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Abstract

Neutrino physics has changed significantly since the discovery of
flavor oscillations by Super Kamiokande and the Sudbury Neutrino
Observatory. Starting with the work of Pontecovo, the theory of neu-
trino flavor oscillations in quantum mechanics has been established
for some time. However, a consensus for the theory of neutrino flavor
oscillations in quantum field theory has not been reached and is an
active area of research.

We developed a formulation of neutrino flavor oscillations based
on lepton family numbers in quantum field theory. We will start with
a derivation of lepton family number for neutrinos with Majorana
masses. Then, we will derive the lepton family number for neutrinos
with Diracmasses. Themain result of those derivations are aMajorana
expectation value from our original work and a Dirac expectation
value that is new for this thesis.

Some important results from of the expectation values are time
dependent oscillations, total lepton number violation or conserva-
tion, and the recovery of the quantum mechanics formulation in the
ultra-relativistic limit. We also compare the Majorana expectation
value and the Dirac expectation value, which is a new comparison
for this thesis. We compare them in two ways, first by studying the
total lepton number and second by comparing the low momentum
phenomenology. For total lepton number, we find the Dirac expecta-
tion value to conserve total lepton number, whereas the Majorana
expectation value violates total lepton number. In the low momentum
phenomenology our formulation has three interesting properties, we
can distinguish the neutrino mass type, differences from the neutrino
mass hierarchy are enhanced, and the Majorana phases can play an
important role to the Majorana Expectation value.

Lastly, we prove our formulation is the same in the Schrödinger and
Heisenberg pictures. We study a non-trivial relationship between the
Fock spaces of the operators, which is not usually considered in high
energy physics. That non-trivial relationship leads to a Bogolyubov
transformation that connects the operators of the Fock spaces. This is
sometimes considered in Thermal field theory and gives an interesting
theoretical background to our model.
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Chapter 1

Introduction to neutrino
physics

Neutrinos are one of the most interesting particles in our universe.
They are the only known particle to break from the Standard Model.
This comes from the results of neutrino oscillations experiments, for
example Super Kamiokande [1, 2, 3] and NOvA [4, 5, 6], requiring
massive neutrinos. Neutrino oscillation phenomenon has grown into
a vast field, originating with the work of Pontecovo and quantum
mechanics [47]. Nowadays, there are numerous experiments that aim
to take precision measurements within the next ten years. Some of
these measurements include:

• Neutrino mass hierarchy,

• Neutrino mass type,

• CP violation in the leptonic sector,

• Absolute mass scale of the neutrinos.

In spite of the numerous precision experiments, the theory of neutrino
oscillations is not fully established.

1.1 Brief history of neutrinos

This is not an exhaustive review, for more details on the history of
neutrinos please see the database at neutrino-history.in2p3.fr and the
references [7, 9, 8].
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In the late 19th century a kind of radioactive decay called β-decay
was discovered. Today, we know β-decay is the release of an elec-
tron e− from the atomic nucleus; at that time it was understood as
A → B + β−, where A is the parent and B is the daughter nuclei. The
electron and atomic nucleus are known to have a fixedmass, so studies
of β-decay expected the released electron to be monoenergetic. How-
ever, multiple experiments found the electron energy to be smoothly
distributed [10, 11] that lead to two possible explanations.

1. Energy was only conserved in a statistical sense for atomic pro-
cesses,

2. Or some other, unmeasurable, particle was involved in β-decay
[12].

For the second explanation, an unmeasurable particle would have to
be electrically neutral otherwise it could be measured with the same
techniques as the electron. At that time no electrically neutral particles
were known. In addition, to reproduce the smooth distribution of β-
decay energies it would have to be effectivelymassless. These concepts
lead Fermi to the name neutrino, which is derived from Italian for
little (effectively massless), neutral one (electrically neutral) [13].

Around the 1930s it was discussed whether neutrinos were unde-
tectable [14]. Nevertheless, in 1946 Pontecorvo proposed a method to
detect neutrinos that is called Inverse β-decay [15]. Inverse β-decay is
the interaction between an electron antineutrino and the proton that
produces a neutron and positron, νe + p → n+ e+. Such an experiment
would have to detect the neutron and the positron. Ten years after the
proposal by Pontecorvo, the neutrino was experimentally discovered
by Reines and Cowan using inverse β-decay [16]. The discovery of the
neutrino removed the idea that energy is not exactly conserved for
atomic processes.

1.1.1 Fermi Theory and Parity

The first quantum theory of nuclear β-decayswas formulated by Fermi
starting in the year 1934 [17]. He described β-decays as a four fermion
interaction with the rate being suppressed by an overall constant
term Gf . At the time, Fermi theory was analogous with the new the-
ory of quantum electrodynamics (QED) and Fermi theory formed the
beginning of neutrino physics.
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Gamow and Teller extended Fermi theory with a parity conserv-
ing axial-vector interaction [18]. Furthermore, Pontecorvo suggested
Fermi theory should also apply to the newly discovered muons [19]
and about this time β-decays started to be generalized into the Weak
Interaction. Perhaps famously, Fermi theory is nonrenormalizable
and is only accurate for energies near the nuclear mass range.

After the experimental discovery of parity violation in the Weak
Interaction [20, 21], the theory for Weak Interactions became more
complicated. The complications arose as the Gamow and Teller model
had to be extended with parity violating interactions that greatly
increased the allowed interaction structures. Many people worked to
remedy those complications, coalescing in the formulation of V − A
theory [22, 23, 24, 25, 26, 27]. To achieve the V − A interaction, the
neutrinos are massless left-handed fermions and antineutrinos are
massless right-handed fermions.

1.1.2 Lepton families and number

After Pontecorvo suggested Fermi theory should be applied to both
electrons and muons, the concept of Lepton families started to appear
[28, 29, 30, 31]. It was until 1953 that Konopinski and Mahmoud intro-
duced the more modern notation of lepton number L [32], and today
we use their notation to write the following assignments,

e− νe μ− νμ τ− ντ L = +1
e+ νe μ+ νμ τ+ ντ L = −1

The lepton numbers are then broken down into families denoted by
the charged leptons,

e− νe Le = +1
μ− νμ Lμ = +1
τ− ντ Lτ = +1.

These assignments for lepton number and lepton family numbermean
that L is a conserved value in V − A theory, and forbids the processes
μ → e + γ and νe +

37Cl → 37Ar + e−. The first process of μ → e + γ
breaks lepton family number conservation as the muon is assigned
Lμ = +1 and electron is assigned Le = +1. So the muon family in
that process is nonzero, implying family violation, similarly for the
electron family. The second process of νe +

37Cl → 37Ar + e− breaks
lepton number conservation for the anti-electron neutrino minus the
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1.2. Neutrinos in the Standard Model N.J.Benoit

electron is nonzero (+1) − (−1) = 2. Schwartz used lepton family
number conservation to prove the existence of the muon neutrino in
1962, in an experiment suggested by Pontecorvo [33, 34].

1.2 Neutrinos in the Standard Model

The next big step for neutrino physics occurred in 1961, when Glashow
incorporated the V − A theory with quantum electrodynamics in an
SU(2)× U(1) gauge model [35]. Then Weinberg and Salam included
the Higgs mechanism in the Glashow model to produce the Glashow-
Weinberg-Salam Standard Model (SM) [36, 37]. In the Standard Model,
neutrinos are only involved with the electroweak interactions. They
are left-handed massless fermions described as Weyl fields often de-
noted να taken from V − A theory, where α = e, μ, τ marks the lepton
family or flavor.

The electroweak Lagrangian in the Standard Model is summarized
as,

Lν = −i
∑
α

lαL /DlαL + h.c., (1.1)

which involves left-handed neutrinos in the lepton SU(2) doublet,

lαL =

(
ναL
αL

)
. (1.2)

Right-handed neutrinos are not included, the same as V −A theory. We
can expand the covariant derivative of Eq.(1.1)D = ∂μ+igAμ ·I+ig′Bμ

Y
2

into kinetic and interaction sections. The interaction section describes
how neutrinos couple with the weak interaction gauge bosons W and
Z,

LCC
ν,I = −

∑
α

g√
2
(ναLγ

ρlαLWρ + h.c.) , (1.3)

LNC
ν,I = −

∑
α

g

2 cosϑW

ναLγ
ρναLZρ. (1.4)

The charged current (CC) interaction of Eq.(1.3) with the W-Boson
are direct replacements of Fermi theory and V − A theory. The orig-
inal Fermi constant, Gf , is replaced by the interaction coupling g
divided by the mass of the W-Boson mW resulting in the relation
Gf = (g2

√
2)/(8m2

W ). The Feynman diagrams for the charged current
interactions are,
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The neutral current (NC) interaction of Eq.(1.4) with the Z-Boson are
new in the Standard Model. For neutrinos, the Feynman diagram for
the neutral current interaction is,

Similar to the charged current interactions, the Fermi constant can be
derived from a four fermion interaction that exchanges a Z-Boson. The
result is the relation Gf = (g2

√
2)/(8 cos2 ϑWm2

Z). Practically, the Stan-
dard Model inherits the electrically neutral and massless neutrinos
from the V − A and Fermi theories.

In 1973, muon neutrinos were measured to have been scattered
off electrons and nucleons by the neutral current interaction at the
Gargamelle experiment [38, 39, 40]. The Gargamelle results helped
to validate the neutral current and Standard Model, cementing the
importance of the neutrino. Another important experiment for neutri-
nos in the Standard Model is a measurement of the effective number
of neutrino flavors via the decay width of the Z-boson. The effective
number of flavors is measured from the invisible decay of the Z-boson,

Γinv = ΓZ − (Γhadron + Γττ + Γμμ + Γee). (1.5)

If we assume only Standard Model particles, then the invisible decay
is written Γinv = NνΓνν where Nν is the effective number of flavors.
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1.3. Neutrino flavor oscillations N.J.Benoit

The most precise measurement was done by the LEP experiment and
concluded only three flavors of neutrinos exist, section 7.2.2 of [41].

Electric neutrality often poses a problem for experiments, because
the only probe available for neutrinos are theweak interactions, which
have very small cross-sections. For that reason neutrinos are not
experimentally measured unless it is done by a dedicated experiment.
Instead, experiments treat neutrinos as missing energy who’s degrees-
of-freedom (DOF) are integrated over, as was the case for the LEP
experiment. This has lead neutrinos to be the least experimentally
understood fermions in the Standard Model.

1.3 Neutrino flavor oscillations

Even though neutrinos are the least understood fermions, they are
also the only experimentally confirmed particles to be beyond the
Standard Model. This fact came to light starting the in the late 1960s
with the Homestake experiment, which was designed to measure
electron neutrinos fromnuclear fusion in the sun [42]. The experiment
was designed to capture the neutrinoswith chlorine 37Cl and transform
into an isotope of argon 37Ar,

νe +
37Cl → 37Ar+ e−. (1.6)

Then, after some weeks the argon could be extracted and measured,
which would be directly correlated to the number of neutrino events.
Rather famously, only about a third of the expected argon was mea-
sured [43]. This led to years of research into solar modeling and
repeated experiments at Homestake.

Simultaneously in the 1980s, the Kamiokande experiment was
searching for proton decays predicted by numerous Grand Unified
Theories (GUTs). Proton decay is a signature of GUTs and is physics
beyond the Standard Model following the general form,

p+ → e+ + π0, (1.7)

where the neutral pion decays into two photons π0 → 2γ. How the
positron and pion is produced depend on the details of the exact GUT
model.

To preform a proton decay search, the Kamiokande experiment
had to develop software that could distinguish proton decay from at-
mospheric neutrino interactions of νμ and νe. Their software was able
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to distinguish simple atmospheric neutrino interactions easily and
predictions for the number of events was created; however, when the
software was applied to experimental data the number of νμ events
was fewer than predictions [44]. Investigations of the software found
no issues and the neutrino deficit was suggested to be real measure-
ment.

Before the Homestake experiment, in 1958, Pontecorvo suggested
electron neutrinos could oscillate to electron antineutrinos νe � νe
[45, 46]. Primarily, he based his work on neutral Kaon oscillations
K0 � K0 that had been experimentally discovered. After the Homes-
take experiment results were released, he offered a solution to the νe
deficit based on his particle-antiparticle oscillation work. His solution
assumed neutrinos were massive particles that oscillated between
flavors νe � νμ not particle-antiparticles [47, 48]. Unknown to him,
neutrino flavor oscillations had been separately discussed by Maki,
Nakagawa and Sakata a few years before [49].

Neutrino flavor oscillations were also taken up by the Kamiokande
experiment as a possible solution to their measured νμ deficit. How-
ever, neither the Homestake nor the Kamiokande experiment was
statistically significant enough to warrant any conclusions In addition,
the flavor oscillations proposed by Pontecorvo could not explain the
all the Homestake experiment νe deficit.

1.3.1 Super-Kamiokande and the SudburyNeutrinoOb-
servatory

The next generation of experiments were built with the intention of
measuring the same neutrinos as Kamiokande and Homestake. There
were two main experiments focused on those neutrinos,

• Super-Kamiokande,

• Sudbury Neutrino Observatory (SNO).

Super-Kamiokande is a larger version of the Kamiokande experiment
and used the larger volume to increase the number of measured νμ
events. More measured events meant a smaller statistical uncertainty.
The Sudbury Neutrino Observatory was a superseding version of
the Homestake experiment and was able to measure all neutrino
flavors νe, νμ, and ντ . Importantly, Super-Kamiokande reported above
5-sigma deficits in νμ compared to the Standard Model expected value
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and the Sudbury Neutrino Observatory reported no deficits when
all the neutrino flavors were summed. But, the Sudbury Neutrino
Observatory reported the same deficit as the Homestake experiment
in νe and enhancements in νμ and ντ . Both results strongly favored a
neutrino flavor oscillation solution [50, 51].

As a note, for both experiments to realize their results the flavor
oscillations proposed by Pontecorvo, Maki, Nakagawa, and Sakata
(PMNS) had to be extended. Mikheev, Smirnov, andWolfenstein (MSW)
accomplished the extension by modifying the oscillation phases with
potential effects from propagation though matter [52, 53, 54]. Super-
Kamiokande used the MSW effect, or matter effect, to measure differ-
ences in neutrino fluxes coming from above vs below the detector. The
fluxes of neutrinos observed by the Sudbury Neutrino Observatory
were modified by matter in the sun.

