavior for a Swarm Robotic Sys-

tem with Self-Teaching Automatic Curriculum Learning 33

3.1 Introduction . 33

3.2 Related Work . 35

i

3.3 Research Methodology . 36

3.3.1 Curriculum Learning with Reinforcement Learning 36

3.3.2 Self-Teaching Automatic Curriculum Learning 36

3.4 Collective Wall-jumping Task . 38

3.4.1 Environment Settings . 38

3.4.2 Robot Settings . 38

3.4.3 Task Settings . 39

3.4.4 Network Structure and Reward Settings 41

3.5 Results . 43

3.6 Conclusion . 48

4 Autonomous Highway Driving Using Reinforcement Learning with Safety

Check System based on Time-to-Collision 49

4.1 Introduction . 49

4.2 Research Methodology . 52

4.2.1 Time-To-Collision (TTC) . 52

4.2.2 PPO with Safety Check . 52

4.3 Experiment Settings . 53

4.3.1 Task Settings . 53

4.3.2 Neural Network Settings . 55

4.3.3 Reward Settings . 55

4.4 Results . 57

4.4.1 Simple Task . 57

4.4.2 Hard Task . 59

4.5 Conclusion . 62

5 Visualizing Deep Q-learning to Understand Behaviors of Swarm Robotic

System 63

5.1 Introduction . 63

5.2 Experimental Settings . 64

5.2.1 Environment . 65

5.2.2 Agent . 66

5.2.3 Round-Trip Task . 68

5.2.4 Reward Settings . 68

5.2.5 Hyperparameters Settings . 69

5.3 Experiment 1: Visualizing Training Process by Deconvolutional Network . 70

5.3.1 Network Architecture . 70

5.3.2 Loss Function . 71

5.3.3 Results . 71

ii

5.4 Experiment 2: Visual Policy Rationalizations Using Grad-CAM for Differ-

ent Reward Settings . 75

5.4.1 Experimental Settings . 75

5.4.2 Grad-CAM Procedure for DRL . 76

5.4.3 Results . 77

5.5 Experiment 3: Perturbation-based Methods 85

5.5.1 Experimental Settings . 85

5.5.2 Results . 86

5.6 Conclusion . 90

6 Conclusion 91

6.1 Future Work . 92

Reference 95

A Publications Presented in the Thesis 105

B List of Publications 107

Acknowledgements 109

Chapter 1

Introduction

1.1 Background and Motivation

Swarm intelligence (SI) [1] is a branch of artificial intelligence that studies the collective

behavior of a decentralized and self-organized system. SI algorithms draw inspiration

from nature, such as ant colonies, bird flocks, fish schools, and bee hives. As shown in

Fig. 1.1, SI refers to these highly intelligent activities displayed by these social insects.

They engage collective behaviors to complete tasks that are are too difficult for a single

individual.

The study of SI’s application to multiple robot systems is known as swarm robotic

syetsm. Swarm robotic system (SRS) is a field that focuses on the coordination of numer-

ous robots that work decentralized from one another [2][3]. Robots in a SRS are relatively

simple since the communication range is general local and sensor capabilities are limited.

However, they can perform complex tasks collectively that a single robot cannot. A SRS

operates in a self-organizing way, which means there is no supreme central robot dictating

to the others, and the robots are not aware of global information. Each robot, on the

other hand, just follows simple local rules and behaves autonomously based on its local

perspective [4]. As a result, each robot only observes a partial view of the environment

and other robots are treated as part of the environment. This characteristic results in a

highly dynamic environment.

Swarm robotic system has many advantages over traditional robotics, such as fault

tolarance, flexibility, and scalability [5][6]. The characteristics of swarm robotic system

system were shown as follows:

• Fault tolerance

Fault tolerance means that robots can cope with internal failures and continue per-

forming their tasks without human intervention. The high redundancy of the swarm

enables fault tolerance. Redundancy means that there are more robots than needed

1

(a) Flock of starlings (by Airwolfhound, licensed un-

der CC BY-SA 2.0).

(b) School of fish (by Sam Howzit, licensed under CC

BY 2.0).

Figure 1.1: Examples of collective behavior in biological swarms.

for a task, so if some of them fail, others can take over. Fault tolerance is important

because it allows robots to operate in uncertain and dynamic environments where

failures are inevitable and unpredictable.

• Scalability

Scalability means that robots can perform well regardless of the number and size

of the robots. Ideally, the addition or removal of individuals should not have a

significant impact on the swarm’s functioning. Scalability is achieved by using

decentralized control and local communication. Scalability is important because it

allows robots to handle large and variable tasks that may require different numbers

of robots.

• Flexibility

Flexibility means that robots can generate modularized solutions to the different

tasks. Flexibility is achieved by the distributed and self-organized characteristics:

in a SRS, robots flexibly assign themselves to various positions based on the de-

mands of the surrounding environment and operational circumstances. Flexibility

also enhances the creativity and diversity of SRS by enabling them to discover new

strategies and behaviors that may not be designed or anticipated by human engi-

neers.

Despite these advantages, designing controllers for SRS remains a challenging task

due to the highly dynamic and non-stationary nature of the environment. Traditional

deep reinforcement learning methods, which have demonstrated success in optimizing

controllers for static environments [7], struggle with the incomplete observability and

non-stationarity of SRS. To address this challenge, optimization algorithms of the deep

2

reinforcement learning controller are proposed in this thesis. This research aims to improve

the performance of SRS in dynamic environments.

1.2 Thesis Objectives

This thesis focuses on optimizing controllers of SRS with Deep Reinforcement Learning

(DRL). In recent years, DRL has demonstrated great potential in designing controllers to

various static environment tasks, such as playing video games [7]. However, it is difficult

for traditional DRL to learn effective policies in dynamic environments due to the lack of

complete observability and the non-stationarity of the environment. SRS is a field that

involves the coordination of multiple robots working in a decentralized manner. In SRSs,

each robot only observes a partial view of the environment and other robots are treated

as part of the environment. This characteristic results in a highly dynamic environment

that poses significant challenges for DRL algorithms. To address this challenge, one of

the efficient ways is to integrate with other algorithms, such as curriculum learning, to

improve the performance of control algorithms. On the other perspective, enhancing the

understanding of DRL through explainable algorithms is also critical. By understanding

decision-making processes and policy characteristics, potential issues will be discovered

and improved. In this thesis, three contributions are presented to the field of SRS and

DRL:

The first objective of this thesis is to solve the issue that DRL is insufficient for directly

training end-to-end controllers in a dynamic environment. To address this constraint, cur-

riculum learning has emerged as a promising solution. However, a traditional manually

designed curriculum limits the pace of training and heavily relies on the designer’s ex-

perience. Therefore, a novel automatic curriculum learning method called Self-Teaching

Automatic Curriculum Learning (STACL) is proposed in this thesis. The proposed algo-

rithm integrates robot training with curriculum scheduling in one neural network. The

reward function can calculate the learning rate for different curricula, then select the next

subtask to be trained for the next episode. The proposed method is supposed to ensure

that the neural network remains in an optimal state for learning, improve the controller’s

performance and accelerate its convergence speed.

The second objective of this thesis is to utilize DRL to address a decision-making

problem in a multi-autonomous vehicle task. In this task, multi-autonomous vehicles will

be formulized as a SRS controlled by DRL algorithm. Other traffic participants, i.e, en-

vironmental vehicles, are seen as part of the environment. The positions and actions of

environmental vehicles are unpredictable, and their movements may affect the decisions

of autonomous vehicles controlled by DRL, which makes the environment more dynamic

and dangerous. Therefore, it is necessary to equip autonomous vehicles with a security as-

3

surance mechanism. The proposed method utilizes time-to-collision (TTC) as the feature

representation and proposes a TTC-based safety check system. When an agent detects a

potential collision, the action output by the DRL controller is replaced by a safer action

selected by the safety check system. The proposed method is designed to reduce the

collision rate even in a dense traffic situations.

The third objective of this thesis is to develop an explainable reinforcement learning

approach. The lack of interpretability problem limits the understanding and optimization

of the model’s decision-making in dynamic environments. We applied a deep Q-learning

algorithm to develop controllers for a SRS that take raw camera images as input. Three

experiments are conducted to visualize the policies learned by deep Q-network. The first

experiment proposes a network structure with several deconvolutional layers to view the

neural network’s feature map during various training stages. The second experiment em-

ploys a saliency map method Gradient-weighted Class Activation Mapping to determine

which state variables the robot attends to during strategy execution. Lastly, the third ex-

periment utilizes a perturbation-based visualization method to evaluate the fault tolerance

of the controller. By understanding decision-making processes and policy characteristics,

potential issues will be discovered and improved.

1.3 Structure of the Thesis

The overall structure of this thesis is illustrated in Fig. 1.2. In this thesis, all of the exper-

iments are conducted in computer simulations. A summary of each chapter is described

as follows.

The rest of this thesis is divided into five chapters:

• Chapter 2 first gives a review of SRS. Then, DRL and several related optimazation

techniques are presented.

• Chapter 3 aims to develop a novel Automatic Curriculum Learning method called

Self-Teaching Automatic Curriculum Learning. The proposed algorithm integrates

robot training with curriculum scheduling in one neural network and make the

network remains in an optimal state for learning.

• Chapter 4 describes how DRL is utilized to address a decision-making problem in

a multi-autonomous vehicle task. In this task, multi-autonomous vehicles will be

formulized as a SRS controlled by DRL algorithm. The proposed method is able to

improve the arrival rate and reduce the collision rate effectively .

• Chapter 5 proposes an explainable reinforcement learning approach. Deconvnet

and a saliency map method Grad-CAM are utilized to interpret the control strategy

trained by deep Q-network.

4

Figure 1.2: Overview of the thesis structure

• Chapter 6 summarizes this thesis and addresses future research directions.

5

Chapter 2

Literature Review on Swarm

Robotic System and Deep

Reinforcement Learning

Swarm Robotics Systems (SRS) is a field that involves the coordination of multiple robots

working in a decentralized manner, and can be applied in various domains, such as rescue

and transportation. Deep Reinforcement Learning (DRL) is a subfield of machine learning

that has demonstrated great promise in designing controllers for for a variety of tasks,

including those in static environments such as playing video games. However, applying

DRL to SRS presents significant challenges due to the highly dynamic environment where

each robot only observes a partial view of the surroundings, and other robots are treated

as part of the environment. This resulted in the development of numerous methods for

optimizing SRS controllers utilizing DRL, such as curriculum learning, safety assurance

mechanisms, and explainable reinforcement learning.

In this chapter, first, we give a review of SRS. Then, DRL and several related opti-

mazation techniques are presented.

2.1 Swarm Robotic System (SRS)

2.1.1 Collective Bahivor of SRS

Robotic systems have been widely used in various applications, including industrial au-

tomation, transportation, and healthcare. With the advancement of artificial intelligence,

SRS has emerged as a promising field for achieving collective behaviors in a group of

robots. SRS consist of multiple robots that work together in a decentralized and self-

organized manner. The collective behavior of the robots develops from simple interactions

between individuals, requiring no central coordination. Collective behaviors that SRS can

7

perform are shown in Fig. 2.1 [6].

Figure 2.1: Collective behaviors in swarm robotics system

• Spatially-organizing behaviors involve the organization of robots in physical

space to achieve a specific task or objective. Applications for spatially organizing

behaviors include building, logistics, and environmental monitoring. For example,

robots could be used to transport goods in a warehouse by coordinating their move-

ments to avoid collisions and optimize their paths [8]. In Chapter 3, robots are

required to complete a collective wall-jumping behavior, which belongs to this class.

Overall, spatially-organizing behaviors are a key feature of SRS and provide a pow-

erful tool for achieving complex tasks in physical space.

• Navigation behaviors enable robots to move and explore their environment in

a coordinated and efficient manner. Navigation behavior is crucial in many ap-

plications of SRS. For example, robots could be used to search for survivors in a

unknown zone [9], surveillance of dynamic areas [10], and transport of heavy ob-

jects collectively [11]. In Chapter 4, multi-autonomous vehicles will be formulized

as a SRS. They need to move through an highway environment and reach a specific

destination, which belongs to this class.

8

• Collective decision making is a key feature of SRS that allows a group of robots

to make decisions collectively, such as consense achievement and task allocation.

2.1.2 Design Methods of SRS

As shown in Fig. 2.2, there are mainly two research directions of methods in the field of

SRS, design and analysis methods [6].

Figure 2.2: Methods in swarm robotics system

• Design methods of controllers for SRS could be classified into two categories,

which are behavior-based design and automatic design methods [6]. A trial-and-

error process is used in behavior-based design to develop, test, and refine each robot’s

individual behavior until the robots exhibit the desired collective behavior [12].

Behavior-based design methods have some advantages over other methods, such as

simplicity, modularity, reusability, and adaptability. However, this method requires

expert knowledge, and the system’s performance is entirely dependent on the human

designer.

Another design method is automatic design [13], which means the controller is gen-

erated automatically by transforming the design problem into an optimization prob-

lem. Automatic design methods can be classified into two approaches: evolutionary

algorithms [14] and reinforcement learning [15]. Evolutionary algorithms use a pop-

ulation of candidate solutions that are evaluated and modified according to a fitness

function that measures their performance [16][17]. Reinforcement learning uses a

trial and error process that rewards or penalizes the robots for their actions based on

a reward function that measures their success [18]. Automatic design methods have

some advantages over other methods, such as creativity, generality, and robustness.

9

In this thesis, we utilize reinforcement learning, one of the automatic design ap-

proaches, to train controllers for the SRS. Optimizing controllers by combining

reinforcement learning with other algorithms to improve their performance.

• Analysis methods are determined by the specific task, the available resources,

and the desired level of accuracy and complexity. Analyzing the behavior of a SRS

is crucial to understanding its performance, identifying areas for improvement, and

optimizing the system for a specific task.

SRS can be modeled at two different scales: the microscopic level and the macro-

scopic level. In the microscopic level, also known as individual level, the charac-

teristics of a single individual and their interactions with others is analyzed. In

the macroscopic level, the characteristics of the entire system is analyzed [19]. Ad-

ditionally, using actual robots to verify a collective behavior is a crucial tool. In

[20], the authors propose an approach to optimize the odor localization behavior

of SRS. They demonstrate that a set of real robots under fully distributed control

are capable of cross an actual odor plume. Furthermore, these experiments can be

reproduced and validated in the simulator.

2.1.3 Challenges of SRS Control

Due to the dynamic nature of the environment and the complexity of coordinating a large

number of robots, the control of a SRS is a challenging problem. Some of the major

challenges of SRS control include the following:

• Dynamic environments

The dynamic nature of the environment makes it difficult to design a control al-

gorithm that can adapt to changing conditions. For example, in the presence of

obstacles or moving targets, the robots may need to change its behavior to achieve

the desired objective. This challenge has been addressed in several studies, such

as in the work by [21] where a SRS form different spatial structures in dynamic

environments, to adapt to different task requirements.

• Control algorithm complexity

The complexity of coordinating a large number of robots can be overwhelming,

especially when dealing with nonlinear interactions between agents. The design of

a control algorithm for SRS is a challenging task. This challenge has been tackled

in several studies, such as in the work [6], where a decentralized control algorithm

was proposed that can scale up to large SRS.

10

• Robustness and safety

The safety of a SRS is a crucial aspect when designing a control algorithm. Due to

the inherent uncertainty of the environment and the complexity of the SRS, there is

a risk of unpredictable behavior that can cause harm to the robots. This challenge

has been tackled in several studies, such as in the work by [22], where a SRS was

able to follow a set of safety principles and verify their compliance.

There are other challenges such as communication issues or scalability. Overall, the

challenges of SRS control are diverse and complex, and addressing them is critical to

developing high qulity SRS.

2.2 Deep Learning (DL)

2.2.1 DL Techniques for SRS

Deep learning (DL) [23] has become a popular tool for developing control algorithms for

SRS. By leveraging large datasets and powerful neural network architectures, DL algo-

rithms can learn complex and sophisticated control policies that enable SRS to perform

tasks with high efficiency and robustness.

One common approach is to use deep neural networks (DNNs) to model the dynamics

of the robots and predict the future state of the SRS. This enables the development of

model-based control algorithms to plan swarm’s behavior in real-time. For example, [24]

proposed a DNN-based control algorithm that can make a SRS cover an elliptical area

and adapt to changing numbers of robots.

In addition to the use of DL for the design of control algorithms, it can also be used

as a tool for processing inputs in SRS [25]. By using DNNs as a preprocessor for sensor

data, the input data can be transformed into a more useful and informative format, which

can enhance the SRS’s perception capability and improve its overall performance.

Several studies have applied DNNs to the perception task of SRS, such as in the work

by [26], where authors use graph neural networks (GNN) as a type of DNN to process

neighbor information and achieve robots collaboration and self-organization.

Despite the potential of DL for SRS control, there are still many challenges need to

be addressed, such as the difficulty of training DNNs with limited data and the challenge

of developing interpretable control policies. Further research is needed to overcome these

challenges and fully exploit the promise of DL for SRS control.

Overall, the use of DL techniques for SRS control represents a promising field to enable

robots to perform complex tasks with high efficiency and robustness.

11

2.2.2 Deep Neural Network (DNN)

Figure 2.3: Anatomy of a multipolar neuron (licensed under CC BY-SA 3.0.

https://en.wikipedia.org/wiki/Neuron)

Artificial neural networks (ANNs) are a type of machine learning algorithm that at-

tempts to model the structure and function of the human brain. In a biological neural

network, neurons communicate through synapses. Electrical impulses trigger neurotrans-

mitter release, which bind to receptors on the receiving neuron’s dendrites. If signals

reach a threshold, the receiving neuron generates an action potential and transmits a

signal downstream, as shown in Fig. 2.3.

