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Chapter 1

Introduction

1.1 Background

Stereo multi-object tracking is a technique for simultaneously tracking and localiz-
ing multiple objects in stereo vision (i.e., stereo images acquired from multiple cameras
or sensors). It combines the concepts of multi-target tracking and spatial positioning,
and aims to achieve accurate tracking and position estimation of targets in a stereoscopic
environment. By fusing geometric and semantic information in stereo images, stereo
multi-object tracking can provide more accurate and robust object tracking and position
estimation results. At present, stereo multi-target tracking has been widely used in the
fields of robot navigation [1], automatic driving [2], path planning [3], behavior analy-
sis [4] and real-time monitoring [S]. It improves perception and understanding, providing
critical support for realizing intelligent, autonomous systems.

Stereo multi-target tracking is mainly divided into two steps, multi-target tracking
within a single camera and stereo correspondence across cameras. Multi-object tracking
is a key task in computer vision and robotics, which aims to continuously track the posi-
tion, shape and motion state of a specific object from video, image or sensor data. Then,
use the cross-camera data association algorithm to correspond to multiple targets tracked
in different cameras, and perform spatial positioning and pose estimation among multiple

targets according to the set relationship between cameras or sensors.
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Multiple object tracking is a challenging problem in the field of computer vision.
Currently, it faces numerous challenges such as occlusion, object loss, complex back-
grounds, real-time tracking, and obtaining high-definition images of the tracked objects.
Among these challenges, tracking over a large area with high definition contributes to
continuous observation and analysis, making it an urgent problem to be solved. There has
been extensive research dedicated to this area. Using higher-resolution cameras is a sim-
ple and feasible solution. However, high-definition camera equipment typically implies
higher cost investment. Another feasible solution is to use a dual-camera system com-
posed of a wide-angle camera and a long-focus PTZ camera. Traditional PTZ cameras
mostly use a pan-tilt platform, which is difficult to drive large-sized long-focus cameras to
switch between multiple viewpoints. Therefore, they are commonly used for single-object
tracking and high-definition photography.

Recently, an ultra-fast gaze control system using high-speed mirrors has been de-
veloped, which can switch between hundreds of viewpoints to observe multiple objects
within one second. In our laboratory, a dual-camera system based on a wide-angle camera
and an ultra-fast mirror camera has been developed, enabling high-definition photography
of multiple objects at a frame rate of dozens per second. However, in the current work,
due to the lack of real-time detection and visual feedback control in the ultra-fast mir-
ror camera system, the tracking may fail when objects move at a relatively fast speed.
Therefore, in the process of multi-object tracking based on an ultra-fast mirror camera,
real-time visual feedback control is an urgent problem that needs to be addressed.

Secondly, in multi-camera stereo correspondence, how to match the same object
across different cameras is also a challenging problem. Matching based on object appear-
ance information is a common approach. Traditional appearance-based matching methods
primarily rely on manually extracted features, such as color histograms, scale-invariant
feature transform (SIFT), and oriented FAST and rotated BRIEF (ORB), which have been

proven effective. With the development of convolutional neural networks, appearance
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Figure 1.1: Concept overview of this study.

matching methods based on deep learning have demonstrated higher performance. How-
ever, appearance-based matching methods are vulnerable to changes in viewing angle,
lighting, and pose. This problem becomes even more complicated especially for multi-
ple objects with similar appearance, such as human faces, farm animals, or workers in
the same clothing. At the same time, the movement of objects is unique and difficult to
completely replicate, which can be used for multi-target matching across cameras. Sen-
sors based on high-speed vision systems have unparalleled advantages, and we can obtain
highly synchronized motion information of multiple moving targets in a stereo camera

system in a short time.

1.2 Purpose of the research

As mentioned in the previous section, stereo multi-target tracking based on ultra-
fast active vision still faces two problems. Existing methods lack low-latency and robust
tracking algorithms in complex scenes or fast-moving targets. At the same time, there
is still a gap in the cross-camera multi-target stereo correspondence for ultra-high-speed

active vision.



4 CHAPTER 1. INTRODUCTION

As shown in Figure 1.1, our research goal is to achieve high-definition tracking
and depth information acquisition of multiple targets in a wide range. Therefore, we de-
compose the whole process into two goals, 1) develop a fast and accurate multi-object
tracking algorithm based on ultra-fast active vision, which can handle challenges such
as object occlusion and scale changes in complex scenes. 2) develop a fast stereo cor-
respondence algorithm based on ultra-high-speed active stereo vision, which can cope
with the challenges of target loss, occlusion and illumination changes in complex scenes.
Among them, in order to obtain more accurate depth information, a flexible calibration
algorithm is developed based on the ultra-fast galvanometer camera. This method is suit-
able for stereo active camera systems, which can accurately obtain the spatial positions of
multiple objects being tracked.

This research has the potential to advance the field of multi-object stereo tracking
and improve existing applications. For example, it helps improve object recognition and
tracking performance in autonomous driving systems, improving traffic safety and driving
experience. It also helps the robot to obtain more detailed and accurate map information

in autonomous navigation, improving mapping ability and navigation performance.

1.3 Outline of thesis

This thesis is organized as 7 Chapters, including this introduction.

Chapter 2 summarizes related work related to multi-object tracking, stereo corre-
spondence for multi-object tracking, and high-speed vision.

Chapter 3 explains in detail the concept of each component of the multi-object
tracking system based on ultra-fast active vision.

In the Chapter 4, based on the ultra-fast galvanometer camera, a multi-target fast
tracking system based on time-division multiplexing is developed. In order to verify the

effectiveness of our multi-target tracking, we set multiple moving or stationary targets
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such as cars, faces, footballs, etc. Experiments have proved that we can track up to 20
slower moving objects or several faster moving objects at the same time.

In the Chapter 5, a flexible calibration method for high-precision calibration of a
galvanometer-based reflective camera system is proposed. This method can be used for
the calibration of stereo active vision systems, using triangulation to obtain the spatial po-
sition of multiple objects. The effectiveness and accuracy of the method are evaluated by
the re-projection error of the control voltage and the spatial localization of the binocular
system. Experiments show that the error of the control voltage after calibration is less
than 0.2%. At an indoor distance of about 7 m, the Mean Squared Error (MSE) of spatial
visual localization is less than 0.3 cm.

In the Chapter 6, the concept of using highly synchronized motion information in-
stead of appearance information for stereo correspondence of multiple moving objects
was proposed. To validate our approach, we conducted stereo correspondence experi-
ments using markers attached to a metronome and natural hand movements to simulate
simple and complex motion scenes. Furthermore, we use the motion information in the
stereo vision system to carry out the correspondence of multiple objects. The experimen-
tal results demonstrate that our method achieved good performance in stereo correspon-
dence.

In Chapter 7, it summarized the contributions of this study and discussed future

work.



CHAPTER 1. INTRODUCTION



Chapter 2

Related works

2.1 Multiple object tracking

Multiple object tracking detects and tracks multiple targets in videos, such as pedes-
trians, vehicles, and animals. It is an important research direction in the field of computer
vision, and has been widely applied in intelligent surveillance and behavior recogni-
tion [6]. Research on multi-object tracking heavily relies on the study of object detection
methods.

Object detection is a computer vision task that involves detecting instances of se-
mantic objects of a certain class (such as a person, bicycle, or car) in digital images and
videos [7]. The earliest research in the field of object detection can be traced back to
the Eigenface method for face detection proposed by researchers at MIT [8]. Over the
past few decades, object detection has received great attention and achieved significant
progress. Object detection algorithms are roughly divided into two stages, namely, tra-
ditional object detection algorithms and the object detection algorithms based on deep
learning [9].

Traditional algorithms have been proven effective; however, with continuous im-
provements in computing power and dataset availability, object detection technologies
based on deep learning have gradually replaced the traditional manual feature extrac-

tion methods and become the main research direction. Thanks to continuous develop-
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ment, convolutional neural network (CNN)-based object detection methods have evolved
into a series of high-performance structural models such as AlexNet [10], VGG [11],
GooglLeNet [12], ResNet [13], ResNeXt [14], CSPNet [15], and EfficientNet [16]. These
network models have been widely employed as backbone architectures in various CNN-
based object detectors. According to the differences in the detection process, object de-
tection algorithms based on deep learning can be divided into two research directions,
One-Stage and Two-Stage [17]. Two-stage object detection algorithms transform the de-
tection problem into a classification problem for generated local region images based on
region proposals. Such algorithms generate region proposals in the first stage, then clas-
sify and regress the content in the region of interest in the second stage. There are many
efficient object detection algorithms that use a two-stage detection process, such as R-
CNN [18], SPP-Net [19], Fast R-CNN [20], Faster R-CNN [21], FPN [22], R-FCN [23],
and DetectoRS [24]. R-CNN was the earliest method to apply deep learning technology to
object detection, reaching an MAP of 58.5% on the VOC2007 data. Subsequently, SPP-
Net, Fast R-CNN, and Faster R-CNN sped up the running speed of the algorithm while
maintaining the detection accuracy. One-stage object detection algorithms, on the other
hand, are based on regression, which converts the object detection task into a regression
problem for the entire image [25]. Among the one-stage object detection algorithms, the
most famous are single shot multibox detector (SSD) [26], YOLO [27], RetinaNet [28],
CenterNet [29], and Transformer [30]-based detectors [31]. YOLO was the earliest one-
stage target detection algorithm applied to actual scenes, obtaining stable and high-speed
detection results [32]. The YOLO algorithm divides the input image into S XS grids, pre-
dicts B bounding boxes for each grid, and then predicts the objects in each grid separately.
The result of each prediction includes the location, size, confidence of the bounding box,
and the probability that the object in the bounding box belongs to each category. This
method of dividing the grid avoids a large number of repeated calculations, helping the

YOLO algorithm to achieve a faster detection speed. In follow-up studies, algorithms
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such as YOLOV2 [33], YOLOvV3 [34], YOLOv4 [35], YOLOVS5 [36], and YOLOV6 [37]
have been proposed. Owing to its high stability and detection speed, in this study we use
yolov4 as the Al detector.

Early classical object tracking methods, such as Meanshift [38], particle filter-
ing [39], KCF [40], and MOSSE [41], mainly focused on single-object tracking. With the
rapid development of CNNs, detection-based multi-object tracking methods have quickly
become the mainstream research direction.

Currently, there are three popular research directions in multi-object tracking: detection-
based MOT, detection and tracking-based joint MOT, and attention-based MOT. In detection-
based MOT algorithms, object detection is performed on each frame to obtain image
patches of all detected objects. A similarity matrix is then constructed based on the loU
and appearance between all objects across adjacent frames, and the best matching re-
sult is obtained using a Hungarian or greedy algorithm; representative algorithms include
SORT [42] and DeepSORT [43]. In detection and tracking-based joint MOT algorithms,
detection and tracking are integrated into a single process. Based on CNN detection, mul-
tiple targets are fed into the feature extraction network to extract features and directly out-
put the tracking results for the current frame. Representative algorithms include JDE [44],
MOTDT [45], Tracktor++ [46], and FFT [47]. The attention mechanism-based MOT is
inspired by the powerful processing ability of the Transformer model in natural language
processing. Representative algorithms include TransTrack [48] and TrackFormer [49].
TransTrack takes the feature map of the current frame as the key and the target feature
query from the previous frame and a set of learned target feature queries from the current

frame as the input query of the whole network.
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2.2 Stereo correspondence for multi-object tracking

Stereo correspondence of multiple moving objects with similar appearances in a
stereoscopic video is closely related to research on image similarity measurement and
trajectory similarity measurement.

The computation of image matching serves as the initial step in stereo correspon-
dence, relying primarily on the similarity of target pixel blocks surrounding the stereo
images. Over time, the measurement of similarity between image blocks has evolved
from region-based approaches to feature-based approaches, and finally to deep learning
techniques.

Region-based matching methods can be classified into two categories. The first
approach minimizes differences in pixel information by using methods such as cross-
correlation [50], mean square error (MSE) [51], and mutual information [52]. The second
approach transforms images from the time domain to the frequency domain and performs
similarity analysis in the transformed domain using techniques such as Fourier trans-
form [53], Walsh transform [54], and wavelet transform [55]. However, region-based im-
age matching methods require high-quality images because noise, lighting, and changes in
shape can greatly affect the quality of the match. Feature-based methods can significantly
reduce the impact of image quality on similarity and have been extensively researched to
date [56]. These features are often manually designed, such as SURF [57], ORB [58], and
LBP [59]. Feature-based methods require additional computational power to find match-
ing points with similar features between image blocks. The Structural Similarity Index
(SSIM) combines brightness, contrast, and structure to achieve matching results similar to
human visual perception and has been widely used for comparing image similarity [60].