1.3.2 Neutrino flavor oscillations in quantum mechan-
ics

This will be a brief review of how neutrino flavor oscillations are
formulated in quantum mechanics. For a detailed discussion see the
works of [8, 9, 55, 56]. We assume the neutrinos are already produced
in a charged current weak interaction similar to Eq.(1.3). The flavor
of the neutrino is defined by the SU(2) lepton pair. These flavors are
denoted with Greek symbols α = e, μ, τ ;

|να〉 =
∑
i

U∗
αi|νi〉, (1.8)

where from the weak interaction the PMNS matrix Uαi is unitary and
the massive neutrino states are orthonormal 〈νj|νi〉 = δji

1. A brief
overview of the PMNS matrix is in appendix A. We do not completely
constrain the number of massive neutrino states i ≥ 3. In the flavor
basis, states above three are called sterile neutrinos, because any states
above three would not participate in the weak interaction. In this way,
since sterile neutrinos do not participate in the weak interaction they
avoid the effective number measured by the LEP experiment [41].

Next, we treat the massive neutrino states as eigenstates of the
Hamiltonian,

H|νi〉 = Ei(�p)|νi〉. (1.9)

1Throughout our work the Greek indices will represent flavor and the Latin
indices will represent massive states.
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That Hamiltonian evolves according to the Schrödinger equation and
leads to a time evolution solution for the massive neutrino states,

|νi(t)〉 = e−iEi(�p)t|νi〉 (1.10)

We desire the time evolution in the flavor basis, so we use Eq.(1.8) and
the unitary property of the PMNS matrix to write,

|να(t)〉 =
∑
i

U∗
αie

−iEi(�p)t|νi〉

=
∑
β

(∑
i

U∗
αi e

−iEi(�p)tUβi

)
|νi〉.

(1.11)

We highlight that at t = 0 the flavor neutrino state of Eq.(1.11) is a pure
flavor i.e., α = e, μ, τ due to the unitary properties of the PMNS matrix.
Then for t > 0 the pure state becomes a superposition of flavor states.
The transition probability of an initial flavor state α to be changed
into a new state β is calculated as,

Pα→β(t) = |〈νβ|να(t)〉|2
=
∑
i,j

U∗
αiUβiUαjU

∗
βj e

−i(Ei(�p)−Ej(�p))t, (1.12)

where the phase of the oscillations are the energy differences φi,j =
− (Ei(�p)− Ej(�p)) t. Typically, experiments are run for neutrinos that
satisfy |�p| � mi,j , which leads to the three ultrarelativistic approxima-
tions:

1. The dispersion relation of the massive neutrino eigenstates be-
comes Ei(�p) � |�p|+m2

i /|�p|.
2. The average energy is defined as E = |�p|.
3. The time evolution is rewritten as the distance from the neutrino

source to the detector t = L.

The ultrarelativistic approximation transforms Eq.(1.12) the transition
probability to be,

Pα→β(t) �
∑
i,j

U∗
αiUβiUαjU

∗
βj exp

[
−i

Δm2
i,jL

2E

]
, (1.13)

where Δm2
i,j ≡

(
m2

i −m2
j

)
is the squared mass differences. Some im-

portant facts about Eq.(1.13), the elements of the PMNSmatrix and the
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squared mass differences are measured by experiments as described
at the end of appendix A. In contrast, the macroscopic distance L and
the energy E of the experiments are known. When we sum over α or
β the probability is conserved, equal to unity, because of the unitary
property of the PMNS matrix. Lastly, Eq.(1.12) and Eq.(1.13) tell us
neutrino flavor oscillations are periodic changes in flavor described by
mass dependent phases and amplitudes. This is interesting, because
no external influence is required to have a flavor transition.

1.3.3 Breakdown of the ultrarelativistic approximation

From the beginning the ultrarelativistic approximation was scruti-
nized and questioned [56, 60, 61, 62, 63, 64]. To list a few of the ques-
tions:

• When is the approximation applicable?

• Is energy-momentum conservation broken by oscillations?

• When are oscillations expected to be observed?

Let us briefly explore why these questions appear following the argu-
ment of Giunti and Kim [56]. When we consider a pion decay at rest
following π → μ+ ν the four momentum conservation leads to,

E2
k =

m2
π

4

(
1− m2

μ

m2
π

)2

+
m2

k

2

(
1− m2

μ

m2
π

)
+

m4
k

4m2
π

, (1.14)

p2k =
m2

π

4

(
1− m2

μ

m2
π

)2

− m2
k

2

(
1 +

m2
μ

m2
π

)
+

m4
k

4m2
π

, (1.15)

where mk is the mass of the neutrino mass eigenstates. If we neglect
the m4

k terms, because the neutrino masses are tiny compared to the
pion and muon, the conservation equations are rewritten as,

Ek � A+ η
m2

k

2A
, (1.16)

pk � A− (1− η)
m2

k

2A
. (1.17)
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For the pion decay to a muon and neutrino, A and η take on the values
of,

A =
mπ

2

(
1− m2

μ

m2
π

)
� 30MeV, (1.18)

η =
1

2

(
1− m2

μ

m2
π

)
� 0.2 . (1.19)

When deriving the transition probability of Eq.(1.13) we assumed the
neutrino mass eigenstates have the same momentum �p and defined
the average energy to be E = |�p|. For the mass eigenstates to have
the same momentum, the four component conservation equation
of Eq.(1.17) tells us η = 1. Clearly, this is contradictory to the value
of η � 0.2 for conservation in the pion decay at rest. Even if we
change the decay channel to be π → e+ ν for a pion at rest, the four
component conservation gives η � 0.5, which is not the same as our
assumptions for Eq.(1.13) tell us. We conclude that the assumptions
leading to Eq.(1.13) break energy-momentum conservation, and we
should consider when Eq.(1.13) is applicable.

The resolution to these questions is found by considering wave
packet for the neutrinos, as opposed to plane waves. Details on wave
packets in quantummechanics can be found in the beginning of older
textbooks [65, 66].

In the most general sense, wave packets are localized expressions
built with interfering plain waves that can be expressed,

ψ(�x, t) =

∫
d�kf(�k − �k0)e

i�k·�x−iE(�k)t, (1.20)

where f(k − k0) is called the damping function, or weighting function.
See figure 1.1 for an example, the plain waves have constructive and
destructive interference. This leads to a localized wave function. For
neutrino flavor oscillations, wave packets modify the oscillation for-
mula of Eq.(1.13) with additional terms related to energy-momentum
conservation and damping from decoherence. We rewrite Eq.(1.11)
in terms of a wave packet,

|να(t)〉 =
∑
i

U∗
αiψi(�x, t)|νi〉. (1.21)

The wave function ψi(�x, t) is different for each mass eigenstate. The

damping factor fi(�k − �k0) inside the wave function, acts to introduce
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Distance
0 50 100

(x
)

-0.5

0.0

0.5

Real( )
Im( )
damping

Figure 1.1: Example of wave packet where the damping function is
Gaussian. The plane wave parts are enveloped by the damping func-
tion.

quantum uncertainties into the energy-momentum of the mass eigen-
states. This modifies Eq.(1.12) and Eq.(1.13) to account for η 
= 1 from
Eq.(1.16) and Eq.(1.17). Details of the resulting transition probability
can be found in the work of Giunti and Kim [56].

Presently experiments have not observed effects due to wave pack-
ets, and the ultrarelativistic approximation is enough to explain their
data.

1.3.4 Neutrino flavor oscillations in Quantum Field
Theory

The use of Quantum Field Theory to describe neutrino flavor oscilla-
tions is more diverse than Quantum Mechanics [67, 68]. To list a few
there are external wave packet models (virtual propagator models
[69, 70, 71, 72] and real propagatormodels [74, 73]), source-propagator
models [75, 76, 77], and the weak Fock space model (Blasone-Vitiello
model) [78, 79, 80, 81, 82, 83]. All of those models reproduce the Quan-
tum Mechanics derived oscillation formula Eq.(1.12) in some limit,
but are in general different from each other.

The originalmotivation to useQuantumField Theorywas to resolve
the issues of energy-momentum conservation and investigate if the
assumptions of the Quantum Mechanics derivation are reasonable.
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We will not give a full proof in the Quantum Field Theory formulation,
but instead we will summarize the results of an external wave packet
model. Please refer to the review by Beuthe [68] or the textbook by
Giunti and Kim [8] for a complete proof.

External wave packet models are formulated with the neutrino
detection and production processes. All the detection and production
particles are treated as wave packets, often Gaussian, with asymptotic
initial and finial states;

|fP 〉 = S|PI〉 production, (1.22)

|fD〉 = S|ν,DI〉 detection, (1.23)

where S is the process S-matrix. At this point, we must consider the
details of the production and detection processes to define |fP 〉 and
|fD〉. If, for example, we consider the production of a neutrino and
then detection of a neutrino following lepton number conservation;

PI → PF + l+α + νP
α production, (1.24)

νD
α +DI → DF + l−α detection, (1.25)

are general processes that could occur. Then we can identify the state
|fP 〉 =

∑
j AP

αj|νj, l+α , PF 〉, where the coefficient AP
αj is the amplitude of

production for this process. To solve for the neutrino flavor state we
take the projection,

|νP
α 〉 = 〈PF , l

+
α |fP 〉 =

∑
j

〈PF , l
+
α |AP

αj|νj, l+α , PF 〉, (1.26)

which becomes the equation,

|νP
α 〉 =

1

NP

∑
j

AP
αj|νj〉 (1.27)

with the normalization NP =
√∑

k|AP
αk|2. A similar kind of formula

can be found for the detection process,

|νD
α 〉 =

1

ND

∑
j

AD
αj|νj〉. (1.28)

Neutrino flavor oscillations occur over a spacetime interval from
the production location to the detection location. To represent that we
evolve the production state Eq.(1.27) in spacetime,

|να(L, t)〉 = e−i(q0t−q·L)|νP
α 〉, (1.29)
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1.3. Neutrino flavor oscillations N.J.Benoit

where we have assumed the neutrinos to have a definite energy and
momentum2. The transition amplitude for the measured process να →
νβ is found by bringing Eq.(1.28) in from the left,

Aα→β(L, t) = 〈νD
β |να(L, t)〉

= 〈νD
β |e−i(q0t−q·L)|νP

α 〉
=

1

NPND

∑
j

AP
αjAD∗

βj e
−i(Ejt−qj ·L).

(1.30)

For simplicity, we now consider the evolution to only occur in one
spatial dimension writing qj · L ≈ qjL. Then the probability for the
transition να → νβ to occur is,

Pα→β(L, t) = |Aα→β(L, t)|2

=
1

(NPND)2

∑
j,k

AP
αjAD∗

βj AP∗
αkAD

βke
iΦjk , (1.31)

where the oscillation phase Φjk = −((Ej − Ek)t − (qj − qk)L) is the
same as the Quantum Mechanical version of Eq.(1.12). In fact, if we
take the ultrarelativistic approximation of t = L then −Ejt + qjL =
−(m2

jL)/(Ej + qj) � −(m2
jL)/(2E), and the oscillation phase becomes;

Φjk � −Δm2
j,kL

2E
. (1.32)

The approximated phase is exactly the same as the Quantum Mechan-
ical approximation Eq.(1.13).

Differences between the Quantum Mechanical and the external
wave packet results are two modifications to the oscillation ampli-
tudes.

1. The external wave packet amplitude is suppressed by normaliza-
tion factors NP and ND.

2. The amplitude is modified by the production AP
αj and detection

AD
βk amplitudes.

To understand those two modification we must consider the charged
current interaction of Eq.(1.3). We do not go into details here, but after

2Proper treatment of the evolution should be done for energy momentum distri-
butions of the production and detection particles described with wave packets.

16



1.4. Open questions and prospects N.J.Benoit

considering the charged current interaction Eq.(1.27) and Eq.(1.28)
are rewritten as;

|νP
α 〉 =

∑
j

MP
αj√∑

k|Uαk|2|MP
αk|2

U∗
αj|νj〉, (1.33)

|νD
α 〉 =

∑
j

MD
αj√∑

k|Uαk|2|MD
αk|2

U∗
αj|νj〉. (1.34)

The symbols M(P,D)
αj are the matrix elements of the production and

detection charged current processes. Ultimately, this means the prob-
ability of Eq.(1.31) is written as,

Pα→β(L, t) =
∑
j,k

MP
αjMP∗

αk∑
i|Uαi|2|MP

αi|2
MD

βjMD∗
βk∑

i|Uβi|2|MD
βi|2

× U∗
αjUβjUαkU

∗
βke

−i[(Ej−Ek)t−(qj−qk)L]. (1.35)

In summary, the external wave packet model modifies the quantum
mechanic probability with corrections from the production and de-
tection processes.

1.4 Open questions and prospects

Neutrino physics has evolved significantly since the discovery of flavor
oscillations by Super Kamiokande [50] and the Sudbury Neutrino
Observatory [51]. Nowadays, there are numerous experiments that
aim to take precision measurements within the next ten years. Some
measurements include:

• Neutrino mass hierarchy,

• Neutrino mass type,

• CP violation in the leptonic sector,

• Absolute mass scale of the neutrinos.

Furthermore, the originating work of Pontecovo with neutrino oscil-
lations in quantum mechanics [47] has been established to not be a
theoretically complete model for neutrino oscillations. And, a consen-
sus for the theory of neutrino oscillations in quantum field theory has
not been reached. In the next chapter, chapt. 2, we will discuss in de-
tail howwe have contributed to the discussion of neutrino oscillations
in quantum field theory.
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Chapter 2

Framework for the lepton
number carried by neutrinos

We consider a formulation of neutrino flavor oscillations based on
lepton family numbers in quantum field theory. As we introduced in
section 1.1.2, lepton family numbers are conserved values in V − A
theory and are a U(1) global symmetry in the Standard Model. How-
ever, an implication of neutrino flavor oscillations is lepton family
number violation [8]. That implication is an important connection,
for neutrino flavor oscillations, between the quantum mechanics of
section 1.3.2 and quantum field theory of section 1.3.4.

Equally important is what occurs for total lepton number after the
neutrinomass type is considered, as a reminder total lepton number is
the sum over all the lepton family numbers. For example, if we assign
neutrinos to have a Majorana mass type then the total lepton number
would be violated. However, if we assign a Dirac mass type, the total
lepton number is conserved. The reason for a difference in total lepton
number can be seen from inspecting the mass construction,

mD ψRψL︸ ︷︷ ︸
−1+1=0

Dirac mass, (2.1)

1

2
mMψC

LψL︸ ︷︷ ︸
1+1=2

Majorana mass, (2.2)

where the subscripts are counting the lepton numbers for a single
flavor and ψC

L = (ψL)
C . If a particle is described with a Majorana field

ψM = ψL + ψC
L the electromagnetic current jμ = qψMγμψM vanishes.