There are at least three layers: an input layer, an output layer, and one or more hidden

layers. The input layer receives information from outside world, such as images or text,

then transmits it to the hidden layers for processing. The hidden layers perform a series

of computations on the input data, gradually transforming it into a more abstract repre-

sentation that captures relevant features or patterns. Finally, the output layer produces

a response based on the transformed data, which could be a prediction, classification, or

some other output.

The majority of modeling makes the assumption that each layer is completely con-

nected. As shown in Fig. 2.4, all the units in one layer of a fully connected neural network

are connected to all the units in the adjoining levels.

• Activation function

Activation functions play a crucial role in DNN by introducing nonlinearity into

the computations performed by the neurons [27]. Without activation functions, the

12

Figure 2.4: A fully connected neural network.

output of each neuron would be a linear function of its inputs, which would limit

the complexity of the functions that the network could learn. Without activation

functions, DNN would not be able to learn and model complex types of input such

as photos, videos, audio, speech, etc.

There are many different types of activation functions used in DNNs, each with its

own strengths and weaknesses. Several popular types of activation functions are

shown in Fig. 2.5. The step function has a simple binary output of either 0 or 1,

depending on whether the input is above or below a certain threshold. The sigmoid

function is a classic activation function that maps the neuron’s inputs to a value

between 0 and 1. The tanh function is similar to the sigmoid function, but with

a range of -1 to 1. The derivative of ReLU function is either 0 or 1 depending

on whether the input is negative or positive, respectively. This allows for faster

computation of gradients during backpropagation.

2.2.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (ConvNet/CNN) [28] is a type of DL algorithm. It is

capable of analyzing input images and assigning significance, through learnable weights

and biases, to different features or objects present within the image, ultimately enabling

it to distinguish and classify objects with high accuracy. CNN makes the assumption

that the input is a 3D tensor, which includes a 2D image with a depth of one or more

than one (e.g., RGB images have a depth of three). The neurons in the CNN only have

local connectivity to the previous layer. That is, each neuron always observes a sub-

13

(a) Step function

(b) Sigmoid function

(c) Tanh function

(d) ReLU function

Figure 2.5: Common activation functions for artificial neurons. (licensed under CC BY-

SA 4.0. https://en.wikipedia.org/wiki/Activation function)

area of the 2D image but with full depth. The neurons in a convolutional layer are also

different from the neurons of conventional structures, which have three hyper-parameters:

receptive field, stride, and zero-padding. The receptive field determines the size of the

area that the neuron can observe, and the stride determines the position to observe in the

next moment.

Moreover, the zero-padding is used to extend the image to make sure that every

element can be observed averagely by the neurons. Each neuron accepts a 3D tensor

input and calculates a 2D output whose size is determined by the size of the input and

the three hyper-parameters. Therefore the output of a convolutional layer is also a 3D

tensor (with the depth of the number of neurons in the layer). Each neuron is also called

14

a filter or kernel.

2.3 Deep Reinforcement Learning (DRL)

2.3.1 Markov Decision Process (MDP)

A Markov chain is a stochastic process that has no memory and satisfies the Markov

property, which means the probability of transitioning to a future state depends only on

the current state and not on any previous state. It consists of a tuple (S, P), where S is

a finite set of states and P is the transition probability distribution. However, when we

add rewards to the model, we get a Markov Decision Process, which is a generalization

of the Markov chain.

Markov Decision Processes (MDPs) [29] are a mathematical framework used to model

decision-making problems. An MDP is a tuple (S, A, P , R, γ). The components can be

summarized as follows:

• States S: is a set of possible states that the system can be in.

• Actions A: is a set of possible actions that can be taken in each state.

• Transition Probabilities P : is the probability of moving from one state to another

state given an action.

• Rewards R: is a function that specifies the reward received for each state-action

pair.

• Discount Factor γ: is a value between 0 and 1, determines the importance of future

rewards.

Fig.2.6 [30] displays a diagram of a three-state MDP.

In a MDP, the reward in the S state is the reward expectation that can be obtained

at the next moment t+1 at the state s at a certain time t, which is given by the equation

below.

Rs = E[Rt+1|St = s] (2.1)

Gt is the sum of the decays of all the rewards starting from time t on a MDP. There

are also translations into ”revenues” or ”returns.” The formula is as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 (2.2)

15

Figure 2.6: Diagram of a three-state MDP. (licensed under CC BY-SA 4.0.

https://en.wikipedia.org/wiki/Markov decision process)

Discount factor γ is important to make the agent more focused on either short term

reward or long term reward. If the value is 0, the agent will focus on the first reward that

it receives, while if the value is 1, the agent will focus on all future rewards.

Giving a MDP and determining the best policy of action is the objectives of reinforce-

ment learning (RL). The state-to-action mapping is referred to as the policy. The policy

is commonly used by the symbol π. It refers to a distribution on the action set when a

given state S is

π (a|s) = p [At = a|St = s] (2.3)

In RL, a task is successfully accomplished if the agent manage to accumulate the as much

rewards as possible over a given period of time. How successful a task is, is affected by

how good a policy that being followed is. A certain policy π is better than other policy

π′ if the the expected return is greater or equal to that of π′ for all states [31]. Knowing

that expected return from a certain state is defined as state-value function V, π ≥ π′ if

and only if V π(s) ≥ V π′
(s) for all states. The optimal state value function, denoted as

16

V ∗ is defined as

V ∗ (s) = max
π

V π(s) (2.4)

This definition can also be enhanced and used for optimal action-value function Q∗,
defined as

Q ∗ (s, a) = max
π

Qπ(s, a) (2.5)

Because of this framework, RL is usually illustrated as two components, agent and en-

vironment as shown in Fig. 2.7. These are the process of reinforcement learning. Other

way to explain this is that agent observes the environment. Agent also received reward

from being in this certain state. Based on the state that is observed, the agent will select

an action that maximize the cumulative reward.

Figure 2.7: Relationship between agent and environment

Summarize the above, there are six components that make up an RL system: an

agent, an environment, a policy, a reward function, a value function, and a model of the

environment. Additionally, depending on the circumstance, the environment model is

optional. Reward function is the most important. The expected rewards, as known as

values, are the secondary. If there were no rewards,there could be no values. Because the

sole point of calculating values is to obtain more rewards.

2.3.2 Exploring Model-free DRL for SRS

There are a variety of existing DRL algorithms, which can be categorized based on the

following standards. The classifications and characteristics are shown in Fig.2.8.

According to whether the algorithm depends on the model, it can be divided into a

model-based RL algorithm [32] and model-free RL algorithm [33]. The commonality of

17

Figure 2.8: Characteristics of different DRL algorithms.

these two types of algorithms is to obtain data by interacting with the environment, the

difference is that the way to use the data. The model-based RL algorithm utilizes a data

learning system or an environmental model obtained by interacting with the environment

and then performs the sequential decision based on the model. The model-free RL algo-

rithm directly uses the data obtained by interacting with the environment to improve its

behavior.

Since the environment for SRS is too dynamic to be modeled, the model-free RL algo-

rithm is utilized in this thesis. Moreover, according to the strategy update and learning

methods, the model-free RL algorithm can be divided into RL algorithm based on value

function, RL algorithm based on direct strategy search, and actor-critic method. The so-

called value-based RL method refers to the learning value function, and the final strategy

is greedy according to the value function. In this case, in any state, the action with the

most significant value function is the current optimal strategy. The RL algorithm based

on direct strategy generally searches the strategy’s parameters and learns the target’s

optimal parameters. The actor-critic approach [34] uses a combination of value functions

and direct strategy searches. In [35], an actor-critic methodology is applied to make the

swarm robotic system complete the task of locating the target.

Next, three popular model-free DRL algorithms are introduced: (i) value-based meth-

ods, (ii) policy gradient-based methods, and (iii) actor-critic methods.

18

2.3.3 Value-based Methods

Value-based methods frequently need to alternate between (i) estimation of the value

function based on the present policy and (ii) policy optimization based on the estimated

value function. However, it can be challenging to estimate a complex value function.

Q-Learning [36] is a tipical value-based optimization methods. Algorithm 1 summa-

rizes the algorithm of Q-learning.

Algorithm 1 Q-learning (off-policy TD control) for estimating π ≈ π∗

1: Parameters: step size α ∈ (0, 1], ε > 0;

2: Initialize Q(s, a), for every s ∈ S+, a ∈ A(s), except Q(terminal, ·) = 0;

3: for e= 1,...,E episodes do

4: Initialize the starting state S

5: for t=1,...,T timesteps do

6: Select an action A with state S utilizing a policy obtained from Q

7: Execute the action A, observe the reward R and the next state S ′

8: Update the action-value function utilizing the observed reward and the maxi-

mum expected value of the next state: Q(S,A)← Q(S,A) +α[R+ γmaxaQ(S ′, a)−
Q(S,A)]

9: Update the state: S ← S ′

10: end for

11: end for

The key aspect of Q-learning is to calculate the Q-value of the current state-action

pair, which involves taking the maximum Q-value of the next state and factoring in the

current reward. This allows the algorithm to learn from the best action to take in any

given state, based on its previous experience.

A randomly perform actions instead of the optimal one a fraction of the time. The

strategy is known as the ε − greedy approach. The ε denotes the randomness. Initially,

the value of ε is high. High randomness in the actions chosen initially ensures that the

agent explores its available options more often. Then as time progresses, the value of ε is

decayed. This ensures that the agent explores and ultimately chooses the optimal set of

actions and learns the optimal policy.

The formula of Q-Learning is defined as below

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at)−Q(st, at)] (2.6)

19

where α is the learning rate, which determines the extent to which the Q-value is

updated based on the new information. The discount factor γ determines the relative

weight of immediate and future rewards.

In some situations, reward to use is from N-time step. This derivation of Q-Learning

is commonly called N-step Q-Learning, formula as below

Q(st, at)← Q(st, at) + α[Gt + γQ(st+1, at)−Q(st, at)] (2.7)

where Gt is defined as equation 2.2.

Q-learning can effectively solve some simple reinforcement learning problems where

the actions are discrete. However, in practical applications, many actions are continuous,

and the state-action spaces can be much larger and more complex. For example, in the

game of Go, there are approximately 10170 possible states, and for each state-action pair,

a Q(s, a) value needs to be recorded. The traditional tabular approach in Q-learning,

which uses a lookup table to store all the Q-values, is not practical for such situations

due to its high memory and computing resource requirements.

To improve scalability, more advanced techniques are needed. One such technique is

function approximation, which uses a parameterized function to estimate the Q-values in-

stead of explicitly storing them in a lookup table. This approach significantly reduces the

memory requirements, and updating the function parameters can be done efficiently in

a single step. However, function approximation introduces additional challenges, such as

the possibility of overfitting and the need for careful selection and tuning of the function

class and parameters. Furthermore, in real-world applications, state representations must

be carefully designed and supplied as input to the Q-learning algorithm. This can be chal-

lenging, as the state representation should capture relevant features of the environment

while also being computationally efficient to process.

Next, some optimization algorithms for Q-learning will be introduced.

• Deep Q-network (DQN)

Deep Q-network (DQN), developed by Mnih et al. [37], is one of the most well-known

value-based DRL algorithms. It is an advancement of Q-learning which calculates

the Q-values utilizing a deep neural network. This approach can directly learn and

extracting features from high-dimensional state spaces. For instance, image-based

inputs used for playing ATARI games. DQN uses experience replay to randomly

sample past experiences to break the correlations between consecutive state-action

pairs and stabilize the learning process.

20

DQN employed a predictive DNN for executing Q-learning. Loss (L) is the amount

that separates the approximated value from the actual value, as shown below.

Lt(θt) = E(s,a,r,s′)

[
(target−Q(s, a, ; θt))

2
]

(2.8)

where target is a close approximation to the ideal action-value function Q, s, a, r, s′

are experiences of randomly sampled agents that are stored in the replay memory,

and θ are the parameters of the neural network:

target = r + γ max
a′
Q(s′, a′; θt) (2.9)

• Dueling DQN

The Dueling DQN architecture has shown promising results in addressing the over-

estimation of action values and slow convergence issues of the traditional DQN. By

decomposing the Q-function into state value and advantage functions, the Dueling

DQN is able to provide more accurate estimates of the action values while allowing

for faster convergence [38].

The architecture of the Dueling DQN consists of an input layer, a dueling layer, and

an output layer. The dueling layer takes the feature vector as input and splits it into

two streams, one representing the state value function and the other representing

the advantage function. The state value stream estimates the value of being in the

current state, while the advantage stream corresponding to each possible action.

The output nodes of the advantage stream represent how advantageous each action

is compared to the others in the current state.

The final Q-value estimate for each action is obtained by combining the state value

and advantage streams. This is done by adding the average of the state value stream

to the difference between the advantage stream and its maximum value. By using

this architecture, the Dueling DQN is able to learn more efficiently and accurately,

leading to improved performance in various RL tasks.

• Prioritized Experience Replay

Prioritize experience replay (PER) [39] change the sampling process in the learn-

ing process. Typically, at every update, the controller will sample the experience

transitions uniformly. This means that every bit of experience has the chance to

be sampled with the same probability. However, this technique tries to replay crit-

ical transitions more frequently, thereby learning faster and more effectively. The

key idea is to make the experience with higher loss (L) or TD-error have a higher

probability of being sampled. This is achieved by assigning a priority value to each

21

transition based on its TD-error or loss, and then using these priority values to sam-

ple transitions from the replay memory. The probability of sampling transition i is

then given by the priority value of the transition divided by the sum of all priority

values.

P (i) =
pαi∑
k p

α
k

(2.10)

where k is the minibatch, α is the prioritization and pi is defined as follow.

pi =
1

rank(i)
(2.11)

where rank(i) is the rank of transition i sorted according to the TD-error.

2.3.4 Policy Gradient-based Methods

The goal of policy gradient-based RL algorithms is to discover the best course of action

that maximizes performance goals like predicted cumulative reward. The purpose is to

improve the policy in order to maximize the expected reward, which is represented by

the equation 2.13. In order to arrive at the best possible policy settings, this class of

algorithms uses gradient theorems. The estimation of a value function based on the

present policy is often necessary for policy gradient.

J(θ) = Eπ[r(τ)] (2.12)

where r(τ) is the reward for following the trajectory (τ). The performance objective is

rewritten as follow [40].

J(θ) =

∫
π(τ)r(τ)dτ (2.13)

To improve this value we need to find the gradient of the expectation, shown in equation

2.14

∇Eπ =

∫
π(τ)∇ log(π(τ))r(τ)dτ (2.14)

We previously defined policy as probability of doing an action s for a given state s.

22

However, this is a simplification. The policy of a trajectory τ is defined in equation 2.15

πθ(τ) = P (s0)
T∏
t=1

πθ(at|st)p(st+1, rt+1|st, at) (2.15)

where P represents stationary ergodic distribution, πθ is the policy to choose the

action, and p is the dynamic of the environment. However, if we want to find the gradient

of πθ(τ), we can remove the first and last part because their values are zero and we can

get the gradient of J as follow.

∇Eπθ = Eπθ [r(τ)(
T∑
t=1

∇ log πθ(at|st))] (2.16)

This equation is the basis for all of any policy gradient based reinforcement learning. We

will mention some of the algorithms in this category.

• REINFORCE

This algorithm changes the term r(τ) with Gt shown in equation 2.17. In real world

application, we cannot know the whole trajectory. This means that we will need to

sample the trajectories. However, with enough iteration, the policy should converge.

∇Eπθ = Eπθ [(
T∑
t=1

Gt∇ log πθ(at|st))] (2.17)

• REINFORCE with baseline

Without baseline, the value of the cumulative future reward will vary depend on the

sampling data. If the data has a high variance, the result of Gt will be biased.This

algorithm introduce a bias b to improve the performance of the algorithm shown in

equation 2.18.

∇Eπθ = Eπθ [(
T∑
t=1

(Gt − b)∇ log πθ(at|st))] (2.18)

23

2.3.5 Actor-Critic Methods

In RL, policy gradient algorithms are often used to learn an optimal policy. However, in

order to update the policy, we need to know whether the current policy is good. The value

function can be used here, which estimates the expected return of following the current

policy from a given state. By knowing the value of each state, we can estimate how good

the current policy is and use this information to update the policy in the direction that

leads to higher expected return [41][42].

The actor-critic methods consist of two components: a critic network and an actor

network. The critic network estimates the state value function, which represents the

expected total reward starting from a particular state. The state value function is updated

using the time difference (TD) error, which is the difference between the estimated value

of the current state and the estimated value of the next state, plus the reward obtained

in the transition. The equation for the critic in equation 2.19

∇J(ω) = rt+1 + γV ω(st+1)− V ω(st) (2.19)

where γ is the discount factor that determines the importance of future rewards. V ω(st

and V ω(st+1 are the estimated values of the current and next states, respectively. ω are

the parameters of the critic network.

The actor network is implemented as a neural network that takes the current state as

input and outputs a probability distribution over actions. The actor network is updated

using the policy gradient, which is shown in last subsction. The equation for the actor in

equation 2.20.

∇Eπθ = Eπθ [(
T∑
t=1

rt+1 + γV ω(st+1)∇ log πθ(at|st))] (2.20)

where the actor network updates the policy parameters θ for πθ(at | st), in the direction

suggested by the critic.

• Proximal Policy Optimization (PPO)

The standard policy gradient-based methods have a significant drawback in that it

can only be executed once for each set of data sampled by the policy πθ. This is

because updating the policy parameter θ to a new value θnew requires resampling the

training data from the perspective of the new policy πθnew , which is computation-

ally expensive. To address this issue, researchers are attempting to create policy

gradient-based methods to update parameters θnew using old data collected from

previous policies πθold . An effective solution is Proximal Policy Optimization (PPO)

methods, which offer a simple and effective way to update the policy parameters us-

ing the current and previous data [43]. To avoid excessive updates to old data, PPO

24

clips the importance sampling ratio. Specifically, the clipped importance sampling

ratio is defined as:

rt(θ) =
πθ (at | st)
πθold (at | st)

(2.21)

where rt(θ) is the probability ratio between the two policies πθ and πθold , which is a

quantitative tool for comparing two policies.

