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Chapter 1

Introduction

1.1 Research background

1.1.1 Motivation

The ultimate goal of modern physics is to construct a “Theory of Everything” [1] that unifies the
four forces in nature: strong nuclear force, weak nuclear force, electromagnetic force, and gravity.
So far, human beings have succeeded in constructing the Standard Model of particle physics that
addresses three of four known fundamental forces in Nature: electromagnetic force, weak nuclear
force, and strong nuclear force. The remaining issue is to unify the Standard Model of particle
physics and gravity. The Standard Model of particle physics is compatible with quantum mechanics
which describes the microscopic world. However, gravity is incompatible with quantum mechanics,
partly because of the different scales involved. To be more specific, gravity can be explained as
the curvature of spacetime in general relativity, but if we apply this to quantum theory, the fine
structure of spacetime in relativity itself will fluctuate due to the uncertainty principle. This is
especially noticeable at singularities in spacetime such as a black hole. Therefore, the urgent task
is to unify these two incompatible theories, namely general relativity and quantum mechanics.

Quantum gravity [2] has emerged as a physics field that describes gravity based on the principles
of quantum mechanics. It deals with the quantum field theory in curved space-time. In the evalua-
tion of many physical quantities, divergence occurs on the Planck scale where quantum theory and
relativity meet. However, it is difficult to handle the divergence under gravity with renormalization
used in ordinary quantum field theory. Thus, several approaches have been made to avoid these
divergences such as string theory and loop gravity theory. In string theory, for instance, elementary
particles are considered to be one-dimensional strings rather than points. This idea weakens the
short-range integration (UV divergence) of the field appearing around the point. However, these
are still incomplete and undeveloped theories.

On the other hand, it is also important to confirm the existence of the phenomenon itself
involving quantum mechanics and gravity prior to the construction of quantum gravity. Note
that the phenomenon we consider here is quantized in classical space-time while the gravitational
field itself is quantized in quantum gravity. Hawking radiation [3, 4] is the flux of particles with a
thermal spectrum radiated from a black hole where even light cannot escape and has attracted much
attention as one of the rare phenomena encountered by quantum mechanics and general relativity
as discussed below.

Before proceeding to Hawking radiation, let us briefly review a black hole. The black hole is
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Figure 1.1: The sketch of the space-time curve of a black hole. The yellow line represents the
event horizon which is a boundary of the black hole. No matter cannot escape from the black hole
classically as shown on the right side. In quantum mechanics, a pair of particles and antiparticles
are generated as shown in (1), and a particle is emitted as Hawking radiation while its partner falls
into the black hole as shown in (2) by the vacuum fluctuations.

a region of spacetime where gravity is so strong that nothing even light can escape from it. It
is formed by the gravitational collapse of stars with a large mass as follows. Stars release energy
by reducing their mass due to internal nuclear fusion. The shape of the star is maintained if the
internal force and the external force (gravity) are balanced. However, the star collapses by gravity
when the star runs out of elements that can cause nuclear fusion. In this way, the star ends its life,
and instead, a black hole with strong gravity is born.

According to the general theory of relativity proposed by Einstein, gravity represents the cur-
vature of spacetime. In Riemannian spacetime with three dimensions of space and one dimension
of time, the distance between two points xμ and xμ + dxμ in the coordinate is defined by

ds2 = gμνdx
μdxν , (1.1)

with the metric tensor gμν representing the curvature of spacetime, where we use the Einstein
summation convention, in which an index variable appearing twice in a single term means the
summation of that term over all the values of the index. In fields where gravity is very weak,
spacetime can be regarded as an almost flat space called Minkowski space as

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.2)

On the other hand, the metric tensor is no longer Minkowski-like in a field with strong gravity.
Einstein argued that the laws of physics must be written in the same form in every coordinate.
Therefore, all physical quantities should be represented by tensors that are covariant with respect to
coordinate transformations. The Einstein equation satisfying the requirement connects the existence
of matter with the origin of gravity as follow,