Thismeans only an electrically neutral particle can be aMajorana field
and in the Standard Model, only the neutrino is electrically neutral.
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2.1. Single flavor Majorana neutrinos N.J.Benoit

We are interested in how the different mass types effect neutrino
oscillations, as the current quantum mechanics and quantum field
theory models provide no incite. Furthermore, we think the effect of
the different mass types on total lepton number will be reflected in
the flavor oscillations. To illustrate our ideas in a simple way, first we
will consider a model with only one flavor.

2.1 Single flavor Majorana neutrinos

We write the single flavor Majorana Lagrangian as,

LS = νLiγ
μ∂μνL − θ(t)

(mM

2
νC
L νL + h.c.

)
, (2.3)

where we have used the notation νC
L = (νL)

C for charge conjugation
and the subscript L denotes the left-handed projection operator PL =
(1− γ5)/2. The Lagrangian of Eq.(2.3) has the structure where the first
term is the kinetic part and the second term is the Majorana mass
part. A step-function θ(t) controls the second term and separates the
Lagrangian into two regions. In the first region, we approach the zero
time from below until we are infinitesimally away,

lim
t→0−

t = −ε. (2.4)

For that region, the fields of Eq.(2.3) are Fourier expanded as Weyl
spinors,

νL(−ε,x) =

∫ ′ d3p

(2π)32|p|
(
a(p)uL(p)e

ip·x + b†(p)vL(p)e−ip·x) . (2.5)

The creation and annihilation operators obey theusual anti-commutation
relations,

{a(p), a†(q)} = {b(p), b†(q)} = 2|p|(2π)3δ(3)(p− q) , (2.6)

with all others being zero. We constrain the left-handed spinors uL(p)
and vL(p) to be normalized as,

uL(p) = −vL(p) =
√

|2p|
(

0
φ−(n)

)
, (2.7)

n · σφ±(n) = ±φ±(n), (2.8)

n =
p

|p| . (2.9)
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2.1. Single flavor Majorana neutrinos N.J.Benoit

The symbol σ denotes a vector of the Pauli matrices. We use the
integral notation of

∫ ′
to denote the regions of {p 
= 0,p ∈ A,−p ∈ A}

with details in appendix B.
We approach the zero time from above in the second region delim-

ited by the step-function,

lim
t→0+

t = +ε. (2.10)

In this region, the neutrinos are Majorana fermions that are Fourier
expanded to be,

PLν(+ε,x) = PL

∫ ′ d3p

(2π)32E(p)

∑
λ=±

(
aM(p, λ)u(p, λ)eip·x

+ a†M(p, λ)v(p, λ)e−ip·x), (2.11)

where E(p) =
√

p2 +m2, λ is the spinor helicity, and PL = (1− γ5)/2 is
the left-handed projection operator. Again the creation and annihila-
tion operators obey the relation,

{aM(p, λ), a†M(q, λ′)} = 2E(p)(2π)3δ(3)(p− q)δλλ′ , (2.12)

and all others are zero. Next, weuse the continuity condition described
in appendix B to relate the two regions of the step-function,

νL(−ε,x) = PLν(+ε,x). (2.13)

This results in relations for the operators of Eq.(2.5) and Eq.(2.11),

(
a(p)

a†(−p)

)
=

√
2|p|N(p)

2E(p)

(
1 i m

N(p)

i m
N(p)

1

)(
aM(p,−)

a†M(−p,−)

)
, (2.14)

(
b(p)

b†(−p)

)
=

√
2|p|N(p)

2E(p)

(
1 i m

N(p)

i m
N(p)

1

)(
aM(p,+)

a†M(−p,+)

)
. (2.15)

We have used the notation of N(p) = E(p) + |p|. We find the time
evolution form of the operators by writing aM(p, λ) as aM(p, λ)e−iE(p)t

and using the operator relations of Eq.(2.14) and Eq.(2.15) to write

20



2.2. Lepton number for Majorana neutrinos N.J.Benoit

aM(p, λ) in terms of a(p):(
a(p, t)

a†(−p, t)

)
=

[
cosE(p)t

(
1 0
0 1

)

−i sinE(p)t

(
v −i

√
1− v2

i
√
1− v2 −v

)](
a(p)

a†(−p)

)
,

(2.16)(
b(p, t)

b†(−p, t)

)
=

[
cosE(p)t

(
1 0
0 1

)

−i sinE(p)t

(
v −i

√
1− v2

i
√
1− v2 −v

)](
a(p)

a†(−p)

)
.

(2.17)

For the single flavor case we define the lepton number to be a
Heisenberg operator of the form,

LS(t) =

∫
p∈A

(
a†(p, t)a(p, t)− b†(p, t)b(p, t)

+a†(−p, t)a(−p, t)− b†(−p, t)b(−p, t)
)
. (2.18)

Then we prepare a normalized state such that,

|νL(q)〉 = a†(q)|0〉√〈0|a(q)a†(q)|0〉 , (2.19)

which we sandwich around Eq.(2.18) the single flavor operator. After
substituting Eq.(2.16) and Eq.(2.17) we have a single flavor expectation
value that oscillates in time,

〈νL(q)|LS|νL(q)〉 = v2 + (1− v2) cos 2E(q)t. (2.20)

As a final note, this oscillation is directly proportional to the mass of
the neutrino though the term (1−v2) = m2

M/(E(q)). When we consider
the momenta to be greater than the neutrino mass, the amplitude of
the oscillations decreases, until we reach the ultra-relativistic limit
and all oscillations become negligible.

2.2 Lepton number for Majorana neutrinos

Next, we consider the following multi-flavor Lagrangian for Majorana
neutrinos,

LM = iψLαγ
μ∂μψLα − θ(t)

(mαβ

2
ψC
LαψLβ + h.c.

)
. (2.21)
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2.2. Lepton number for Majorana neutrinos N.J.Benoit

This Lagrangian has the same structure and notation as Eq.(2.3) the
single flavor case. The first term is the usual kinetic term and the
second term is the multi-flavor Majorana mass. We have included a
time-dependent step-function, θ(t), in the second term to guarantee
an initial pure flavor state i.e., α = e, μ, τ .

A difference between the single and multi-flavor is the diagonal-
ization process. The multi-flavor, Majorana mass matrix is complex
and symmetric, so we can use the Takagi factorization for the diago-
nalization [85],

mkδkj =
(
UT
)
kα

mαβUβj, (2.22)

ψLα = UαkψLk. (2.23)

Which uses a unitarymatrix U for the diagonalization. Then, using the
Majorana field ψk = ψLk + ψC

Lk we rewrite the Lagrangian of Eq.(2.21)
when the mass matrix is diagonal,

LM = i
1

2
ψkγ

μ∂μψk − θ(t)
mk

2
ψkψk. (2.24)

Notice, the mass term is still separated by the step-function θ(t).
We use the step-function to separate two regions in our formulation.

Then, we relate those two regions by continuity of the fields. In the
first region, we approach the zero time from below until reaching an
infinitesimal distance away,

lim
t→0−

t = −ε. (2.25)

There we Fourier expand the neutrino fields of Eq.(2.21) as Weyl
fermions,

ψLα(−ε,x) =

∫ ′ d3p

(2π)32|p|
(
aα(p)uL(p)e

ip·x + b†α(p)vL(p)e
−ip·x) . (2.26)

We constrain the left-handed spinors uL(p) and vL(p) such that they
obey the conditions,

uL(p) = −vL(p) =
√

|2p|
(

0
φ−(n)

)
, (2.27)

n · σφ±(n) = ±φ±(n), (2.28)

n =
p

|p| . (2.29)
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2.2. Lepton number for Majorana neutrinos N.J.Benoit

The symbol σ denotes a vector of the Pauli matrices. In addition, the
integral notation of

∫ ′
denotes regions allowed for the momentum

{p 
= 0,p ∈ A,−p ∈ A} with details in appendix B. The momentum
regions appear in the spinors as the following,

φ+(n) =

(
ei

φ
2 cos θ

2

e−iφ
2 sin θ

2

)
, (2.30)

φ−(n) =

(
−ei

φ
2 sin θ

2

e−iφ
2 cos θ

2

)
, (2.31)

φ+(−n) =

(
−iei

φ
2 sin θ

2

ie−iφ
2 cos θ

2

)
, (2.32)

φ−(−n) =

(
iei

φ
2 cos θ

2

ie−iφ
2 sin θ

2

)
. (2.33)

The phases of the spinors are adjusted such that φ±(n) = ±iσ2φ∗
∓(n).

Lastly, the operators of Eq.(2.26) from the Fourier expansion obey the
usual anti-commutation relations,

{aα(p), a†β(q)}
{bα(p), b†α(q)}

}
= 2|p|(2π)3δ(3)(p− q)δαβ , (2.34)

with all other relations being zero.
For the second region delimited by the step-function, we approach

the zero time from above,

lim
t→0+

t = +ε. (2.35)

For this region, the neutrinos are Majorana fermions that are Fourier
expanded to be,

UαkψLk(+ε,x) = UαkPL

∫ ′ d3p

(2π)32Ek(p)

∑
λ=±

(
aMk(p, λ)uk(p, λ)e

ip·x

+a†Mk(p, λ)vk(p, λ)e
−ip·x

)
, (2.36)

where Ek(p) =
√

p2 +m2
k is the energy of each mass state, λ is the

spinor helicity, and PL = (1− γ5)/2 is the left-handed projection opera-
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2.2. Lepton number for Majorana neutrinos N.J.Benoit

tor. We normalize the spinors so that they have definite helicities,

uk(p,+) =
√

Ek(p) + |p|
(

φ+(n)
mk

Ek(p)+|p|φ+(n)

)
, (2.37)

uk(p,−) =
√
Ek(p) + |p|

( mk

Ek(p)+|p|φ−(n)
φ−(n)

)
, (2.38)

vk(p,+) =
√

Ek(p) + |p|
( mk

Ek(p)+|p|φ−(n)
−φ−(n)

)
, (2.39)

vk(p,−) =
√

Ek(p) + |p|
( −φ+(n)

mk

Ek(p)+|p|φ+(n)

)
. (2.40)

Again, the integral notation of
∫ ′

denotes regions allowed for the
momentum with details in appendix B. The momentum regions are
the same for the spinors as Eq.(2.30) to Eq.(2.33). In addition, they
obey the usual orthogonality and completeness relations,

u†
k(p, λ)uk(p, λ

′) = v†k(−p, λ)vk(−p, λ′) = δλλ′ , (2.41)∑
λ

(
u†
k(p, λ)uk(p, λ

′) + v†k(−p, λ)vk(−p, λ′)
)
= 1 . (2.42)

Lastly, the operator aMk(p, λ) of Eq.(2.36) is distinct from the operators
of Eq.(2.26). Sometimes we will call aMk(p, λ) the Majorana operators,
and they obey the anti-commutation relation,

{aMk(p, λ), a
†
Mj(q, λ

′)} = 2E(p)(2π)3δ(3)(p− q)δkjδλλ′ , (2.43)

with all others being zero.
The two regions separated by the step-function of Eq.(2.21) are

connected by continuity of the equation of motion. This can be seen
after integrating the equation of motion derived from Eq.(2.21) over
an infinitesimal time interval,∫ +ε

−ε

dt
∂ψLα

∂t
= −

∫ +ε

−ε

dtγ0γi∂ψLα

∂xi
ψLα − i

∫ +ε

0

dtγ0m∗
αβγ

0ψC
Lβ . (2.44)

We reexpress the continuity in terms of thefields Eq.(2.26) andEq.(2.36),

lim
ε→0+

ψLα(−ε,x) = lim
ε→0+

UαiLψi(+ε,x). (2.45)

The details of the calculation are in appendix B. The continuity con-
dition allows us to write relations between the operators aLα(p) and
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2.2. Lepton number for Majorana neutrinos N.J.Benoit

b†Lα(p) of Eq.(2.26) with the Majorana operators aMi(p, λ) and a†Mi(p, λ)
of Eq.(2.36).

aα(p) = Uαk

√
2|p|Nk(p)

2Ek(p)

(
aMk(p,−) +

imk

Nk(p)
a†Mk(−p,−)

)
, (2.46)

bα(p) = Uαk

√
2|p|Nk(p)

2Ek(p)

(
aMk(p,+) +

imk

Nk(p)
a†Mk(−p,+)

)
, (2.47)

where Nk(p) = Ek(p) + |p|. Notice, the relations are a non-trivial mix-
ing of the Majorana annihilation and creation operators forming aα(p)
and bα(p). Naively, we may have expected the relations to only depend
on the Majorana annihilation operators. In addition, compared to
the single flavor case of Eq.(2.14) and Eq.(2.15), the multi-flavored
relations depend on the PMNS matrix Uαk because of the Takagi fac-
torization Eq.(2.22). We will use Eq.(2.46) and Eq.(2.47) to assist with
solving for the time evolution of aα(p) and bα(p).

For the time evolution, we are interested in region two where
the neutrinos are massive Majorana fields. So, we write Eq.(2.26) as
UαkψLk(t,x), which indicates the operator is multiplied by the time
evolution to become,

aMk(p, λ) → aMk(p, λ)e
−iEk(p)t, (2.48)

a†Mk(p, λ) → a†Mk(p, λ)e
iEk(p)t. (2.49)

Then Eq.(2.46) and Eq.(2.47) become time dependent,

aα(t,p) = Uαk

√
2|p|Nk(p)

2Ek(p)

(
aMk(p,−)e−iEk(p)t

+
imk

Nk(p)
a†Mk(−p,−)eiEk(p)t

)
,

(2.50)

bα(t,p) = Uαk

√
2|p|Nk(p)

2Ek(p)

(
aMk(p,+)e−iEk(p)t

+
imk

Nk(p)
a†Mk(−p,+)eiEk(p)t

)
.

(2.51)

Our goal is to write the time evolution solely in terms of the opera-
tors aα(p) and bα(p). So we use the operator relations of Eq.(2.46) and
Eq.(2.47), derived from the continuity condition, as substitutions for
the operators aMk(p, λ) and a†Mk(p, λ) of Eq.(2.50) and Eq.(2.51). Then,
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we expand the time dependent exponential into sine and cosine com-
ponents, and identify that |p|/Ek(p) = vk and mk/Ek(p) =

√
1− v2k;

aα(t,p) =
τ∑

β=e

∑
k

(
UαkU

∗
βk [cosEk(p)t− ivk sinEk(p)t] aβ(p)

−iUαkUβk

√
1− v2k sin[Ek(p)t]a

†
β(−p)

)
,

(2.52)

bα(t,p) =
τ∑

γ=e

∑
j

(
U∗
αjUγj [cosEj(p)t− ivj sinEj(p)t] bγ(p)

−iU∗
αjU

∗
γj

√
1− v2j sin[Ej(p)t]b

†
γ(−p)

)
,

(2.53)

These relations are a cornerstone of our work, and again we would
like to highlight the non-trivialmixing of the operators. The non-trivial
mixing will lead to phenomena similar to neutrino flavor oscillations.
We will derive how that phenomena occurs in section 2.2.1, and then
we will discuss how it compares to the quantum mechanic and quan-
tum field theory models from chapter 1 in section 2.2.2.