One crucial component of PPO is the use of a clipped surrogate objective function

that constrains the policy update to be within a certain range. This constraint

prevents the policy from changing too much in each iteration, which can lead to

instability. Furthermore, the clipping term serves as a form of regularization, which

improves the stability and performance of the algorithm. The function is defined as

follows:

LCLIP (θ) = Eπθ [min(rt(θ)At, clip(rt(θ), 1− ε, 1 + ε)At] (2.22)

where At is the function estimator for the advantage function at time step t. ε is

an arbitrary hyperparameter with a typical value of 0.1 or 0.2, which controls the

maximum allowed change in the probability ratio between the new policy and the

old policy.

2.4 Advanced Techniques for Optimizing DRL

2.4.1 Curriculum Learning for Reinforcement Learning

Curriculum Learning (CL) [44] is a technique which can used in RL to optimize the order

in which an agent acquires experience to improve performance and training speed on a

set of final tasks. By leveraging the generalization capabilities of the agent, CL allows

knowledge acquired from simpler tasks to aid in solving more complex ones. By using this

strategy, the amount of labeled data needed for training may be decreased, the model’s

robustness and generalizability can be increased, and the training process is able to speed

up.

In traditional DRL settings, the agent begins with a random strategy and learn an

optimal policy for the final task. However, when the final task is complex or the reward

setting is sparse, it is tricky to train a model. CL addresses this issue by enabling the agent

to train on one or several source tasks and transfer the knowledge to the final target task.

The knowledge may be presented in the form of samples [45], options, policies, models [46],

or value functions.

25

Some approaches assume that state and action spaces are the same in source and

target task, or that they can be passed through a mapping [47]. These mappings may

be manually specified or automatically learned [48]. In addition, there are also model-

agnostic CL methods that can be applied to any RL algorithm without relying on any

specific assumptions about the source and target tasks [49]. Model-agnostic methods

typically involve pre-training a policy or value function on the source task and fine-tuning

the learned parameters on the target task.

Algorithm 2 illustrates a generic formulation of CL.

Algorithm 2 Algorithm for General Curriculum Learning

1: for t ∈ 1, 2, . . . , n do

2: Compute the current performance of the model, p← P (M).

3: Update the curriculum by selecting examples or adjusting their weights accord-

ing to the criterion/difficulty measure and the current curriculum level, M,E, P ←
C(l,M,E, P).

4: Select a subset of examples or mini-batches from the training dataset, E∗ ←
select(E).

5: Train the model on the selected examples using the performance measure, M ←
train(M,E∗, P).

6: end for

where M is a machine learning model. E is a training dataset used to train the model.

P is a performance measure used to evaluate the model’s performance on the training

dataset. n is the number of iterations/epochs in the training process. C is a criterion to

determine the difficulty of the training examples. l is the current level of difficulty in the

training process. And S is a scheduler used to adjust the difficulty level of the training

examples.

In general, there are three essential components, where the agent can learn from

numerous intermediate tasks until the final task is soled.

• Task Generation

Task generation is a critical component of CL, as the quality of the training tasks can

greatly impact the agent’s performance and generalization ability. While manual

task generation by domain experts can provide representative tasks and valuable

domain knowledge, it can also be time-consuming and subject to human biases.

Meanwhile, automatic task generation is a promising approach that can avoid the

time cost and biases associated with manual design, while providing diversity and

difficulty guarantees. By combining the strengths of both approaches, CL can ben-

efit from both the domain expertise of manual task design and the efficiency and

26

diversity of automatic task generation. Narvekar et al. [50] proposed several meth-

ods to generate intermediate tasks for a specific final task using automatic task

generation. Their methods involve defining the task domain and creating tasks by

adjusting the task descriptors, enabling the generation of diverse and challenging

training tasks.

• Sequencing

Sequencing refers to the process of creating an order of experience samples or tasks

to be used in CL. While traditionally curriculum have been manually designed by

researchers, recent work has explored automated methods for curriculum sequencing.

One such approach is Prioritized Experience Replay (PER) proposed by Schauul et

al. [39]. Unlike methods that alter the domain or task, PER reorders samples within

the same domain based on their expected learning progress, as measured by the TD

error. In other words, samples with higher TD error are prioritized and replayed

more frequently, allowing the agent to make stronger updates and implicitly learn

from the samples. By prioritizing important transitions with high TD errors, PER

enables the agent focuses on the most challenging parts of the task and acquire more

complex skills.

• Knowledge transfer

Knowledge transfer plays a vital role in CL that allows the agent to leverage knowl-

edge gained from simpler tasks to solve more complex ones. Value function transfer

is a technique that can be used to transfer low-level knowledge between tasks. The

parameters of the value function obtained in the previous task is used to initializing

the value function of subsequent subtasks. Liu et al. [51] proposed two methods:

direct value function transfer and N-step returns-based value function transfer. The

proposed methods have demonstrated the effectiveness in grid world environment,

multi-agent particle environment, and Pac-Man game. Both learning effectiveness

and asymptotic performance are significantly improved by the proposed methods.

2.4.2 Automatic Curriculum Learning for Reinforcement Learn-

ing

Automatic Curriculum Learning (ACL) is an approach in RL field that aims to improve

the efficiency and speed of learning by dynamically adjusting the difficulty of the learning

task [52]. It can automatically adapt the distribution of training data by learning to

match a variety of learning situations for DRL agents.

ACL mechanisms can be employed for a variety of situations.

27

• Enhancing performance on hard tasks.

In some cases, the target tasks in RL may be too difficult or have sparse rewards,

making it challenging for the agent to learn directly. In this cases, ACL can be

used to assign additional tasks to the agent, which will gradually lead its learning

curve from simple tasks to challenging tasks until the target tasks are completed.

Recently, ACL has been utilized to schedule DRL agents through difficult mazes,

such as in work [53].

Another way in which ACL can improve performance is by providing a more struc-

tured learning environment that encourages the agent to explore and learn in a more

efficient manner. By breaking down a complex task into a series of smaller subtasks,

ACL can help the agent to build up its knowledge and skills in a more incremental

and structured way. This can lead to faster learning and better overall performance

on the task set.

• Improve generalization.

Agents should be able to complete tasks that they haven’t encountered before in

order to effectively enhance generalization. This is particularly important in sce-

narios where the task space is continuous or where there are distinct training and

testing sets. In such cases, ACL can be used to shape the learning trajectories of the

agent, improving its ability to generalize from simulated environments to the real

world [54]. By gradually increasing the realism of the simulation and introducing

more complex and realistic scenarios, agents can learn a strtegy that is more robust

and transferable to the real world with the help of ACL. ACL can also be used to

maximize performance in multi-agent settings via self-play [55], help the agents to

learn more effective and robust strategies.

• Training multi-goal agents.

Agents are trained and evaluated on tasks with multiple objectives in multi-goal

RL. Recently, ACL has shown outstanding performance in multi-goal RL tasks. It

can assist agents in more effectively learning the multiple objectives within a task by

gradually adjusting the distribution of training data. For instance, in a multi-goal

robotic arm manipulation task [56], ACL can help the agent to learn a diverse set

of manipulation skills, such as grasping, placing, and lifting objects, that can be

applied to a wide range of different goals.

While ACL mechanisms have shown promise in improving performance in complex

learning scenarios such as RL, there are still some challenges and limitations that need

to be addressed. One of the major issues is the absence of consistent benchmark for

28

evaluating the effectiveness of various ACL approaches. Another challenge is that most

of the existing research on ACL has focused on supervised learning settings, where the

input-output mappings are well-defined and easily measurable. It is not clear whether

the same considerations and approaches apply to the more complex and dynamic settings

of DRL, where agents must interact with a complex and uncertain environment to learn

optimal policies. To address these challenges, there is a need for more research to develop

standardized benchmark environments for evaluating ACL methods in DRL settings.

2.4.3 Explainable Reinforcement Learning (XRL)

Explainable Reinforcement Learning (XRL) is a promising area of research that has the

ability to overcome many of RL’s current challenges. One of the main challenges of

RL is its lack of interpretability and explainability, which can hinder its adoption in

applications where human trust and understanding are essential. This is because RL

agents are typically trained using complex models, that are difficult to understand and

analyze. Furthermore, RL agents often learn policies that are suboptimal or unexpected,

which can make it difficult to trust or deploy these models in real-world applications.

As a result, it can be quite beneficial to observe and fully understand the decision-

making process in order to identify and address issues with the trained model. Table 2.1

shows the classification of interpretability methods.

Table 2.1: Interpretability methods classification.

Method Classification Time of Obtaining Explanation Scope

Visual and Language-Assisted Explanation Post-hoc Local

Behavior Cloning Post-hoc Global

Interpretable Models Intrinsic Global

Logical Relationship Extraction Post-hoc Local

Policy Decomposition Intrinsic Local

In the topic of interpretability, classification typically exists on two factors: the time

it takes to receive the explanation and the scope of the explanation. Interpretability ap-

proaches are divided into intrinsic and post-hoc explanations especially based on the time

that the explanation was obtained. Intrinsic explanations limit the model’s expression to

generate interpretable outputs at runtime. For example, constructing a model based on

strong interpretability principles and components (such as decision trees and linear mod-

els), or adding specific processes to generate interpretable outputs. Post-hoc explanations

achieve the goal of explanation by analyzing the model’s behavior and summarizing its

behavior patterns. In general, intrinsic explanations are explanations during the strategy

29

generation process, specific to a particular model, while post-hoc explanations are expla-

nations after the strategy generation, independent of the model. According to the scope

of the explanation, interpretability methods are classified into global and local explana-

tions. Global explanations provide macro-level explanations of the model by ignoring the

model’s microscopic structures (such as parameters and layers), while local explanations

start from the microscopic level and obtain explanations of the model by analyzing its

microscopic structures. In this thesis, the proposed apporach belongs to the category of

local explanations.

There is an increasing amount of literature on local explanations algorithms. Grün et

al. [57] outlined three different types of methods: saliency methods, input reconstruction,

and perturbation-based methods.

• Saliency Methods

A group of approaches known as saliency methods are used to draw attention to

areas of an input image that are crucial to the model’s decision-making. The aim of

these methods is to provide insights into how the model processes visual information

and makes decisions.

Gradient magnitude heatmaps [58] and class activation mapping [59] were followed

by more advanced techniques like guided backpropagation [60], excitation backprop-

agation [61], GradCAM [62], and GradCAM++ [63]. Visualizing distinct regions

that are in support of the current prediction and those that are against it was done

by Zintgraf et al. [64]. Sundararajan et al. differentiate between sensitivity and im-

plementation invariance in their article [65]. It’s important to note that these tech-

niques seem to provide accurate saliency maps even for networks with unpredictable

weights, according to [66]. As is demonstrated by Kindermans et al., [67], saliency

methods do not result in analytically rational justifications for linear models.

• Perturbation Methods

Perturbation methods are a class of techniques used in the field of machine learning

to understand how changes in input data affect the output of a model. These

methods are often used to provide insight into the decision-making process of neural

networks, by measuring the sensitivity of the model to small perturbations in the

input data.

By placing an occluding rectangle across the image and tracking how the prediction

changes, Zeiler and Fergus [68] created a heatmap of importance for each area that

was occluded. While Dabkowski and Gal [69] develop a neural network for masking

salient regions, Fong and Vedaldi [70] examine this approach by introducing noise

or blurring to the image and repeatedly finding a minimal perturbation mask that

30

lowers the classifier’s performance. These methods can be used to identify potential

holes or weaknesses in these models. They are also important for developing robust

and reliable machine learning systems that can perform well in real-world scenarios.

• Input Reconstruction

Image reconstruction is a technique used in the field of computer vision to generate

new images that are similar to existing ones. In the context of deep learning, image

reconstruction can be used to visualize the features learned by a neural network, by

synthesizing an image that maximally activates certain neurons in the network.

Input reconstruction approaches are the most closely linked research since our

method synthesizes inputs for the agent. Based on nearest neighbors in feature

space, Long et al. [71] employed the average of image patches to rebuild an image.

Dosovitskiy and Brox develop a CNN to reconstruct the input from its encoding [72],

meanwhile Mahendran and Vedaldi [73] suggest to rebuild images by inverting rep-

resentations learned by CNNs.

The applications of image reconstruction techniques are numerous, including art

generation, content creation, and feature visualization. They can be used to better

understand the behavior of DL models and to generate new content that is similar

to existing data. These techniques are also important for developing more advanced

and sophisticated machine learning models that can perform complex tasks in a

variety of domains.

In order to make RL more interpretable and explainable, several well-known algorithms

have been proposed. Zahavy et al. implement t-SNE on the final layer of a DQN to

cluster the agent’s behavioral states [74]. As Greydanus et al. [75] investigate how the

current state influences the strategy in a vision-based method employing saliency methods,

Mnih et al. [37] utilize t-SNE embeddings for visualization. To illustrate the value and

advantage function of a dueling Q-network, Wang et al. [38] apply saliency approaches

from the work of Simonyan et al. [58].

XRL has a wide range of applications in domains where human trust and understand-

ing are essential. For example, in healthcare, XRL can be used to develop decision support

systems that provide physicians with transparent and interpretable recommendations for

treatment. In finance, XRL can be used to develop trading systems that are transparent

and understandable to human traders. In robotics, XRL can be used to develop robots

that are transparent and understandable to humans, which can help to build trust and

acceptance of these technologies.

31

Chapter 3

Generating Collective Wall-Jumping

Behavior for a Swarm Robotic

System with Self-Teaching

Automatic Curriculum Learning

3.1 Introduction

Swarm robotics (SR) [2][3] studies how systems composed of a large number of robots can

be used to accomplish collective tasks that are beyond the capability of a single robot.

There is no centralized control, and robots can only have partial information about the

environment. It takes inspiration mainly from social animals such as bees, ants, and

birds. In particular, a robotic swarm exhibits the following advantages; Fault-tolerance,

Flexibility, and Scalability. Fault tolerance means the system can still achieve the task

while some individuals cannot work. Flexibility means the robotic swarm can cope with

similar environments and tasks. Scalability is the ability to achieve the given task with

different group sizes.

The design methods in SRS can be mainly divided into two approaches, i.e., behavior-

based design method and automatic design method [6]. A trial-and-error process is used in

behavior-based design to develop, test, and refine each robot’s individual behavior until

the robots exhibit the desired collective behavior [12] Behavior-based design methods

have some advantages over other methods, such as simplicity, modularity, reusability,

and adaptability. However, this method requires expert knowledge, and the system’s

performance is entirely dependent on the human designer. In automatic design, the

design problem is transformed into an optimization problem [13], and then optimization

algorithms are adopted to develop the controller. Two representative automatic design

33

methods are: Evolutionary Robotics (ER) and Reinforcement Learning (RL) [15].

The majority of the current literature on automatic design belongs to evolutionary

robotics, in which the control policies are optimized by artificial evolution. ER has been

used to accomplish a variety of tasks, such as aggregation, collective transport, and path

formation. However, ER approaches require a large number of computation resources

when the dimensionality of parameters is enormous. An alternative is RL. Recently, RL

has made a remarkable achievement in addressing a variety of robotic problems. The

design of the reward function plays a critical role in the success of RL algorithms. The

reward function defines the goal of the RL agent and provides feedback on its behavior,

guiding it towards the desired behavior. In particular, the sparse reward problem is a

common challenge in RL where the agent receives little or no feedback for its actions,

resulting in training failure.

In the case of sparse rewards, the agent may have difficulty learning the optimal policy

since it receives little feedback on its actions, resulting in a slow or failed learning process.

To address this problem, various techniques have been proposed, such as Curriculum

Learning.

A promising approach to solve this problem is Curriculum Learning (CL) [44]. CL is

a training approach that imitates the meaningful learning sequence in human curricula.

The central idea is to train the agent in numerous tasks in a meaningful sequence, until the

agent can solve the target task. However, the curriculum is frequently designed manually

by researchers. Manual CL limits the pace of training and heavily relies on the designer’s

experience. Recently, many researchers have been investigating how to automatically

generate such curricula for RL [52]. Sequencing subtasks is the most common way. More

fundamentally, a curriculum can also be defined as a series of experience samples.

In this chapter, we propose a novel method called Self-Teaching Automatic Curriculum

Learning (STACL). The central idea is to automatically schedule the lessons that the

agents should learn based on the learning progress of previous lessons. This approach

is intended to be more effective than manual CL or random CL approaches. In order

to illustrate the effectiveness of STACL, the chapter uses a collective wall-jumping task

where robots must jump over a high wall and reach the goal as quickly as possible. The

experiments are conducted in computer simulations, and the results are compared to

those of manual CL, random CL, and a conventional RL algorithm. Results show that

the STACL method has the fastest convergence speed and the most stable performance.

All CL methods can train agents to generate collective wall-jumping behavior, while the

conventional RL approach fails. In addition, the flexibility of the developed controllers is

also examined.

34

3.2 Related Work

A jumping robot can pass through obstacles several times its height and has an excellent

ability to avoid danger. There are some studies about single jumping robot [76]. For

instance, Noh et al. proposed flea-inspired jumping robot is capable of jumping up to 30

times farther than it is height [77]. Another research direction is to use multiple modular

robots to overcome the obstacle together. M-block is a kind of cubic modular jumping

robot. It is a novel self-assembling, self-reconfiguring robot that uses pivoting motions

to change its intended geometry [78]. M-blocks achieve the jumping motion by quickly

applying a brake to an internal flywheel to transfer angular momentum to the body of

the robot. A single module is incompetent but together they can achieve tasks beyond

an individual’s ability.