Recently, convolutional neural networks (CNNs) have replicated the huge success
in image recognition and have become a research hotspot in image region matching.
Based on CNNs, image matching can be mainly divided into two research directions:

(1) using deep networks such as ResNet [13] and VGG [61] to extract image features and
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then using similarity metrics such as Euclidean distance and cosine distance to measure
the similarity of high-dimensional features; (2) using metric learning to directly output the
similarity of two image blocks. In Ref. [62], the ResNet model was used to extract perioc-
ular features from different spectral bands, and cosine similarity was used for image verifi-
cation, achieving high accuracy. In Ref. [63], the VGGNet was used to extract multi-scale
features from segmented patches and achieved detection of forged images. Compared to
manually extracted features, features extracted by CNNs are more effective in handling
noise and morphological changes. In Ref. [64], MatchNet was proposed, which uses CNN
for region feature extraction and then computes similarity through a three-layer fully con-
nected network. The DeepCompare method was proposed in Ref. [65], which improved
the performance of the Siamese network using the Center-Surround Two-Stream Net-
work and Spatial Pyramid Pooling (SPP) [66]. DeepCD based on the Triplet network was
proposed in Ref. [67]. This method describes image patches as complementary descrip-
tors and improves the performance in various applications. Currently, methods based on
deep learning are difficult to output calculation results in extreme time and are not suit-
able for high-speed vision systems. However, the matching performance they provide is
unmatched by traditional algorithms.

When objects are well tracked under good conditions of a single camera, their mo-
tion information is less affected by lighting, shape changes, and noise. Motion-based
matching has been widely used in cross-camera multi-object matching, such as in smart
traffic [68], user behavior analysis [69], and motion pose estimation [70].

There are various ways to represent motion information, such as trajectories, an-
gles, and velocities. Trajectories, as an easily obtainable form of motion information,
have been widely used in multi-object tracking. Trajectories can be classified into two
types: sequence-only trajectories and spatiotemporal trajectories, depending on whether
the temporal property is considered [71].

Different methods have been developed for measuring the similarity between dif-
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ferent target trajectories, which are mainly divided into three directions: distance-based,
feature-based, and deep learning-based trajectory similarity calculation methods. Distance-
based trajectory similarity calculation methods mainly measure the similarity between
trajectories by calculating the distance between trajectory points. Some classic methods
include Dynamic Time Warping (DTW) [72], Edit Distance on Real sequence (EDR) [73],
and Longest Common Subsequence (LCSS) [74]. For instance, LCSS is used to calcu-
late the similarity of the 3D GPS trajectories of the trucks in Ref. [75] to identify the
movement patterns of the trucks. In Ref. [76], a trajectory evaluation method based on
Dynamic Time Warping was proposed to evaluate the discrepancy between robot trajec-
tories and human motion. However, these methods have limitations in dealing with data
noise and missing values.

Feature-based trajectory similarity calculation methods extract features from tra-
jectories and then calculate the similarity between features to measure the similarity be-
tween trajectories. Some classic methods include Shape Context [77], Histogram of Ori-
ented Gradients (HOG) [78], and Global Alignment Kernel (GAK) [79]. For example,
a skeleton-based action recognition method is proposed in Ref. [80], which combines
trajectory images and visual features to simulate human actions. Based on the Fréchet
distance, a shape-based local spatial association metric is proposed in Ref. [81] for de-
tecting anomalous activities of moving ships. However, these methods are more complex
in feature extraction and computation, and require a larger amount of computation.

Deep learning-based trajectory similarity calculation methods use machine learning
to model and learn trajectory data, and then calculate the similarity between trajectories.
Some classic methods include neural network-based methods, decision tree-based meth-
ods [82], and support vector machine-based methods [83]. For instance, an RNN-based
Seq2Seq autoencoder model is proposed in Ref. [84], which improves the calculation of
similarity. In Ref. [85], an attention-based robust autoencoder model is proposed, which

learns low-dimensional representations of noisy ship trajectories. An unsupervised learn-
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ing method is proposed in Ref. [86], which can automatically extract low-dimensional
data features through convolutional autoencoders. The similarity between trajectories
can be obtained from the similarity between low-dimensional data, which ensures high-
quality trajectory clustering performance. However, these methods require a large amount
of training data and computation resources, but they offer higher accuracy and robustness

in trajectory similarity calculation.

2.3 High-speed Vision

High-speed vision is a computer vision technology that aims to realize real-time
image recognition and analysis through the use of fast and efficient image processing al-
gorithms at high frame rates of 1000 fps or more. It is an important direction in the field
of computer vision and is used in a variety of applications, such as intelligent transporta-
tion [87], security monitoring [88], and industrial automation [89].

High-speed vision has two properties: (1) the image displacement from frame to
frame is small, and (2) the time interval between frames is extremely short. In order to
realize vision-based high-speed feedback control, it is necessary to process massive im-
ages in a short time. Unfortunately, current image processing algorithms, such as noise
reduction, tracking, and recognition, are all based on traditional image data involving
dozens frames per second. An important idea in high-speed image processing is that it
reduces the amount of work required for small-scale shifts between high-speed frames.
Field programmable gate arrays (FPGAs) and graphics processing units (GPU), which
support massively parallel operations, are ideal for processing two-dimensional data such
as images. In [90], the authors presented a high-speed vision platform called H> vision.
This platform employs dedicated FPGA hardware to implement image processing algo-
rithms and enables simultaneous processing of a 256 X 256 pixel image at 10,000 fps.

The hardware implementation of image processing algorithms on an FPGA board pro-
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vides high performance and low latency, making it suitable for real-time applications that
require high-speed image processing. In [91], a super-high-speed vision platform (HSVP)
was introduced that was capable of processing 12-bit 1024 x 1024 grayscale images at a
speed of 12,500 frames per second using an FPGA platform. While the fast computing
speed of FPGA is ideal for high-speed image processing, its programming complexity
and limited memory capacity can pose significant challenges. Compared with FPGA,
GPU platforms can realize high-frame-rate image processing with lower programming
difficulty. A GPU-based real-time full-pixel optical flow analysis method was proposed
in [92].

In addition to high-speed image processing, high-speed vision feedback control
is very important. Gimbal-based camera systems are specifically designed for image
streams with dozens of frames per second. Due to the limited size and movement speed
of the camera, it is often difficult to track objects at high speeds while simultaneously
observing multiple objects. Recently, a high-speed galvanometer-based reflective PTZ
camera system was proposed in [93]. The PTZ camera system can acquire images from
multiple angles in an extremely short time and virtualize multiple cameras from a large
number of acquired image streams. In [94], a novel dual-camera system was proposed
which is capable of simultaneously capturing zoomed-in images using an ultrafast pan-
tilt camera and wide-view images using a separate camera. The proposed system provides
a unique capability for capturing both wide-field and detailed views of a scene simulta-
neously. To enable the tracking of specific objects in complex backgrounds, a hybrid
tracking method that combines convolutional neural networks (CNN) and traditional ob-
ject tracking techniques was proposed in [95]. This hybrid method achieves high-speed
tracking performance of up to 500 fps and has shown promising results in various appli-

cations, such as robotics and surveillance.



Chapter 3

Concept

3.1 Multi-object tracking based on ultra-fast active vi-

sion

We propose the concept of wide field of view registration and high-speed multi-
object active tracking by virtual cameras using a galvanometer-based reflective PTZ cam-
era, as shown in Figure 3.1. This high-speed reflective PTZ camera can change the view
thousands of times per second to scan the monitoring area. Objects detected during scan-
ning are registered as tracking targets, then the reflective PTZ camera system switches
perspectives between different objects at an ultrafast speed for tracking. By classifying
and combining frames of different views, multiple virtual cameras with a frame rate of
hundreds of frames can be formed. As mentioned in Section 4.1, current CNN-based
object detectors often have dozens of milliseconds of latency from input frames to out-
put results. Compared to ultra-high-speed galvano-mirror control, detection latencies can
negatively impact vision-based feedback control, causing skipped frames without object
detection. To address this issue, we propose a framework called HFR multiple target
tracking, which combines high-speed TM-based trackers with CNN-based object detec-
tors to achieve low-latency visual feedback at hundreds of Hz. This framework enables

the tracking of multiple fast-moving objects, and can be used in real-time applications

15
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Pan-tilt mirrors

FED

Multiple targets tracking in virtual cameras

Figure 3.1: Wide field of view registration and multi-object tracking by virtual cam-
eras using a galvanometer-based reflective PTZ camera.
such as robotics, surveillance, and autonomous navigation.

As shown in Figure 3.2, the whole multi-object tracking process mainly includes
two processes, namely, the new object registration process and the multi-object track-
ing process. The object registration process first scans the surveillance area at an ultra-
fast speed and stitches together a high-resolution panoramic image. Subsequently, the
CNN-based detector detects the image frame-by-frame, looking for objects of interest
to complete the registration. After object registration process, the multi-target tracking
process changes the field of view to observe different objects at an extremely fast speed.
Meanwhile, we use a CNN-based hybrid detection method in each virtual camera for
low-latency visual feedback control. If the object is lost, the object registration process is

restarted to register new objects.
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Figure 3.2: Flowchart of object registration process and multi-object tracking pro-
cess.

3.2 Spatial localization based on active stereo vision

The galvanometer is an optical component capable of tiny vibrations under precise
control. Its high-precision control, fast response and precise position detection capabili-
ties make it one of the key components to achieve high-precision measurement. As shown
in Figure 3.3, we propose the concept of spatial localization based on a stereo active vi-
sion system. The stereo active vision system responds extremely quickly, rotating the
galvanometer with an ultra-short delay, so that the object is always in the center of the
camera’s field of view.

In the context of three-dimensional reconstruction based on stereo cameras, spatial
points are mapped to pixels in the images through projection transformations. Similarly,

in stereo active vision systems, spatial points are mapped to control voltages of the mirrors
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Figure 3.3: Concept of spatial localization based on active stereo vision.

through projection transformations. Each set of control voltages (of pan and tilt mirror)
uniquely determines a spatial line. Leveraging the low latency of high-speed vision sys-
tems, it becomes effortless to acquire the position information of an object when it is
simultaneously observed by the stereo active cameras.

In Figure 3.3, the red line is the line of sight of the camera center in the stereo active
vision system. By determining the precise positions of two sightlines in space, we can

accurately ascertain the location of an object in three-dimensional space.

3.3 Stereo correspondence based on high-synchronous mo-

tion information

Active camera systems have gained significant attention in computer vision due
to their ability to actively control camera viewpoint and illumination, providing rich vi-
sual information for various applications. As mentioned in previous chapter, matching
multiple moving objects with similar appearances in stereoscopic video is a significant
challenge. To address this issue, we propose a method for correspondence based on mo-

tion information suitable for stereo vision systems (fixed cameras or active cameras), as
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(b) Correspondence based on short-term velocities.

Figure 3.4: Concept of stereo correspondence based on high synchronous short-term
velocities.

depicted in Figure 3.4. In fixed camera, we use the change of the object on the pixel as
the motion, and as for the active camera, we use the angle change of the active camera,
control voltage, etc. as the motion. The entire process of stereo correspondence for mul-
tiple objects is divided into two steps: independent multiple-object tracking and stereo
correspondence based on high synchronous short-term velocities.

In the independent multiple-object tracking step, firstly, we need to complete high-
speed real-time detection of multiple targets. Higher video frame rates provide greater

synchronization. Then, we define the pixel-scale movement of an object between HFR
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frames as its velocity, which comprises horizontal and vertical components. As shown
in Figure 3.4(a), we utilize n velocities over a period of time before the current time as
the motion feature of the objects, referred to as short-term velocities. In this way, we
transform the similarity measure between object image blocks into the similarity mea-
sure between image block motions. In the object stereo correspondence step, we ana-
lyze the similarity between the high synchronous short-term velocities of multiple objects
frame-by-frame to establish correspondences among different objects, as illustrated in
Figure 3.4(b). We compare the similarity between multiple vectors in real time to distin-

guish different moving objects.



Chapter 4

An active multi-object ultrafast tracking system

with CNN-based hybrid object detection

4.1 Introduction

Multi-target tracking and high-definition image acquisition are important issues in
the field of computer vision [96]. High-definition images of many different targets can
provide more details, which is helpful for object recognition and improves the accuracy of
image analysis. It has been widely used in traffic management [97], security monitoring
[98], intelligent transportation systems [99], robot navigation [100], auto pilot [101], and

video surveillance [102].

‘»

Panoramic camera

Wide field of view
igh- definition

A - ‘

»

N

Telephoto camera Narrow field of view

Figure 4.1: Contradiction between wide field of view and high-definition images.
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However, there is a contradiction between wide field of view and high-definition
resolution, as shown in Figure 4.1. The discovery and tracking of multiple targets de-
pends on a wide field of view. While a panoramic camera with a short focal length can
provide a wide field of view, the definition of the image is low. A telephoto camera is
the exact opposite of a panoramic camera. Using a panoramic camera with a larger res-
olution is a feasible solution; however, it requires greater expenditure and larger camera
size [103]. With the rapid development of deep learning in the image field, the super-
resolution reconstruction method based on autoencoding has become the mainstream, and
its reconstruction accuracy is significantly better than that of traditional methods [104].
However, due to the huge network model and large amount of model training required in
the super-resolution method based on deep learning, there are defects in the reconstruction
speed and the flexibility of the model [105].