Rμν − 1

2
gμνR = κTμν , (1.3)

where Rμν , R, and Tμν are Ricci curvature tensor, Ricci scalar, and energy-momentum tensor,
respectively. G is Newton’s gravitational constant and κ = 8π/c4 is Einstein’s gravitational constant
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with the speed of light c. According to this equation, gravity is the curvature of spacetime. By
solving this equation about gμν , we obtain the metric of the spacetime. Schwarzschild solved the
Einstein equation for the gravitational field of a spherical object with a center at the origin on the
assumption that the mass density is spherical symmetry and independent on time, and the space
will be flat far away from the origin [5, 6]. The solution called Schwarzschild metric is given as

ds2 = −
(
c2 − 2GM

r

)
dt2 +

c2

c2 − 2GM
r

dr2 + r2dθ2 + r2 sin2 θdϕ2, (1.4)

where M represents the mass of the spherical object. In this metric, there are singularity at r = 0
and r = 2GM/c2. One of them at r = 0 called curvature singularity cannot be removed while
another at r = 2GM/c2 can be removed by selecting the appropriate coordinates. In Painléve-
Gullstrand coordinate

dt → dt+

√
2GM

r

1

c2 − 2GM
r

dr, (1.5)

Eq. (1.4) reduces to

ds2 = − (c2 − v2(r)
)
dt2 + 2v(r)dtdr + dr2 + r2dΩ2, (1.6)

where the singularity at r = 2GM/c2 is removed. The metric tensor is

gμν =

⎛
⎝ v2(r)− c2 v(r) 0

v(r) 1 0
0 0 r2

⎞
⎠ , (1.7)

where v(r) =
√
2GM/r. The event horizon which is a boundary of a black hole is located at g00 = 0,

i.e., r = 2GM/c2. In short, gravity makes spacetime curved and forms a black hole which is a closed
region. Nothing can escape from a black hole over the event horizon.

Nevertheless, Hawking proposed that there is thermal radiation from a black hole by considering
the quantum effects [3, 4]. According to the uncertainty principle of quantum mechanics, a pair of
particles and antiparticles are unceasingly created and annihilated in the vacuum. Virtual particle
pairs that arise quantum mechanically from a vacuum near the event horizon may result in one
particle’s escape as Hawking radiation from the black hole, while the partner particle with negative
energy falls into it before the pair annihilation can happen as shown in Fig. 1.1. In short, Hawk-
ing radiation is a quantum phenomenon involving gravity, so it is considered to be an extremely
significant consequence of quantum mechanics and general relativity. Therefore, the observation of
Hawking radiation is a touchstone for evaluating possible unified theories of quantum mechanics
and general relativity, i.e., quantum gravity.

However, it is unlikely to be measured from an actual black hole because it is much weaker than
the background radiation. Here, we qualitatively derive the Hawking temperature by estimating
the quantum fluctuations of energy in the vacuum which is the origin of Hawking radiation based
on the uncertainty principle. The Hawking temperature is an important measure to assess the
observability of Hawking radiation. We assume a Schwarzschild black hole with radius r and mass
M , which has no charge and does not rotate. The time scale of the black hole is given as

Δt =
2r

c
, (1.8)
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where the velocity of the emitted particles is c. From the energy conservation law at the event
horizon, we obtain

m

2
c2 = G

mM

r
,

r =
2GM

c2
, (1.9)

where m is the mass of the emitted particles. The time scale reduces to

Δt =
4GM

c3
. (1.10)

The relationship between energy and temperature is given as

E = kBT (1.11)

with the Boltzmann constant kB. From the uncertainty principle

ΔEΔt � h̄, (1.12)

the Hawking temperature is given as

TH =
ΔE

kB
=

h̄

kBΔt
=

h̄c3

4kBGM
, (1.13)

where h̄ is the Planck constant h divided by 2π. There is a little difference between this result and
original Hawking temperature T o

H as

T o
H =

h̄c3

8πkBGM
, (1.14)

which is quantitatively derived based on the surface gravity [3, 4]. Let us estimate the Hawking
temperature of the black hole with the mass M = 10 × (2 × 1030) kg which is 10 times the solar
mass as an example,

T o
H �

(
1.1× 10−34

) · (3.0× 108
)3

8 · 3.1 · (1.4× 10−23) · (6.8× 10−11) · (10× 2.0× 1030)
� 3.9× 10−8. (1.15)

This is much smaller than the cosmic background radiation (3K). In this way, it is extremely
difficult to observe Hawking radiation from an actual black hole. Therefore, it has been proposed to
establish the basic principle of Hawking radiation using an analogue black hole artificially created
in a laboratory system.