In the Atari game of Pong and Breakout, the reward function is relatively simple, and

the agent can receive a positive reward for every successful action. Therefore, RL has

achieved better performance than human players. However, in more complex games like

Montezuma’s Revenge [79], the reward function is often sparse and only provides feedback

in certain rare situations, making it difficult for the agent to learn effective strategies. In

Montezuma’s Revenge, the player must perform a series of actions to complete a subtask

and obtain a reward. This requires the agent to explore the environment and discover the

sequence of actions that lead to a positive reward. However, if the agent receives little or

no feedback for its actions, it may have difficulty learning the optimal policy, resulting in

a slow or failed learning process.

Similarly, in the wall-jumping task, robots have to conduct a series of behaviors. They

have to aggregate, form a staircase-like structure, jump over the wall and finally reach

the goal. Therefore, it is hard for the controller trained by RL to complete this task when

the wall is relatively high. In that case,CL can be used to direct the learning trajectory

from easy to challenging tasks until the goal tasks are completed. The performance

of CL depends on how we design the curriculum for specific applications and datasets.

Therefore, research into automatically designing the data subset or curriculum, also known

as Automatic Curriculum Learning (ACL) is growing rapidly. ACL is an approach in RL

field that aims to improve the efficiency and speed of learning by dynamically adjusting the

difficulty of the learning task [52]. By learning to match a range of learning scenarios for

DRL agents, it can change the distribution of training data automatically. Recently, ACL

has been utilized to schedule DRL agents through difficult mazes, such as in work [53].

35

3.3 Research Methodology

In this section, we describe how RL can be applied with CL. The approach we proposed

will be described in detail.

3.3.1 Curriculum Learning with Reinforcement Learning

CL [44] is a technique which can used in Reinforcement Learning (RL) to optimize the

order in which an agent acquires experience to improve performance and training speed

on a set of final tasks. It is like how humans learn new things, usually from easy to

difficult. By leveraging the generalization capabilities of the agent, CL allows knowledge

acquired from simple tasks to aid in solving more complex ones. By using this strategy,

the amount of labeled data needed for training may be decreased, the model’s robustness

and generalizability can be increased, and the training process is able to speed up.

In RL algorithms, the knowledge transfer from the source tasks to the target task

can be realized by the transfer of the value function. The value function represents the

expected return from a given state. It is equal to the expected total reward Rt for an

agent starting from state s. For MDPs, V π(s) can be defined as:

V π(s) = Eπ{Rt | st = s}

= Eπ{
∞∑
k=0

γkrt+k+1 | st = s}
(3.1)

In general, a value function depends on the policy π. Therefore, the policy learned

from the source task πsource can be used in the target task. The value function in the

target task Vtarget(s) is initialized using the parameters of the value function Vsource(s)

learned in the source task. An initialization bias can be introduced to allow the agent to

investigate the goal task more effectively.

3.3.2 Self-Teaching Automatic Curriculum Learning

A proper lesson sequence is an essential part of CL. The majority of previous research has

employed manually constructed curricula, in which a researcher chooses the sequencing of

samples or courses. However, research into automated methods for curriculum sequenc-

ing has been emerged recently. In this study, we proposed a novel sequencing algorithm

named Self-Teaching Automatic Curriculum Learning.

In each episode, agents choose lessons to practice for the following episode. Agents

train on those lessons and return the episode total reward. Changes in the episode total

reward represent the slope of the learning curve, i.e., the training progress of agents.

36

Initially, lessons are sampled randomly. From the second episode, lessons with a higher

learning curve will have a higher probability of being sampled. Then other lessons will

be selected more, and training will repeat until all lessons have been learned. The central

concept is that agents should practice the lessons with the highest learning curve slope,

where they will improve the most. Algorithm 1 shows the pseudocode of the proposed

method.

Algorithm 3 Self-Teaching Automatic Curriculum Learning

for e = 1,...,E episodes do

if e == 1 then

Select lesson k randomly

else

Select lesson k using Boltzmann policy based on L: P (a) = exp(L[a]/τ)∑I
i=1 exp(L[i]/τ)

end if

Initialize a list L to store the number of lesson selections

Initialize environment with lesson k

for t = 1,...,T=5000 timesteps do

if The task is finished then

Break

end if

for j = 1,...,N=24 agents do

Agent j selects lesson n

L[n] = L[n] + 1

Add reward to agent j based on reward settings RSTACL

end for

end for

for j = 1,...,N=24 agents do

Add rs = Rk
i −Rk

i−1 to agent j.

end for

end for

A list L is initialized to store the number of times each lesson was selected by agents,

the length of the list is the number of lessons. List L will be reset at the beginning of

an episode. At each timestep, each agent selects a lesson. The corresponding number

in the list L[n] will be increased by one, where n is the index of the lesson. At the

beginning of an episode, the Boltzmann policy is used to select the lesson based on the

list L. The Boltzmann policy calculates the probability that each lesson will be selected.

Then, the lesson for the next episode is decided by sampling the probability distribution.

If the lesson k is selected, each agent will receive a reward rs = Rk
i − Rk

i−1 at the last

37

time step of an episode, which is the change in total reward between the ith training and

i− 1th training. The total episode reward will increase more when rs is high. Therefore,

according to the principle of maximizing the reward of the RL algorithm, the probability

of agents selecting lesson k will be increased. In the Boltzmann policy, the probability of

each action is calculated by a softmax over the value of each action. Then the action is

sampled from this distribution. The equation is shown in Eq. 3.2.

P (a) =
exp (L[a]/τ)∑I
i=1 exp (L[i]/τ)

(3.2)

Where P (a) is the probability of selecting lesson a, I is the number of lessons, τ is a

temperature parameter, and the number of times the lesson a is selected in one episode

is represented by L[a]. A higher τ value makes the policy more random, whereas a lower

τ value makes the policy greedier. During training in this research, τ is set to 1.

3.4 Collective Wall-jumping Task

3.4.1 Environment Settings

In this study, computer simulations are conducted to perform a collective wall-jumping

task, where the robots have to reach the goal area as soon as possible. The environment

is conducted in three-dimensional space using Unity3D game engine. The top view of

the environment is shown in Fig. 3.1. The environment is a rectangle area surrounded

by walls. It is 80 meters long and 60 meters wide. The goal area (green-colored area)

is 48 meters long and 12 meters wide. In the beginning, 24 robots are placed on the

field. A 5-meter-high wall is located in the central area, which is an obstacle for robots

to overcome.

3.4.2 Robot Settings

Fig. 3.2 shows the design of the robots. As shown in Fig. 3.2(b), for robots to observe the

environment, seven IR sensors are attached to detect the distance between the robot and

other objects within 20 meters. With IR sensors, a robot can recognize walls, the goal,

and other robots. Robots have four kinds of actions which are forward movement, side

movement, rotating, and jumping. The robot is 1 meter high, and its maximal jumping

height is 1.2 meters. Robot’s jumping ability is a little higher than its height so that it

can jump on the top of another. In order to maintain the stability of the staircase-like

structure, robots perform the overhead check. The overhead check means that a robot

detects whether another robot exists above itself. If another robot exists, the robot will

immediately be motionless to prevent the upper robot from falling.

38

Figure 3.1: Top view of the environment.

3.4.3 Task Settings

There are 10 million timesteps in one training process. Each episode consists of 5000

timesteps. As shown in Fig. 3.3, robots have to learn to aggregate, form a staircase-

like structure, jump over the wall and finally reach the goal. When 12 out of the 24

robots reach the goal, the task should be complete, and the episode will end. Note that

the maximum jumping height of a robot is 1.2 meters, while the target wall height is 5

39

(a) Robot overview. (b) Arrangement of IR sensors.

Figure 3.2: The robot design.

Figure 3.3: The desired structure to complete wall jumping task.

meters. Thus one robot can never complete the task. Robots need to form a four layers

structure to pass the wall collectively.

40

Figure 3.4: Architecture of the vanilla neural network.

3.4.4 Network Structure and Reward Settings

Fig. 3.4 shows the vanilla network architecture. This network trains controllers for manual

CL, random CL, and conventional RL. It contains two hidden layers; each layer has 256

nodes. The first layer receives robot position, goal position, overhead checks, and 7 sensor

information as inputs. The outputs of the neural network are four robot actions: forward

movement, side movement, rotating, and jumping. Robots obtain a sparse reward based

on the following equations:

R =
N∑
j=1

T∑
t=1

rg,j,t +
N∑
j=1

T∑
t=1

rp

rg,j,t =

1 if robot j reaches the goal at time t

0 otherwise

rp = − 1

5000
at each timestep

(3.3)

where episode reward R is the sum of the rewards received by all agents in one episode,

N is the number of robots, and T is the length of the episode. The environment gives

robots both positive and negative rewards based on their states and actions. The robot

j will receive the reward rg,j,t =1 if it reaches the goal at timestep t. The tiny negative

41

Figure 3.5: Architecture for self-teaching automatic curriculum learning.

reward rp in each timestep is the time penalty that is used to encourage the robot to

finish the task as soon as possible.

The network architecture for STACL is shown in Fig. 3.5, which can train controllers

to not only complete the wall-jumping task but also to schedule lessons automatically.

Inputs and hidden layers are identical to the vanilla network architecture. In addition to

the four robot actions, a lesson selection output has been added. Each agent selects a

lesson and records it at each timestep. When an episode ends, a lesson for the following

episode is chosen using the Boltzmann policy.

For STACL, the reward function is based on the following equations:

RSTACL = R +
N∑
j=1

rs

rs = Rk
i −Rk

i−1 at end of the episode

(3.4)

Where RSTACL is the sum of the original episode reward R and the lesson selection

reward rs. If the lesson k is selected, the robot j will receive a lesson selection reward rs

at the last time step of an episode. The number of training in the lesson k is represented

by i. Changes in Rk
i − Rk

i−1 represent the progress between the ith training and i − 1th

training. As a result, the lesson selection reward rs is used to motivate robot j to select

42

the lesson that maximizes the episode reward change.

Table 3.1: Hyper-parameters

Hyper-parameter Value

Batch size 256

Buffer size 20480

Optimizer Adam

Learning rate 0.0003

Number of timesteps 1e7

ε in PPO 0.2

Some important hyper-parameter values are shown in Table 3.1.

3.5 Results

Simulation snapshots of the controller trained with the proposed method are shown

in Fig. 3.6. There are four lessons. The wall in lesson 1 is 1 meter high. In Fig. 3.6(a),

robots have a sparse spatial distribution because a single individual can jump over the

wall. It is relatively simple for robots to find the goal and get rewards when they explore

the environment. Robots learn the right direction to reach the goal in lesson 1. The wall

height in lesson 2 is 2 meters. A robot can only jump over the wall only from the top

of another robot; they need to cooperate as a group. As can be observed in Fig. 3.6(b),

robots learn to aggregate with other robots. In lesson 3, The wall height is 3 meters. A

bigger group is needed. From Fig. 3.6(c), we can find the robots form a staircase-like

structure and generate the collective jumping behavior. The wall height in lesson 4 is

5 meters, which is also the final target task. From Fig. 3.6(d), robots form the most

aggregate pattern and biggest staircase-like structure.

Fig. 3.7 shows the episode reward for the comparison experiment, which is an average of

10 trials. Manual CL training takes 1 million timesteps for lesson 1, 2 million timesteps

for lessons 2 and 3, and 5 million timesteps for lesson 4. In manual CL, cumulative

rewards are reduced when lessons and wall heights change. It increases again as the

training progresses. However, since the difficulty gap between lessons 2 and 3 is small,

the cumulative reward around the 3M timesteps changes slightly. The cumulative reward

converges to around 0.36. In STACL, since the training progress is not limited by manual

settings, the convergence speed is faster. From 5M timesteps, the controller maintains a

43

(a) Lesson 1 (b) Lesson 2

(c) Lesson 3 (d) Lesson 4

Figure 3.6: Simulation snapshots of the controller trained with STACL in the training

process.

high-level performance. It is important to note that the lesson selection reward rs is not

included in the trajectory in order to compare with other approaches. The cumulative

reward converges to around 0.43. Random CL means that lessons are randomly selected

for each episode. In random CL, training progress is slow and unstable. Then it eventually

converges to roughly the same level as the manual CL. In a conventional PPO, cumulative

rewards are always −1; controllers fail to learn to complete the task without CL.

The episode length to accomplish the task is shown in Fig. 3.8, which is the average of

10 trials. The episode length refers to the time it takes to complete the task, which is the

time it takes 12 out of the 24 robots to reach the goal. When the episode length is less than

5000 timesteps, the task has been completed within the time limitation. Furthermore, the

44

Figure 3.7: Trajectories of episode reward, where each data point is the average of 10

trials (with standard deviation).

shorter the episode length means the controller can complete the task more efficiently. In

manual CL, the trained controller is able to complete the task around 700 timesteps. Also,

the episode length increases at 1M, 3M, and 5M timesteps because of the same reason

mentioned above. In STACL, the controller converges at approximately 5M timesteps

with a slight standard deviation and completes the task for about 350 timesteps. As a

result, the controller trained with STACL can accomplish the task more efficiently than

the manual CL. The training process is slower and less stable with random CL because it

lacks an appropriate method for choosing lessons. Conventional RL cannot complete the

task throughout the entire training process; episodes end only when the time runs out.

Fig. 3.9 shows an example of lesson distribution during the training process. The exper-

iment consists of 11635 episodes, of which 50 episodes are sampled once to examine the

trend in lesson selection. As can be seen, lesson 1 is selected the least frequently, and the

majority of them are distributed at the beginning of the experiment. Lessons 2 and 3 are

selected more frequently as the difficulty increases. Additionally, they are sometimes cho-

sen in the latter stage of training. This is because agents need retraining on tasks that the

45

Figure 3.8: Comparison of the episode length required to accomplish the task, where each

data point is the average of 10 trials (with standard deviation).

network is starting to forget to counter unlearning. Lesson 4 was selected the most, with

a selection rate of over 70%. Consequently, for the collective wall-jumping task, spending

a large amount of time training the hardest lesson and intermittently training the easier

intermediate lessons to counter unlearning is an appropriate lesson sequence. It should

be mentioned that the lesson sequence for each trial is slightly different. For instance, the

fluctuations in the episode length across multiple trials will alter the number of episodes,

which implies a change in the length of the lesson order. However, the proposed model

can ensure that the lesson with the greatest progress is chosen under different training

states, enabling robots to complete the task effectively and with high performance.

Additionally, to examine the flexibility of the swarm, evaluation experiments are

conducted. Flexibility is the property that a robotic swarm should still be able to cope

with changes in environments and tasks. Therefore, we saved the controllers with the

highest reward trained in previous experiments by the STACL method, the manual CL

method, and the random CL method, respectively, to address new tasks. First, the wall

heights were changed to 3m, 4m, 5m, 6m, and 7m, respectively. The controller is evaluated

20 times in each new environment. The results of the test experiments are shown in Fig.

46

Figure 3.9: An example of lesson distribution during the training process.

Figure 3.10: Flexibility testing with different wall heights.

3.10. As it can be observed, the proposed controller can achieve the highest reward with

47

the smallest variance in every new environment. For manual CL and random CL, as the

wall height increases, the cumulative reward decreases, and the variance of the cumulative

reward also increases. Especially in the environment where the wall height is 7m, there

is a huge performance drop for random CL. In general, it can be said that the controller

developed with STACL exhibits great flexibility.

3.6 Conclusion

In this study, we proposed STACL, in which agents automatically select which lessons

to train next from a given set. In the proposed approach, agents practice more of the

subtasks with the highest slope of the learning curve so that they can make the most

progress. In order to illustrate the effectiveness of STACL, this study uses a collective

wall-jumping task. The manual CL algorithm, random CL algorithm, and traditional

RL algorithm are compared with the proposed method. Simulation resluts demonstrate

that the suggested method has the quickest convergence speed since it can automatically

schedule lessons and is unaffected by manual settings. All CL methods can complete the

given task. In contrast, the conventional RL method failed because of the sparse reward

problem. Additionally, we also performed experiments to examine the flexibility of the

proposed approach. One limitation of our approach is that the intermediate lessons are

generated manually, which may not produce optimal experiment results. We believe that

careful fine-tuning could result to better performance.

48

Chapter 4

Autonomous Highway Driving Using

Reinforcement Learning with Safety

Check System based on

Time-to-Collision

4.1 Introduction

In recent years, the development of autonomous vehicle (AV) technologies are greatly

promoted by advances in the field of artificial intelligence (AI) and machine learning

(ML). However, there are still many issues in high interactive traffic scenarios such as

ramp merging[80] unprotected left turns [81] [82], and narrow street passing [83] [84].

Autonomous vehicles need to interact with other traffic participants, react to road objects,

and select an appropriate strategy.

Most autonomous vehicles have a modular hierarchical structure and can be divided

into four components [85], which are perception, prediction, decision-making, and con-

trol. Decision-making is an essential component and received significant attention from

academic and industry organizations. The majority of current approaches for decision-

making methods can be divided into the rule-based method and the data-driven method.

The rule-based methods employ heuristics and hard-coded rules to guide the behaviors,

such as the Intelligent Driver Model (IDM) [86] and the MOBIL model [87]. For instance,

if an autonomous vehicle with a rule-based model observes a stop sign while driving, rules

enforce the model to set the acceleration to negative until the vehicle stop. It is feasible

to design a strategy hand-crafted for simple traffic scenarios. However, the number of

rules increases exponentially in complex scenarios, and there may be conflicts between

the rules. Furthermore, the strategies are designed case-to-case, which lacks robustness

49

and generalization ability to new scenarios.