Therefore, researchers have tried to use telephoto cameras to obtain a larger field
of view and track multiple targets. A feasible solution is to stitch the images obtained
from a telephoto camera array together into high-resolution images and track multiple
targets [106]. Again, this results in greater expenditure and an increase in device size.
Another research method is to make the telephoto camera an active system by mount-
ing it on a gimbal. Through the horizontal and vertical movement of the gimbal, the
field of view of a pan-tilt-zoom (PTZ) camera can be changed to obtain a wide field of
view [107]. However, the original design of such a gimbal camera is not intended for
multi-target tracking. Due to the limited movement speed of the gimbal and the size of
the telephoto lens, it is difficult for gimbal-based PTZ cameras to move at high speeds and
observe multiple objects [108]. Compared to traditional camera systems operating at 30
or 60 fps, high-speed vision systems can work at 1000 fps or more [109]. The high-speed
vision system acquires and processes image information with extremely low latency and
interacts with the environment through visual feedback control [110]. In recent years,

a galvanometer-based reflective camera system has been developed that can switch the
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perspective of a telephoto camera at hundreds of frames per second [111]. This reflec-
tive PTZ camera system is able to virtualize multiple virtual cameras in a time-division
multiplexing manner in order to observe multiple objects [112]. Compared with tradi-
tional gimbal-based and panoramic cameras, galvanometer-based reflective PTZ cameras
have the advantages of low cost, high speed, and high stability [113], and are suitable for
multi-target tracking and high-definition capture.

However, the current galvanometer-based PTZ cameras rarely perform active vi-
sual control in the process of capturing multiple targets. Instead, they mainly rely on
panoramic cameras, laser radars, and photoelectric sensors to obtain the positions of mul-
tiple targets, and finally use reflective PTZ cameras for multi-angle capture [114]. Due to
the impact of detection delay and accuracy, it is difficult for multiple objects to be tracked
smoothly. With the victory of AlexNet in the visual competition, CNN-based detectors
continue to develop, and can now detect various objects in an image at a dozens of frames
per second [115]. For high-speed vision at a speed of hundreds of frames per second,
however, it is difficult to achieve real-time detection with deep learning.

This chapter aims to utilize a reflective PTZ camera system to track multiple objects
and to capture high definition images with low latency. A reflective PTZ camera system
switches perspectives to track multiple objects at 500 fps per second by implementing
2-ms-latency visual feedback control. The high-speed vision feedback control relies on
CNN-based hybrid detection methods [95]. Compared with the previous system, this
system achieves the following: (1) the acquisition of images with large field of view and
high resolution, (2) simultaneous observation of up to 20 objects at a speed of 25 fps; and

(3) active tracking of multiple fast-moving objects with no-latency detection.

4.2 Proposed galvo-based multi-target tracking system



24 CHAPTER 4. AN ACTIVE MULTI-OBJECT ULTRAFAST TRACKING SYSTEM WITH CNN-BASED HYBRID OBJECT DETECTION

4.2.1 New object registration process

The high-speed reflective PTZ camera system captures frames of different angles
through ultra-fast rotating two-axis galvano-mirrors. During the scanning process of the
monitoring area, all captured high-speed frames, denoted as 1,(f), and control angles, de-
noted as v(?) = {upu,,(r), u,ﬂt(t)}, are stored in the frame set F and angle set V. Meanwhile,
the CNN-based detector performs object detection on the frame set F during the scanning

process. The detected objects in an input frame ,(¢) at time ¢ are expressed as follows:

DUyt) ={d' 0).d*@).....d0.....d" ©)}. (4.1)

where D denotes an operator of the CNN-based object detection. For the j-th detected

object (j = 1,---,J), each detection result d/(t) is composed of the following parameters:

& (1) = ol (1), 0) (1), w! (1), W (1), p (1), & ()], (4.2)

where o/ (¢) = (o;’; 1), oj @) ,w (), (t)) denotes the bounding box of j-th detection ob-
ject. In addition, p/ () and ¢’ (f) denote its detection confidence and object class, respec-
tively. In this article, the detection algorithm used in Al detection is YOLOv4, which is
currently a very mature detection algorithm with low latency and stable detection time. If

an object is detected, we obtain the control angle v; of the i-th object as follows:

vi = {u;mn(t) + ‘Spandpam u;ilr(t) + 3tiltdtilt} > 4.3)

where u!,,, (1) and u, (r) denote the control angle of the pan and tilt when the frame is

captured at time t, £,4, and &;; denote the pixel deviation between the center of the object

and the frame center, and d,,, and d,;; denote the gain between the pixel and the angle.
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Then, the detected object info r; = {v;, ¢;} is registered to the target set R = {ry, 7y, - ,1,}

for high-speed multi-object tracking, while ¢; denotes the label of the i-th object.

4.2.2 Multi-object tracking process

The multi-object tracking process is initiated when the target set size R is greater
than 0. In the image acquisition process of the galvanometer-based reflective PTZ camera,
as depicted in Figure 4.2(a), the galvano-mirror movement and camera exposure represent
the two primary stages. To cope with high-speed image streams of hundreds of frames
per second, we parallelize the image acquisition and processing process and divide the
stream into multiple virtual cameras.

YOLOV4 can process only about 30 frames per second, and struggles to keep up
with the real-time processing demands of the hundreds of frames per second in each vir-
tual camera. To overcome this challenge, we developed a hybrid algorithm that combines
template matching and CNN-based object detection. Specifically, the object template
image obtained from the CNN detector is matched with the current image through tem-
plate matching to update the object position in each virtual camera. Our hybrid algorithm
comprises two modes, as illustrated in Figure 4.2(b): (1) playback mode, which per-
forms real-time playback tracking in all intermediate images from the detected frame to
the current frame once CNN obtains the object position, and (2) frame-by-frame forward
tracking, which matches the template obtained from CNN frame-by-frame with the new
input image.

To reduce the processing delay caused by the CNN, we activate the instant playback
tracking mode to address the deviation caused by the difference between a newly detected
fast-moving object’s position and its position in the current frame. After updating the
template of the TM-based tracker with the detected object area, the TM-based tracker
estimates the target position in the current image and the new object position in all frames

from the detected input frame to the current frame. The estimated target area of the current
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Figure 4.2: Time-division threaded gaze control process for multiple target tracking
based on HFR object detection hybridized with CNN.
frame during playback tracking is used to determine the template of the TM-based tracker
and the initial position of frame-by-frame tracking.

Below, we describe the algorithm used in the hybridized object-tracking approach.
We denote the time intervals of the input HFR images and CNN-based object detection
as 1, and 74, respectively, with 7, being much larger than 7, and equal to mt,.

(1) Updating object template using CNN

Due to detection latency, CNN detectors skip frames and continuously detect im-
ages from the nth virtual camera. The objects detected in an input image /,,(z,) from the

nth virtual camera at time 7; can be described as follows:

D (I, (ta)) = {d)(ta), d(ta), ..., d}(ta)} (4.4)
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The definition of the detection results d,{(td) is the same as that in Eq. (4.2). Results
that differ from the target labels c, tracked by the nth virtual camera are initially elimi-
nated. To update the template 7, of the nth virtual camera for the S detection results for

which the class is the same as c¢,, we use the following method:

argmaxNCC (T,,T,) (S > 0)
T

T, = 4.5)

don't update, (S = 0),

Cov(T,,T")
\Var(Ty) Var(T})

NCC(T,,T)) = (4.6)

Here, T, and T, are the current and last template of the nth virtual camera, respec-
tively. The NCC [116] (Normalized Cross Correlation) algorithm is used to measure the
similarity of templates.

(2) TM-Based HFR Tracking

(a) Frame-by-frame forward tracking: when there is no template update the posi-
tion p(t,) of the tracked target in the image is obtained directly through the SDS (standard

deviation of squares) equation, as shown below:

p () =p' (&) + argmin E(x,y), 4.7

|xI<Ran,ly|<Ran

Loy T Xoy) = L (¥ + x+ Xy, +y + )

\/Zx’,y’ Tn ()C,, y,)z : Zx’,y’ Il‘l (x;z +x+ xl’ y;; + y + y,)z

E(x,y) = (4.8)

Here, p’(t,) is the position of the object in the last image. Due to the advantage of
high-speed vision, objects move more slowly between high-speed image sequences and

there is less displacement between frames. Accordingly, we can set the search range Ran
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for object detection in the image to a few pixels. Here, (x),y,) represents the top-left
coordinate of the target region in the image from the previous time step in the nth virtual
camera, while I, represents the new image from the nth virtual camera. Because the
algorithm is applied to a real-time high-speed system, we prioritize speed over accuracy
and robustness.

(b) Playback tracking during template updating: there is a fatal problem with
frame-by-frame template matching, which is that the appearance of a moving object often
changes. As time progresses, the tracking becomes unstable. Therefore, when updating
the template it is necessary to perform a playback operation. The playback operation
refers to the process of performing a sub-forward TM through all image sequences from
the time #, = 1, — t; at which the previous input image was passed to the CNN until the

current time £,.

p(, +k+1Dr1,)=p(t,+kr,)+ argmin E (x,y),(0 <= k7, <=1,). 4.9)

|x|<Ran,|ly|<Ran

Here, 7, represents the time interval between frames for the nth virtual camera. As
shown in Figure 4.2b, we perform a replay operation every time we update the template
to avoid the problem of changes in the object’s appearance. To reduce latency in CNN-
based object detection at #; intervals, playback tracking functions are utilized as delay
compensators, while frame-by-frame forward tracking functions serve as frame interpo-
lators, converting target positions from ¢, intervals to 7, intervals that match the HFR

input images.

4.3 Experiments
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Figure 4.3: Overview and geometry of galva-based multi-object tracking system.

4.3.1 System configuration

To enable tracking of multiple fast-moving targets distributed across a wide area,
we developed a high-speed pan-tilt camera system that utilizes an ultrafast galvanometer
mirror. The system is capable of tracking multiple moving objects simultaneously with a
frame rate of 500 fps. The system includes a high-speed CMOS camera head from Image
Source, Bremen, Germany (DFK37BUX287), a two-axis pan-tilt Galvano-mirror from
Cambridge Technology, Kansas City, MO, USA (6210H), and a control computer with an
Intel 19-9900K processor (3.6 GHz), 64-GB DDR4 RAM, and Windows 10 Home (64-
bit). Control signals are sent to the Galvano-mirror via a D/A board (PEX-340416) from
Interface Corporation, Hiroshima, Japan.

In this paragraph, we describe the technical specifications of the galvanometer-
based reflective PTZ camera system. The camera head has a 50 mm telephoto lens and a

color CMOS sensor measuring 720 x 540 pixels. The sensor has a size of 4.96 x 3.72 mm
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and a pixel size of 6.9 X 6.9 um. It can capture 8-bit RGB 720 x 540 images at 539 fps
and transfer them to a PC via USB 3.1. The galvanometer mirror provides two degrees of
freedom gaze control, with a range of —20 to 20 degrees for pan and —10 to 10 degrees for
tilt. The mirror can be controlled within 2 ms in the ten-degree range. The the overview
and geometry of the galvanometer-based reflective PTZ camera system are presented in
Figure 4.3. Real-time control signals from the computer to the galvano-mirror via the

D/A board enable the system to zoom in on and track multiple objects.

4.3.2 Execution times of visual tracking algorithm

The system captures 640 x 480 images at a rate of 500 fps (7, = 2 ms), with the
initial search areas determined by the position of the moving object obtained by the new
object registration process.

Using YOLOvV4 for CNN detection, we can execute object detection with a delay of
about 7, = 33 (m = 16) ms using multiple high-speed PTZ virtual cameras. In the imple-
mented YOLOV4, eighty object categories (car, bicycle, sports ball, apple, mouse, etc.)
were pre-trained using the COCO dataset, with color images resized to 416 x 416 for the
purpose of estimating object regions and labels. We fine-tuned the YOLOv4 pre-trained
model to incorporate facial detection, allowing the network to detect human faces. The
average latency of the processing pipeline for object detection in our system is 7; = 30 ms
(L = 15). Considering that the frame rate of a high-speed virtual PTZ camera increases
with the number of objects to be tracked, the frame rate drops by almost 100 frames.
Thus, the displacement of the object between adjacent frames in a virtual PTZ camera
is slightly larger than the continuous image stream of 500 fps. The search range in TM-
based tracking is set to the 5 X 5 neighborhood (R = 4) in both instant playback tracking
and forward tracking modes. The sub-images obtained from the template image are adap-
tively down-sampled according to image size before completing the template matching,

thereby speeding up the playback tracking process and keeping the time within 2 ms. Our
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Table 4.1: Execution times of tracking algorithms.