2.2.1 Time evolution of the lepton family numbers

We assign lepton family numbers based on the charged lepton in the
SU(2)L doublet from the weak interaction Le, Lμ, Lτ . The lepton family
numbers are Heisenberg operators treated as,

LM
α (t) =

∫
d3x : ψLα(t,x)γ

0ψLα(t,x) : , (2.54)

where α = e, μ, and τ and : : denotes normal ordering with respect
to the aα(p) and bα(p) vacuum. We substitute in the time dependent
form of Eq.(2.26), then take the integral over space. The lepton family
numbers are then written in terms of time dependent operators,

LM
α (t) =

∫ ′ d3p

(2π)3|2p|
(
a†α(t,p)aα(t,p)− b†α(t,p)bα(t,p)

)
. (2.55)

As a reminder, the integral notation of
∫ ′
denotes regions allowed for

the momentum {p 
= 0,p ∈ A,−p ∈ A}with details in appendix B. To
relocate the time dependency outside the operators, we use Eq.(2.52)
and Eq.(2.53) that we found using the continuity condition. The result
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is the lepton family numbers written in terms of the time independent
operators,

LM
α (t) =

∫ ′ dp

(2π)3|2p|
∑
βγ

∑
kj

×
[(
Aβγ(+,p)U∗

αkUβkUαjU
∗
γj − Bβγ(+,p)UαkU

∗
βkU

∗
αjUγj

)
× (cosEk(p)t cosEj(p)t+ vkvj sinEk(p)t sinEj(p)t

+ ivk sinEk(p)t cosEj(p)t− ivj cosEk(p)t sinEj(p)t)

− (Aβγ(−,p)U∗
αkUβkUαjUγj − Bβγ(−,p)UαkU

∗
βkU

∗
αjU

∗
γj

)
×
(√

1− v2j cosEk(p)t sinEj(p)t+ ivk

√
1− v2j sinEk(p)t sinEj(p)t

)
+
(
Aβγ(−,p)U∗

αkU
∗
βkUαjU

∗
γj − Bβγ(−,p)UαkUβkU

∗
αjUγj

)
×
(√

1− v2k cosEj(p)t sinEk(p)t+ ivj

√
1− v2k sinEj(p)t sinEk(p)t

)
− (Aγβ(+,p)U∗

αkU
∗
βkUαjUγj − Bγβ(+,p)UαkUβkU

∗
αjU

∗
γj

)
×
√
1− v2k

√
1− v2j sinEk(p)t sinEj(p)t

]
(2.56)

wherewehave used the notationAγβ(±,p) = a†γ(p)aβ(p)±a†γ(−p)aβ(−p)

and Bγβ(±,p) = b†γ(p)bβ(p)± b†γ(−p)bβ(−p).
To further study the time evolution, we take the expectation value

of Eq.(2.56) the operator for the lepton family numbers. We prepare
a normalized single flavor state, σ = e, μ, τ ; per the weak interaction
production and detection processes of a neutrino experiment,

|σ(q)〉 = a†σ(q)|0〉√
〈0|aσ(q)a†σ(q)|0〉

, (2.57)

and sandwich that state around Eq.(2.56). This results in a real valued
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expectation value of,

〈LM
α (t)〉σ→α =

∑
k,j

[
Re
(
U∗
αkUσkUαjU

∗
σj

)
× (cosEk(q)t cosEj(q)t+ vkvj sinEk(q)t sinEj(q)t)

− Im
(
U∗
αkUσkUαjU

∗
σj

)
× (vk sinEk(q)t cosEj(q)t− vj cosEk(q)t sinEj(q)t)

−Re (U∗
αkU

∗
σkUαjUσj

)√
1− v2k

√
1− v2j sinEk(q)t sinEj(q)t

]
,

(2.58)

where 〈LM
α (t)〉σ→α denotes 〈σ(q)|LM

α (t)|σ(q)〉. TheMajorana expectation
value of Eq.(2.58) is the main result of our original work [86]. Some
important features of the Majorana expectation value are,

• The cosine and sine terms are responsible for time dependent
oscillations of the expectation value.

• In the last line of the equation, the quantity Re
(
U∗
αkU

∗
σkUαjUσj

)
is

dependent on the Majorana phases α21 and α31. Those Majorana
phases are observable CP phases and could be determined by
some experiments.

• A sum over all the lepton family numbers
∑

α〈σ(q)|LM
α (t)|σ(q)〉

is the total lepton number. The total lepton number is not a
conserved, time independent, value because of the minus sign
in the last term. We will explore this further in section 3.1.

• The quantum mechanics equation for neutrino flavor oscillation
Eq.(1.13) is recovered from Eq.(2.58), the Majorana expectation
value, using the ultra-relativistic limit.

2.2.2 Comparison to the quantummechanic formula-
tion

When we take the ultra-relativistic limit of Eq.(2.58) our formulation
becomes equivalent to the neutrino flavor oscillation equation de-
rived from quantum mechanics quoted in Eq.(1.13). To prove that we
start with the ultra-relativistic condition q2 � mkmj , which means
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E(k,j)(q) ≈ m2
(k,j)/(2|q|). The velocities become v(k,j) ≈ 1 and

√
1− v2(k,j) ≈

0 leading to,

lim
q2�mkmj

〈LM
α (t)〉σ→α ≈

∑
k,j

(
Re
(
U∗
αkUσkUαjU

∗
σj

)
cos

Δm2
kjt

2|q|

−Im (U∗
αkUσkUαjU

∗
σj

)
sin

Δm2
kjt

2|q|
)

(2.59)

Then, we rewrite the equation with the imaginary terms,

lim
q2�mkmj

〈LM
α (t)〉σ→α ≈

∑
k,j

(
Re
(
U∗
αkUσkUαjU

∗
σj

)
cos

Δm2
k,jt

2|q|

+ iIm
(
U∗
αkUσkUαjU

∗
σj

)
cos

Δm2
k,jt

2|q|
+ iRe

(
U∗
αkUσkUαjU

∗
σj

)
sin

Δm2
k,jt

2|q|
+i2Im

(
U∗
αkUσkUαjU

∗
σj

)
sin

Δm2
k,jt

2|q|
)
,

(2.60)

because,

i
∑
k,j

Im
(
U∗
αkUσkUαjU

∗
σj

)
cos

Δm2
k,jt

2|q| = 0, (2.61)

i
∑
k,j

Re
(
U∗
αkUσkUαjU

∗
σj

)
sin

Δm2
k,jt

2|q| = 0, (2.62)

Re
(
U∗
αkUσkUαjU

∗
σj

)
+ iIm

(
U∗
αkUσkUαjU

∗
σj

)
=
(
U∗
αkUσkUαjU

∗
σj

)
, (2.63)

and

Im
(
U∗
αkUσkUαjU

∗
σj

)
= −Im (U∗

αjUσjUαkU
∗
σk

)
, (2.64)

Re
(
U∗
αkUσkUαjU

∗
σj

)
= Re

(
U∗
αjUσjUαkU

∗
σk

)
, (2.65)

from exchange of k and j. Recall thatΔm2
k,j ≡

(
m2

k −m2
j

)
is the squared

mass differences. Lastly, we use Euler’s formula to find Eq.(1.13) and
Eq.(2.59) match exactly,

lim
q2�mkmj

〈LM
α (t)〉σ→α = lim

|�p|�mi,j

Pα→β(t). (2.66)

29



2.2. Lepton number for Majorana neutrinos N.J.Benoit

Importantly, this means our formula is more general and can be dis-
tinguished when the ultra-relativistic approximation is invalid. For
example, the ultra-relativistic approximation is invalid when the mo-
mentum of the neutrinos is near or below the neutrino masses.

The quantum mechanics formula, before the ultra-relativistic ap-
proximation, was written in Eq.(1.12) with one oscillation phase φi,j =
− (Ei(�p)− Ej(�p)) t. We rewrite Eq.(2.58) in exponential form to com-
pare to Eq.(1.12),

〈LM
α (t)〉σ→α =

1

4

∑
k,j

[
U∗
αkUσkUαjU

∗
σj

(
(1 + vk)(1 + vj)e

i(Ek(p)−Ej(p))t

+ (1− vk)(1− vj)e
−i(Ek(p)−Ej(p))t

+ (1 + vk)(1− vj)e
i(Ek(p)+Ej(p))t

+ (1− vk)(1 + vj)e
−i(Ek(p)+Ej(p))t

)
− U∗

αkU
∗
σkUαjUσj

√
1− v2i

√
1− v2j

× (ei(Ek(p)−Ej(p))t − ei(Ek(p)+Ej(p))t

+ e−i(Ek(p)−Ej(p))t − e−i(Ek(p)+Ej(p))t)
]
. (2.67)

A noticeable difference between Eq.(1.12) and Eq.(2.58) is the three
additional oscillation phases of,

φ1
k,j = − (Ei(p)− Ej(p)) t, (2.68)

φ2
k,j = (Ei(p) + Ej(p)) t, (2.69)

φ3
k,j = − (Ei(p) + Ej(p)) t. (2.70)

All the amplitude coefficients of those phases are zero under the ultra-
relativistic condition of q2 � mkmj leading to vk,j ≈ 1. Which we can
see by inspection,

(1− vk)(1− vj) coefficient of φ1
k,j , (2.71)

(1 + vk)(1− vj) coefficient of φ2
k,j , (2.72)

(1− vk)(1 + vj) coefficient of φ3
k,j , (2.73)

This means only the first two lines of Eq.(2.67) are non-zero, which is
the same as Eq.(1.12) up to a normalization of a half. An interesting
point is the frequencies induced by the new phases φ1

k,j , φ
2
k,j , and φ3

k,j .
The summed energies Ek(q) + Ej(q) will result in higher frequency
oscillations compared to the subtracted energies of Ek(q)− Ej(q).
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To illustrate further how our formulation is distinguishable by the
additional oscillation phases we plot the momentum dependence of
the absolute deviation,

D(q) = |〈LM
α (T )〉σ→α − Pσ→α(T )|, (2.74)

for a fixed time T in figure 2.1 from Eq.(2.58) and Eq.(1.12). We con-
sider the lightest neutrino mass to bemlightest = 0.01eV, which means at
least one neutrino is non-relativistic when q < 0.1eV. For the values of
the mass squared differences Δm2

k,j and the PMNS matrix parameters
we use the best-fit results of NuFITv5.0 [88]. Details on how the PMNS
matrix is parametrized is in appendix A. Lastly, we take the Majorana
phases to be zero.

In figure 2.1, for momentum below 0.1eV the absolute deviation
tends to increase when approaching zero that is the effect of the addi-
tional oscillation phases φ1

i,j , φ
2
i,j , and φ3

i,j . Additionally, below 0.01eV
the absolute deviation can be greater than one. This is because the
Majorana expectation value can become negative due to the last line
in Eq.(2.58), which depends on the square root of 1− v2(k,j).

momentum q (eV)
10 ² 10 ² 10 ¹ 10 ¹ 10

D(
q)

0.0

0.5

1.0

1.5

Figure 2.1: Absolute deviation between the Majorana expectation
value and the quantum mechanic probability at a fixed time T = 15ps.
We assume the lightest neutrinomass to be 0.01eV, theMajorana phases
are set to zero, and all other oscillation parameters are the best-fit
values from NuFITv5.0 [88]. The x-axis follows a logbase10 scaling.

For a different perspective, we plot the quantum mechanic prob-
ability Eq.(1.12) and the Majorana expectation value Eq.(2.58), sepa-
rately, over a momentum interval at a fixed time T in figure 2.2. We
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see the quantum mechanic probability envelopes the Majorana ex-
pectation value that is due to the common phase φ(k,j). The addition
phases of the Majorana expectation value, φ1

k,j , φ
2
k,j , and φ3

k,j , cause the
higher frequencies, which lead to the small scale oscillations. This
effect of the addition phases holds true for appearance e → e and
disappearance e → μ transitions as illustrated in the lower and upper
panels of figure 2.2.

e
!
e

0.2
0.4
0.6
0.8
1.0

momentum q (eV)
0.020 0.025 0.030

e
!
¹

0.0
0.1
0.2
0.3
0.4

Majorana Quantum mechanic

Figure 2.2: Oscillations of the Majorana expectation value overlaid
with the quantum mechanic probability at a fixed time T = 15ps. We
assume the lightest neutrinomass to be 0.01eV, andwe set theMajorana
phases to zero. All other oscillation parameters we use are the best-fit
values from NuFITv5.0 [88].

Next we plot the appearance e → e and disappearance e → μ transi-
tions over a time interval for a fixedmomentum of q = 0.02eV in figure
2.3. We see the same higher frequencies of the Majorana expectation
value being enveloped by the quantum mechanic probability. This
illustrates how small scale resolution is important to distinguish our
formalism.

Another distinction of our formulation, which is unrelated to the
phases φ(k.j), is the PMNS combination of U∗

αkU
∗
σkUαjUσj . That combina-
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e
!
e

0.2
0.4
0.6
0.8
1.0

time t (ps)
0 2 4

e
!
¹

0.0
0.1
0.2
0.3
0.4

Majorana Quantum mechanic

Figure 2.3: Time evolution of the Majorana expectation value overlaid
with the quantum mechanic probability for a fixed momentum q =
0.02eV. We assume the lightest neutrino mass to be 0.01eV, and we set
the Majorana phases to zero. All other oscillation parameters we use
are the best-fit values from NuFITv5.0 [88].

tion is unique to our Majorana expectation value and the combination
depends directly on the Majorana CP phases. Importantly, that combi-
nation is suppressed by the absolute masses of the neutrinos through

the term
√
1− v2i

√
1− v2j = (mimj)/(Ei(p)Ej(p)). So, it only meaning-

fully contributes when the momentum is similar to, or below the
absolute masses of the neutrinos. The suppression is the same reason
we see greater than one values discussed before about the absolute
deviation in figure 2.1.