An alternative is data-driven method such as Reinforcement Learning (RL). Recently,

RL has made a remarkable achievement in addressing a variety of robotic problems and

autonomous driving tasks. The decision-making problem for autonomous navigation can

be formalized as a Markov Decision Process (MDP) [29]. An agent (autonomous vehicle)

attempts to adopt the optimal policy to maximize rewards while taking into account the

influences of its behaviors through dynamic interaction with the environment. Most of

the previous works are limited to single-agent tasks and cannot be directly introduced to

multi-agent tasks. Multi-agent RL algorithms need to maximize the sum of the rewards

of all agents, which makes it more difficult to optimize the network. Furthermore, as the

number of agents increases, the complexity of the environment rises as well, which leads

to a dramatic increase in the variance of optimization methods that estimate gradients

by sampling.

In order to apply a reinforcement learning algorithm to an autonomous driving prob-

lem, a feature representation of the state must first be chosen. The state should at least

contain a description of nearby vehicles and the environment. The spatial-temporal state

feature is the most commonly-used representation [88]. A vehicle driving on the road

can be described in a kinematic way by its continuous position, velocity, and heading.

This representation is efficient. However, it has two limitations. First, the environment

might change across time and space, which presents a challenge for learning strategies

that depend on inputs with a fixed size. Second, this type of feature representation is

permutation-variant, which means that it is impacted by the order in which the interact-

ing agents are listed. For example, a different feature representation might emerge from

simply changing the feature entries of agents i and j.

In this chapter, we utilize Time-to-Collision (TTC) as the feature representation to

train a controller for multiple autonomous vehicles. TTC is the time needed for a vehicle

to collide if it continues driving on the same route and at the same speed. TTC focuses

on the potential risk posed by other vehicles and static obstacles rather than a specific

agent. Therefore, even if the number or order of the surrounding vehicles changes, the

feature representation will not be affected.

We also propose a safety check system (SCS) based on TTC as shown in Fig.4.1.

First, the SCS needs to determine whether a vehicle is unsafe. TTC is used as a threat

assessment in several approaches [89] [90]. However, the general definition of TTC is

calculated from relative distance and relative velocity with constant relative acceleration.

When two vehicles are moving with approximately the same velocity, even if the distance

between them is very close, the general TTC-based SCS will not detect a potential colli-

sion. Therefore, in the proposed method, the TTC under the three driving circumstances

of uniform speed, acceleration, and deceleration will be calculated to improve the safety

50

Figure 4.1: The framework of the proposed approach.

of the system. Second, the SCS needs to replace dangerous action output by RL with a

safer action. For instance, the safety system proposed in [91] [92] includes a dynamically

learned safety module in addition to handcrafted safety rules. However, the majority of

current safety enhancement methods were created for single autonomous vehicle tasks.

For tasks involving multiple autonomous vehicles, the purpose of SCS is to guarantee

the safety of the entire system. In this case, relying on communication between vehicles,

the proposed method can satisfy comprehensive requirements including safety and order

rationality.

The main contributions of this study are summarized as follows.

1. We use the modified TTC as the state representation to train an RL controller

for multiple AVs. It performs better than the conventional approach utilizing kinematics,

demonstrating the reliability of this state representation.

2. We propose a safety check system for multiple AVs to enhance the safety of the

system and improve the learning efficiency of RL. The results of the simulation experi-

ments demonstrate that, even in cases of heavy traffic, the proposed approach can suc-

cessfully increase the arrival rate and decrease the collision rate. Furthermore, evaluation

experiments are conducted to examine the performance of the safety check system with

different time thresholds.

3. A ramp merging task in the computer simulation is used to examine the effects of

the proposed method. Autonomous vehicles and environmental vehicles co-exist in the

merge lane and the main lane. Vehicles on the ramp need to merge into the main lane

efficiently without collision. After passing the main lane, autonomous vehicles need to

divert to the ramp and reach the goal.

51

4.2 Research Methodology

In this study, Proximal Policy Optimization (PPO), one of the most well-known DRL

algorithms, is used to train a decision-making controller. However, DRL algorithms are

not safe enough since the agent is encouraged to explore a wide range of states to find

the best strategy. Therefore, it is necessary to equip autonomous vehicles with a security

assurance mechanism when collisions are about to occur. In this study, we propose a

safety check system for reducing collisions by utilizing Time-To-Collision (TTC).

4.2.1 Time-To-Collision (TTC)

In research on traffic conflicts techniques, Time-To-Collision (TTC) has proven to be an

effective measure for rating the severity of traffic conflicts [93]. According to Hayward’s

definition, TTC [94] is the amount of time needed for two vehicles to collide if they

continue driving in the same route and at the same speed. It stands for the danger posed

by the vehicle at the current lane and speed. There is a higher chance of a collision when

the TTC is low. The TTC of two vehicles can be approximated by Equation 4.1.

TTC =
|Ri|

|Vi| · cos < Ri, Vi >
(4.1)

Where Ri is the relative position vector of vehicle i, Vi is the relative velocity vector

of vehicle i, | · | is the 2-norm of a vector.

4.2.2 PPO with Safety Check

In this study, we propose a safety check system based on TTC. The central concept is that

the action output by the DRL controller should be replaced with a safer action chosen

by the safety check system when an autonomous vehicle detects a potential collision, i.e.,

the TTC is below the threshold. The overall algorithm is shown in Algorithm 4.

The detection of collision is achieved by calculating the TTC under the three driving

circumstances of uniform speed, acceleration, and deceleration. Autonomous vehicles will

communicate with each other, when a potential collision is detected, a safer action using

Algorithm 5 will replace the action output by the RL controller. First, all the AVs will

calculate their TTC according to the action output by the RL controller. Then, each AV

broadcasts its TTC to other AVs and sequences them based on the level of risk. The

action will be replaced if the TTC is below the time threshold. The high-risk vehicle

will be given top priority for action replacement. The TTC of every possible action will

be recalculated and the action with the highest TTC will be chosen as the new action,

indicating maximum safety. When the new action is selected, the high-priority AV will

52

Algorithm 4 PPO with safety check

Inistialize replay buffer D.

for m = 0 to M episodes do

for t = 0 to T timesteps do

for v = 0 to V vehicles do

Observe svt .

Select an action avt using the neural network.

end for

Safety Check

for v = 0 to V vehicles do

Execute new action avt ′ in environment.

Get reward rvi .

Add to replay buffer D with (st, a
v
t ′, rvi)

end for

end for

Update the networks using PPO.

end for

broadcast its latest target lane and speed to others. The process will then be repeated by

vehicles with lower priority until the entire system is in a safe situation.

4.3 Experiment Settings

This study conducted experiments in highway-env simulators [95]. The code is imple-

mented in Python using Pytorch framework. A computer with NVIDIA RTX 3070 GPU,

AMD Ryzen 9 3950x CPU, and 128GB memory is utilized for the experiments.

4.3.1 Task Settings

In this study, a ramp merging task is used to evaluate our method. The environment is

shown in Fig. 4.2. The simple task consists of 4 autonomous vehicles and 6 environmental

vehicles. There are 300,000 timesteps in one training process. The hard task consists of

8 autonomous vehicles and 8 environmental vehicles. There are 500,000 timesteps in one

training process. In order to increase the complexity of the hard task, an obstacle is added

to the main lane. In the beginning, the vehicles in each of the three lanes are generated at

a random position. Autonomous vehicles and environmental vehicles co-exist in the merge

lane and the main lane. Vehicles on the ramp need to merge into the main lane efficiently

without collision. After passing the main lane, autonomous vehicles need to divert to the

53

Algorithm 5 Safety check

for each autonomous vehicle v do

Calculate the TTC if excuate action avt .

Broadcast its TTC to all neighboring autonomous vehicles.

v.decided = False.

end for

Within each autonomous vehicle, sequence the vehicles by TTC from small to large.

for each autonomous vehicle v with lowest TTC do

v.decided = True.

Calculate TTCs with different actions using the target lane and speed of other

vehicles whose decided is True, and ignoring the autonomous vehicles whose decided is

False.

if TTC of the current speed < Threshold then

Select the action with highest TTC.

end if

Calculate the target lane and speed with the new action.

Send the target lane and speed to all other autonomous vehicles.

end for

ramp and reach the goal. For environmental vehicles, we utilize the Intelligent Driver

Model (IDM) [86] and MOBIL model [87] for longitudinal acceleration and lateral lane

change decisions.

Figure 4.2: The ramp merging task conducted using the highway-env simulator. In the

left lanes, the vehicles are generated at random. Environmental vehicles are depicted in

blue, whereas autonomous vehicles are depicted in green. The on-ramp’s vehicles need to

merge into the main lane. After a section of main lane, autonomous vehicles need to exit

the highway by the off-ramp.

54

4.3.2 Neural Network Settings

The state space of the baseline method is the features of other vehicles, including ispresent,

x, y, vx, vy, where ispresent is a variable denoting whether a vehicle is observable, x and

y are the longitudinal and lateral position of the observed vehicle, vx and vy are the longi-

tudinal and lateral speed of the observed vehicle. The state is represented by a 16 times

5 matrix, and the maximum of 16 cars (including 8 autonomous and 8 environmental

vehicles) can be observed.

The proposed approach uses TTC as the state representation. At each timestep,

each vehicle will calculate TTCs with different speeds. In this study, the state of the

autonomous vehicle is represented by a 3× 3× 10 matrix. The first dimension represents

the TTC if the vehicle at the current speed, slows down, or speeds up. The second

dimension represents the left, current, and right lane of the vehicle. The third dimension

represents the TTC time in one-hot encoding.

The set of high-level control decisions, including turn left, turn right, accelerate, de-

celerate, and idle are referred to as the autonomous vehicle’s action space. Following the

high-level decision, the low-level controller will generate the corresponding steering and

throttle control signals to control the vehicle.

There are two neural networks in PPO, i.e., the actor and the critic. Fully connected

layers are used in both neural networks. The outputs of the actor are the probabilities of

the actions that the vehicle may execute. The critic’s output is the value function. The

actor and critic networks each have two fully connected layers with 256 hidden units.

The architecture of the actor and critic networks are shown in Fig. 4.3 and Fig. 4.4.

Table 4.1 lists the hyper-parameters utilized in this investigation. Ten times each

experiment was carried out using different random seeds.

4.3.3 Reward Settings

The performance of DRL algorithms is highly dependent on the design of the reward

functions. At each timestep, each vehicle gets a reward using the Equation 4.2.

rt = rc + ra + rs + rl (4.2)

Where rt is the total reward that the vehicle can receive at each timestep, rc is the

collision penalty when the vehicle is involved in a collision, ra is the arrived reward when

the vehicle reaches the goal, rs is the reward when the vehicle speeds up. The penalty for

changing lanes is rl, which is intended to discourage lane switching by the vehicle. The

values of each reward setting are shown in Table 4.2.

55

Figure 4.3: The network structure of the actor.

Table 4.1: Hyper-parameters

Hyper-parameter Value

Batch size 64

Buffer size 240

Parallel environments 32

Optimizer Adam

Learning rate 0.0005

Number of timesteps 3e5

ε in PPO 0.2

TTC time threshold 3

Input size of kinematic representation 16 × 5

Input size of TTC representation 3 × 3 × 10

Output size of actor network 5

56

Figure 4.4: The network structure of the critic.

Table 4.2: Reward settings

Reward Value

Collision Reward rc −50

Arrived Reward ra 100

High Speed Reward rs 0.2

Lane Change Reward rl −0.05

4.4 Results

4.4.1 Simple Task

Ablation experiments are conducted to investigate the impact of the state representation

and the safety check system. We employ the PPO method uses kinematic representation

as the baseline method, which does not employ the safety check system. It needs to

be noted that the baseline method cannot equip the safety check system due to a lack

of TTC information. Fig. 4.5 shows the performance trajectories on the simple task,

which is an average of 10 trials. The simple task consists of 4 autonomous vehicles and

6 environmental vehicles. Fig. 4.5(a) shows the number of arrivals for the conventional

method, the method using TTC representation without the safety check system, and the

57

proposed method. Arrivals converge to 2.31, 2.33, and 3.1 respectively. When the safety

check system is not provided, the conventional method and the method using the TTC

representation have similar performance. Fig. 4.5(b) shows the number of collisions for

the conventional method, the method using TTC representation without the safety check

system, and the proposed method. Collisions converge to 1.22, 1.41, and 0.47 respectively.

The best collision avoidance ability can be obtained by the proposed method. Fig. 4.5(c)

shows the velocity for the conventional method, the method using TTC representation

without the safety check system, and the proposed method. The velocity converges to

23.9m/s, 28.1m/s, and 27.8m/s respectively.

Simulation results show that the proposed method can effectively improve the arrival

rate and reduce the collision rate without reducing the efficiency of autonomous vehicles.

(a) The number of arrivals. (b) The number of collisions.

(c) Velocity of autonomous vehicles.

Figure 4.5: The performance trajectories in the simple task, where each data point is the

average of 10 trials (with standard deviation).

58

4.4.2 Hard Task

Fig. 4.6 shows the performance trajectories on the hard task, which is an average of 10

trials. The hard task consists of 8 autonomous vehicles and 8 environmental vehicles. An

obstacle is in the middle of the main lane.

(a) The number of arrivals. (b) The number of collisions.

(c) Velocity of autonomous vehicles.

Figure 4.6: The performance trajectories in the hard task, where each data point is the

average of 10 trials (with standard deviation).

Fig. 4.6(a) shows the number of arrivals for the conventional method with kinematic

representation, the method using TTC representation without the safety check system,

and the proposed method. Arrivals converge to 2.5, 4.8, and 6.3 respectively. As men-

tioned earlier, kinematic state representation would be affected by the number or order

of surrounding vehicles. The effect would be magnified in a dense traffic situation. As a

result, the conventional method performs worse than methods using TTC representation,

even without the safety check system. Fig. 4.6(b) shows the number of collisions for the

59

conventional method, the method using TTC representation without the safety check sys-

tem, and the proposed method. Collisions converge to 3.0, 3.0, and 1.4 respectively. The

proposed method has the best collision avoidance ability. Fig. 4.6(c) shows the velocity

for the conventional method, the method using TTC representation without the safety

check system, and the proposed method. The velocity converges to 23.7m/s, 23.0m/s,

and 27.1m/s respectively. In a dense traffic environment, the speed of each algorithm

decreases slightly more than in the simple task. Generally, simulation results show that

the proposed method can deal with a dense traffic scenario more than other approaches.

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Simulation snapshots of the controller trained by the proposed method.

Simulation snapshots of the controller trained with the proposed method are shown

in Fig. 4.7. It can be observed in Fig. 4.7(a) and (b), that the first autonomous vehicle

is driving on the main road. The second autonomous vehicle is driving on the merging

60

Figure 4.8: Collision evaluation experiments with different safety time thresholds.

road. As shown in Fig. 4.7(c), when the distance between the two vehicles is close, which

means the TTC is less than the safe time threshold, the action output by DRL will be

replaced by a safer action. Therefore, the first autonomous vehicle chooses to turn left

into another lane to avoid the potential collision, rather than go straight to maximize the

expected return. In Fig. 4.7(d) and (e), the second vehicle successfully merges into the

main lane. As seen in Fig. 4.7(f), the second vehicle makes a lane change to avoid a

probable collision with an environmental vehicle.

Furthermore, to examine the effect of different safety time thresholds, evaluation ex-

periments were performed. The safety time threshold is an indicator for evaluating the

degree of danger of a state. When TTC is less than the safety time threshold, the actions

output by the RL method will be replaced with safer actions by the safety check system.

Therefore, we changed the safety time thresholds to 1s, 3s, 5s, 7s, and 9s, respectively.

The corresponding controllers are trained in the hard task. Each controller is evaluated

50 times. The results of the evaluation experiments are shown in Fig. 4.8. As it can

be observed, when the time threshold is 3s, the lowest collision can be obtained. As the

safety time threshold increases, the number of collisions increases accordingly. Since it

is still relatively safe when TTC is 7s or 9s, it is not ideal to replace actions too early.

Especially there is a great fluctuation when the time threshold is 1s. It is difficult to

61

completely avoid a collision since the emergency response time is insufficient. As a result,

the best performance and safety can be obtained by setting the safety time threshold to

3s.

4.5 Conclusion

In this study, we propose a safety check system based on time-to-collision. The central

concept is that the action output by the DRL controller should be replaced with a safer

action chosen by the safety check system when an agent detects a potential collision, i.e.,

the TTC is below the time threshold. A ramp merging task is used to examine the effects

of the proposed method.

The simulation results show that the proposed approach can successfully enhance the

arrival rate and decrease the collision rate even in crowded traffic scenarios. Furthermore,

evaluation experiments are conducted to examine the performance of the safety check

system with different time thresholds.

62

Chapter 5

Visualizing Deep Q-learning to

Understand Behaviors of Swarm

Robotic System

5.1 Introduction

Swarm robotics (SR) [2][3] is the study of how systems composed of multiple robots can

be employed to perform collective tasks that are beyond the abilities of a single robot.

There is no centralized control, and robots can only have partial information about the

environment. In particular, a robotic swarm exhibits the following advantages; Fault-

tolerance, Flexibility, and Scalability. Fault tolerance means the system can still achieve

the task while some individuals cannot work. Flexibility means the robotic swarm can

cope with similar environments and tasks. Scalability is the ability to complete the

assigned work with various group sizes.

The design methods in SRS can be mainly divided into two approaches, i.e., behavior-

based design method and automatic design method [6]. A trial-and-error process is used

in behavior-based design to develop, test, and refine each robot’s individual behavior un-

til the robots exhibit the desired collective behavior [12] Behavior-based design methods

have some advantages over other methods, such as simplicity, modularity, reusability, and

adaptability. However, this method requires expert knowledge, and the system’s perfor-

mance is entirely dependent on the human designer. Another design method is automatic

design [13], which means the controller is automatically created by turning the design

problem into an optimization problem. Reinforcement Learning (RL) is a representive

automatic design method. Moreover, by developing end-to-end control strategies, Deep

Q-Network (DQN), one of the most popular RL algorithms is shown as an effective method

for SRS problems. However, because DQN is a black box, it is not easy to explain why it

63

gives us successful results. Therefore, a novel method of visualizing and interpreting the

decision-making process of DQN is proposed in this study.