1.1.2 Basic concept of analogue black holes

Firstly, we briefly review an idea for generating analogue black holes in laboratory systems. Black
holes are regions in space where gravity is so strong that nothing even light can escape. An event
horizon is defined as a boundary that separates black holes from our world, beyond which events
cannot affect an observer. For an intuitive understanding of event horizons, let us consider an
example of carp climbing up a waterfall as shown in Fig. 1.2 (a). The carp can swim at the velocity
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vc against still water. The flow of the river is faster downstream and reaches the maximum at the
waterfall. The velocity vectors of the carp in still water (vc), flowing water (v(x)), and the carp
against the flow of the river (vc + v(x)) are indicated in Fig. 1.2 (b). The vector vc + v(x) points
to the left downstream, which means the carp below the event horizon has flowed downstream.
Therefore, the carp will fall into the basin if it cannot resist this flow. Figure 1.2 (c) shows the
speed of the carp |vc| and the flow of the river |v(x)|. The unreturnable point occurs at the place
xh satisfying |vc| = |v(x)|. This is the event horizon in an analogue black hole. The carp that
is downstream from the event horizon cannot climb up the waterfall where |v(x)| > |vc|, while it
can swim freely at the upstream where |v(x)| < |vc|. Therefore, the region where the carp cannot
escape is considered as an analogue black hole in waterfalls. In this case, the carp plays the role of
the light and the spatially varying velocity of the waterfall corresponds to the free-fall velocity in
actual black holes. Note that we need to set up the background flow with spatial varying velocity
to create analogue black holes in laboratory systems.

1.1.3 Previous studies

Based on the above basic idea, Unruh opened up the path for the studies of analogue black holes [7]
by showing the analogy between the behavior of sound waves in a fluid cascade and that of light
in the spacetime of a black hole. Sakagami et. al [8] proposed an experimental model of acoustic
black holes using the transonic flow in a Laval nozzle as shown in Fig. 1.3. The background velocity
v(x) in a nozzle depends on space while the acoustic velocity vc is fixed. The equation of motion
for fluid can be written in terms of an effective metric as

ds2 = − [v2c − v2(r)
]
dt2 + 2v(r)drdt+ dr2 + r2dΩ2, (1.16)

which is in perfect agreement with the metric of the Schwarzschild black hole in Painléve-Gullstrand
coordinates as shown in Eq. (1.6). The background velocity v(x) plays the role of the waterfall
velocity, while the acoustic velocity vc corresponds to the carp velocity in the above example.
The background velocity reaches the sonic point at the throat in the nozzle corresponding to the
event horizon. The supersonic region (|v(x)| > |vc|) is the analogue black hole, where sound waves
(phonons) cannot escape beyond the event horizon. After Unruh’s seminal work, various systems
of analogue black holes have been proposed [7, 9–13].

Here, let us look at the current state of studies on analogue black holes in the most highly
advanced system, i.e., the Bose-Einstein condensate (BEC). BEC is a condensate formed by a
macroscopic number of bosons falling into one quantum state as follows. At high temperatures,
noble gas atoms obeying the Bose-Einstein quantum statistics can move freely with their own
energies. At this time, the velocity distribution follows the Maxwell–Boltzmann distribution. As
the temperature decreases, the quantum properties of the atom become more prominent, and the
atom behaves as a wave. The wavefunctions of each atom overlap each other when the de Broglie
wavelength becomes longer than the average interatomic distance. According to the Bose-Einstein
quantum statistics, a macroscopic number of bosons takes the lowest-energy quantum state at low
temperature. Therefore, BEC behaves as a quantum fluid and provides a background flow for
generating analogue black holes. An analogue black hole in BEC is realized by spatially changing
the quantum fluid velocity. In these studies, the sound is radiated as Hawking radiation instead of
light. An acoustic analogue black hole is created by introducing a narrow region into the tube to
form subsonic and supersonic regions. In this case, sound cannot escape from the supersonic region.
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Figure 1.2: (a) A schematic diagram of carp climbing up a waterfall. (b) A diagram of the velocity
vectors of the carp in still water vc, the flow of the river v(x), and the carp in the river vc + v(x).
(c) A graph showing the spatial dependence of the flow speed in the river |v(x)|. The dotted line
represents the speed of the carp |vc|. The light blue area corresponds to the black hole.
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Figure 1.3: A Laval nozzle is a tube with a narrow throat near the center of it. The transonic flow
is formed by applying different pressure on both ends. At the throat, the flow has the sonic point
and a sonic horizon emerges.