For a final comment, the discussions of this section are also true
for the external wave packet model in quantum field theory of section
1.3.4. This is because the external wave packet probability Eq.(1.31)
shares the same phase, φ(k,j), as the quantum mechanics probability
Eq.(1.12). The external wave packet probability also has no PMNS
combination of U∗

αkU
∗
σkUαjUσj or Majorana phase dependence.
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2.3 Lepton number for Dirac neutrinos

We formulate the Dirac lepton number similarly to the Majorana lep-
ton number of section 2.2. A major difference between the Majorana
and Dirac lepton numbers is the new right-handed neutrino fields,

LD = νLαiγ
μ∂μνLα + νRαiγ

μ∂μνRα − θ(t) (νRαmαβνLβ + h.c.) , (2.75)

which are used to construct the mass term. The time-dependent step-
function θ(t), again, guarantees an initial pure flavor state. In contrast
to Eq.(2.22) of the Majorana formalism, the Dirac mass is diagonalized
by two distinct unitary matrices,

νLβ = UβjνLj (2.76)

νRα = VαkνRk (2.77)

(V †)kαmαβUβj = mkδkj. (2.78)

Rewriting the Lagrangian Eq.(2.75) with the four component Dirac
field ψk = νRk + νLk for a diagonal mass matrix results in the form,

LD = ψk (iγ
μ∂μ − θ(t)mk)ψk. (2.79)

In the same manner as the Majorana formalism, the step-function
θ(t) separates two regions. We connect those two regions by continuity
of the equation of motion for the separate fields νLα and νRα. The zero
time for the two regions is approached by reaching an infinitesimal
time away,

lim
t→0−

t = −ε region one, (2.80)

lim
t→0+

t = +ε region two. (2.81)

In region one, we take the Fourier expansion of the left- and right-
handed Weyl fields,

νLα(−ε,x) =

∫ ′ d3p

(2π)32|p|
(
aLα(p)uL(p)e

ip·x + b†Lα(p)vL(p)e
−ip·x

)
(2.82)

νRα(−ε,x) =

∫ ′ d3p

(2π)32|p|
(
aRα(p)uR(p)e

ip·x + b†Rα(p)vR(p)e
−ip·x

)
(2.83)

Recall, our integral notation
∫ ′
means the momentum regions {p 
=

0,p ∈ A,−p ∈ A} with details in appendix B. We have constrained the
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spinors to be normalized as,

uL(p) = −vL(p) =
√

2|p|
(

0
φ−(n)

)
, (2.84)

uL(−p) = −vL(−p) = i
√
2|p|

(
0

φ+(n)

)
, (2.85)

uR(p) = −vR(p) =
√

2|p|
(
φ+(n)

0

)
, (2.86)

uR(−p) = −vR(−p) = i
√
2|p|

(
φ−(n)

0

)
. (2.87)

Notice the imaginary unit for the negativemomentum spinors appears
due to Eq.(2.28) and Eq.(2.29). For convenience, we rewrite the spinor
momentum dependence here,

φ+(n) =

(
ei

φ
2 cos θ

2

e−iφ
2 sin θ

2

)
, (2.88)

φ−(n) =

(
−ei

φ
2 sin θ

2

e−iφ
2 cos θ

2

)
, (2.89)

φ+(−n) =

(
−iei

φ
2 sin θ

2

ie−iφ
2 cos θ

2

)
, (2.90)

φ−(−n) =

(
iei

φ
2 cos θ

2

ie−iφ
2 sin θ

2

)
. (2.91)

In addition, the operators after the expansion obey the usual anti-
commutation relations,

{aLα(p), a†Lβ(q)}
{bLα(p), b†Lβ(q)}

}
= 2|p|(2π)3δ(3)(p− q)δαβ , (2.92)

with all others being zero.
In region two, we use the on-shell Fourier expansion on the Dirac

field ψi(+ε,x) from Eq.(2.79),

ψk(+ε,x) =

∫ ′ d3p

(2π)32Ek(p)

∑
h

(
ak(p, h)uk(p, h)e

ip·x

+ b†k(p, h)vk(p, h)e
−ip·x

)
,

(2.93)
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where h denotes the spinor helicity and E2
k(p) = |p|2+m2

k is the energy
of the mass states. The spinors are normalized the same as Eq.(2.37)
though Eq.(2.40) and obey the same orthogonality, completeness rela-
tions. Lastly, the operators obey the usual anti-commutation relations,

{ak(p, h), a†j(q, h)} = {bk(p, h), b†j(q, h)} = 2Ek(p)(2π)
3δ(3)(p− q)δkj,

(2.94)
and all others are zero. The operators ak(p, h) and bk(p, h) are distinct
from the creation and annihilation operators of Eq.(2.92). Then, we
use the continuity of the equation of motion, discussed in appendix B,
to find two connections between the Fourier expanded fields,

lim
ε→0+

νLk(+ε,x) = lim
ε→0+

∑
α

U∗
αkνLα(−ε,x), (2.95)

lim
ε→0+

νRk(+ε,x) = lim
ε→0+

∑
β

V ∗
βkνRβ(−ε,x). (2.96)

We use the connections of Eq.(2.95) and Eq.(2.96) to derive relations
between the operators of Eq.(2.82), Eq.(2.83), and Eq.(2.93). After we
split the momentum regions to be {p 
= 0,p ∈ A,−p ∈ A} the operator
connections are,

aLα(±p) =
3∑
k

Uαk

√
Nk(p)2|p|
2Ek(p)

(
ak(±p,−) + i

mk

Nk

b†k(∓p,−)

)
, (2.97)

b†Lα(±p) =
3∑
k

Uαk

√
Nk(p)2|p|
2Ek(p)

(
b†k(±p,+)− i

mk

Nk

ak(∓p,+)

)
, (2.98)

aRα(±p) =
3∑
j

Vαj

√
Nj(p)2|p|
2Ej(p)

(
aj(±p,+) + i

mj

Nj

b†j(∓p,+)

)
, (2.99)

b†Rα(±p) =
3∑
j

Vαj

√
Nj(p)2|p|
2Ej(p)

(
b†j(±p,−)− i

mj

Nj

aj(∓p,−)

)
. (2.100)

Notice the two differences between the left-handed aLα(±p) and the
right-handed aRα(±p) versions are,

1. the exchange of the mixing matrices Uαk ↔ Vαj ,

2. and the exchange of the massive operator helicities ak(±p, h) ↔
ak(±p,−h) and b†k(±p, h) ↔ b†k(±p,−h).
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Similar to the Majorana relations of Eq.(2.46) and Eq.(2.47), there is
a non-trivial mixing between the Dirac operators ak(±p, h) and the
Weyl operators aLα(±p). The time evolution form of the operators are
solved by writing Eq.(2.93) as ψk(t,x), which means the operators are
multiplied by,

ak(p, h) → ak(p, h)e
−iEk(p)t, (2.101)

b†k(p, h) → b†k(p, h)e
iEk(p)t. (2.102)

Then the equations Eq.(2.97) though Eq.(2.100) become time depen-
dent,

aLα(±p, t) =
3∑
k

Uαk

√
Nk(p)2|p|
2Ek(p)

(
ak(±p,−)e−iEk(p)t

+ i
mk

Nk

b†k(∓p,−)eiEk(p)t
)
,

(2.103)

b†Lα(±p, t) =
3∑
k

Uαk

√
Nk(p)2|p|
2Ek(p)

(
b†k(±p,+)eiEk(p)t

− i
mk

Nk

ak(∓p,+)e−iEk(p)t
)
,

(2.104)

aRα(±p, t) =
3∑
j

Vαj

√
Nj(p)2|p|
2Ej(p)

(
aj(±p,+)e−iEj(p)t

+ i
mj

Nj

b†j(∓p,+)eiEj(p)t
)
,

(2.105)

b†Rα(±p, t) =
3∑
j

Vαj

√
Nj(p)2|p|
2Ej(p)

(
b†j(±p,−)eiEj(p)t

− i
mj

Nj

aj(∓p,−)e−iEj(p)t
)
.

(2.106)

We desire to write the time evolution solely in terms of the Weyl oper-
ators aLα(±p), aRα(±p), b†Lα(±p), b†Rα(±p). To accomplish that we will
substitute for the Dirac operators ak(±p, h) and b†k(∓p, h) from Eq.(2.97)
though (2.100), which we derived from the continuity condition. Then
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we expand the exponential into sine and cosine components to find,

aLα(±p, t) =
τ∑

β=e

∑
k

[
UαkU

∗
βk (cosEk(p)t− ivk sinEk(p)t) aLβ(±p)

∓ UαkV
∗
βk

√
1− v2k sinEk(p)t b

†
Rβ(∓p)

]
,

(2.107)

a†Lα(±p, t) =
τ∑

γ=e

∑
k

[
U∗
αkUγk (cosEk(p)t+ ivk sinEk(p)t) a

†
Lγ(±p)

∓ U∗
αkVβk

√
1− v2k sinEk(p)t bRγ(∓p)

]
,

(2.108)

bLα(±p, t) =
τ∑

β=e

∑
k

[
U∗
αiUβk (cosEk(p)t− ivk sinEk(p)t) bLβ(±p)

∓ U∗
αkVβk

√
1− v2k sinEk(p)t a

†
Rβ(∓p)

]
,

(2.109)

b†Lα(±p, t) =
τ∑

γ=e

∑
k

[
UαkU

∗
γk (cosEk(p)t+ ivk sinEk(p)t) b

†
Lγ(±p)

∓ UαkV
∗
βk

√
1− v2k sinEk(p)t aRγ(∓p)

]
,

(2.110)

where vk = |p|/Ek(p) and
√
1− v2k = mk/Ek(p). Using our knowledge

from Eq.(2.97) though Eq.(2.100), we can identify the right-handed
versions of Eq.(2.107) through Eq.(2.110) the time evolution operators
from,

1. replacements of the mixing matrices U(α,β,γ)k ↔ V(α,β,γ)k ,

2. swapping of the operator handedness aR(β,γ)(±p) ↔ aL(β,γ)(±p)
and bR(β,γ)(±p) ↔ bL(β,γ)(±p).

We emphasize the time dependent operators will lead to phenomena
equivalent to neutrino oscillations, because of the non-trivial mix-
ing of the operators. For example, the time evolution of the operator
aLα(t,±p) depends on the creation operator b†Rβ(∓p) and the annihi-
lation operator aLβ(±p). Naively, one may expect only a dependence
on the annihilation operator aLβ(±p). In the next subsection we will
derive how the non-trivial mixing leads to phenomena similar to neu-
trino oscillations.
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2.3.1 Time evolution of Dirac family numbers

For the Dirac formulation we have two types of lepton family Heisen-
berg operators, which we denote LL

α(t) and LR
α (t). The summation of

those two operators is what we assign the lepton family numbers
to based on the charged lepton in the SU(2)L doublet from the weak
interaction Le, Lμ, Lτ . The two lepton family numbers are then,

LL
α(t) =

∫
d3x : νLα(t,x)γ

0νLα(t,x) : , (2.111)

LR
α (t) =

∫
d3x : νRα(t,x)γ

0νRα(t,x) : , (2.112)

and
LD
α (t) = LL

α(t) + LR
α (t). (2.113)

The notation : : denotes normal ordering according to the a(L,R)α(±p)
and b(L,R)α(±p) vacuum. First, we focus on the operator of left-handed
lepton family number LL

α by substituting the time dependent form of
Eq.(2.82). The substitutions hold the two regions for p,

LL
α(t) =

∫
p∈A

dp

(2π)32|p|
(
a†Lα(p, t)aLα(p, t)− b†Lα(p, t)bLα(p, t)

+a†Lα(−p, t)aLα(−p, t)− b†Lα(−p, t)bLα(−p, t)
)
.

(2.114)

Then, we substitute the timedependent operators of Eq.(2.107) through
Eq.(2.110) to write the operator of the left-handed lepton family num-
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2.3. Lepton number for Dirac neutrinos N.J.Benoit

ber with time independent a(L,R)α(p) and b(L,R)α(p);

LL
α(t) =

∑
i,j

∑
βγ

∫
p∈A

dp

(2π)32|p|

×
[
(cosEi(p)t+ ivi sinEi(p)t) (cosEj(p)t− ivj sinEj(p)t)

× (U∗
αiUβiUαjU

∗
γjO

a
L(p)− UαiU

∗
βiU

∗
αjUγjO

b
L(p))

+
√
1− v2j (cosEi(p)t sinEj(p)t+ ivi sinEi(p)t sinEj(p)t)

× (−U∗
αiUβiUαjV

∗
γjO

ab
LR(p) + UαiU

∗
βiU

∗
αjVγjO

ba
LR(p))

+
√
1− v2i (sinEi(p)t cosEj(p)t− ivj sinEi(p)t sinEj(p)t)

× (−U∗
αiVβiUαjU

∗
γjO

ab
RL(p) + UαiV

∗
βiU

∗
αjUγjO

ba
RL(p))

+
√
1− v2i

√
1− v2j sinEi(p)t sinEj(p)t

× (U∗
αiVβiUαjV

∗
γjO

b
R(p)− UαiV

∗
βiU

∗
αjVγjO

a
R(p))

]
.

(2.115)

We have compacted the operator notation to be,

Oa
L(p) = a†Lβ(p)aLγ(p) + a†Lβ(−p)aLγ(−p), (2.116)

Ob
L(p) = b†Lβ(p)bLγ(p) + b†Lβ(−p)bLγ(−p), (2.117)

Ob
R(p) = bRβ(−p)b†Rγ(−p) + bRβ(p)b

†
Rγ(p), (2.118)

Oa
R(p) = aRβ(−p)a†Rγ(−p) + aRβ(p)a

†
Rγ(p), (2.119)

for the single operators and

Oab
LR(p) = a†Lβ(p)b

†
Rγ(−p)− a†Lβ(−p)b†Rγ(p), (2.120)

Oba
LR(p) = b†Lβ(p)a

†
Rγ(−p)− b†Lβ(−p)a†Rγ(p), (2.121)

Oab
RL(p) = bRβ(−p)aLγ(p)− bRβ(p)aLγ(−p), (2.122)

Oba
RL(p) = aRβ(−p)bLγ(p)− aRβ(p)bLγ(−p), (2.123)

for the mixed operators. The right-handed lepton number LR
α (t) is

found by following the same replacement rules of

1. exchanging the mixing matrices U(α,β,γ)k ↔ V(α,β,γ)k ,

2. swapping the operator handedness aR(β,γ)(±p) ↔ aL(β,γ)(±p) and
bR(β,γ)(±p) ↔ bL(β,γ)(±p).
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2.3. Lepton number for Dirac neutrinos N.J.Benoit

Lastly, the operator for the lepton family number in the Dirac case is
LD
α (t) = LL

α(t) + LR
α (t) from Eq.(2.113).