In this chapter, we present a method of analyzing the latent representations learned

by DQN on SRS. The proposed method records the neural activations of the last hidden

layer, and then applies Gradient-weighted Class Activation Mapping and Deconvolutional

Network for visualization. Gradient-weighted Class Activation Mapping (Grad-CAM) [62]

is an Explainable Artificial Intelligence technique that creates a heat map highlighting

important regions in the input image, so that we can describe which parts of an input

image led the model to its final decision. Deconvolutional Network (Deconvnet) is adopted

to generate the reconstructed image and display what information is being preserved in

the deep features. A round trip task is employed to illustrate the effects, where the robotic

swarm needs to visit two locations alternatively as many times as possible.

Simulation results show that the proposed method is able to interpret the policies

learned by DQN in a round trip task. This is very valuable for increasing our under-

standing of Deep Reinforcement Learning (DRL). However, a problem in explainable

reinforcement learning is the lack of an absolute standard. Unlike the classification task,

it is difficult to say whether an action is correct or wrong in DRL. This might be an

important direction for explainable reinforcement learning in the future.

5.2 Experimental Settings

In this study, 3D physics engine Unity is used to create simulation environments. And

open source framework for neural networks – Chainer is used to create the CNN. Unity’s

script is written in C# while Chainer’s script is written in Python. Table 5.1 summarize

the software environment of this computer simulation.

Content Software Computer Languages

Operating system Ubuntu 18.04.2 LTS

Physics engine Unity3D 2017.3.0b1 C#

Open source library Chainer 5.3.0 Python3.7.3

Computing platform CUDA 9.0 C++

Table 5.1: Software environment of the computer simulation

The entire experiment was done on a desktop workstation. Table 5.2 summarize the

hardware specifications of this desktop workstation.

64

Content Specifications

Memory 31.4 GiB

Processor Intel core i7-6700k @ 4.00GHz × 8

Graphics Processor GeForce GTX 1080

Table 5.2: Hardware specifications of the desktop workstation

Figure 5.1: Top view of the environment

5.2.1 Environment

The experimental environment is shown in Fig. 5.1. The field is a rectangular area of 40m

× 30m surrounded by a 6m high wall. Two landmarks (10m in radius, 6m in height) with

different colors are placed on the left and right sides of the field, which show the direction

of the destination of the robot. Two orange obstacles are located in the outer area,

blocking two-thirds of the way. Obstacles limit the robot group to observe and choosing

its path, which makes the task more difficult. The inside view of the environment is shown

in Fig. 5.2.

65

Figure 5.2: Inside view of the environment

5.2.2 Agent

The robot in this experiment is illustrated in Fig. 5.3. The diameter of the robot is

1.0 m. The triangle at the center represents the robot’s face direction. Each robot is

equipped with eight IR sensors, one LED, one camera, and two motors. Eight IR sensors

are positioned in various directions to detect the distance between the robot and other

objects within 1.0m and return the distance. The LED is mounted on the top of the body,

and the coloring pattern can be changed. When the target is yellow, the robot’s LED will

emit blue light. Similarly, when the target is blue, LED will turn to yellow light. The

agent is also equipped with an electric compass.

The camera produces an RGB image of 128 × 128 pixels whose angle of view is

horizontal 90 and vertical 90. Fig. 5.4 displays an example of an image obtained by the

camera. The movement is performed by a differential driving system with two sets of

motors and wheels. The maximum movement speed is set to 1.0. The output is selected

from the six target velocities shown in the following equation.

(vleft, vright) = ((0, 0), (1, 1), (0, 1), (1, 0)

= (0, 0.5), (0.5, 0))
(5.1)

where controls motors to achieve the target velocity, vright is the target velocity of the

right wheels, and vleft is the target velocity of the right wheels. The agent is also equipped

with an electric compass.

66

Figure 5.3: Top view of the agent.

Figure 5.4: An example of the images obtained by the camera.

67

Table 5.3: Reward settings

rd rl rf rp

5.0 1.0 5.0 - 1.0

5.2.3 Round-Trip Task

In the beginning, 36 robots are located in the center of the field, and the initial destination

of each robot is set randomly. In order to train the agents to have the ability to recognize

landmarks and obstacles, they are set as yellow, blue, and orange respectively. Once a

robot arrives at its current destination, i.e., gets into the corresponding semicircle area,

the destination of the robot is automatically set to another one. The goal of the robotic

swarm is to travel between two destinations as much as possible. The quality of the round-

trip task will be evaluated by the number of times each robot reaches the landmarks and

the number of collisions.

5.2.4 Reward Settings

The DQN approximates the value function by combing the RL with a DNN. The value

function plays a crucial role in RL, as it determines the expected future rewards for an

agent in a given state. However, if the optimal value function is very complex, it may

be challenging to learn an accurate low-dimensional representation of it using traditional

RL algorithms. This is because the complexity of the value function can make it difficult

to accurately estimate and represent using a small number of parameters or a simple

function approximation method. In this case, one important task in RL is how to simplify

a seemingly complicated task into a more simple task. Therefore, the reward system,

this value function is much easier to learn. To make appropriate behavior emerge we

customized the system like this.

The reward given to the robots at each time step is composed of four parts: (1)

destination (rd); a robot receives the reward rd when arrives at its current destination.

(2) landmark (rl); a robot gets the reward rl if its camera observes more pixels of its

current landmark than the last time step. (3) fellow robot (rf); a robot gets the reward

rf if its camera observes more pixels of the LED of fellow robots (with the same current

destination) than the last time step. (4) penalty for collision (rp); a robot gets a penalty

<0.5 m) to other objects. Specific settings are as shown in Table.

First rewards system encourages robots to focus on observing the corresponding land-

mark directly.

Second rewards system encourage robots to looking for fellow robots (with the same

68

Table 5.4: Reward settings

rd rl rf rp

1.0 5.0 5.0 - 1.0

Table 5.5: Reward settings

rd rl rf rp

5.0 1.0 5.0 - 1.0

current destination).

Final rewards system relate to IR sensors values. Encouraging robots to reduced the

collisions the most.

5.2.5 Hyperparameters Settings

In this section, we will show the hyperparameters settings.

• Episode = 100

• Time step ≤ 3000

• Discounted future reward (γ) = 0.95

• Experience replay buffer size = 3000

• Initial exploration time = 3000

• Batch size = 32

• ε-greedy degradation

The ε-greedy strategy (i.e., at each time step, with probability ε select an action

randomly, otherwise, select the action with the highest Q-value) is applied to pro-

duce the final control policy, in which ε = 1.0 for episode 0, ε = 1.0− t∆310−5 for

episodes 1 to 8, and ε = 0.1 after episode 9, where t is the number of cumulative

timesteps.

69

5.3 Experiment 1: Visualizing Training Process by

Deconvolutional Network

In this section, a novel approach of visualizing the DQN’s decision-making process is

presented employing a deconvolutional network (Deconvnet). Computer simulations of

the round-trip task are employed to demonstrate the proposed approach. The simulation

experiments are performed 5 times.

5.3.1 Network Architecture

Figure 5.5: Architecture of the deep neural network.

Fig. 5.5 shows the network architecture of the proposed method. Similar to the traditional

DQN architecture, the proposed network contains a series of convolutional layers and fully-

connected layers. Each convolutional layer has 32 filters of which receptive field size is 4×4

and the stride is set to 2. The input to the convolutional layer is raw RGB pixels from the

camera of the past two time steps (128×128×3×2). There are three hidden layers, with

63, 30, and 14 units respectively. After the last convolutional layer, we add a series of

deconvolutional layers to synthesize a reconstructed image with the same size as the input.

The output of the last convolutional layer is taken along with the distance information

from IR sensors and destination information as inputs by the first fully-connected layer

70

Table 5.6: Reward settings

rd rl rf rp

5.0 1.0 5.0 - 1.0

(128 neurons). The second full-connected layer (6 neurons) holds the estimated Q-values

corresponding to the six motor patterns. We choose the first reward system mentioned in

the last section.

5.3.2 Loss Function

We define different loss components that can be used to train the network.

Bellman Error (Lbellman): The usual value function estimation error.

Lbellman(θ) = (r + γmaxa′Q(s′, a′; θ)−Q(s, a; θ)2 (5.2)

Reconstruct Error (Lreconstructed) : Reconstruct Error is the mean squared error be-

tween reconstructed image s∗t and original input st.

Lreconstructed(θ) = 1
2
||s∗t − st||22 (5.3)

Finally, the model is trained to minimize the sum of two weighted linear losses. Hy-

perparameter λ is introduced for weighting different loss components.

Lfinal(θ) = λLbellman(θ) + (1− λ)Lreconstruct(θ) (5.4)

5.3.3 Results

In order to examine the interpretability under different loss component weights, three

settings are performed in the loss function we mentioned in the last section. Five trials

are performed for each setting. To evaluate the performance of different λ settings, which

λ = 1.0, 0.5, 0.1 respectively, we recorded how many times the robots have arrived at

their destinations. Fig. 5.6 shows the trajectories of arrivals during the learning process

in experiments.

In general, we found λ = 1.0 (which has no interpretability) can work well on round-

trip tasks, where the robots arrived at their destinations 74 times at maximum (averaged

by 5 trials). Decreasing λ to 0.5 and 0.1 can get a better reconstruction image visually.

The best performance was obtained in the experiment λ = 0.5, in which robots reached

71

Figure 5.6: Trajectories of arrivals, where each data point is the average of 5 trials (with

standard deviation).

the maximum of 81 arrivals. However, decreasing λ to 0.1 results in slower convergence

and a slight loss in performance, where the maximum arrivals were 69 (drop by 15%).

By considering the converge rate, swarm performance, and reconstructed image qual-

ity, the setting λ = 0.5 seems can keep the balance between the bellman loss and recon-

struct loss. Examples for λ = 1.0 are shown in Fig. 5.7 and Fig. 5.8. Examples for λ =

0.5 are shown in Fig. 5.9 and Fig. 5.10. For λ = 1.0, the reconstructed image contains

only some textures that are hard to interpret. For λ = 0.5, with the training process,

the interpretability of reconstructed images has improved. As the reconstructed images

change, we can observe the learning process of CNN. Fig. 4.10(a) shows the input image

in episode 14. Fig. 4.10(b) shows the reconstructed image in episode 14. Different regions

in the input image are segmented simply, reconstructed image contains color information,

which is an improvement over the result of λ = 1.0. It can be observed from Fig. 4.11(b),

the edges of the landmarks and fellow robot LEDs are preserved by the trained model in

deep features.

72

(a) The input image. (b) The reconstructed image.

Figure 5.7: Experiments using λ = 1.0 in episode 9. The experiment consists of 100

episodes.

(a) The input image. (b) The reconstructed image.

Figure 5.8: Experiments using λ = 1.0 in episode 88. The experiment consists of 100

episodes.

73

(a) The input image. (b) The reconstructed image.

Figure 5.9: Experiments using λ = 0.5 in episode 14. The experiment consists of 100

episodes.

(a) The input image. (b) The reconstructed image.

Figure 5.10: Experiments using λ = 0.5 in episode 66. The experiment consists of 100

episodes.

74

5.4 Experiment 2: Visual Policy Rationalizations Us-

ing Grad-CAM for Different Reward Settings

The value function or strategy of an agent is estimated by DRL approaches using neural

networks. Therefore, it is necessary to reason why specific measures are taken. However,

there is no simple connection between the weights in a neural network and the function

it is trying to approximate. It is not easy to inspect the weights and draw intuitive

conclusions about the network.

Knowing why a decision is made might help improve the understanding of the agent.

One such explainability method that calculates class-based discriminative features is a

Gradient-weighted Class Activation Map (Grad-CAM). It generates visual explanations

for CNN-based classifiers and can also be used for DRL methods. In contrast to the Pre-

diction Difference Analysis method which can also be applied in a wide variety of CNNs,

the Grad-CAM method is computationally more tractable and feasible for a significant

amount of inputs. This section will explain how this visual rationalization model can be

adapted to our study. This section will also provide which reward setting works best and

analyze the behavior pattern of a robotic swarm.

5.4.1 Experimental Settings

In the first experiment, the proposed method (i.e, combining deconvolutional network

with traditional DQN) was demonstrated to greatly improve the Interpretability without

losing swarm performance. Then, in this experiment, we still choose the same network

structure. Hyperparameter λ is set as 0.5.

In order to present the performance of swarm under different reward settings, three

experiments are performed. The numerical settings are shown in Table 5.7. The robots

are rewarded more for observing the landmark of their current destination and observing

other fellow robots (with the same destination) in experiment A (using reward setting A)

and experiment B (using reward setting B), respectively. In experiment C (using reward

setting C), the robots receive more penalty when they are too close to other objects.

Table 5.7: Reward settings

Reward setting rd rl rf rp

A 5.0 1.0 5.0 - 1.0

B 1.0 5.0 5.0 - 1.0

C 1.0 1.0 5.0 - 5.0

75

5.4.2 Grad-CAM Procedure for DRL

Grad-CAM is adopted as our visualization technique in this study, since it is a generic

and applicable method for any convolutional neural network (CNN)-based architecture

without requiring retraining. Grad-CAM combines gradient information with Class Acti-

vation Maps (CAM) to visualize the importance of each input feature map. The following

several steps are needed. Firstly, a well-trained DRL model on the round-trip task is pre-

pared, and the neural activations of the last hidden layer are recorded. The Grad-CAM

technique computes the gradient of the output Yc with respect to the feature map Ak of

the last hidden layer. Then we calculated a global average pooling to obtain weights αkc .

αkc = 1
Z

∑
i

∑
j

∂yc

∂Akij (5.5)

where Z is the size of the feature map and k is the number of the feature map. αkc
represents the importance of the activation layer k for predicted action c. The output

heatmap LcGrad−CAM is the weighted combination of feature maps with ReLU.

LcGrad−CAM = ReLU(
∑
k

αkcA
k) (5.6)

Figure 5.11: Architecture for applying Grad-CAM to DQN.

The generated activation map can be extrapolated to the size of the input state. The

outcome is a high-quality heat map that shows the areas that are essential to the agent to

conduct a particular action, layered on top of the input state. The heat map highlights the

areas of the input that have the highest impact on the agent’s decision-making process,

76

allowing for a better understanding of the agent’s behavior. By visualizing the regions of

the input that the agent focuses on, we can gain insights into the agent’s decision-making

process and improve its performance. A visual representation of this process is depicted

in Fig. 5.11.

5.4.3 Results

We prepared well-trained models with three different reward settings and tested them

for 50 episodes each. To evaluate the performance of the developed control policies, we

examine how many times have the robots arrived at their destinations and the number of

collisions.

Fig. 5.12 shows the arrival and collision of all three experiments during the test.

As can be observed in Fig. 5.12(a), Experiment A encourages the robots to focus on

observing the landmark directly led to the best performance. Experiment C applying

too much collision punishment resulted in lower performance. Experiment B encourages

robots more for looking for fellow robots leading to the lowest performance. Fig. 5.12(b)

shows the number of collisions. As can be seen, Experiment B led to a significant increase

in the number of collisions during the learning process. The collisions in Experiment

A stabilized at low levels. The strong punishment in experiment C indeed reduced the

collisions the most.

(a) Number of arrivals. (b) Trajectories of collisions

Figure 5.12: Tests using different reward settings. The test consists of 50 episodes.

Fig. 5.13 shows the Grad-CAM results by reward setting A. The results display

information that was processed by the final hidden layer while taking into account input

states and chosen action. Since the results highlight the important region, we can see that

the part of the convolutional layers concerned is the boundary between objects, especially

77

between the landmarks and the sky. Therefore, we are able to assume these parts led the

model to make its final decision.

(a) (b)

(c)

Figure 5.13: Grad-CAM results for reward setting A. The Grad-CAM model outputs a

class activation map with colors ranging form red to blue. Red/orange indicate a high

activation, yellow/green indicate a medium activation and blue indicates a low activation.

Fig. 5.14 shows the Grad-CAM results by reward setting B. It can be clearly observed

from the heat map, the fellow robot LEDs are highlighted. If no fellow robot is observed,

Grad-CAM will highlight the horizon. In this case, we can assume that the model will

78

pay more attention to fellow robots’ LEDs.

(a) (b)

(c)

Figure 5.14: Grad-CAM results for reward setting B. The Grad-CAM model outputs a

class activation map with colors ranging form red to blue. Red/orange indicate a high

activation, yellow/green indicate a medium activation and blue indicates a low activation.

Fig. 5.15 shows the Grad-CAM results by reward setting C. We can see that the lower

part of the input image is highlighted. So that we can assume that if an object appears

in the lower part of the input image, it means that the robot is too close to the object.

In order to avoid collisions as much as possible, the model will pay more attention to

79

this area. It is also worth mentioning that we used to think that obstacle avoidance is

performed by the IR sensors. Based on these Grad-CAM results, we found that obstacle

avoidance can also be accomplished by the image input at the same time.

(a) (b)

(c)

Figure 5.15: Grad-CAM results for reward setting C. The Grad-CAM model outputs a

class activation map with colors ranging form red to blue. Red/orange indicate a high

activation, yellow/green indicate a medium activation and blue indicates a low activation.

Considering the input to the convolutional layer is raw RGB pixels from the camera of

the past two time steps, we can assume that the trained model is observing the movement

of the found object.