Size 64 % 64 128 x 128 256 x 256 512 %512
tracker

BOOSTING 17.73 54.85 29.85 8.11
KCF 5.39 5.05 20.6 90.22
MOSSE 0.26 1.12 1.55 17.26
MIL 79.63 76.67 72.68 67.71
TLD 30.15 22.14 26.45 26.99
MEDIANFLOW 2.12 2.21 2.10 2.23
GOTURN 23.22 24.54 24.74 29.60
ours(playback) 0.27 0.41 0.77 1.82
(forward) 0.021 0.056 0.222 0.62

(YOLOv4) 33

(unit: ms)

algorithm enables pan-tilt tracking with 500-fps visual feedback control to track multiple
moving targets at the image center (cy, ¢,) = (320,240). We evaluated the execution times
of our algorithm with template sizes of 64 x 64, 128 x 128, 256 x 256, and 512 x 512
pixels and compared the results with those of the following single-object tracking algo-
rithms prepared as tracking APIs in OpenCV 4.5: MIL, BOOSTING, Median Flow, TLD,
KCF, GOTURN pre-trained on the ALOV300++ dataset, and MOSSE. Table 4.1 summa-
rizes the execution times for implementation on 640 X 480 input images using the same
PC used for our proposed system. For our algorithm with R = 4 and L = 6, we show
the execution time for (i) playback tracking with template updating, (i1) frame-by-frame
forward tracking, and (iii) YOLOv4; YOLOV4 is executed in parallel with the template
matching track, and the largest processing delay occurs in playback tracking. Thus, it is
necessary to increase the robustness of object tracking under large processing delays. Our
algorithm can deliver target positions in real-time, achieving a speed of hundreds of fps
or higher through parallel execution with YOLOv4. Compared with other single-object
tracking approaches based on either online adaptive templates or pre-trained deep neural

networks, our algorithm offers an advantage in terms of processing speed.
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(a) Overview of the experimental scene. (b) Panoramic stitched image from the PTZ camera
(targets are pasted on the panoramic image in the
form of a red frame texture).

Figure 4.4: The 1920 x 1080 input images from the digital camera and the
panoramic stitched 9600 x 5280 images from the PTZ camera.

4.3.3 Simultaneous tracking of twenty different objects

We first tested the proposed multi-object tracking system based on reflective mirrors
for tracking a large number of targets. Figure 4.4(a) shows the overview of the experi-
mental scene. We placed twenty different types of targets, such as cars, bicycles, clocks,
and sports balls, on the wall and whiteboard approximately 6 m away from the multi-
object tracking system. Among these, the whiteboard was movable and the objects on
the whiteboard were able to move along with the motion of the whiteboard. During the
object registration process, the galvanomirror-based reflective camera system scanned the
monitoring area at a speed of 500 fps. Figure 4.4(b) shows the panoramic image stitched
together from the reflective camera system following completion of the object registration
process. The resulting twenty detected objects were mapped onto the panoramic image
in the form of overlays, and their positions in the panoramic image were updated in real-
time. The virtual camera labels are shown in “v-cam:n”, where different virtual cameras
are assigned different numbers. The virtual camera responsible for scanning is displayed
as a green bounding box in the top right corner of the image. If object tracking failed, the
virtual camera responsible for scanning was reactivated to search for new objects.

Figure 4.5 presents high-definition images of all tracked objects continuously up-

dated within the image frames at 30 fps. Figure 4.6 shows the pan and tilt angles of the
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Figure 4.5: HD images of twenty objects tracked simultaneously.
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Figure 4.6: Pan and tilt angles of the galvanometer-based reflective PTZ camera
when scanning and tracking twenty different targets.

galvanometer-based reflective PTZ camera when scanning and tracking twenty different
targets. The other objects on the wall remained stationary while the objects (the bicycle
and car) attached to the whiteboard (virtual cameras 8, 13, 18) moved left and right along
with the whiteboard. Because high-speed resources are divided equally, the frame rate
of each target is low and certain fast-moving objects cannot be tracked accurately due to

their high motion speed.
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Figure 4.7: Experimental environment used for tracking multiple moving objects in
an outdoor scene.

4.3.4 Low-latency pan-tilt tracking of multiple moving bottles

Next, we verified the multi-object visual tracking performance of our proposed sys-
tem at 500 fps. In this experiment, we employed a visual search to automatically detect
bottles that were distributed in the surveillance area. By changing the viewpoint, we were
able to track multiple bottles at the image centre of a 640 x 480 input image. The experi-
mental environment is depicted in Figure 4.7. Three bottles were strategically positioned
at a distance of about 8 m from the PTZ camera system. Subsequently, two of the bottles
were released from a height of approximately 1.7 m while the camera system finished
searching and needed to track multiple bottles. A digital camera (model DSC-RX10M3,
focal length 30 mm) was positioned adjacent to the camera system to capture 1920 x 1080
images of the surveillance area at 60 frames per second.

The initial stage of the experiment involved a zigzag scan of the monitoring area us-
ing the PTZ camera system. Specifically, the pan mirror was adjusted by 2.54 degrees and
the tilt mirror by 1.9 degrees for each scan. The final observation range of the pan mirror
was set between —17.78 degrees and 17.78 degrees, while the tilt mirror was set to observe
within a range of —9.5 degrees to 9.5 degrees. Figure 4.8 shows the 1920 x 1080 input
images from digital camera and panoramic stitched 9600 x 5280 images from the PTZ

camera. Our PTZ camera system can obtain 24X higher-definition images of the surveil-
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Resolution: 9600 x 5280

(b) Panoramic stitched image from the PTZ camera.

Figure 4.8: The 1920 x 1080 input images from the digital camera and panoramic
stitched 9600 x 5280 images from the PTZ camera.

lance area at 3 fps compared with digital cameras. Subsequently, we utilized YOLOv4
to analyze and detect objects in the 165 images captured during the zigzag scan process.
Following the completion of object registration, we started a low-latency tracking process
to track the detected bottles in real time. Figure 4.9 shows the 145 x 108 ROI images
around the targets from the digital wide-view camera and 640 X 480 input images from
the virtual PTZ cameras at t = 19.1 s. In the image obtained from PTZ camera, the char-
acters on the bottles can be clearly read while being robustly tracked. In contrast, only
the approximate outline and color of the bottles can be seen in the digital camera image.
During tracking, we first picked up two bottles from the table, then released the bottles
into a free fall at t = 19.1 s.

Figure 4.10 shows the pan and tilt angles of the galvanometer-based reflective PTZ
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145><108 ROl images around targets (t = 19.1s)

640x480 input images of PTZ camera (t = 19.15)5

Figure 4.9: The 145 x 108 ROI images around targets from the digital wide-view
camera and 640 x 480 input images from the virtual PTZ cameras (red boxs are the
test results).

camera when scanning and tracking multiple bottles. The system undergoes object reg-
istration from O to 9 s, after which it transitions to the multi-target tracking process. We
simultaneously released two water bottles from a height of about 1.7 m at 19.1 s. The two
bottles experienced about 0.6 s of freefall. Figure 4.11 illustrates the x and y coordinates
of the centroids for the regions of interest (ROIs) that were tracked in the input images
during the period t = 9-23 s. Except in the process of falling, the deviation from the center
of the image gradually increases, and is otherwise very close to the center of the image
(320 x 240).

Figure 4.12 depicts the tracking status during free fall of bottle 1 when tracking
three bottles simultaneously. Figure 4.12a,b shows the tracking situations based on the
CNN hybrid algorithm and YOLOv4, respectively. When using only YOLO tracking,
objects leave the field of view quickly at t = 0.3 s as their speed increases. Nevertheless,
the CNN-based hybrid tracking algorithm exhibits superior performance in tracking the
falling bottle. The velocity of the free-falling bottle is directly proportional to the time

it takes to fall. Figure 4.13 shows the relationship between the velocity and distance



4.3 EXPERIMENTS

High-speed Scanning

Al Registration

Free fall

Rotation angle of pan mirror. [Deg]

{

D

-

Scan

Bottle: 1
Bottle: 2
Bottle: 3

Scan

Bottle: 1
Bottle: 2
Bottle: 3

37

&
004, e\
] S———

Rotation angle of tilt mirror. [Deg]

0 5 10 . 15 20
time [s]

Figure 4.10: Pan and tilt angles of the galvanometer-based reflective PTZ camera
when scanning and tracking multiple bottles.
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Figure 4.11: The x and y centroids of tracked bottle regions.

from the detection ROI to the image center during free-fall bottle tracking. YOLOv4
tracking is limited in its ability to track objects with a speed greater than 3 m per second.
Using our CNN-based hybrid algorithm for tracking, a moving object with a speed of
5.5 m/s is located approximately 45 pixels away from the image center. In theory, it is

possible to track three objects moving at a speed of 30 m/s and maintaining a distance of
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(b) Free-fall of bottle 1 based on YOLOV4 tracking.

Figure 4.12: Tracking status of the free-fall of bottle 1 when tracking three bottles
simultaneously.

8 m simultaneously. Finally, we conducted experiments to track three free-falling bottles
simultaneously using different tracking methods.

Figure 4.14 shows pixel deviation values between the object position calculated
by different algorithms and the object’s actual position during the falling process. The
actual position of the object was obtained from offline videos recorded at 30 fps during
online system operation. The deviation values shown in the figure represent the specific
error at each time step. After being dropped from a height of approximately 1.7 m, the
water bottle impacted the ground after approximately 0.6 s. The Boosting, TLD, KCF,
and Medianflow tracking methods lost the target within 0.2 s, 0.3 s, 0.4 s, and 0.5 s,

respectively. The GOTURN and MOSSE tracking methods, along with our proposed
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Figure 4.13: Relationship between velocity and distance from the detection ROI to
the image center during free-fall bottle tracking.
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Figure 4.14: Pixel deviation value between the object position calculated by different
algorithms and the object’s real position during free-falling.

method, were able to maintain tracking until the end of the tracking task. Among these
methods, the deviation of the tracked object’s real position is smaller when using our

proposed hybrid tracking method based on CNN.

4.3.5 Multi-person pan-tilt tracking in wide-area surveillance
Subsequently, we designed a scenario more commonly encountered in reality in-
volving multiple individuals in motion. Figure 4.15(a) shows the experimental environ-
ment captured by the digital camera (focal length = 40 mm). Five individuals were po-
sitioned approximately 8 m away from the PTZ camera system. Prior to the completion
of the scans and detection, all participants stood still. Figure 4.15(b) depicts the scanning

and detection outcome at the start of the experiment.
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(b) Panoramic stitched image from the PTZ camera.

Figure 4.15: The 1920 x 1080 input images from the digital camera and panoramic
stitched 9600 x 5280 images from the PTZ camera.

Figure 4.16 depicts the pan and tilt angles of the galvanometer during the experi-
ment as it scanned and tracked different individuals. The upper right corner shows a thread
for detecting lost targets and initiating rediscovery. The tracking of multiple individuals
commenced at 8.5 s. Between 10 and 13 s, all individuals performed vertical jumps, while
from 13 to 15 s, they swayed their bodies horizontally. A loss waiting time of 300 frames
was established for each individual. After a waiting time of 300 frames, person 1 was lost
at 16.5 s and the scanning thread was restarted; person 1 was eventually rediscovered at
21 s. Two crossings occurred between person 2 and person 3 during 23 to 27 s and 30.5 to
34 s. Sface [117] was employed to extract facial features and conduct similarity matching.
In this study, we only utilized facial features for facial discrimination, and did not assign

individual IDs for recognition of individuals. During the cross-tracking process, a virtual
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Figure 4.16: Pan and tilt angles of the galvanometer-based reflective PTZ camera
when scanning and tracking multiple persons.
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Figure 4.17: Cross-tracking of person 2 and person 3 between 24.9 and 26.1 s.

camera always followed a single person.

As shown in Figure 4.17, person 3 was briefly occluded by person 2 during the ini-
tial cross-tracking process and was subsequently re-identified and tracked. In the second
crossing process, person 3 was not identified during the short occlusion; thus, the scan-
ning thread had to be restarted, leading to the rediscovery of person 3 at 33 s, as shown in
Figure 4.18. Due to lighting conditions, person 5 was not detected at 26 s, prompting the
scanning thread to remain active from that point forward in an attempt to locate person

5. The x and y coordinate values of the image centroids of the tracked ROIs are depicted
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Figure 4.18: Cross-tracking of person 2 and person 3 between 31.4 and 32.6 s.
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Figure 4.19: The x and y centroids of the regions with tracked people.

in Figure 4.19. These results demonstrate that our PTZ camera system can track multiple
fast-moving objects simultaneously at a high speed. Moreover, the system exhibits high

robustness to object loss and occlusion.