Our next step is to take the expectation value of the Dirac operator
for which we prepare a normalized left-handed flavor state,

|σL(q)〉 = a†Lσ(q)|0〉√
〈0|aLσ(q)a†Lσ(q)|0〉

, (2.124)

which is a pure state of σL(q) = e, μ, τ . That state is based on aWeak in-
teractionproduction process. Then, we sandwich the state of Eq.(2.124)
around Eq.(2.115) the operator of the left-handed lepton family num-
ber to get,

〈LL
α(t)〉σL→α =

∑
i,j

[
Re
(
U∗
αiUσiUαjU

∗
σj

)
(cosEi(q)t cosEj(q)t

+ vivj sinEi(q)t sinEj(q)t)

− Im
(
U∗
αiUσiUαjU

∗
σj

)
(vi sinEi(q)t cosEj(q)t

− vj sinEj(q)t cosEi(q)t)
]
,

(2.125)

which is the left-handed expectation value, and we have used the
notation 〈LL

α(t)〉σL→α = 〈σL(q)|LL
α(t)|σL(q)〉. Next, we calculate the right-

handed expectation value by sandwiching the state of Eq.(2.124) around
the operator of the right-handed lepton family number,

〈LR
α (t)〉σL→α =

∑
i,j

V ∗
αiUσiVαjU

∗
σj

√
1− v2i

√
1− v2j sinEi(p)t sinEj(p)t.

(2.126)
The sum of Eq.(2.125) and Eq.(2.126) is the Dirac expectation value,

〈LD
α (t)〉σL→α =

∑
i,j

[
Re
(
U∗
αiUσiUαjU

∗
σj

)
× (cosEi(q)t cosEj(q)t+ vivj sinEi(q)t sinEj(q)t)

− Im
(
U∗
αiUσiUαjU

∗
σj

)
× (vi sinEi(q)t cosEj(q)t− vj sinEj(q)t cosEi(q)t)

+V ∗
αiUσiVαjU

∗
σj

√
1− v2i

√
1− v2j sinEi(p)t sinEj(p)t

]
.

(2.127)
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The Dirac expectation value Eq.(2.127) is our second main result, after
the Majorana expectation value Eq.(2.58), and was not featured in our
original work.

Importantly, the discussion we had in section 2.2.2 about the com-
parison between the Majorana expectation value and quantum me-
chanic formulation also applies to the Dirac expectation value. Be-
cause the lines one though four match exactly between Eq.(2.58) the
Majorana expectation value andEq.(2.127) theDirac expectation value,
and the last line is suppressed by the absolute masses of the neutrinos.
In the next chapter, chap.3, we will compare the Majorana and Dirac
expectation values in greater detail.
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Chapter 3

Comparison of Majorana and
Dirac Expectation Values

The usual formulations of neutrino flavor oscillations in quantum
mechanics and quantum field theory can not address the fundamental
question of neutrino mass type. Being neutral fermions, the mass of
neutrinos can come from three possible sources;

1. Majorana mass type,

2. Dirac mass type,

3. Majorana and Dirac mass type.

If neutrinos are Majorana fermions then the first and third mass types
are possible, but if they are Dirac fermions only the second mass type
is possible. High-energy experiments, in general, can not distinguish
the fermion type of neutrinos1. Kayser called this the “Practical Dirac-
Majorana Confusion Theorem” [89, 90, 91, 92]. Presently, this means a
different type of experiment called neutrino-less double beta decay
(0νββ) is needed. However, the positive detection of neutrino-less
double beta decay is only proof that neutrinos are Majorana fermions.
The recent null-results of neutrino-less double beta decay experiments
does not imply neutrinos are Dirac fermions[94].

Our formulation provides a look into if neutrinos are Majorana or
Dirac fermions independent of neutrino-less double beta decay. This
is from differences in the evolution of the expectation values Eq.(2.58)

1Last month 05/2022, on the arXiv, it was suggested that neutrinos are Dirac
fermions. Unfortunately, this is a common mistake and has been discussed by
Kayser before [93].
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3.1. Total Lepton Number N.J.Benoit

and Eq.(2.127). We will highlight those differences in two ways, first
by studying the total lepton number and second by comparing the low
momentum phenomenology.

3.1 Total Lepton Number

As we introduced in section 1.1.2, total lepton number is defined as a
summation over all lepton family numbers L = Le + Lμ + Lτ . In our
formulation, the total lepton number is found after taking summation
over the Greek index α = e, μ, τ . We take the α summation for Eq.(2.58)
the Majorana expectation value and Eq.(2.127) the Dirac expectation
value resulting in,∑

α

〈σ(q)|LM
α (t)|σ(q)〉 = 1− 2

∑
i

|Uσi|2(1− v2i ) sin
2 Ei(q)t, (3.1)

∑
α

〈σL(q)|LD
α (t)|σL(q)〉 = 1, (3.2)

where conservation of total lepton number is equal to one. The Ma-
jorana expectation value violates total lepton number as proved in
Eq.(3.1) and the violation oscillates between,

−1 ≤
∑
i

|Uσi|2
|q|2 −m2

i

|q|2 +m2
i

≤
∑
α

〈σ(q)|LM
α (t)|σ(q)〉 ≤ 1. (3.3)

From Eq.(3.2) the Dirac expectation value conserves total lepton num-
ber. The Dirac lepton family number oscillations are bounded by

0 ≤ 〈σL(q)|LD
α (t)|σL(q)〉 ≤ 1. (3.4)

The reason for the violation and conservation of the expectation
values are the last terms in Eq.(2.58) and Eq.(2.127), which we repro-
duce in Fig.3.1 with notes. So, the reason for total lepton number
violation in the Majorana expectation value is the minus sign in front
of the last term. Whereas the reason for conservation in the Dirac
expectation value is the plus sign. Unsurprisingly, based on our dis-
cussion at the beginning of chapter 2, both of those terms are directly
proportional to the absolute masses of the neutrinos. As an example,
we outline the taking a sum over α for the Dirac expectation value.
We start with separating the expectation according to Eq.(2.113) into
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Majorana Expectation Value

Majorana phase dependance is 
suppressed by the absolute masses

Common terms between the Dirac and Majorana expectation values.

The minus sign 
leads to total 

lepton number 
violation

Dirac Expectation Value

Mixing matrices from right-handed elds appear.  
Plus sign lead to conservation.

Figure 3.1: Comparison of the Majorana and Dirac expectation values.

Eq.(2.125) the left-handed and Eq.(2.126) the right-handed expecta-
tion values. Next, we separately sum over α to find the total lepton
numbers,∑

α

〈LL
α(t)〉σL→α =

∑
i

|Uσi|2
(
cos2 Ei(q)t+ v2i sin

2 Ei(q)t
)
, (3.5)

∑
α

〈LR
α (t)〉σL→α =

∑
i

|Uσi|2(1− v2i ) sin
2 Ei(p)t. (3.6)

When we recover the Dirac expectation value as the summation of
Eq.(3.5) and Eq.(3.6) the sine squared terms with the coefficient v2i
cancel. Then, the cosine squared plus sine squared is equal to one and
the sum over the PMNS matrices squared is also one. The summation
of α for the Majorana expectation value has a term similar to Eq.(3.6)
expect the Majorana case has an overall minus sign. That is the minus
sign, which leads to total lepton number violation.

Because the effect of the conservation or violation terms is sup-
pressed by the masses of the neutrinos though

√
1− v2i = mi/(Ei(q)),

for larger momenta differences between the Majorana and Dirac ex-
pectation values is negligible. We illustrate this with figure 3.2, where
we consider the lightest neutrino mass to be mlightest = 0.01eV, which
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3.1. Total Lepton Number N.J.Benoit

means at least one neutrino is non-relativistic when q < 0.1eV. Similar
to chapter 2, the values of the mass squared differences Δm2

i,j and

the PMNS matrix parameters2 are the best-fit results of NuFITv5.0
[88]. Lastly, we take the Majorana phases to be zero. In figure 3.2
the Majorana expectation value starts to take negative values below
q = 0.01eV, whereas the Dirac expectation value is always positive.
Additionally, the negative values are larger as the momentum moves
toward zero.

10 ³ 10 ² 10 ¹
-1.0

-0.5

0.0

0.5

1.0

10 ³ 10 ² 10 ¹
momentum q (eV)

Majorana expectation value Dirac expectation value

e! e at t = 1:32 ps

Figure 3.2: Comparison of the Majorana and Dirac expectation values
at a fixed time. We set the Majorana phases to zero and assume the
lightest neutrino mass to be 0.01eV. All other oscillation parameters we
use are the best-fit values fromNuFITv5.0 [88]. The x-axis is a logbase10
scale.

We also illustrate with figure 3.3 how the different appearance
σ → α and disappearance σ → σ Majorana expectation values are
unequally affected by the lepton number violation. In the left panel for
momentum q = 0.0002eV the e → e disappearance oscillates to larger
negative values than the e → μ and e → τ appearance expectation
values, although all three expectation values do oscillate to negative
amplitudes. Comparing the two panels we see at a larger momentum
of q = 0.2eV the three expectation values do not take on negative
amplitudes. Thus, the Majorana and Dirac expectation values are
indistinguishable.

It is important to notice the x-axis timescale is different among the

2Details on how the PMNS matrix is parametrized is in appendix A.
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panels of figure 3.3. For the larger momentum of q = 0.2eV we have
taken a longer timescale, than the momentum of q = 0.0002. We have
changed the timescale because the higher frequency phases φ1

k,j , φ
2
k,j ,

and φ3
k,j we discussed in section 2.2.2 dominate the amplitude for the

smaller momentum q = 0.0002eV.
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time t (ps)

Momentum of q = 0.0002 eV Momentum of q = 0.2 eV

e! e e! ¹ e! ¿

Figure 3.3: Comparison of the Majorana expectation values at different
fixed momenta over time. We use the best-fit oscillation parameters
from NuFITv5.0 [88], assume the lightest neutrino mass to be 0.01eV,
and set the Majorana phases to zero.

3.2 Phenomenologyof the lepton family num-

bers

We focus on the interesting phenomenology that occurs for the ex-
pectation values of the three lepton family numbers α = e, μ, τ . First,
phenomenology of Eq.(2.127) the Dirac expectation value depends
strongly on the model that generates the Dirac mass term for the neu-
trinos. This is because the mixing matrix related to the right-handed
field Vαk is ill-defined, unless we consider the model that generates
the Dirac neutrino mass term. In this section, for generality, we treat
the influence of the mixing matrix Vαk as a missing component for the
total lepton number. This results in an equation similar to Eq.(3.5);∑

α

〈LL
α(t)〉σL→α = 1−

∑
k

|Uσk|2(1− v2k) sin
2 Ek(q)t, (3.7)
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recall our notation 〈LL
α(t)〉σL→α = 〈σL(q)|LL

α(t)|σL(q)〉. This means we
are only considering the phenomenology of Eq.(2.125) the left-handed
expectation value. An interesting part of Eq.(2.125) is the influence of
the summed energy phases,

φ2
i,j = (Ei(p) + Ej(p)) t, (3.8)

φ3
i,j = − (Ei(p) + Ej(p)) t, (3.9)

at different momenta. We already discussed how those phases can
be used to distinguish our formulation from the quantum mechanic
probability in Section 2.2.2, but we have not discussed how we can
use them to help distinguish the neutrino mass hierarchy.

The neutrino mass hierarchy is an open question about if the mass
eigenstate ν3 is the heaviest or the lightest in standard neutrino os-
cillations as introduced in section 1.4. Commonly in this is called the
normal (ν3 is the heaviest) or inverted (ν3 is the lightest) hierarchy
problem. Near future neutrino experiments are expected to answer
that question, but they require a high degree of precision and a large
amount of statistics. This is because the oscillation phase the experi-
ments are sensitive to, φi,j = (Ei(p)− Ej(p)) t, is only weakly related
to the mass hierarchy. The additional phases φ2

i,j and φ3
i,j of our for-

mulation have a stronger relation to the mass hierarchy and become
more pronounced at lower momenta. We illustrate the differences of
the left-handed expectation and the quantummechanic probability in
figure 3.4. We can clearly see the influence of the high frequency oscil-
lations in the left-handed expectation value for the inverted hierarchy.
Furthermore, as the momentum approaches zero the amplitude of
the high frequency oscillations increases.

For the time evolution, the additional phases appear as high fre-
quencies within the envelope of the oscillations. As we lower the
momentum the amplitude of the additional phases increases, chang-
ing the effects of constructive and destructive interference. This effect
is clear if we rewrite Eq.(2.125) from trig products to sums,

〈LD
α (t)〉σL→α =

1

2

∑
i,j

[
Re
(
U∗
αiUσiUαjU

∗
σj

) {
(1 + vivj) cos[(Ei(q)− Ej(q))t]

+ (1− vivj) cos[(Ei(q) + Ej(q))t]
}

− Im
(
U∗
αiUσiUαjU

∗
σj

) {
(vi − vj) sin[(Ei(q) + Ej(q))t]

+ (vi + vj) sin[Ei(q)− Ej(q)t]
}]

.

(3.10)
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Figure 3.4: Comparison of the Dirac expectation value for inverted
mass hierarchy and normal mass hierarchy at different momenta. We
use the best-fit oscillation parameters from NuFITv5.0 [88] and assume
the lightest neutrino mass to be 0.01eV. The x-axis uses a log base 10
scale.

Recall that vi = |q|/(Ei(q)), which means for smaller momentum com-
pared to the neutrino masses, vi is smaller from one. So the terms

(1− vivj) cos[(Ei(q) + Ej(q))t], (3.11)

(vi − vj) sin[(Ei(q) + Ej(q))t], (3.12)

from Eq.(3.10) become more important to the oscillation amplitude
for smaller momenta. This allows our formulation to have a greater
distinction in the neutrino mass hierarchies at smaller momenta. We
illustrate this effect over a wide momenta range in figure 3.5. Clearly,
the higher frequency oscillations have a greater influence on the am-
plitude of the left-handed expectation value as momentum decreases.
Furthermore, the higher frequencies are more pronounced in the in-
verted hierarchy case. We understand this by considering the effect of
the mass hierarchy on the summed energy phases (Ei(q)+Ej(q))t. For
the inverted hierarchy two heavy states exist, ν1 and ν2 that generate
the frequencies,

f22(q) = E2(q) + E2(q) the highest frequency, (3.13)

f21(q) = E2(q) + E1(q), (3.14)

f11(q) = E1(q) + E1(q), (3.15)

49



3.2. Phenomenology of the lepton family numbers N.J.Benoit

10 ³ 10 ² 10 ¹ 10

D
ir

ac
 e

xp
ec

ta
tio

n 
va

lu
e

0.0

0.5

1.0

10 ³ 10 ² 10 ¹ 10
momentum q (eV)

normal hierarchy at t = 1.32 ps inverted hierarchy at t = 1.32 ps

e! e

Figure 3.5: Comparison of the Dirac expectation value for inverted
mass hierarchy and normal mass hierarchy at different momenta. We
use the best-fit oscillation parameters from NuFITv5.0 [88] and assume
the lightest neutrino mass to be 0.01eV. The x-axis uses a log base 10
scale.

because the mass squared difference of Δm2
21 = 7.25× 10−5 eV2 is two

orders of magnitude smaller than |Δm2
31| = 2.498 × 10−3 eV2. In the

normal hierarchy only one heavy state exists, ν3, so we are left with a
single high frequency and some medium frequencies,

f33(q) = E3(q) + E3(q) the high frequency, (3.16)

f31(q) = E3(q) + E1(q) a medium frequency, (3.17)

f23(q) = E2(q) + E3(q) a medium frequency, (3.18)

and the mass squared difference becomes |Δm2
32| = 2.517 × 10−3 eV2.