80

Simulation snapshots of the best controller developed by different reward settings are

shown in Fig. 5.16, Fig. 5.17 and Fig. 5.18. As it can be clearly observed, the developed

control policies for the robotic swarm exhibit different behaviors in the three experiments.

In experiment A, the swarm forms a chain-like pattern, in which most robots follow fellow

robots in front of them and move in a clockwise circle toward their destinations. The

robots in experiment B aggregate and travel between two destinations as a whole. In

experiment C, the swarm has the most sparse spatial distribution and each robot acts

much more independently to avoid colliding with each other.

Comparing heat maps and simulation snapshots, although they have different aspects,

(i.e. simulation snapshots focus on the behavior pattern of the swarm, Grad-CAM focuses

on which regions motivate robots to take the selected action from the robot’s perspective)

they all reflect the same important information. In summary, Grad-CAM can be used to

rationalize the decisions made by the DQN.

81

Figure 5.16: Simulation snapshots of the best controller developed by reward setting A.

82

Figure 5.17: Simulation snapshots of the best controller developed by reward setting B.

83

Figure 5.18: Simulation snapshots of the best controller developed by reward setting C.

84

5.5 Experiment 3: Perturbation-based Methods

A typical question in the field of computer vision is whether the model accurately locates

the object in the image or only makes decisions based on the surrounding context. The

perturbation-based method attempts to answer this question by quantifying how modifi-

cations to the input affect the model’s output. In summary, perturbation-based methods

are to measure how a model’s output changes when a certain region of the input alters.

Inspired by this question, in this experiment, we slide an occluding gray rectangle

across the input image and evaluate the change in the swarm performance, which results

in the importance of each occluded region. By analyzing the changes, we can gain insights

into which regions of the input are crucial for the model’s decision-making process. It can

also be used to identify which features the model is focusing on when making predictions

and to understand the underlying mechanisms of the model’s decision-making process.

5.5.1 Experimental Settings

Same as the previous experiments, we adopted the network structure combining tradi-

tional DQN with Deconvnet.

Figure 5.19: Architecture of the deep neural network.

85

Table 5.8: Reward settings

rd rl rf rp

5.0 1.0 5.0 - 1.0

Figure 5.20: Images used for perturbation experiments.

The first reward system mentioned in last section is selected, which encourages robots

to focus on observing the corresponding landmark directly. The numerical settings are

shown in Table 5.8.

We slide a grey square on the input image to occlude the middle part, upper left part,

upper right part, lower left part, and lower right part of the image, respectively. Gray

square is 64 × 64 pixels and can block 25% of the input image (input image is 128 × 128

pixels). The specific locations are shown in Fig. 5.20.

5.5.2 Results

In order to present the impact of perturbation in different locations, five experiments are

performed. We first prepared a well-trained model in the round-trip task. Thirty episodes

are tested for each setting. To evaluate the performance of different occlude positions,

86

Figure 5.21: Measure of importance for different occlude positions. The lower arrivals

indicates that the rigion occluded by the grey square is more important.

we recorded how many times robots arrived at their destinations. Fig. 5.21 shows the

number of arrivals. In general, we find that the best performance was obtained without

occlusion, where the robot can reach its destination up to 117 times with a median of

97.5 (excluding 2 abnormal values). When the upper right part, lower right part, and

lower left part are blocked, the impact is similar. The robot can reach the destination

up to 80 times, 97 times, and 77 times respectively, the median are 59, 76.5, and 63.5.

However, when the upper left part and center part are blocked, swarm performance will

be greatly decreased. The robot only can reach the destination up to 41 and 34 times,

with a median of 32 and 26(around 70% decrease).

Table 5.9 shows the comparison of the swarm performance when gray squares occlude

at different locations.

The lower arrivals indicate that the area occluded by the grey square is more important.

However, in our experiments, the environment is dynamic. Why does occluding different

regions of the input image lead to different results? We observed that during the process

of training, in order to avoid collisions and higher efficiency, robots gradually move in a

clockwise circle or counterclockwise circle.

87

Table 5.9: Comparison of the swarm performance

Occlusion location None Upper left Upper right Lower left Lower right Center

Max 117.0 41.0 80.0 77.0 97.0 34.0

Min 79.0 23.0 46.0 48.0 46.0 18.0

Median 97.5 32.0 59.0 63.5 76.5 26

Standard deviation 12.56 5.09 7.30 9.35 13.13 3.65

Fig.5.22 shows the snapshot of the swarm behavior of the selected model. Fig. 5.23

shows the images acquired by the robot camera during the test. We observed that in

the selected model, most robots follow fellow robots in front of them and move in a

counterclockwise circle toward their destinations. Therefore, the destination will always

appear on the robot’s front left side. It can be clearly seen from Fig. 5.23, landmarks

appear in the upper left corner of the input image. Accordingly, we infer that for the

selected model, the upper left part and the center part are important regions.

Figure 5.22: Snapshot of the swarm behavior of the selected model.

88

(a)

(b)

(c)

Figure 5.23: Images acquired by the robot camera during the test.

89

5.6 Conclusion

In this chapter, an end-to-end control strategy for SRS using a DQN algorithm in a

round-trip task was successfully developed. The effectiveness of the proposed method was

examined by testing control policies under various experimental settings. The results show

that the proposed method is capable of developing control policies using high-dimensional

camera raw inputs, and that these policies can be successful under proper reward design.

Moreover, an explainable reinforcement learning approach is also proposed in this

chapter. Three experiments are conducted to visualize the policies learned by deep Q-

network. The first experiment proposes a network structure with several deconvolutional

layers to view the neural network’s feature map during various training stages. The second

experiment employs a saliency map method Gradient-weighted Class Activation Mapping

to determine which state variables the robot attends to during strategy execution. Lastly,

the third experiment utilizes a perturbation-based visualization method to evaluate the

fault tolerance of the controller. Simulation results show that the proposed method is able

to interpret the policies learned by DQN. It is very valuable for increasing understanding

of DRL.

90

Chapter 6

Conclusion

This thesis focuses on optimizing controllers of SRS with DRL. In recent years, DRL has

demonstrated great potential in designing controllers to various static environment tasks,

such as playing video games. However, it is difficult for traditional DRL to learn effective

policies in dynamic environments due to the lack of complete observability and the non-

stationarity of the environment. SRS is a field that involves the coordination of multiple

robots working in a decentralized manner. In SRSs, each robot only observes a partial

view of the environment and other robots are treated as part of the environment. This

characteristic results in a highly dynamic environment that poses significant challenges for

DRL algorithms. To address this challenge, one of the efficient ways is to integrate with

other algorithms, such as curriculum learning, to improve the performance of control

algorithms. On the other perspective, enhancing the understanding of DRL through

explainable algorithms is also critical. By understanding decision-making processes and

policy characteristics, potential issues will be discovered and improved. In this thesis,

three contributions are presented to the field of SRS and DRL.

Firstly, this thesis proposed a novel automatic curriculum learning method called Self-

Teaching Automatic Curriculum Learning (STACL). When faced with complex tasks,

DRL is insufficient for directly training end-to-end controllers in a dynamic environment.

Chapter 3 showed how the proposed method is applied to solving this issue. In order

to illustrate the effectiveness of STACL, this study uses a collective wall-jumping task,

in which the robots have to jump over the high wall collectively and reach the goal as

quickly as possible. The proposed algorithm integrates robot training with curriculum

scheduling in one neural network. The reward function can calculate the learning rate for

different curricula, then select the next subtask to be trained automatically for the next

episode. The proposed method can ensure that the neural network remains in an optimal

state for learning. The proposed approach is compared with the manual CL, random

CL, and a conventional RL algorithm. Simulation resluts demonstrate that the proposed

method has the quickest convergence speed since it can automatically schedule lessons

91

and is unaffected by manual settings. Additionally, we also performed experiments to

examine the flexibility of the proposed approach.

Secondly, this thesis presented how DRL is utilized to address a decision-making prob-

lem in a multi-autonomous vehicle task. In this task, multi-autonomous vehicles are

formulized as a SRS controlled by DRL algorithm. Environmental vehicles, are seen as

part of the environment. The positions and actions of environmental vehicles are unpre-

dictable, and their movements may affect the decisions of autonomous vehicles, which

makes the environment more dynamic and dangerous. Therefore, it is necessary to equip

autonomous vehicles with a security assurance mechanism. In Chapter 4, we utilize time-

to-collision (TTC) as the feature representation and propose a TTC-based safety check

system. In this chapter, a ramp merging task is used to illustrate the effect. The action

output by the DRL controller would be replaced with a safer action chosen by the safety

check system when an agent detects a potential collision. Simulation results show that

the proposed method can effectively improve the arrival rate and reduce the collision rate,

even in the case of dense traffic situations. Furthermore, we also examine the performance

of the safety check system with different time thresholds.

Thirdly, this thesis proposed an explainable reinforcement learning approach. The

lack of interpretability problem limits the understanding and optimization of the model’s

decision-making in dynamic environments. Chapter 5 utilizes several visualization ap-

proaches to improve the understanding of the control strategy. In this chapter, we applied

a deep Q-learning algorithm to develop controllers for a SRS that take raw camera im-

ages as input. This chapter is structured around three experiments. The first experiment

proposes a network structure with several deconvolutional layers to view the neural net-

work’s feature map during various training stages. At each stage of the learning process,

this approach promotes a more comprehensive understanding of the underlying control

strategy. The second experiment employs a saliency map method Grad-CAM to deter-

mine which state variables robots attend to view. Lastly, the third experiment utilizes a

perturbation-based visualization method to evaluate the fault tolerance of the controller.

Simulation results show that the proposed approach can interpret the control policies.

Overall, the proposed methods can optimizing controllers of SRS with DRL, provide

promising solutions for addressing complex tasks in dynamic environments that traditional

DRL approaches struggle with.

6.1 Future Work

On the basis of this thesis, one future research direction is investigate the application of

SRS in real-world scenarios. Although this thesis explores optimizing controllers of SRS

with DRL in dynamic environments, it is still far from real-world applications. SRS has

92

great potential to solve a wide range of real-world problems, such as search, rescue and

environmental monitoring. However, the adoption of SRS for these problems has been

limited due to several challenges, including the reality gap. Therefore, in the future, it is

crucial to improve the performance of SRS in more complex and realistic environments.

One way to achieve this is through the use of data augmentation [96]. Data aug-

mentation is a technique used in machine learning to increase the diversity and quantity

of available training data by applying various transformations and manipulations to the

existing data. It can be used in SRS to process existing data, increasing the diversity

and quantity of the data samples, and improving the model’s generalization ability. By

applying operations such as rotation, translation, scaling, and noise addition to robot sen-

sor data, different environments can be simulated, thereby providing robots with stronger

adaptability and better performance.

Another effective approach is through the use of joint training [97]. Joint training, as

a multi-task learning technique, can be employed in SRS field. Joint training refers to the

joint training of multiple models so that they can jointly handle more complex tasks or

environments. By integrating data from different sources, such as sensors and images, joint

training can enhance the perception abilities of the robots, making them more adaptable

to diverse surroundings. Additionally, the curriculum learning method STACL proposed

in this thesis may be combined with joint training. For instance, STACL can be used

to automatically introduce various collective tasks. Joint training can enable robots to

perform tasks in multiple different environments simultaneously, which can imporve their

generalization performance.

In conclusion, these approaches have the potential to bridge the reality gap and make

it possible to apply SRS to real-world problems.

93

References

[1] Eric Bonabeau, Directeur de Recherches Du Fnrs Marco, Marco Dorigo, Guy

Théraulaz, Guy Theraulaz, et al. Swarm intelligence: from natural to artificial sys-

tems. Number 1. Oxford university press, 1999.

[2] Erol Şahin. Swarm robotics: from sources of inspiration to domains of application.

In Swarm Robotics, volume 3342 of Lecture Notes in Computer Science, pages 10–20.

Springer, 2005.

[3] James Kennedy. Swarm intelligence. In Handbook of nature-inspired and innovative

computing, pages 187–219. Springer, 2006.

[4] Vito Trianni, Stefano Nolfi, and Marco Dorigo. Evolution, self-organization and

swarm robotics. In Swarm Intelligence, pages 163–191. Springer, 2008.

[5] Marco Dorigo, Mauro Birattari, and Manuele Brambilla. Swarm robotics. Scholar-

pedia, 9(1):1463, 2014.

[6] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm

robotics: A review from the swarm engineering perspective. Swarm Intelligence,

7(1):1–41, 2013.

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-

inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[8] Heiko Hamann, Yara Khaluf, Jean Botev, Mohammad Divband Soorati, Eliseo Fer-

rante, Oliver Kosak, Jean-Marc Montanier, Sanaz Mostaghim, Richard Redpath, Jon

Timmis, Frank Veenstra, Mostafa Wahby, and Aleš Zamuda. Hybrid societies: Chal-

lenges and perspectives in the design of collective behavior in self-organizing systems.

Frontiers in Robotics and AI, 5:14, 2018.

[9] KN McGuire, Christophe De Wagter, Karl Tuyls, HJ Kappen, and Guido CHE

de Croon. Minimal navigation solution for a swarm of tiny flying robots to explore

an unknown environment. Science Robotics, 4(35):eaaw9710, 2019.

95

[10] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich. Swarm

robotic behaviors and current applications. Frontiers in Robotics and AI, 7:36, 2020.

[11] Luneque Del Rio Silva Junior and Nadia Nedjah. Efficient strategy for collective

navigation control in swarm robotics. In Swarm Intelligence Based Optimization,

volume 639 of Studies in Computational Intelligence, pages 817–826. Springer, 2016.

[12] Wenguo Liu and Alan FT Winfield. Modeling and optimization of adaptive for-

aging in swarm robotic systems. The International Journal of Robotics Research,

29(14):1743–1760, 2010.

[13] Gianpiero Francesca and Mauro Birattari. Automatic design of robot swarms:

achievements and challenges. Frontiers in Robotics and AI, 3:29, 2016.

[14] Stefano Nolfi, Dario Floreano, and Director Dario Floreano. Evolutionary robotics:

The biology, intelligence, and technology of self-organizing machines. MIT press,

2000.

[15] Maja J Matarić. Reinforcement learning in the multi-robot domain. In Robot colonies,

pages 73–83. Springer, 1997.

[16] Xin Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–

1447, 1999.

[17] Dario Floreano, Peter Dürr, and Claudio Mattiussi. Neuroevolution: from architec-

tures to learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[18] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[19] Martin Friedmann. Simulation of autonomous robot teams with adaptable levels of

abstraction. PhD thesis, Technische Universität, 2010.

[20] Adam T Hayes, Alcherio Martinoli, and Rodney M Goodman. Swarm robotic odor lo-

calization: Off-line optimization and validation with real robots. Robotica, 21(4):427–

441, 2003.

[21] Priya Bannur, Purvi Gujarathi, Karthik Jain, and Anand J Kulkarni. Application

of swarm robotic system in a dynamic environment using cohort intelligence. Soft

Computing Letters, 2:100006, 2020.

[22] Giovanni Beltrame, Ettore Merlo, Jacopo Panerati, and Carlo Pinciroli. Engineer-

ing safety in swarm robotics. In Proceedings of the 1st International Workshop on

Robotics Software Engineering, pages 36–39, 2018.

96

[23] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[24] Shae T Hart, Jake Kamenetsky, and Christopher A Kitts. Dynamic elliptical shaping

control for swarm robots. IEEE Access, 11:17454–17470, 2023.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[26] Maximilian Hüttenrauch, Sosic Adrian, Gerhard Neumann, et al. Deep reinforcement

learning for swarm systems. Journal of Machine Learning Research, 20(54):1–31,

2019.

[27] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation func-

tions. arXiv preprint arXiv:1710.05941, 2017.

[28] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a con-

volutional neural network. In 2017 International Conference on Engineering and

Technology (ICET), pages 1–6. Ieee, 2017.

[29] Christos H Papadimitriou and John N Tsitsiklis. The complexity of markov decision

processes. Mathematics of operations research, 12(3):441–450, 1987.

[30] Peter Marbach and John N Tsitsiklis. Simulation-based optimization of markov

reward processes. IEEE Transactions on Automatic Control, 46(2):191–209, 2001.

[31] Richard S Sutton. Reinforcement learning: Past, present and future. In Asia-Pacific

Conference on Simulated Evolution and Learning, pages 195–197. Springer, 1998.

[32] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple

model-based reinforcement learning. Neural computation, 14(6):1347–1369, 2002.

[33] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L

Littman. Pac model-free reinforcement learning. In Proceedings of the 23rd in-

ternational conference on Machine learning, pages 881–888, 2006.

[34] WQ Yang and TA York. New ac-based capacitance tomography system. IEE

Proceedings-Science, Measurement and Technology, 146(1):47–53, 1999.

[35] Maximilian Hüttenrauch, Adrian Sosic, and Gerhard Neumann. Guided deep rein-

forcement learning for swarm systems. CoRR, abs/1709.06011, 2017.

[36] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-

4):279–292, 1992.

97

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. nature,

518(7540):529–533, 2015.

[38] Ziyu Wang, Nando de Freitas, and Marc Lanctot. Dueling network architectures for

deep reinforcement learning. CoRR, abs/1511.06581, 2015.

[39] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-

ence replay. arXiv preprint arXiv:1511.05952, 2015.

[40] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In International conference on

machine learning, pages 387–395. PMLR, 2014.

[41] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle

Pineau, Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence

prediction. arXiv preprint arXiv:1607.07086, 2016.

[42] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural

information processing systems, pages 1008–1014, 2000.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[44] Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning:

A survey. CoRR, abs/2101.10382, 2021.

[45] Alessandro Lazaric and Marcello Restelli. Transfer from multiple mdps. In J. Shawe-

Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in

Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

[46] Anestis Fachantidis, Ioannis Partalas, Grigorios Tsoumakas, and Ioannis Vlahavas.