4.4 Concluding remarks

In this chapter, we developed a multi-object visual surveillance system with 500-fps
image processing capabilities able to robustly track multiple objects within a wide area.
The effectiveness of our system was demonstrated through two experiments: (1) tracking

of multiple free-falling water bottles, and (2) tracking of multiple freely moving indi-
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viduals. Our system offers three key advantages: (1) rapid generation of high-definition
wide-view images; (2) the ability to track up to twenty low-speed moving targets at a
maximum rate of 25 fps; and (3) simultaneous tracking of multiple high-speed moving
targets with high robustness against object occlusion and loss.

However, there are several limitations faced by the current system; for example, the
object registration process in the early stage requires several seconds, during which time
the object may continue to move, resulting in target loss during the tracking process. In
future work, we plan to incorporate a panoramic camera for pre-detection of interesting

targets within the monitoring area.
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Chapter 5

Spatial localization based on stereo active vision

5.1 Introduction

Stereo active vision system serves as a crucial component of intelligent robots,
mimicking the ability of humans or other animals to perceive the environment through
their eyes. The servo-based active vision system enables multiple cameras to simultane-
ously focus on the same visual target and utilizes the control information from the active
vision system to determine the spatial position of the target relative to the intelligent robot.
Intelligent robots equipped with stereo active vision system have enormous potential in
perception-based applications such as intelligent driving, digital twin, visual tracking, and
visual localization [118].

In stereoscopic active vision, the system employs multiple cameras or sensors to
emulate binocular vision. The eyeball of an animal is typically a spherical shape with a
center of rotation that is not fixed, resulting in an extremely complex movement pattern.
In contrast, the human-like binocular structure developed by the MIT Artificial Intelli-
gence Laboratory in 1998 has two degrees of freedom - horizontal and vertical - and is
equipped with two CCD cameras, each with high and low resolution. While this pan-
tilt-based two-axis mechanical system can produce clear images, it is difficult to capture
images accurately. As a result, the development of three-degree-of-freedom visual de-

vices has become a research hotspot in recent years. Wang X.y et al. proposed a novel

45
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humanoid robot eye that rotates at 3-DOF using six pneumatic artificial muscles [119].
However, this robot eye requires compressed air. Gosselin and his colleagues developed
an agile eye using six sets of links. Y. B. Bang et al. proposed a 3-DOF human-like
eye movement system that reproduces realistic human eye movements for human-sized
human-like applications [120]. Most of the aforementioned active vision systems utilize
gimbal structures with motion motors, which can result in motion blur and slow motion
speeds due to camera movements.

Galvanometers are optical scanners with high precision, reliability, and speed. The
mirror-based reflective active vision system separates the camera from complex mechan-
ical structures, enabling high-quality imaging and fast motion speeds. This approach pro-
vides a new way of studying active vision. Early galvanometer-based active vision was
generally used in object detection and visual tracking. Jiang et al. [114] obtained images
using galvanometer reflection, detected object positions at 500 fps, and controlled the
galvanometer to achieve high-speed object tracking. Hu et al. [94] combined a panoramic
camera and a galvanometer camera. The panoramic camera used deep learning to detect
targets, and the galvanometer camera quickly switched between multiple targets at 500
fps. In recent years, some researchers have engaged in stereo vision based on galvanome-
ter cameras. Hu et al. [121] proposed a novel catadioptric stereo tracking concept. The
galvanometer camera was virtualized into two tracking cameras with different viewing an-
gles through multiple mirrors, and 3D measurements were completed during the tracking
process. However, precision is currently not a primary focus when using galvanometers,
and spatial position calculations are completed solely based on angle relationships.

Before a galvanometer-based active vision system can perform precise measure-
ment or localization tasks, it requires calibration. However, there are currently few meth-
ods available for calibrating such a system. As galvanometers are primarily used in the
field of lasers, most research focuses on calibrating laser galvanometers. Manakov [122]

proposed a calibration method for a dual-mirror galvanoscopic laser scanner, but this
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method is challenging to optimize the mathematical model of the system. Wissel [123]
suggested a data-driven learning calibration method that requires large amounts of data
collection. Wagner [124] uses statistical learning methods such as artificial neural net-
works (ANN) and linear regression to calibrate the system. However, this method is
prone to overfitting problems, and the computational cost is often high. Yu [125] de-
signed a novel single-mirror galvanoscopic laser scanner. However, the calibration pro-
cess is complicated, and the objective function has 11 independent unknown parameters
that need optimization. Due to the relationship between the two reflection imaging, the
galvanometer-type active vision system has higher complexity than the traditional gimbal-
based active vision system.

Inspired by Dr. Zhang Zhengyou [126] in camera calibration algorithm, it is very
important to develop a flexible, robust and low-cost galvanometer calibration algorithm in
the galvanometer system. In this chapter, a calibration method of the reflective galvanometer-
based active vision system is proposed. In this method, the galvanometer is virtualized as
a camera model, and the three-dimensional spatial points are projected to the control volt-
age parameter space of the galvanometer. The calibration only needs to be observed by
the galvanometer camera at several plane patterns of different angles, and the calibration

result has high accuracy.

5.2 Error analysis of galvanometer-based camera

In this section, aiming at the accuracy of galvanometer-based active camera scan-
ning, we analyze the main sources of the deviation between the voltage signal and the
actual voltage during the 3D galvanometer scanning process. Fig. 5.1 shows the struc-
ture of galvanometer-based active camera, in which the rotation axes of the pan mirror
and the tilt mirror are orthogonal to each other, and they are controlled by servo motors

respectively. The camera is arranged parallel to the tilt axis, so that the optical axis of
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Figure 5.1: Structure of active camera based on galvanometer.

the camera center and the rotation axis of the tilt mirror are parallel to each other, and the
red line is the optical path of the camera optical center. When the galvanometer is in the
initial state, the left-handed coordinate system O,X,Y,Z, is established. The intersection
of the optical axis and the rotation axis of the tilt mirror is the origin O, the rotation
axis of the tilt mirror is the X, axis, and the rotation axis of the pan mirror is the Z, axis.
The common errors in the galvanometer model mainly include: voltage error, pincushion

error, and nonlinear error.

5.2.1 Voltage error

During the movement of the galvanometer, as the driving voltage of the servo motor
changes, the rotation angle of the flat mirror mounted on the servo motor also changes.
The computer outputs a digital signal, and the D/A converter outputs a high-precision

analog voltage. There is a very high-precision mapping relationship between the driving
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voltage and the rotation angle. But they maintain a linear relationship, u’ = k,u, where k,
is a linear change coefficient and a constant.

For general scenarios, when a low-precision D/A converter is used to output an
analog voltage to control the galvanometer, there is a deviation between the output voltage
u’ and the input voltage u. At the same time, the deflection angle 6,, of the galvanometer
is proportional to the control voltage u’, 6,, = kqu’, ky is the linear coefficient of the control
voltage and the angle, which is also a constant. The relationship with the rotation angle

6,, of the galvanometer and the input digital voltage u is,

O = kok,ut. (GRY)

Let k = kok,, where k is the linear coefficient of the input digital voltage u and the rotation
angle of the galvanometer 6,,. In Fig 5.1, the pan mirror and the tilt mirror are driven by
two servo motors respectively. The rotation angle of the pan mirror and the tilt mirror 6,,
6, and the control voltage u,, u, of the two mirrors are,

Op = kptp

(5.2)
Qt = ktut.

Among them, k, and k are the linear coefficients between the control voltage of the pan
mirror and the tilt mirror and the deflection angle, respectively.

As shown in Figure 5.2, the deflection angle ', ‘6, of the light path after the reflec-
tion of the pan mirror and the tilt mirror will be twice the deflection angle of the mirror,
which is

‘9, = 2kyu,

(5.3)
let = 2ktut.
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Figure 5.2: The relationship between the galvanometer angle and the deflection
angle of the optical path.
5.2.2 Pincushion error

It can be seen from Figure 5.1 that the control voltages u,, u; of the pan and tilt
deflection mirror are adjusted respectively, so that the spatial point P, (xg, Ygs zg) falls at
the center of the camera screen, and the red broken line is the optical path from P, to
the camera. The corresponding swing angles of the pan mirror and the tilt mirror are

expressed as,

6 =1 arctani—-;’
‘ (5.4)

1 X9
6, = 5 arctan e 2ire”

Assuming that the spatial point P, moves in the plane, that is z, does not change. At the
same time, fix the angle of the pan mirror and only change the angle of the tilt mirror.
Combining the above formula, we can know that,

(xg —etan (2kpup))2 ~ y_j L (5.5)

(zg tan (kaup))2 %y

Since z,, kp, and uj, are all constants, the trajectory of the camera’s field of view in the
z = Zz, plane is a hyperbola. As the control voltage of the pan mirror increases, the
curvature of the hyperbola will increase, which is the pillow cause of shape distortion. The
physical cause of pincushion distortion is the distance e between the two galvanometer-

mirrors, which cannot be eliminated.
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5.2.3 Non-linear error
In the general galvanometer scanning process, the scanning position of the gal-
vanometer is usually determined by the deflection angle of the pan and tilt mirrors. Com-

bine the above formula and rewrite the formula,

Yy = 2, tan (2ku,)
(5.6)

Xy = tan (2kpup) (zg sec (2kuu,) + e) :

It is also assumed that the spatial point P, moves in the plane, and z, does not
change. Since tan 6 > 6, nonlinear errors will appear in the scanning process. The greater
the deflection angle of the galvanometer, the greater the error. The same applies to pan

mirrors, with greater nonlinearity.

5.3 Mathematical model of galvanometer-based camera

Similar to the camera, the camera establishes a mapping relationship between pixels
and spatial points, and the galvanometer-based active camera also establishes a mapping
relationship between the control voltages of the pan and tilt mirror and the spatial points.
Therefore, referring to the calibration process of the camera, we have developed a cali-
bration method for the active vision system based on the galvanometer. Different from the
calibration process of the traditional camera model, the internal parameter matrix and the
external parameter matrix of the camera model are both linear transformation processes,
while the galvanometer model is mixed with the nonlinear transformation process. So we
first solve the approximate solution of the galvanometer model by linear approximation,

and then optimize these parameters by nonlinear optimization.
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5.3.1 Linear approximation to obtain the initial value

The relationship between spatial point and galvanometer control voltage: a
2D point is denoted by p = [u,v]”. A 3D point is denoted by P = [x,y,z]". We use
a to denote the augmented vector by adding 1 as the last element: p = [u,v,1]” and
P =[x,y,z 117. Then the homogeneous coordinate P, of the spatial point P in the world
coordinate system is P, = (%05 Yuws Zurs 1]T. The homogeneous form u of the control voltage
u,, u, of the pan and tilt mirror is u = [u,,, u,, 1]7. The voltage control of the galvanometer
needs to be calculated in the galvanometer coordinate system, then the spatial point P in

T
the galvanometer coordinate system is P, = [x_q, Ygs zg] ,
P, = [R1]P,. (5.7)

[R 1] is the extrinsic matrix connecting the world coordinate system and the galvanometer
coordinate system. The dimension of [R 7] is 3x4, and it is composed of two vectors of
rotation and translation.

It can be seen from Eq. (5.4) that in the galvanometer coordinate system, there is a
complicated nonlinear mapping relationship between the spatial point P, and the control
voltage u, and u, of the galvanometer. Since when the value of 6 is small, tanf ~ 6 and
cos 6 ~ 6, we use 6 to replace tan 6 and cos 6. And the distance e between the pan mirror
and the tilt mirror is much smaller than the depth component z, of the spatial point P,

which can be approximately zero. So the Eq. (5.4) can be rewritten to,

_ L Y o LY
U = pparctan 2 x 5

(5.8)

Y 1Y

=L Y L
Up =%, arctan zg5ec20,+e  2kp 74"
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We can rewrite Eq. (5.8) in matrix form,

u, i 0 O]fx, Xy
Slu, [=10 ZLk, 0 Yy =A Ygl- (5.9
1 0 0 1f|z Zy

s 1s an arbitrary scale factor. We use A to replace the left half of the matrix, and call it the
intrinsic matrix. Finally, combining Eq. (5.7) and Eq. (5.9), we can get the relationship
between the spatial point P, and the control voltage u,, and u, of the galvanometer while

the spatial point falling in the center of the camera’s field of view,

Xuw
up
slu|=ART ol (5.10)
ZUJ
1
1

Homology matrix between world coordinates and control voltage: since [R 7] is
composed of three rotation vectors and one translation vector, which is a 3x4 matrix. We

use R; to represent the i-th column of the rotation matrix,

xw
Up
Yw
s | u, =A[R1 R, R; r] . (5.11)
Zw
1
1

Therefore, a spatial point P, and the control voltage u can be connected by a homography

matrix H,

sit = HP,, with H = A [Rl R, R t ] (5.12)
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As shown above, the 3x4 matrix H is defined as a scale factor. By collecting the control
voltage and multiple sets of points in the space, we can solve the H matrix by means of
SVD or least squares.