In summary, our formulation has a stronger relation to the neutrino
mass hierarchy and the strength becomes more pronounced at lower
momenta, because of the additional phases φ2

i,j and φ3
i,j .

For Eq.(2.58) the Majorana expectation value, the exact Majorana
mass model is not important to the general phenomenology. This is
because the Majorana phases are physical parameters that can in
principle take on any value, see the discussion in appendix A. In our
formulation the PMNS term Re

(
U∗
αkU

∗
σkUαjUσj

)
is directly proportional

to the Majorana phases α21 and α31. That term only has significance
for lower momentum, as we have noted at the end of section 2.2 after
Eq.(2.58); and in the middle of section 3.1. We illustrate the effect of
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the Majorana phases in figure 3.6 by considering the cases they have
the least and the greatest contributions to the Majorana expectation
value,

(α21, α31) = (0, 2δ) the least effect, (3.19)

(α21, α31) = (π, π + 2δ) the greatest effect. (3.20)

In the left panel of figure 3.6 the Majorana phases are chosen to be
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Figure 3.6: Comparison of different Majorana phases over a momenta
range. We use the best-fit oscillation parameters from NuFITv5.0 [88],
assume the lightest neutrino mass to be 0.01eV, and use normal hierar-
chy.

their greatest values. Near the momentum q = 0.02eV the disappear-
ance amplitude e → e for the Majorana expectation value becomes
negative. Contrast this to the right panel where the Majorana phases
are their least values and the disappearance amplitude is positive near
the momentum q = 0.02eV. Additionally, for momenta closer to zero
theMajorana phases at their least values do not constrain the negative
disappearance amplitude. However, when the Majorana phases are at
their greatest values the disappearance amplitude is almost always
positive. This illustrates how the PMNS term Re

(
U∗
αkU

∗
σkUαjUσj

)
and

the Majorana phases are suppressed by the masses of the neutrinos

through
√
1− v2(k,j) = m(k,j)/(E(k,j)(q)) in Eq.(2.58).
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3.3 Summary

From this chapter we have illustrated how our formulation provides
a look into if neutrinos are Majorana or Dirac fermions. We have
done this by investigating from differences in the evolution of the ex-
pectation values Eq.(2.58) and Eq.(2.127). We have investigated those
differences in two ways, first by studying the total lepton number
and second by comparing the low momentum phenomenology. For
total lepton number, we found for the Dirac expectation value the
total lepton number is always conserved and for the Majorana expec-
tation value violates total lepton number. We highlighted how this
occurs though figure 3.1 and illustrated the effect on disappearance
and appearance calculations in figures 3.2 and 3.3. For the low mo-
mentum phenomenology we discussed how our formulation has three
interesting phenomenology properties,

1. we can distinguish the neutrino mass type,

2. differences from the neutrino mass hierarchy are enhanced,

3. the Majorana phases can play an important role to the Majorana
Expectation value.

In the next chapter, chap. 4, we will change directions completely and
discuss some theoretical implications of our formalism.
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Chapter 4

Lepton number in the
Schrödinger picture

For this final chapter, we will discuss the ideas from one of our other
works [95]. The basis of our formulation in chapters 2 and 3 is the
Heisenberg picture, where the operators of the Lepton family numbers
are Heisenberg operators Eq.(2.56) and Eq.(2.113). But, in principle
we can reformulate to the Schrödinger picture and reproduce the
same results. We are motived to do this because, as we stressed in
chapter 2, the creation and annihilation operators of Eq.(2.46) and
Eq.(2.47), Eq.(2.52) and Eq.(2.53), Eq.(2.97) through Eq.(2.100), and fi-
nally Eq.(2.107) through Eq.(2.110), have a non-trivial mixing. That
suggests a non-trivial relationship between the Fock spaces of the
operators.

When we do reformulate to the Schrödinger picture, we find the
operator relations of Eq.(2.46) and Eq.(2.47) from the Majorana cal-
culation can be expressed as a Bogolyubov transformation. The Bo-
golyubov transformation leads to a relationship between the different
vacua of the operators. The Bogolyubov transformation has been
applied by others to neutral particle oscillations and neutrinos as Ma-
jorana particles have been suggested to be Bogolyubov quasi-particles
[78, 79, 80, 81, 82, 83, 96, 97]. To understand those ideas wewill first in-
troduce some concepts about quantum field theories that is normally
not covered in high energy physics, but is discussed in condensed
matter physics in section 4.1. Then, we will clarify the relationship
between our original formulation in the Heisenberg picture and the
other formulations in the Schrödinger picture, over sections 4.2 and
4.3.
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4.1 Unitarily inequivalent representations

We set a background for the Bogolyubov transformation using a pre-
scription of condensed matter physics [98]. We start with a many
body system described by a state |n1, n2, . . . 〉 and those states form a
set {|n1, n2, . . . 〉}. That set is non-countable, and can be proven for a
Fermion system that uses the binary number system. For example,
in a binary system the set can be written as {n1n2 . . . nk . . . } where
nk = 0 or nk = 1. That set is across (0, 1) on the real number line
and corresponds directly to the set {|n1, n2, . . . , nk, . . . 〉}. Thus, the set
{|n1, n2, . . . , nk, . . . 〉} is non-countable.

We can not use a non-countable, in other words an infinite, set for
a base of a Hilbert spaceH, which only allows countable, or finite, sets
[99]. To fix this problem we can select a subset from {|n1, n2, . . . 〉} that
is countable and use that subset to build the Fock space F . The Fock
space F is a unique subspace of the Hilbert space because it holds the
vacuum |0〉, or zero particle state. However, we are then faced with
infinite selection of countable subsets, so an infinite number of Fock
spaces F , to form our Hilbert space H. If we are able to define two
unique subsets as the base for representing the operators ai, a

†
i : i =

1, 2, . . . then those two representations form unique Fock spaces F .
Those Fock spaces F are said to unitarily inequivalent to each other
[98]. This leads to Haags theorem[100], which to simplify states;

1. when two fields are unitarily equivalent, then both are free if
one is free,

2. only when the ground states are equal can their corresponding
Fock spaces be unitarily equivalent.

As we introduced in section 1.3.2, neutrinos can be described by
the weak states,

|να〉 =
∑
i

U∗
αi|νi〉. (4.1)

In the two flavor case the index i = 1, 2 tells us the flavor fields, νe and
νμ, are a superposition of the massive fields ν1 and ν2. So, there are
two general types of Fock spaces one for the massive fields Fi and the
other for the flavor fields Fα. Both Fi and Fα are unique subspaces of
the Hilbert space H, which means they must be treated as unitarily
inequivalent. In other words, there is no unitary transformation V
between the fields να and νi that satisfies the relation,

να = V −1νiV. (4.2)
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Consequently, there is also no such unitary transformation between
the creation and annihilation operators of those fields.

We stressed in chapter 2, the creation and annihilation operators
of Eq.(2.46) and Eq.(2.47) for the Majorana case and Eq.(2.97) through
Eq.(2.100) for the Dirac case have a non-trivial mixing among them-
selves. That non-trivial mixing is a consequence of us creating Fock
spaces F in two separate regions, then connecting those regions with
a continuity condition. Thus, the relations between the fields, and
consequently the operators, is non-trivial because the Fock spaces are
unitarily inequivalent.

As we mentioned before, each Fock space F is a unique subspace
due to the vacuum. In other words, the vacuum of separate Fock
spaces are different and operators of one Fock space can not act upon
the vacuum of a second Fock space. We will study how the unitarily
inequivalence and different vacuums we use in our formalism in the
next section, sec. 4.2.

4.2 The Bogolyubov transformation

For simplicity, we will only consider a single flavor case of the Majo-
rana lepton number from section 2.1;

LS = iψLγ
μ∂μψL − θ(t)

m

2

(
ψC
LψL + h.c.

)
. (4.3)

Recall the notation of ψC
L = (ψL)

C for charge conjugation. Next, we
reproduce the operator relations of Eqs.(2.14) and (2.15) for conve-
nience,

a(p) =

√
2|p|N(p)

2E(p)

(
aM(p,−) +

im

N(p)
a†M(−p,−)

)
, (4.4)

b(p) =

√
2|p|N(p)

2E(p)

(
aM(p,+) +

im

N(p)
a†M(−p,+)

)
, (4.5)

and extend them into the second momentum region of a(−p) and
b(−p);

a(−p) =

√
2|p|N(p)

2E(p)

(
aM(−p,−)− im

N(p)
a†M(p,−)

)
, (4.6)

b(−p) =

√
2|p|N(p)

2E(p)

(
aM(−p,+)− im

N(p)
a†M(p,+)

)
. (4.7)
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Recall the normalization factor is N(p) = E(p) + |p|. To proceed we
point out that the operator relations can be rewritten as a rotation
between a definite lepton family number state and mixed state. To
accomplish the rotation we use the velocity definitions |p|/E(p) = v
and m/E(p) =

√
1− v2;

cosh θp =

√
1 + v√
2v

, (4.8)

sinh θp =

√
1− v√
2v

. (4.9)

The angle of rotation θp depends on the momentum of the particle
states. Then, we rewrite the operator relations as rotations dependent
on the angle θp;(

a(p)
a†(−p)

)
= v

(
cosh θp i sinh θp
i sinh θp cosh θp

)(
aM(p,−)

a†M(−p,−)

)
, (4.10)(

b(p)
b†(−p)

)
= v

(
cosh θp i sinh θp
i sinh θp cosh θp

)(
aM(p,+)

a†M(−p,+)

)
. (4.11)

To further simplify we use the hyperbolic trig relation of cosh 2x =
sinh2 x+cosh2 x, which leads to cosh 2θp = v−1 = cos−1 2φp. Then Eq.(4.10)
and Eq.(4.11) are written as,(

a(p)
a†(−p)

)
= np

(
cosφp i sinφp

i sinφp cosφp

)(
aM(p,−)

a†M(−p,−)

)
, (4.12)(

b(p)
b†(−p)

)
= np

(
cosφp i sinφp

i sinφp cosφp

)(
aM(p,+)

a†M(−p,+)

)
, (4.13)

where np =
√

cos 2φp.
The momentum dependent rotation φp suggests the existence of a

Bogolyubov transformation,

T (φp) = eiφp[g(p,+)+g(p,−)], (4.14)

where the dimensionless generators of the transformation are,

g(p, λ) =
aM(p, λ)aM(−p, λ) + a†M(p, λ)a†M(−p, λ)

2E(p)(2π)3δ(3)(0)
. (4.15)
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The operator relations then become,

a(p) = npT (φp)aM(p,−)T−1(φp), (4.16)

a(−p) = npT (φp)aM(−p,−)T−1(φp), (4.17)

b(p) = npT (φp)aM(p,+)T−1(φp), (4.18)

b(−p) = npT (φp)aM(−p,+)T−1(φp). (4.19)

Because we have two sets of operators, a(p) and aM(p,−), we should
define two distinct vacua. The first vacuum is annihilated by a(p) and
b(p),

a(±p)|0〉 = b(±p)|0〉 = 0; (4.20)

and the second vacuum is annihilated by aM(p,−) and aM(p,+),

aM(±p,−)|0M〉 = aM(±p,+)|0M〉 = 0. (4.21)

Similar to the operators the vacua are related to each other though
Eq.(4.14) the Bogolyubov transformation,

|0〉 =
∏
p∈A

T (φp)|0M〉. (4.22)

We expand the Bogolyubov transformation to show that the relation-
ship between the vacua is nontrivial,

|0〉 =
∏
p∈A

[
cos2 φp − B†

M(p,+)B†
M(p,−) sin2 φp

+ i sinφp cosφp

∑
λ=±

B†
M(p, λ)

]
|0M〉.

(4.23)

The bosonic operator B†
M(p, λ) creates two Majorana particles with

opposite momentum. These bosonic operators appear as a superposi-
tion of the Majorana particles in a state of two pairs or one pair with
the norm,

〈0M |BM(p,−)BM(p,+)B†
M(p,+)B†

M(p,−)|0M〉 = 1, (4.24)

〈0M |
∑
λ′

BM(p, λ′)
∑
λ

B†
M(p, λ)|0M〉 = 2, (4.25)

B†
M(p, λ) =

a†M(−p, λ)a†M(p, λ)

2E(p)(2π)3δ(3)(0)
. (4.26)
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4.3 Expectation value in the Schrödinger pic-

ture

We use three steps to calculate the Majorana expectation value in the
Schrödinger picture. We start with an initial state of definite lepton
number, then we solve for the evolution form of that state, and last we
sandwich that state around the operator for the lepton family number.
The initial state is built using Eq.(4.23) the relationship between the
vacua and Eq.(4.16) the transformation of operator,

|Ψ(t = 0)〉 = a†(q)|0〉√
2|q|(2π)3δ(3)(0) , (4.27)

which becomes,

|Ψ(0)〉 =
∏

(p �=q)∈A

[
cos2 φp − B†

M(p,+)B†
M(p,−) sin2 φp

+ i sinφp cosφp

∑
λ=±

B†
M(p, λ)

]

×
√

cos 2φq

2|q|(2π)3δ(3)(0)
[
(cosφq

+ iB†
M(q,+) sinφq)a

†
M(q,−)

]
|0M〉.