Transferring task models in reinforcement learning agents. Neurocomputing, 107:23–

32, 2013. Timely Neural Networks Applications in Engineering.

[47] Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task

mappings for temporal difference learning. Journal of Machine Learning Research,

8(1):2125–2167, 2007.

[48] Haitham Bou-Ammar, Eric Eaton, José-Marcio Luna, and Paul Ruvolo. Autonomous

cross-domain knowledge transfer in lifelong policy gradient reinforcement learning.

In International Joint Conference on Artificial Intelligence, 2015.

98

[49] Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent Charlin, and Rasool Fakoor.

Task-agnostic continual reinforcement learning: In praise of a simple baseline. arXiv

preprint arXiv:2205.14495, 2022.

[50] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source task

creation for curriculum learning. In Proceedings of the 2016 international conference

on autonomous agents & multiagent systems, pages 566–574, 2016.

[51] Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, and Changjie Fan. Value function

transfer for deep multi-agent reinforcement learning based on n-step returns. In

IJCAI, pages 457–463. Macao, 2019.

[52] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves

Oudeyer. Automatic curriculum learning for deep RL: A short survey. CoRR,

abs/2003.04664, 2020.

[53] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student

curriculum learning. CoRR, abs/1707.00183, 2017.

[54] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob

McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael

Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng,

Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s cube with a robot

hand. CoRR, abs/1910.07113, 2019.

[55] Bowen Baker, Ingmar Kanitscheider, Todor M. Markov, Yi Wu, Glenn Powell, Bob

McGrew, and Igor Mordatch. Emergent tool use from multi-agent autocurricula.

CoRR, abs/1909.07528, 2019.

[56] Rui Zhao and Volker Tresp. Curiosity-driven experience prioritization via density

estimation. CoRR, abs/1902.08039, 2019.

[57] Felix Grün, Christian Rupprecht, Nassir Navab, and Federico Tombari. A taxonomy

and library for visualizing learned features in convolutional neural networks. ArXiv,

abs/1606.07757, 2016.

[58] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional

networks: Visualising image classification models and saliency maps. arXiv preprint

arXiv:1312.6034, 2013.

[59] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

Learning deep features for discriminative localization. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 2921–2929, 2016.

99

[60] Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neu-

ral networks using natural pre-images. International Journal of Computer Vision,

120(3):233–255, 2016.

[61] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and

Stan Sclaroff. Top-down neural attention by excitation backprop. International

Journal of Computer Vision, 126(10):1084–1102, 2018.

[62] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-

tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep

networks via gradient-based localization. In Proceedings of the IEEE international

conference on computer vision, pages 618–626, 2017.

[63] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasub-

ramanian. Grad-cam++: Generalized gradient-based visual explanations for deep

convolutional networks. In 2018 IEEE Winter Conference on Applications of Com-

puter Vision (WACV), pages 839–847. IEEE, 2018.

[64] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualiz-

ing deep neural network decisions: Prediction difference analysis. arXiv preprint

arXiv:1702.04595, 2017.

[65] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep

networks. In Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pages 3319–3328. JMLR. org, 2017.

[66] Julius Adebayo, Justin Gilmer, Ian Goodfellow, and Been Kim. Local explanation

methods for deep neural networks lack sensitivity to parameter values. arXiv preprint

arXiv:1810.03307, 2018.

[67] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T.

Schütt, Sven Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency

methods, 2017.

[68] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer, 2014.

[69] Piotr Dabkowski and Yarin Gal. Real time image saliency for black box classifiers.

In Advances in Neural Information Processing Systems, pages 6967–6976, 2017.

[70] Ruth C Fong and Andrea Vedaldi. Interpretable explanations of black boxes by

meaningful perturbation. In Proceedings of the IEEE International Conference on

Computer Vision, pages 3429–3437, 2017.

100

[71] Jonathan L Long, Ning Zhang, and Trevor Darrell. Do convnets learn correspon-

dence? In Advances in neural information processing systems, pages 1601–1609,

2014.

[72] Alexey Dosovitskiy and Thomas Brox. Inverting convolutional networks with convo-

lutional networks. arXiv preprint arXiv:1506.02753, 4, 2015.

[73] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representa-

tions by inverting them. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 5188–5196, 2015.

[74] Tom Zahavy, Nir Ben-Zrihem, and Shie Mannor. Graying the black box: Under-

standing dqns. In International conference on machine learning, pages 1899–1908.

PMLR, 2016.

[75] Sam Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and

understanding atari agents. arXiv preprint arXiv:1711.00138, 2017.

[76] Diansheng Chen, Kewei Chen, Ziqiang Zhang, and Benguang Zhang. Mechanism of

locust air posture adjustment. Journal of Bionic Engineering, 12(3):418–431, 2015.

[77] Minkyun Noh, Seung-Won Kim, Sungmin An, Je-Sung Koh, and Kyu-Jin Cho. Flea-

inspired catapult mechanism for miniature jumping robots. IEEE transactions on

robotics, 28(5):1007–1018, 2012.

[78] John W Romanishin, Kyle Gilpin, and Daniela Rus. M-blocks: Momentum-driven,

magnetic modular robots. In 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 4288–4295. IEEE, 2013.

[79] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hier-

archical deep reinforcement learning: Integrating temporal abstraction and intrinsic

motivation. Advances in neural information processing systems, 29, 2016.

[80] Riccardo Scarinci and Benjamin Heydecker. Control concepts for facilitating motor-

way on-ramp merging using intelligent vehicles. Transport reviews, 34(6):775–797,

2014.

[81] Xinpeng Wang, Ding Zhao, Huei Peng, and David J LeBlanc. Analysis of unprotected

intersection left-turn conflicts based on naturalistic driving data. In 2017 IEEE

Intelligent Vehicles Symposium (IV), pages 218–223. IEEE, 2017.

[82] Xuedong Yan and Essam Radwan. Effect of restricted sight distances on driver be-

haviors during unprotected left-turn phase at signalized intersections. Transportation

research part F: traffic psychology and behaviour, 10(4):330–344, 2007.

101

[83] Saad Yousif, Zaid Nassrullah, and Sarah H Norgate. Narrow lanes and their effect

on drivers’ behaviour at motorway roadworks. Transportation research part F: traffic

psychology and behaviour, 47:86–100, 2017.

[84] Alexandra Kondyli, David K Hale, Mohamadamin Asgharzadeh, Bastian Schroeder,

Anxi Jia, and Joe Bared. Evaluating the operational effect of narrow lanes and shoul-

ders for the highway capacity manual. Transportation research record, 2673(10):558–

570, 2019.

[85] Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry S. Yershov, and Emilio Frazzoli.

A survey of motion planning and control techniques for self-driving urban vehicles.

CoRR, abs/1604.07446, 2016.

[86] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in

empirical observations and microscopic simulations. Physical Review E, 62(2):1805–

1824, aug 2000.

[87] Arne Kesting, Martin Treiber, and Dirk Helbing. General lane-changing model mobil

for car-following models. Transportation Research Record, 1999(1):86–94, 2007.

[88] Wenshuo Wang, Letian Wang, Chengyuan Zhang, Changliu Liu, and Lijun Sun.

Social interactions for autonomous driving: A review and perspective, 2022.

[89] Jonas Jansson. Collision Avoidance Theory: With application to automotive collision

mitigation. PhD thesis, Linköping University Electronic Press, 2005.

[90] Samyeul Noh and Woo-Yong Han. Collision avoidance in on-road environment for

autonomous driving. In 2014 14th International Conference on Control, Automation

and Systems (ICCAS 2014), pages 884–889. IEEE, 2014.

[91] Ali Baheri, Subramanya Nageshrao, H. Eric Tseng, Ilya Kolmanovsky, Anouck Gi-

rard, and Dimitar Filev. Deep reinforcement learning with enhanced safety for au-

tonomous highway driving. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages

1550–1555, 2020.

[92] Subramanya Nageshrao, H. Eric Tseng, and Dimitar Filev. Autonomous highway

driving using deep reinforcement learning. In 2019 IEEE International Conference

on Systems, Man and Cybernetics (SMC), pages 2326–2331, 2019.

[93] Richard Van Der Horst and Jeroen Hogema. Time-to-collision and collision avoidance

systems. 1993.

[94] John C Hayward. Near miss determination through use of a scale of danger. 1972.

102

[95] Edouard Leurent. An environment for autonomous driving decision-making, 2018.

[96] Guozheng Ma, Zhen Wang, Zhecheng Yuan, Xueqian Wang, Bo Yuan, and Dacheng

Tao. A comprehensive survey of data augmentation in visual reinforcement learning.

arXiv preprint arXiv:2210.04561, 2022.

[97] Jonathan J Tompson, Arjun Jain, Yann LeCun, and Christoph Bregler. Joint train-

ing of a convolutional network and a graphical model for human pose estimation.

Advances in neural information processing systems, 27, 2014.

Appendix A

Publications Presented in the Thesis

This appendix provides a list of publications that are presented in the thesis. This ap-

pendix only shows a list of work published in academic journals and international confer-

ences. The full list of publications is in Appendix B.

Chapter 3

• Xiaotong Nie, Yupeng Liang, Ziyao Han and Kazuhiro Ohkura, ”Generating collec-

tive wall-jumping behavior for a robotic swarm with self-teaching automatic cur-

riculum learning”, Artificial Life and Robotics, Vol. 28, No. 1, pp. 67–75 (2023)

Chapter 4

• Xiaotong Nie, Yupeng Liang, and Kazuhiro Ohkura, ”Autonomous highway driving

using reinforcement learning with safety check system based on time-to-collision”,

Artificial Life and Robotics, Vol. 28, No. 1, pp. 158—165 (2023)

• Xiaotong Nie, Yupeng Liang, and Kazuhiro Ohkura, ”Autonomous Highway Driv-

ing Using Reinforcement Learning with Safety Check System based on Time-to-

Collision”, Proceedings of the Joint Symposium of the 28th International Sympo-

sium on Artificial Life and Robotics, the 8th International Symposium on BioCom-

plexity, and the 6th International Symposium on Swarm Behavior and Bio-Inspired

Robotics, pp. 619–625 (2023)

105

Chapter 5

• Yufei Wei, Xiaotong Nie, Motoaki Hiraga, Kazuhiro Ohkura, and Zlatan Car, ”De-

veloping End-to-End Control Policies for Robotic Swarms Using Deep Q-Learning”,

Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.

23, No. 5, pp. 920–927 (2019)

• Xiaotong Nie, Motoaki Hiraga, and Kazuhiro Ohkura, ”Visualizing Deep Q-Learning

to Understanding Behavior of Swarm Robotic System”, Proceedings of the 23rd Asia

Pacific Symposium on Intelligent and Evolutionary Systems, pp. 118–129 (2019)

• Xiaotong Nie, Kepeng Zhang, and Kazuhiro Ohkura, ”Visual Policy Rationaliza-

tions Using Grad-CAM in a Robotic Swarm Environment”, 第64回システム制御

情報学会研究発表講演会講演論文集, GS21-5, pp.920–924 (2020)

106

Appendix B

List of Publications

This appendix provides a list of publications that are presented in the thesis. This ap-

pendix only shows a list of work published in academic journals and international confer-

ences. The full list of publications is in Appendix B.

Journal Publications

• Xiaotong Nie, Yupeng Liang, and Kazuhiro Ohkura, ”Autonomous highway driving

using reinforcement learning with safety check system based on time-to-collision”,

Artificial Life and Robotics, Vol. 28, No. 1, pp. 158—165 (2023)

• Xiaotong Nie, Yupeng Liang, Ziyao Han and Kazuhiro Ohkura, ”Generating collec-

tive wall-jumping behavior for a robotic swarm with self-teaching automatic cur-

riculum learning”, Artificial Life and Robotics, Vol. 28, No. 1, pp. 67–75 (2023)

• Yupeng Liang, Ziyao Han, Xiaotong Nie and Kazuhiro Ohkura , ”Improving gen-

erative adversarial network with multiple generators by evolutionary algorithms”,

Artificial Life and Robotics, Vol. 27, No. 4, pp. 761–769 (2022)

• Yufei Wei, Xiaotong Nie, Motoaki Hiraga, Kazuhiro Ohkura, and Zlatan Car, ”De-

veloping End-to-End Control Policies for Robotic Swarms Using Deep Q-Learning”,

Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.

23, No. 5, pp. 920–927 (2019)

International Conferences

• Xiaotong Nie, Yupeng Liang, and Kazuhiro Ohkura, ”Autonomous Highway Driv-

ing Using Reinforcement Learning with Safety Check System based on Time-to-

Collision”, Proceedings of the Joint Symposium of the 28th International Sympo-

107

sium on Artificial Life and Robotics, the 8th International Symposium on BioCom-

plexity, and the 6th International Symposium on Swarm Behavior and Bio-Inspired

Robotics, pp. 619–625 (2023)

• Xiaotong Nie, Motoaki Hiraga, and Kazuhiro Ohkura, ”Visualizing Deep Q-Learning

to Understanding Behavior of Swarm Robotic System”, Proceedings of the 23rd Asia

Pacific Symposium on Intelligent and Evolutionary Systems, pp. 118–129 (2019)

Domestic Conferences

• Xiaotong Nie, Kepeng Zhang, and Kazuhiro Ohkura, ”Visual Policy Rationaliza-

tions Using Grad-CAM in a Robotic Swarm Environment”, 第64回システム制御

情報学会研究発表講演会講演論文集, GS21-5, pp.920–924 (2020)

• Kepeng Zhang, Yupeng Liang, Xiaotong Nie, and Kazuhiro Ohkura, ”Source Local-

ization by a Swarm Robotics Systems in an Unknown Environment”, 第 64 回シス

テム制御情報学会研究発表講演会講演論文集, GS17-6, pp.793–795 (2020)

• Xiaotong Nie, Yufei Wei, Kazuhiro Ohkura, ”Evaluating Optimizers of Deep Rein-

forcement Learning on Swarm Robotic Systems”, 第 27 回計測自動制御学会中国

支部学術講演会論文集, 1E-5, pp. 63–64 (2018)

• Shunichi Kataoka, Xiaotong Nie, Yufei Wei, 大倉和博, ”深層強化学習を適用した

スワームロボティクスシステムによる協調搬送行動の生成”, 第62回システム

制御情報学会研究発表講演会講演論文集, 326-1, 7pages (2018)

• Xiaotong Nie, Shunichi Kataoka, and Kazuhiro Ohkura, ”Generating Chain Forma-

tion For A Robotic Swarm using Deep Reinforcement Learning”, 第27回インテリ

ジェント·システム·シンポジウム講演原稿集, pp.149–153 (2017)

108

Acknowledgements

During the preparation of the thesis, I received a lot of invaluable help from many

people. Their comments and advice contribute to the accomplishment of this work.

First and foremost, I would like to thank my supervisor, Prof. Kazuhiro Ohkura for his

patient supervison and constant support during my academic life at Hiroshima University.

Also, I would like to thank the Ph.D. thesis committee members, Prof. Nobutaka Wada,

Prof. Ryo Kikuuwe, and Prof. Yoshiyuki Matsumura, for revising the thesis and providing

insightful comments.

I would also like to thank my colleagues in Machine Intelligence and Systems A Lab-

oratory (formerly Manufacturing Systems A Laboratory) for much help and support.

This work was partially supported by the Initiative for Realizing Diversity in the

Research Environment (Specific Correspondence Type).

Finally, great thanks to my parents, my family, and my friends for their unconditional

love, understanding, and encouragement.

2023. 07

Xiaotong Nie

109

	Introduction
	Background and Motivation
	Thesis Objectives
	Structure of the Thesis

	Literature Review on Swarm Robotic System and Deep Reinforcement Learning
	Swarm Robotic System (SRS)
	Collective Bahivor of SRS
	Design Methods of SRS
	Challenges of SRS Control

	Deep Learning (DL)
	DL Techniques for SRS
	Deep Neural Network (DNN)
	Convolutional Neural Network (CNN)

	Deep Reinforcement Learning (DRL)
	Markov Decision Process (MDP)
	Exploring Model-free DRL for SRS
	Value-based Methods
	Policy Gradient-based Methods
	Actor-Critic Methods

	Advanced Techniques for Optimizing DRL
	Curriculum Learning for Reinforcement Learning
	Automatic Curriculum Learning for Reinforcement Learning
	Explainable Reinforcement Learning (XRL)

	Generating Collective Wall-Jumping Behavior for a Swarm Robotic System with Self-Teaching Automatic Curriculum Learning
	Introduction
	Related Work
	Research Methodology
	Curriculum Learning with Reinforcement Learning
	Self-Teaching Automatic Curriculum Learning

	Collective Wall-jumping Task
	Environment Settings
	Robot Settings
	Task Settings
	Network Structure and Reward Settings

	Results
	Conclusion

	Autonomous Highway Driving Using Reinforcement Learning with Safety Check System based on Time-to-Collision
	Introduction
	Research Methodology
	Time-To-Collision (TTC)
	PPO with Safety Check

	Experiment Settings
	Task Settings
	Neural Network Settings
	Reward Settings

	Results
	Simple Task
	Hard Task

	Conclusion

	Visualizing Deep Q-learning to Understand Behaviors of Swarm Robotic System
	Introduction
	Experimental Settings
	Environment
	Agent
	Round-Trip Task
	Reward Settings
	Hyperparameters Settings

	Experiment 1: Visualizing Training Process by Deconvolutional Network
	Network Architecture
	Loss Function
	Results

	Experiment 2: Visual Policy Rationalizations Using Grad-CAM for Different Reward Settings
	Experimental Settings
	Grad-CAM Procedure for DRL
	Results

	Experiment 3: Perturbation-based Methods
	Experimental Settings
	Results

	Conclusion

	Conclusion
	Future Work

	Reference
	Publications Presented in the Thesis
	List of Publications
	Acknowledgements