Separate Intrinsic and Extrinsic Matrix: after we get the H matrix, we use
Ry, Ry, R3 as the three columns of the rotation matrix R, there is a unit orthogonal re-

lationship, which is

R{Rz = R{Ry, = RgRg = 0

(5.13)
R{Rl = Rng = RgRg = 1
Expressing R, R», R; with A and H, we can get,
R, = A_IHI
R, =A"'H, (5.14)
R; = A™'H;.

H; = [hy;, hyj, hai]" represents the i-th column of the matrix H. Substituting Eq. (5.14)

into Eq. (5.13), we can get

H'ATA Hy = 0
H'ATA'Hy = 0
HIATTA'Hy = 0
(5.15)
H'ATA'H, =1

HIATAH, = 1

HIATA H; = 1.
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Let A”TA! = B, then B is,

42 0 0| [bn 0 0
B={0 48 0|=|0 by 0] (5.16)
0 0 1| [0 0 by

So the parameter variables of B can form a vector b,
b = [by1,b5.b33]" . (5.17)

Combining Eq. (5.16), Eq. (5.17) and writing Eq. (5.15) in a general form, we have,

bll
HIBH; = b = [huhji hohp hshp)|by,)|- (5.18)

b33

Therefore, Eq. (5.15) can be transformed into an overdetermined equation with 6 equa-
tions and 3 unknowns, and b can be solved by SVD through the H matrix. Then the

internal parameter matrix A can be obtained from the B matrix,

1 Vb33
T 0 O oo 0O O
_ _ Vb
A=1|o0 2% ol=1 o _bzz ol. (5.19)

o o 1f |0 0 1

Among them, k, = 2‘/\;’%, k; = 2‘/\;’%. It can be obtained by A matrix, and the external

parameter matrix [R f] can be solved as,

[Rf]=[R, R, Ry 1] = A™'H. (5.20)

So far, we have completed the initialization of the approximate values of the intrinsic ma-
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trix A and extrinsic matrix [R #] of the galvanometer by means of a linear approximation.

5.3.2 Non-linear optimization

By deriving and solving the above formula, we have obtained the parameters other
than the distance e between the pan mirror and the tilt mirror. Generally, we can obtain
rough length e by measuring with a ruler. So for all the parameters k,, k;, e, R, t needed to
be optimized, we can obtain the optimized value by minimizing the control voltage errors
of the two mirrors.

In a model optimization process, we give n images of different poses. Each image
has m two-dimensional code labels generated by OpenCV. We assume that these two-
dimensional code labels are interfered by independent and identically distributed noise.

Then the minimized error function can be written in the following form,

2

n m L. ij
— mi i, — Yg
£, =min )] 3 || U, — arctan T,

Rt oo (5.21)
& = min El gl ||”up - 2—}{parctan i_id:j—e
T —
st [ Y Y 7 ] _ exp (&) P, (5.22)
§ i
i, = % (5.23)

ij .
cos (arctan )

iqu

In order to facilitate the calculation, we use the Lie algebraic form & of [R ¢] to represent
the rotation and translation relations. Minimizing residuals &, and &, is a nonlinear min-
imization problem, which is solved by the LM algorithm implemented in minpack. The
initial values of the parameters k,, k;, e, R, t, in the LM algorithm can be calculated from

the previous section.
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Figure 5.3: Overview of galvanometer-based active vision system.
5.4 Experiment

5.4.1 Hardware configuration

As shown in Figure 5.3, the galvanometer-based active vision system consists of a
high-speed CMOS camera head with a resolution of 720x540 (MV-CA004-10UC, Hikvi-
sion, China), and a two-axis pan-tilt galvanometer (TSH8130A, Sunny Technology ,
China). The camera is equipped with a 55 mm telephoto lens, and the experimental scene
is set indoors at a distance of 7 m. A 720x540 images corresponded to a 0.68x0.51-
m-area and one pixel corresponds to 0.94 mm. In addition, there is a 16-bit precision
D/A control board (AX301B, ALINX, China) to accept the digital signal of the computer
and convert it into an analog voltage to drive the galvanometer. The input 16-bit digital
voltage of the D/A control board is -5V~5V, and there is a certain deviation between the
output analog control voltage and the digital voltage. For example, the digital voltage is

set to 5V, and the output analog voltage is about 4.7V.

5.4.2 Calibration process

As shown in Figure 5.4, the whole process is mainly divided into two processes,
active detection process and solution process. During active detection, we need to place
planar targets in different areas covering the field of view of the active camera. We use
OpenCV’s dictionary toolkit to generate and detect QR codes. The active camera detects

the position of the QR code through an active detection program, adjusts the QR code to
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Figure 5.4: Calibration flow chart based on planar target

the center of the camera’s field of view, and finally records the voltage. In the solution
process, the intrinsic matrix A and the extrinsic matrix [R f] are firstly solved by linear
approximation. After that, the LM algorithm is used to optimize the variables &, k;, e, R,
t which are needed to be optimized. When the error g, &, < & (g9 = 107°), the calibration
is ended. It takes more time to change the position of the calibration plate and detect it
in the whole calibration process, about 20 minutes. The acquisition and optimization of

model parameters is very fast and can be completed within one minute.

5.4.3 Indoor calibration based on calibration board

In a close-range scene, due to the small field of view, the overall linearity is high
and the error is small. We tested the effect of the algorithm within 7 m in an indoor
scene. As shown in Fig 5.5, we select the ground point O, about 7 m away from the
galvanometer as the world coordinate origin, and the vertical direction is the Y,, axis to

establish the left-hand coordinate system O,X,Y,Z,. Similarly, the QR code calibration
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Figure 5.5: Overview of indoor calibration environment.
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Figure 5.6: Reprojected control voltage error for indoor calibration.

board generated by OpenCV contains a total of 6xX2 QR code blocks, and each QR code
has this unique number, ranging from O to 11. The horizontal interval between each two-
dimensional code is 130 mm, and the vertical interval is 100 mm. By constantly moving
the air purifier and adjusting the position of the spatial two-dimensional code, try to fill
the pan axis scanning space of the entire galvanometer to obtain the relationship between
multiple sets of spatial points and the control voltage.

Finally, our calibration algorithm is applied to multiple sets of data in indoor sce-
narios, and the results are shown in Fig. 5.6. Obviously, in the linear-based homography

matrix prediction method in Fig. 5.6, the reprojection voltage error varies regularly. Be-
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Figure 5.7: Chassis placed at a distance.

cause the pan-axis mirror experienced a change from the maximum negative angle to the
maximum positive angle in the process of moving the air purifier. When the deflection
angle is close to 0°, because tan 6 = 6, the nonlinear error is small. When the scanning
angle is large, the nonlinear error increases, resulting in a larger error in the predicted
voltage. But the reprojection error calculated by our proposed algorithm is always within
0.01 V, which has high performance. At the same time, since the non-linearity of the tilt
mirror is only provided by the tan function, the overall error is smaller than that of the

pan mirror.

5.4.4 Spatial localization based on dual galvanometer-based stereo

active vision
Visual localization is an important application of the robot stereo active vision sys-
tem. Dual galvanometer-based active vision systems are fixedly placed to form a stereo-
taxic system, and the triangulation principle is used to complete the spatial localization.
The dual galvanometer-based active vision systems are about 1.9 m apart, completing the
same calibration process as in the previous subsection. As shown in the Fig 5.7, the chas-
sis is placed about 7 m away from the stereo active vision system. The four vertices of

the chassis are O, A, B, and C respectively. We use colored tape to stick the four corners
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Table 5.1: The localization results
Spatial point coordinate

Xu, Yo, Z,) (cm)

Length (cm) Error (cm)

O (131.24,25.91, 175.87)

| A (13157,-17.99,174.51) 4392 (0A) 0.32
B (116.61,25.99, 160.61) 21.13 (OB) 0.13
C (161.98,26.05, 145.98) 42.88 (OC) 0.18
O  (65.15,25.86, 119.82)

, A (65.37,-18.18, 11849)  44.06 (OA) 0.46
B (52.22,25.98,103.64) 20.72 (OB) 0.28
C  (98.99,26.06,93.64)  42.79 (OC) 0.09
0 (176.71,25.91, 129.39)

5 A (177.28,-18.09,127.88)  44.03 (OA) 0.43
B (167.42,25.99,110.71) 20.86 (OB) 0.14
C  (215.24,25.98,110.32) 42.99 (OC) 0.29

of the chassis for later use. The color extraction algorithm performs corner detection.
Among them, the three-dimensional length of the chassis is OA = 43.60 cm, OB = 21.00
cm, OC = 42.70 cm. By placing the chassis in different positions in the room, through the
color detection method, the corners of the chassis are detected, and the spatial position of
each corner is calculated. The results are shown in Table 5.1.

Table 5.1 lists the measurement results of the chassis in three different positions.
The measurement errors are distributed from 0.09 to 0.46 cm and the RMSE value is
0.28 cm, which proves that the precision of our calibration method is sufficient in indoor

scenes.

5.4.5 Real-time spatial positioning of moving objects

As shown in Figure 5.8, we simultaneously constructed a camera-based stereo vi-
sion system and a galvanometer-based stereo active vision system. The camera-based
stereo vision system consists of 2 CMOS camera heads with a resolution of 1920x1200

(A5201CU150, Hikvision, China) and 6 mm lens. The system is capable of continuously
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Figure 5.9: High-speed stereo tracking and real-time display.
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vision.
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capturing stereoscopic panoramic images at a speed of 60 fps. The stereo active vision
system consists of two active cameras as illustrated in Figure 5.3. The two sets of stereo
vision systems are connected to the control computer via USB. The control computer is
equipped with an Intel 17-8700K processor (3.7 GHz), 32-GB DDR4 RAM, and Windows
10 Home (64-bit).

A high-speed stereo tracking and real-time display system utilizing a high-speed
stereo active vision system was developed. As shown in Figure 5.9, a rapidly moving
ping pong ball is positioned approximately 7 meters away from the stereo vision system.
The stereo active vision system tracks the ping pong ball at a speed of 500 fps, ensuring
that the ball lands in the center of the stereo active cameras’ field of view. Simultaneously,
the stereo active vision system calculates the position of the ping pong ball in space at a
rate of 500 frames per second (fps) and updates the position of the virtual ball in the
OpenGL window at a rate of 60 fps. In Figure 5.10, we present the spatial trajectory of
the ping pong ball in both the traditional stereo vision system and the stereo active vision

system.

5.5 Concluding remarks

In this chapter, a calibration method of reflective active vision system based on
galvanometer is proposed. The method is flexible and suitable for some low-accuracy
control galvanometer-based active vision systems. Based on the physical structure of
the galvanometer, the mathematical model of the active vision system is established, and
then the specific calibration process is given. We measured the reprojection error of the
whole system and completed the spatial localization of the corner points of the chassis to
evaluate the feasibility and accuracy of the calibration method. The experimental results
show that the proposed calibration method has high accuracy indoors and is feasible.

However, at present, we only study the central optical path of the active camera,
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which cannot be used for stereo vision. In the later stage, cameras can be added for joint

calibration to complete more visual tasks such as stereo vision.



Chapter 6

HFR-video-based stereo correspondence using

high synchronous short-term velocities

6.1 Introduction

Stereo vision offers a straightforward way for computers to comprehend the world
and can reconstruct the three-dimensional geometric information of scenes [127]. It is
widely used in various fields such as autonomous navigation systems for mobile robots
[128], aerial and remote sensing measurements [129], medical imaging [130], SLAM
[131], and more. Stereo correspondence is a crucial element of stereo vision that plays a
vital role in finding corresponding point pairs between two images to calculate the depth
information of the stereo image [132].

The goal of this study is to achieve stereo correspondence for multiple moving ob-
jects with similar appearances. Over the past few decades, extensive research has been
dedicated to stereo correspondence. Traditional stereo correspondence algorithms can
be categorized into local, global, and semi-global methods. These methods use man-
ually extracted features, such as sum of absolute difference (SAD) [133], normalized
cross-correlation (NCC) [134], SIFT (Scale-Invariant Feature Transform) [135], and ORB
(Oriented FAST and Rotated Brief) [136], to provide similarity measures between left

and right image patches. However, the performance of traditional stereo correspondence

65
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methods is severely limited by the handcrafted features used in the cost function. In
Ref. [137], convolutional neural networks (CNNSs) were first introduced for stereo corre-
spondence, demonstrating advantages in both speed and accuracy over traditional meth-
ods. Currently, deep learning-based image similarity measurement methods mainly rely
on feature extraction from deep networks [138] and similarity comparison through metric
learning [139].