(4.28)

Next we obtain the time evolution form,

|Ψ(t)〉 = 1√
2|q|(2π)3δ(3)(0)e

−iH(t)a†(q)|0〉; (4.29)

which is equivalent to,

|Ψ(t)〉 =
∏

(p �=q)∈A

[
cos2 φp − B†

M(p,+)B†
M(p,−) sin2 φpe

−4iE(p)t

+ i sinφp cosφpe
−2iE(p)t

∑
λ=±

B†
M(p, λ)

]

× e−iE(q)t

√
cos 2φq

2|q|(2π)3δ(3)(0)
[
(cosφq

+ ie−2iE(q)tB†
M(q,+) sinφq)a

†
M(q,−)

]
|0M〉.
(4.30)
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Lastly, we sandwich Eq.(4.30) the time evolution form of the initial
state around the operator for the lepton family number. For the single
flavor case we define the operator for the lepton family number to be,

LS =

∫ ′ dq

(2π)32|q|
(
a†(q)a(q)− b†(q)b(q)

)
. (4.31)

We use the results of the Bogolyubov transformation in Eq.(4.16),
Eq.(4.17), Eq.(4.18), and Eq.(4.19) to substitute the operators,

LS =

∫
q∈A

V dq

(2π)3

∑
λ=±

(−λ)
[
v (A(q, λ) + A(−q, λ))

−i
√
1− v2

(
B†

M(q, λ) + BM(q,−λ)
)]

.

(4.32)

The notation V = (2π)3δ(3)(0) refers to a volume normalization and we
define,

A(q, λ) =
a†M(p, λ)aM(p, λ)

2E(p)(2π)3δ(3)(0)
. (4.33)

Sandwiching the operator of Eq.(4.32) with Eq.(4.30) the evolved initial
state results in two matrix element calculations,

〈LS〉 =
∏

(p �=q)∈A
〈0M |

[
cos2 φp − BM(p,+)BM(p,−) sin2 φpe

4iE(p)t

− i sinφp cosφpe
2iE(p)t

∑
λ=±

BM(p, λ)

]

×
[
cos2 φp −B†

M(p,+)B†
M(p,−) sin2 φpe

−4iE(p)t

+ i sinφp cosφpe
−2iE(p)t

∑
λ=±

B†
M(p, λ)

]
|0M〉

×
∫
q∈A

dq

2|q|(2π)3 cos 2φq〈0M |aM(q,−)

× [cosφq − ie2iE(q)tBM(q,+) sinφq

]
�S

×
[
cosφq + ie−2iE(q)tB†

M(q,+) sinφq

]
a†M(q,−)|0M〉.

(4.34)

The first matrix element consists of the direct product for all momen-
tum (p 
= q) ∈ A and is equal to one. The second matrix element is the
integral over q ∈ A, which evaluates to be,

〈Lf〉 = v2 + (1− v2) cos 2E(q)t. (4.35)
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Thus, our result in the Schrödinger picture is exactly the same as the
Heisenberg picture for the single flavor case derived in section 2.1.
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Chapter 5

Conclusions

Neutrino physics has evolved significantly since the discovery of flavor
oscillations by Super Kamiokande [50] and the Sudbury Neutrino
Observatory [51]. Nowadays, there are numerous experiments that
aim to take precision measurements within the next ten years. Some
measurements include:

• Neutrino mass hierarchy,

• Neutrino mass type,

• CP violation in the leptonic sector,

• Absolute mass scale of the neutrinos.

Furthermore, the originating work of Pontecovo with neutrino oscil-
lations in quantum mechanics [47] has been established to not be a
theoretically complete model for neutrino oscillations. A consensus
for the theory of neutrino oscillations in quantum field theory has not
been reached and is an active area of research [67, 68, 69, 70, 71, 72,
74, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83].

We developed a formulation of neutrino flavor oscillations based
on lepton family numbers in quantum field theory. We introduced
lepton family numbers in section 1.1.2 as conserved values in V − A
theory and a U(1) global symmetry in the Standard Model. However,
neutrino flavor oscillations imply lepton family numbers are violated
[8]. We startedwith a derivation of lepton family number for neutrinos
with Majorana masses in sections 2.1 and 2.2. The main result of
that derivation is the Majorana expectation value of Eq.(2.58) from
our original work [86]. Some important features of the Majorana
expectation value are,
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• The cosine and sine terms are responsible for time dependent
oscillations of the expectation value.

• In the last line of the equation, the quantity Re
(
U∗
αkU

∗
σkUαjUσj

)
is

dependent on the Majorana phases α21 and α31. Those Majorana
phases are observable CP phases and could be determined by
some experiments.

• A sum over all the lepton family numbers
∑

α〈σ(q)|LM
α (t)|σ(q)〉

is the total lepton number. The total lepton number is not a
conserved, time independent, value because of the minus sign
in the last term. We explored this further in section 3.1.

• The quantum mechanics equation for neutrino flavor oscillation
Eq.(1.13) is recovered from Eq.(2.58), the Majorana expectation
value, using the ultra-relativistic limit; which we discussed in
section 2.2.2.

Next, we derived the lepton family number for neutrinoswithDirac
masses in section 2.3. Our second main result is the Dirac expectation
value Eq.(2.127) thatwe derived in section 2.3 and is new for this thesis.
The discussion we had in section 2.2.2 about the comparison between
the Majorana expectation value and quantum mechanic formulation
also applies to theDirac expectation value. This is because the lines one
though fourmatch exactly betweenEq.(2.58) theMajorana expectation
value and Eq.(2.127) the Dirac expectation value, and the last line is
suppressed by the absolute masses of the neutrinos.

In chapter 3, we have illustrated how our formulation provides a
look into if neutrinos are Majorana or Dirac fermions. This is a new
comparison for this thesis. We accomplished this by investigating dif-
ferences in the evolution of the Majorana expectation value Eq.(2.58)
and the Dirac expectation value Eq.(2.127). We investigated those
differences in two ways, first by studying the total lepton number
and second by comparing the low momentum phenomenology. For
total lepton number, the Dirac expectation value was found to con-
serve total lepton number, whereas the Majorana expectation value
was found to violate total lepton number. We highlighted how this
occurs though figure 3.1 and illustrated the effect on disappearance
and appearance calculations in figures 3.2 and 3.3. For the low mo-
mentum phenomenology we discussed how our formulation has three
interesting phenomenology properties,

1. we can distinguish the neutrino mass type,
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2. differences from the neutrino mass hierarchy are enhanced,

3. the Majorana phases can play an important role to the Majorana
Expectation value.

For the final chapter, chap. 4, we discussed some theoretical prop-
erties of our model, and proved our formulation is the same in the
Schrödinger and Heisenberg pictures [95]. We were motived to do
this because our creation and annihilation operators of Eq.(2.46) and
Eq.(2.47), Eq.(2.52) and Eq.(2.53), Eq.(2.97) through Eq.(2.100), and fi-
nally Eq.(2.107) through Eq.(2.110), have a non-trivial mixing. That
suggests a non-trivial relationship between the Fock spaces of the op-
erators, which is not usually considered in high energy physics. When
we reformulated to the Schrödinger picture, we found the operator
relations of Eq.(2.46) and Eq.(2.47) from the Majorana calculation can
be expressed as a Bogolyubov transformation. That was similar to
Thermal field theory and gave an interesting theoretical background
to our model. This concludes the main chapters of this thesis.

Acknowledgements

I cannot begin to express my thanks to my supervisor Takuya Mo-
rozumi, who has supported me in my research and personal endeav-
ors over the last three years. He has also always challenged me to
become a better physicist, student, and person. I would also like to
express my gratitude to Apriadi Salim Adam, Yuta Kawamura, Yamato
Matsuo, Yusuke Shimizu, Yuya Tokunaga, and Naoya Toyota, my col-
laborators on the article that this work is based on, for there countless
insights. I am very grateful for the discussions with Kei Yamamoto,
Keiko I. Nagao, and Hiroyuki Takata about Elementary Particle Physics
and Mathematics. I would also like to acknowledge the help of Tomo-
hiro Inagaki, Chiho Nonaka and Ken-Ichi Ishikawa the staff members
of the Theoretical Particle and Hadron Physics Group at Hiroshima
University. In addition, I am very grateful to students in the Theoret-
ical Particle and Hadron Physics Group at Hiroshima University for
their support. In particular, I am very grateful to the initial support
from Yuta Kawamura, Yamato Matsuo, and Kenta Takagi after moving
to Japan.

I would like to extend my deepest gratitude to my parents and
grandparents, all of whom have supported me and continue to sup-
port me on my sometimes crazy endeavors. I must also thank the

63



N.J.Benoit

members and staff of Hiroshima International Plaza, Sachiyo Nose
from the student health center; and Kaori Kusaka, Tomoko Sato, Kiyo
Mondo, Kozue Akimura, and Ms Hata from the Graduate School of
Science support offices. Finally, I would like to thank the Japan Student
Services Organization (JASSO) and the Japanese government Ministry
of Education, Culture, Sports, Science and Technology (MEXT) for the
financial support to be able to preform my studies and research.

64



Appendix A

Parameterization of the unitary
mixing matrix

The Pontecorvo, Maki, Nakagawa, and Sakata (PMNS) mixing matrix
is an important piece of neutrino flavor oscillations. As such, we
give a brief overview of the topic with more details in the references
[8, 101, 102]. The origin of the PMNS matrix is the same as the CKM
matrix of the quark sector. We start with Eq.(1.3) the charged current
of the weak interaction, which we reproduce here,

LCC
ν,I = −

∑
α

g

2
√
2
(ναLγ

ρlαLWρ + h.c.) . (A.1)

The lepton mass term written as,

LM
I = −(lαRMllαL + h.c.)− LMν

I (A.2)

where charged leptons obtain amass though the StandardModel Higgs
mechanism, and the neutrinos obtain a mass though some beyond the
Standard Model physics. In the interaction basis the charged lepton
massmatrixMl is not diagonal. We can diagonalize the charged lepton
mass matrix with two unitary matrices,

(W l †)iα(Ml)αβ(V
l)βj = (ml)iδij, (A.3)

whereW l comes from the right-handed charged leptons and V l from
the left-handed.

A similar process happens for the neutrinos, but the details of the
two unitary matrices depends on if the neutrinos have a Dirac or
Majorana mass term. Regardless if neutrinos have Dirac or Majorana

65



N.J.Benoit

mass, the charged current of the weak interaction is left-handed, so
the interaction basis is the most convenient. Then in the interaction
basis, the unitary matrices we used to diagonalize the lepton mass
matrices modify the charged current Lagrangian,

LCC
νI = −

∑
k,j

(V ν
αk)

†V l
αj

g

2
√
2
(νkLγ

ρljLWρ + h.c.) ; (A.4)

where the combination of the lepton and neutrino unitary matrices is
the PMNS matrix,

Ukj = (V ν †)kαV l
αj. (A.5)

For three neutrino mass eigenstates, the PMNS matrix is a complex
unitary matrix with nine real degrees of freedom. We can rotate
away three degrees of freedom by re-parameterizing the charged
leptonmasses. Twomore degrees of freedom can be re-parameterized
if neutrinos have a Dirac mass, otherwise for a Majorana mass six
degrees of freedom remain. The degrees of freedom are three angles
θ12, θ23, and θ13; and three phases δ, α21, and α31. The last two phases
of α21 and α31 are the Majorana phases, which get rotated away if
neutrinos have a Dirac mass. This results in,

Uαk =

⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

⎞
⎠UM , (A.6)

where the matrix holding the Majorana phases is given as,

UM =

⎛
⎝1

ei
α21
2

ei
α31
2

⎞
⎠ . (A.7)

All the mixing angles and the Dirac CP phase δ have been measured
by experiments, and we use the best-fit values from the NuFITv5.0
collaboration dataset [88]. Presently it is not known if neutrinos have
a Majorana mass, so no measurements of the Majorana phases have
been preformed.

As a short aside discussion, the quantum mechanic probability of
Eq.(1.13) after the ultrarelativistic approximation suggests only the
mass squared differences Δm2

kj of the neutrinos can be measured. In
fact, because in all neutrino oscillation experiments the neutrinos are
considered ultrarelativistic the experiments can only measure the
mass squared differences. The best-fit values for the mass squared
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differences are also reported by the NuFITv5.0 collaboration. Other
experiments are designed to measure the lightest neutrino mass, and
most recently have only provided an upper bound of meff ≤ 0.9eV
[103]. This means for our analysis we are free to choose values for α21,
α31, and mlightest.
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Appendix B

Regions of the momentum

We will explain the calculation of Eq.(2.44) the continuity condition,
and how the regions of the momentum appear in the operators of
Eq.(2.56) and Eq.(2.113) the lepton family numbers. This discussion is
based on the supplemental material [104].

B.1 The continuity condition

We start with the equation of motion for Eq.(2.21) the Majorana La-
grangian,

γμ∂
μψLα = −iθ(t)m∗

αβψ
C
Lα, (B.1)

where we have suppressed the field dependence notation of ψLα(t,x)
and used ψC

Lα = (ψLα)
C . The time derivative of the field is taken,

∂

∂t
νLα = −γ0γi ∂

∂xi
νLα − iθ(t)m∗

αβν
C
Lβ. (B.2)

Then we integrate both sides of the equation over an infinitesimal
time region,∫ ε

−ε

dt
∂

∂t
νLα = −

∫ ε

−ε

dtγ0γi ∂

∂xi
νLα − i

∫ ε

0

dtθ(t)m∗
αβν

C
Lβ. (B.3)

After integration on the left-hand side the result is,

νLα(ε)− νLα(−ε) = −
∫ ε

−ε

dtγ0γi ∂

∂xi
νLα − i

∫ ε

0

dtθ(t)m∗
αβν

C
Lβ. (B.4)

Lastly, we take the limit of ε → +0 and use ψLα = UαiLψi from Eq.(2.22)
to obtain,

lim
ε→0+

ψLα(−ε,x) = lim
ε→0+

UαiLψi(+ε,x), (B.5)
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which is the same as Eq.(2.45). A similar derivation occurs for the
Dirac mass case. This forms our continuity condition.

B.2 The momentum regions

There is a subtle point about the momentum of the neutrinos that is
important to understand our derivation for the operators of Eq.(2.56)
and Eq.(2.113) the lepton family numbers. The fields on the left-hand
side of Eq.(B.5) the continuity condition areWeyl fields. Thus, the fields
ψLα(−ε,x) can not have zero momentum. The continuity condition
implies the Majorana or Dirac fields also do not have zero momentum,
despite the fact zero momentum is possible for a free Majorana or
Dirac field. Then, we split the momentum into two regions denoted A
and A with the direction of the momentum defined as,

n =
p

|p| , {p : p 
= 0}. (B.6)

The direction of the momentum n can be parameterized by two polar
angles θ and φ. This places the hemisphere of region A inside the angle
φ = [0, π) and the hemisphere of region A inside φ = [π, 2π). The angle
θ is always [0, 2π) no matter the hemisphere. So, to bring operators
from region A to region A we rotate them accordingly with n.
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