However, appearance-based correspondence methods face significant challenges
due to variations in camera viewpoints, lighting conditions, and pose changes [140].
Motion information, on the other hand, is independent of object appearance and ex-
hibits excellent performance in scenes with similar appearances and drastic changes in
appearance. Currently, a significant amount of research has been devoted to cross-camera
multi-object correspondence based on motion information [141, 142]. Existing motion
similarity measurement methods can be divided into two categories: spatial similarity
and spatio-temporal similarity [143]. Spatial similarity only considers the same geomet-
ric shape and ignores the temporal dimension, which is not suitable for real-time stereo
correspondence systems. The update of motion information is delayed due to the limited
speed of traditional visual image input (30 or 60 fps) [144], making trajectory synchro-
nization of high-speed moving objects difficult. However, high-speed vision sensors op-
erate at hundreds or even higher frequencies, enabling them to observe moving objects
and capture phase differences with extremely low latency [110]. Additionally, viewing
angles significantly affect trajectory matching performance. First-order motion velocity

and second-order acceleration directions are relatively insensitive to viewing angles.

6.2 Proposed algorithm
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6.2.1 Independent multi-object tracking in HFR stereoscopic video
In this study, we conducted offline experiments using the HFR stereoscopic videos
to validate the effectiveness of our algorithm. The first step involves the fast tracking of
multiple objects using the HFR stereo camera, which enables the real-time update of the
motion positions and velocities of the objects. However, HFR stereoscopic videos not
only provide more image information but also impose a higher computational burden on
multiple object tracking. HFR stereoscopic videos usually run at 200 frames per second
or higher, leaving us with only 5 milliseconds or less for computation. However, detectors
that yield good detection performance usually require longer running times. For instance,
in this study, the hand detection using MediaPipe takes approximately 30 milliseconds,
while the marker detector takes about 10 milliseconds. Therefore, we proposed a hybrid
tracking approach that combines object detection with template matching to enable the
tracking of multiple objects with very low processing time. This approach exhibits good
tracking performance for objects with drastic appearance changes due to the constantly
updated object templates. Due to the low latency of high frame rate (HFR) videos, the
motion speed of objects between frames is relatively low. To quickly locate objects near
their image blocks, template matching can be utilized. Figure 6.1 illustrates the hybrid
detection method based on template matching and object detection. The time interval
between input HFR images is denoted as 7 milliseconds. The detector continuously per-
forms object detection with a time interval of ¢ milliseconds, where 6(6 > 7) represents
the processing time of the detector. The detection results D(/;) obtained from the detector

in the input image /; attime t = k X 6 (k = 0,1,2,...) can be expressed as follows:

D) =1{d.,d*....d,....d}l=12,...,L). (6.1)

Each detection result d! comprises six parameters:
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Figure 6.1: Hybrid detection method based on template matching and object detec-
tor.

dl = {x;, yi, w, hy, pr, ¢} (6.2)

X1, Y, wy, and h; represent the starting image coordinates, width, and height of the
[-th object image block, respectively. p; and ¢; represent the confidence score and cate-
gory of the detection result, respectively. As indicated in Figure 6.1, we obtained object
templates 7, updated at time intervals of 6. Simultaneously, we perform template match-
ing using the most recently updated templates to detect objects at time intervals of 7.
In high-speed visual systems where the system’s operational speed is a priority, a trade-
off between speed and accuracy is often necessary. Therefore, we employ the sum of
absolute differences (SAD) as the similarity metric for image-template matching. The

detection process for objects between adjacent HFR frames is as follows:

P,(t) = P;(t — 7) + argminFE (x, y), (6.3)
|X|<R,lyI<R
E(ry)= Y (T1(x,y) = L (x, + x+ Xy, + y + ). (6.4)

xl’yl
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P)(t — 7) and P/(¢) represent the coordinates of the center of the /-th object in the
previous and current frames, respectively. 7; is the template image of the [-th object that
is most recently updated. I, represents the region of interest (ROI) being searched in the
current image, as highlighted in yellow in Figure 6.1. (x't, y't) represents the top-left point
coordinate of the ROI region in the current image. R is the search range of the template
matching. To mitigate the impact of object appearance changes on tracking, we perform
template updates by searching in a larger region each time, as depicted in the yellow area
in the figure.

In this work, we employ a distance matrix ® between I objects in the previous frame
and J objects in the current frame as a replacement for the Intersection over Union (IOU)

method for object tracking.

WD) w(1,2) - (1)) |

2,1 y(1,2) - w(2,J
© = Y2, 1) ¢(l,2) ( )‘ 65)

v ) SW2) - wdL) |

¥(i, j) represents the Euclidean distance between the i-th object in the previous frame
and the j-th object in the current frame, measured in pixels. We employ the Hungarian
matching algorithm to obtain tracking results quickly and efficiently.

In high-speed imaging, where object motion is relatively slow and motion between
adjacent frames is approximately uniform, we use a Kalman filter for optimal estimation
of motion. The Kalman filter can also be used for short-term motion prediction when

object detection is temporarily lost.
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Figure 6.2: Sampling velocities over time in HFR stereoscopic video.

6.2.2 Correspondence based on highly synchronous motion
Velocity-Based Correspondence: Once the optimal tracking state of the object
is obtained, we can obtain highly synchronized spatiotemporal velocities (STVs). As
shown in Figure 6.2, we sampled the velocities of the object at the pixel scale within N
high-speed frames to extract the motion feature of the object. The STVs V of the object

were then obtained as follows:

V=Avoy_1see s Upye. 0,00, (m=0,1,...,N = 1), (6.6)

where v, = [dx,, dy,] is the velocity vector at the pixel scale in the n-th frame before the
current frame.

In this study, we propose the concept of the scale cosine distance. While the calcu-
lation of the cosine distance yields the cosine of the angle between both vectors, which is
close to 1 when the angle is small, the cosine distance does not consider the length of the
vector. This means that two parallel vectors with different lengths would have a cosine
distance of 1, even though their similarity is very low. To overcome this limitation, we
introduce the scale cosine distance s between vectors A and B, which takes into account

the length of the vector, as expressed below:
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A-B

" max (AL B “r

where |A| and |B| are the modulo lengths of vectors A and B, respectively. When the
lengths of both vectors are similar and the included angle is small, the scale cosine dis-
tance is larger, with a higher similarity close to 1.

Hence, for the N-dimensional high-synchronization STVs 'V; and "V; extracted
from the left and right HFR stereo cameras, we calculated the scale cosine similarity
S.(i, j) between them as follows:

N-1

Ly .r
SUif) = 3 (6.8)

5.
N =5 max (| ‘ol ["ve )

Direction-Based Correspondence: The correlation of velocity decreases in the
presence of a large viewing angle in the HFR stereo camera. The correlation between the
direction of velocity change and the change in camera viewing angle is relatively small.
We extract the cosine values of the angle changes between velocities to form a short-term

angle for measuring the similarity A of direction changes.

A= {ClN_z, e, ay, ...,al,ao}, (l’l = 0, 1, e ,N - 2) (69)
a, is the cosine value between adjacent velocity angles,

a, = L0 0,1, N-2). (6.10)

|Un+1| : |Un| '

Hence, for the (N —1)-dimensional high-synchronization STVs ‘A; and A ; extracted
from the left and right HFR stereo cameras, we calculated the direction similarity S ,(i, j)

between them as follows:

: 1 N_zl r
Sa(l’J)zl_m;Mk_ ag|. (611)
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Mixed Correspondence: The similarity measure of object motion is contributed
by both the similarity of velocities and the similarity of velocity change directions. We
define the mixed similarity S (i, j) between the short-term velocities of the i-th target in

the left camera and the j-th target in the right camera as follows:

S, J) = wuS (i, J) + waS (i, ), (6.12)

S.t. W, + w, = 1. (6.13)

where w, and w, are scale factors that reflect the contribution of velocity and direction
to the similarity metric in different camera perspectives. Generally, when the HFR stereo
camera has a large field of view, the direction similarity S ,(i, j) should contribute a larger
proportion. Finally, based on the mixed similarity of short-term velocities, a bipartite
graph S can be reconstructed for 7 targets in the left camera and J targets in the right

camera,

_S(l,l) S(,2) --- S(l,J)-

S2,1) S(1,2) - S@2,J)
g = _ (6.14)

| S S(IL2) - SULT) |

Using the Hungarian matching algorithm, we can easily obtain the correspondence

relationship based on motion information.

6.3 Experiment

The proposed stereo correspondence algorithm was implemented offline using an

HFR stereo camera system that operated at a speed of 200 fps. The system was com-
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posed of two high-speed USB 3.0 camera heads from Imaging Source Corp. (DFK
37BUX273, Germany) and a personal computer. The cameras were compact, measuring
36 X 36 X 25 mm in size, weighing 70 g, and had no mounted lens. They were capable
of capturing and transferring 10-bit color images of 1440 x 1080 pixels to RAM at a rate
of 238 fps via a USB 3.0 interface. We used a PC with the following hardware specifi-
cations to record the HFR stereoscopic video: Intel Core i9-9900K @ 3.2 GHz CPU, 64
GB RAM, and an NVIDIA GeForce RTX 2080 Ti GPU.

To evaluate the performance of our stereo correspondence algorithm, we analyzed
HFR stereo offline videos that were captured at a rate of 200 fps (r = 5 ms) with a
2-ms exposure time. In this study, we chose the hand as the detection target because it
had a high similarity in texture and color across different people, and moved at a high
speed relative to other body parts, making it difficult to use appearance-based methods
for correspondence. We conducted three experiments to evaluate our algorithm: stereo
correspondence evaluation, correspondence of fast-moving hands, and correspondence in
a meeting room scene. For the hand detection task, we used Google’s MediaPipe toolkit,

which provided accurate and rapid hand detection.

6.3.1 Stereo correspondence evaluation

We conducted an evaluation of the correspondence performance of our HFR stereo
correspondence algorithm when implemented offline in our system. Figure 6.3 illustrates
the experimental setup for the stereo correspondence evaluation, where two metronomes
were fixed 800 mm away from the HFR stereo camera. The small metronomes operated
at frequencies of 3.0 and 2.6 Hz, respectively. OpenCV-generated markers were attached
to different positions on the pointers of both metronomes. As a result, markers on a sim-
ilar pointer exhibited similar movements when shaking, but with different magnitudes of
movement. During the operation of the metronomes, we captured a 200-fps HFR stereo-

scopic video using 12-mm lens fixed cameras. The positions of the individual markers
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Figure 6.3: Experiment setup for similar motion correspondence.

were easily detected using OpenCV.

In Figure 6.4, we show the input stereo images of size 1440 x 1080 pixels, with
the correspondence results at intervals of 0.06 s for r = 7.00~7.25 s. After applying the
stereo correspondence algorithm, the same marker in the HFR stereoscopic video was
marked with numerical symbols of a similar color. The xy coordinate values of the image
centroids of the markers in the left HFR stereoscopic video are presented in Figure 6.5.
From the image, markers 0 and 1 exhibited similar movement with different magnitudes
than markers 2 and 3. The mixed similarities of the moving markers’ STVs over time are
shown in Figure 6.6. Figure 6.6(a), 6.6(b), 6.6(c), and 6.6(d) depict the mixed similarities
between markers 0, 1, 2, and 3 in the left HFR stereo image and those in the right HFR
stereo images, respectively. The graph indicates that similar markers in the HFR stereo
images have a high degree of similarity, which is almost greater than 0.8. Markers 0 and
1 on a similar pointer have a similar angular velocity, but different linear velocities. How-
ever, our scale cosine distance includes a scale factor that can easily distinguish between
markers 0 and 1. The same applies to markers 2 and 3. We also considered the effect

of the duration of STVs on multi-object stereo correspondence. Figure 6.7 presents the
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(b) Right HFR stereoscopic video.

Figure 6.4: Input images and correspondence result in evaluation.

results of stereo correspondence using a 30 fps stereo camera in the same scene. It is evi-
dent that marker O and marker 3 do not match in the correspondence. Figure 6.8 shows the
short-term velocity features of marker 0 within a 0.3-second interval in the stereo camera
atz="7.710s. It is evident that traditional low-speed cameras have synchronization issues
when tracking fast-moving objects. Velocity information is delayed by approximately 30
milliseconds, which significantly affects the correspondence results, especially when the
object changes direction frequently. Figure 6.9 shows the short-term velocity features of
marker 0 within a 0.3-second interval in the HFR stereo camera. In contrast, the HFR
camera not only provides more motion information in a short time but also has much

higher synchronization.
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Figure 6.5: Image centroids of the markers in the stereo correspondence evaluation.
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Figure 6.6: Mixed similarities of different markers in the HFR stereoscopic video
when the STVs length is 64.

6.3.2 Stereo correspondence of hands with complex movements

We present the stereo correspondence results of hand movements during complex
actions such as overlap and reappearance. The experimental setup is illustrated in Figure 6.10.
Two individuals waved their hands approximately 8 m away from the HFR stereo cam-

eras. Similar to the previous experiment, we captured a 200-fps HFR stereoscopic video

using 12-mm fixed lens cameras. The hand movements in the video included mutual oc-
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Figure 6.8: Short-term velocities of marker 0 in the stereo video in 0.3 s at 30 fps (t
=7.710 s).
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Figure 6.9: Short-term velocities of marker 0 in the stereo video in 0.3 s at 200 fps.
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Figure 6.10: Experiment setup for hand stereo correspondence.

clusion, static states, disappearance, and reappearance. There were four hands in the HFR
stereoscopic video, represented by hand 2, hand 0, hand 1, and hand 3 from left to right.
In the offline detection process, we utilized MediaPipe to detect the hands.

In Figure 6.11, we depict the input HFR stereo images with a resolution of 1440 x 1080 pixels
and the correspondence results at intervals of 0.05 s for # = 12.84~13.09 s. In the HFR
stereoscopic video, similar hands are marked with similar colors from left to right. As
shown in the graph, there is an overlap between hands 2 and 0, which belong to the per-
son on the left. Hands 0 and 1, belonging to different people, also overlap. Our method
correctly predicts the position of the hands and completes the hand correspondence even
in the case of missing objects. The xy coordinate values of the image centroids of the
hands in the left HFR stereoscopic video are shown in Figure 6.12. By analyzing the
trajectories of the four hands, we can decompose the entire motion process into multiple
actions. From 1.8 to 9.0 s, the hands belonging to the same person crossed each other and
moved. From 23.0 to 28.0 s, hands 2 and 3 disappeared and reappeared. For the rest of
the time, the four hands were stationary. The mixed similarities of difterent hands’ STV's
over time are shown in Figure 6.13.

Figure 6.13(a), 6.13(b), 6.13(c) and 6.13(d) show the mixed similarities of STV be-

tween hands 0, 1, 2, and 3 in the left HFR stereo image and those in the right HFR stereo
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(b) Right HFR stereo images.

Figure 6.11: Input images and hand correspondence result.
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Figure 6.12: Image centroids of the hands in the left HFR stereoscopic video.
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Figure 6.13: Mixed similarities between different hands in the HFR stereoscopic
video when the STVs length is 64.
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Figure 6.14: Correct rate of different stereo correspondence methods updated every
0.25s.

images, respectively. Similar to the metronome correspondence, the motion features of a
similar hand in the HFR stereoscopic video have a higher similarity. Since our features
are motion-based, it can be seen from the figure that missing motion features introduced
more uncertainty when the hand was stationary. Furthermore, we added appearance-
based correspondence methods and calculated the accuracy of each method for hand cor-

respondence every 0.25 s, as shown in Figure 6.14. The deep learning methods, ResNet
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Figure 6.15: 3D trajectory of each hand with 7~8 s.

and DeepCompare, achieved significantly better results throughout the process and were
clearly superior to traditional methods. Our method maintained an accuracy of almost
100% during hand movement. The accuracy rate was lower than that of the appearance-
based methods only when the hand was stationary. In calibrated stereo cameras, when
similar objects are found in the stereo camera, their spatial positions can be calculated. In
Figure 6.15, we plotted the 3D trajectories of hands 0, 1, 2, and 3 over 7 to 8 s. From the
image, we can see that the four hands moved up and down at a distance of approximately
8 m from the camera. The acquisition of spatial information helped us to better analyze

the movement of objects.

6.3.3 Stereo correspondence in the meeting room

Finally, we present the experimental results for stereo correspondences when the
stereo cameras operate at 200 fps in a meeting room. To obtain a larger field of view, the
stereo cameras are equipped with 6-mm lenses. The experimental setup is illustrated in
Figure 6.16. In the meeting room, several students were more than 2 m away from the
stereo cameras. Due to factors such as privacy and occlusion, it was difficult to detect

and identify different students by their faces. Obtaining the spatial position using stereo
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Figure 6.16: Experimental environment for stereo correspondence in the meeting
room.

correspondence of the hands is a feasible solution to identify different students.

In Figure 6.17, we depict the input HFR stereo images of 1440 x 1080 pixels with
correspondence results at intervals of 0.1 s for # = 7.180~7.680 s. We numbered the stu-
dents from 1 to 5, from the nearest to the farthest. Similar hands in the stereo HFR video
were marked with similar colors, as in the previous experiment. When the students raised
their hands, we performed stereo correspondence using hand movements. Furthermore,
we calculated the 3D positions of the different hands. In this experiment, we knew the
seating distribution of each student in advance, and we could identify who raised their
hand through the position of the hand. In Figure 6.17, we marked the hand-raising action
of classmates in the upper right corner. When the hands were raised, circles belonging to
different students were filled with different colors; otherwise, they were filled with black.
The xy coordinate values of the hand images in the left HFR stereoscopic video are shown
in Figure 6.18 at r = 0—16 s. Simultaneously, Figure 6.19 shows the time variation of the
mixed similarity between similar hands at = 0-16 s. From the graph, the hands of stu-
dents 1 to 5 appeared individually in the HFR stereoscopic video. The students’ hands
moved at 0-7 and 10.5-16 s. During motion, the same hand in the HFR stereoscopic

video had a high mixed similarity of approximately 0.8. We stopped the hand from mov-
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(b) Right HFR stereo images.

Figure 6.17: Input images and stereo correspondence result.
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Figure 6.18: Image centroids of hands in the left HFR stereoscopic video.
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Figure 6.19: Mixed similarities between a similar hand in the HFR stereoscopic
video when the STVs length is 64.
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Figure 6.20: Statistical analysis of raised hands.

ing at 6.8—10.2 s. As seen in Figure 6.19, the mixed similarities of the same hand dropped
rapidly, greatly reducing the accuracy of the correspondence. Figure 6.20 shows the Gantt
chart of the detected students’ hands raised over time. When the hand stopped moving,
we could not accurately complete the correspondence. Our algorithm is currently limited
regarding stereo correspondence in the static state. These results show that our method
can accurately match objects in a stereoscopic video in moving scenes and use spatial

information to complete certain applications.
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Figure 6.22: Experimental scene (taken by a digital camera).

6.3.4 Motion-based stereo correspondence in the stereo active vision

system

The forms of motion are diverse, encompassing not only pixel-level movements
within an image but also variations in control signals within an active servo system. The
purpose of this experiment is to verify the stereoscopic matching of multiple targets in
high-speed active stereo vision by utilizing two-dimensional variations in control volt-
ages through mirror oscillation as motion signals. Figure 6.21 presents the high-speed ac-
tive stereo vision system, which consists of two identical configured high-speed galvano-
based cameras. The galvano-based camera consists of a high-speed CMOS camera head
from Image Source, Bremen, Germany (DFK37BUX287) and a two-axis pan-tilt galvano-
mirror from Cambridge Technology, Kansas City, MO, USA (6210H). The high-speed

camera is equipped with a 75 mm lens. The stereo vision system is connected with the
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Figure 6.23: Panoramic stitched images from stereo active camera.
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Figure 6.24: Trajectories of the control voltages for the pan and tilt mirrors of mul-
tiple virtual cameras.
control computer through USB, which is equipped with an Intel 19-10900X processor (3.6
GHz), 64-GB DDR4 RAM, and Window 10 Pro (64-bit). Control signals are sent to the
stereo active vision system via a D/A board (PEX-340416) from Interface Corporation,
Hiroshima, Japan.

Figure 6.22 shows the scene of the whole experiment taken by the digital camera,
4 experimenters are standing about 7 meters away from the active vision system. At the
beginning of the experiment, the 4 experimenters remained still, and when the scanning
initialization was completed, they would move individually. In Figure 6.24, trajectories
of the control voltages for the pan and tilt mirrors of multiple virtual cameras in the left

active vision system are shown. At the 20th second, the system completes the initializa-
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Figure 6.25: Motion-based mixed similarities of identical objects in stereo active
vision systems.

. [ I
Right active virtual camera

Figure 6.26: Virtual cameras from stereo active vision.

tion of scanning and detection, and four experiment participants initiate their movements.
From the 20th second to the 80th second, the participants engage in independent move-
ments for approximately one minute. As shown in Figure 6.25, it shows motion-based
similarities of identical objects in stereo active vision systems. It is evident that starting
from the 20th second, as different experiment participants initiate their movements, the
similarity of motion among multiple identical targets in the active stereo vision system
exceeds 0.7. This demonstrates our ability to achieve a high level of accuracy in perform-
ing stereoscopic correspondences for multiple moving objects in the active stereo vision
system. Figure 6.26 shows multiple virtual cameras from stereo active vision. Rectangles

of the same color are used to mark identical characters. In Figure 6.27, we plot the spatial
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Figure 6.27: Spatial trajectories of multiple moving figures from 44.6 s to 49.8 s.

trajectories of the four experimenters between 44.6 s and 49.8 s. It’s pretty obvious if

they’re squatting or shaking.

6.4 Concluding remarks

In this chapter, we addressed the problem of stereo correspondence of objects with
similar appearances. Traditional appearance-based algorithms do not provide effective
performance, so we proposed a method that uses highly synchronized motion information
to overcome this limitation. Our approach involves using high-synchronous short-term
velocities acquired by high-speed vision systems as features for stereo correspondence of
moving objects. We demonstrated the effectiveness of our method through experiments
on (1) the correspondence of markers for regular motion on a metronome and (2) mo-
tion tracking and correspondence of multiple hands in indoor scenes. These experiments
confirmed the potential of high-speed vision technology to improve the stereo correspon-
dence of objects with similar appearances. However, our current method cannot provide
accurate results when objects are static.

Although our experiments were conducted in fixed camera settings, it is worth not-
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ing that the proposed method holds potential for application in active camera systems.
Future work could explore the adaptation and optimization of our method specifically for

active camera systems and investigate its performance in real-world scenarios.
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Chapter 7

Conclusion

This research aims to achieve real-time tracking of multiple targets by using an
ultra-high-speed active vision system and combining the motion information of the ob-
jects for stereo correspondence. At the same time, to further improve the accuracy of the
system, this study also established a mathematical model and developed a set of flexible
calibration algorithms for the precise measurement of the spatial position of the ultra-
high-speed galvanometer camera system. In this chapter, the main research content of the
thesis is reviewed and summarized, and the future research direction is prospected.

First, this study uses an ultra-high-speed active vision system to achieve real-time
tracking of multiple targets. Through the multiplexing and fast control algorithm of the
active camera, the system can quickly respond to the movement of multiple targets and
update the position and trajectory information of the targets in real-time. Furthermore,
to deal with the problems of visual occlusion and object re-identification, this paper pro-
poses a strategy based on template matching and appearance model updating to improve
the robustness and accuracy of the system. Experiments have proved that we can simul-
taneously track up to 20 moving objects at a speed of 25 frames per second, or track
multiple objects with a moving speed of up to 30m/s. Secondly, this paper also estab-
lishes a mathematical model and develops a set of flexible calibration algorithms for the

spatial position measurement problem of the ultra-high-speed galvanometer camera sys-
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tem. This method is suitable for stereo active vision systems, and the calibrated system
can perform more precise spatial positioning. The algorithm can accurately measure the
position and angle of the galvanometer camera system according to the actual application
requirements, thereby improving the accuracy and reliability of the system measurement.
Experiments have proved that the ultra-high-speed active stereo vision system through
the calibration algorithm can complete the measurement with an error of fewer than 0.3
centimetres within a range of 7 meters. Last, this paper uses the motion information of
the object for stereo correspondence and realizes the 3D position reconstruction of the
target through stereo vision technology. This method converts the appearance matching
of objects in stereo images into the matching of motion information in stereo images, and
the success rate of stereo correspondence for moving objects is as high as 100%. Espe-
cially for some similar-looking objects, such as human faces, hands, etc., it is difficult for
traditional appearance-based matching algorithms to obtain high accuracy. Our method
of using highly synchronized motion information of objects for matching is a general
method that can be applied not only to object pixel displacement in fixed cameras but also
to voltage displacement in stereo active cameras.

Through extensive experimental verification and performance evaluation, the method
in this study achieves remarkable results in real-time object tracking and stereo correspon-
dence. Compared with traditional methods, the algorithm proposed in this paper shows
obvious advantages in accuracy, real-time and precise measurement.

There are still some problems to be solved in the future. Our stereo correspon-
dence method based on motion information cannot perform excellent performance when
the object is stationary, and future work can consider developing a stereo correspondence
method that is easy for appearance and motion information. At the same time, the current
modelling of our galvanometer-based ultra-high-speed active camera system can only
complete the measurement of spatial points, and it can be expanded later to complete

ultra-high-speed stereo reconstruction of multiple objects. In addition, more applica-
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tion fields can be explored, such as robot navigation, intelligent transportation, etc., the
method can be popularized and applied, and new calibration algorithms and technologies

can be further studied to meet the needs of different fields.
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