In 2010, Steinhauer et al. experimentally realized analogue black holes using sound waves in
Bose-Einstein condensed 105 rubidium poured into a tube [14]. The event horizon is created by
accelerating the condensate to supersonic speeds with a laser, which introduces the spatially changes
in the flow velocity in BEC. The sound waves are confined in the supersonic region corresponding to
an analogue black hole. In 2016, Steinhauer reported that Hawking radiation was observed from a
single black hole by measuring the correlation function between particles radiated outside the black
hole and antiparticles falling inside [15]. Michel et al. theoretically analyzed the experiment and
obtained the results in good agreement with the experimental results. However, Steinheuer’s results
are still being debated over whether the observed fluctuations are due to spontaneous quantum
fluctuations or not [15–17].

Another promising system for an analogue black hole is optical fibers. The current status of
the optical analogue black hole, which is our basis in quantum-circuit black hole laser, is as follows.
In 2008, Philbin et al. succeeded in creating an analogue black hole by injecting light pulse into
an optical fiber using a Ti: sapphire laser [12]. The incident pulse wave modulates the index of
refraction δn proportional to its intensity I (δn ∝ I) through the optical Kerr effect as shown in
Fig. 1.4. The velocity of probe light in the optical fiber is then given as v = c/(n0+ δn) with c and
n0 being light velocity in vacuum and refractive index without modulations, respectively. Thus, the
velocity of probe light slows down in the vicinity of the pulse. As a result, the probe light cannot
overtake the pulse. This results in the event horizon, which is generated when the probe light
and the pulse velocities are the same. Belgiorno et al. [18] and Rubino et al. [19] experimentally
confirmed the radiation from the superluminal region. However, their results are not consistent
with the characteristics expected from Hawking radiation.

1.2 Problem identification

There have been a lot of proposals of analogue black holes in various systems so far. However,
measuring the Hawking radiation in those systems goes along with serious difficulties in terms of
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Figure 1.4: Schematic diagram of analogue black holes in optical fibers. The incident pulse moving
with the constant velocity u modulates the refractive index by δn through the Kerr effect. The
velocity of the probe light changes in space and two horizons are formed.

the detection of the very low Hawking temperature. On the other hand, electric circuits have many
advantages over other systems, including scalability and controllability. Hawking radiation is ex-
pected since electric circuits have been miniaturized and can operate in the quantum mechanical
domain. In addition, the detection of microwave photons and their quantum correlations in Joseph-
son transmission lines has been proven through the study of the dynamical Casimir effect [20].

In analogue black holes in electric circuits, the situation is slightly different from the waterfall-
climbing model of carp described earlier. The electromagnetic wave and reference wave play the roles
of the carp and waterfall, respectively. To generate the event horizon, the spatial varying velocity
of electromagnetic waves is required, which corresponds to the carp with the spatial varying ability
to swim up. The reference wave is given depending on the systems and has a fixed velocity, which
corresponds to a river on flat ground with a constant flow. Figure 1.5 (a) represents the vectors of
the velocity of the electromagnetic waves, the reference wave, and their composition. Despite the
differences in these roles compared to the example of the carp climbing the waterfall in Fig. 1.2, the
same situation as the example is realized (compare the composite vectors in 1.2 (b) and 1.5 (a)).
The event horizon of an analogue black hole appears where the velocity of the electromagnetic wave
is equal to the velocity of the reference wave as shown in 1.5 (b).

In 2015, Schützhold et al. proposed an analogue black hole in the LC transmission line as shown
in Fig. 1.6 (a) [11]. The velocity of electromagnetic waves propagating in transmission lines is given
by both inductance and capacitance such as v = a/

√
LC with the unit cell length a as described

in Chapter 3. In their system, the permittivity ε(t) of the capacitor is changed by illuminating the
material with a laser to excite the electrons in it. Suppose laser light moves at a constant speed
u, the capacitance in the transmission line has a spatial dependence such as C(x, t) = C(x + ut),
and the electromagnetic wave velocity is also modulated in space, resulting in an analogue black
hole. However, there is a problem of heating by lasers. This makes it difficult to observe Hawking
radiation. For example, the residual energy that makes high-frequency phonons have to be cooled to
a Hawking temperature (10–100 mK) or less before it is converted to low-frequency electromagnetic
waves in their system.

In 2009, Nation et al. [21] overcame the main problem of heating by using superconductivity

8



Figure 1.5: (a) A diagram of the velocity vectors of the electromagnetic wave v(η), the reference
wave u, and v(η)+u. The electromagnetic wave and reference wave play the roles of the carp and the
flow of the river, respectively. (b) A graph showing the spatial dependence of the electromagnetic
wave speed |v(η)|. The dotted line represents the speed of the reference wave u. The light blue area
corresponds to a black hole.
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Figure 1.6: Schematic diagrams of the circuits for generations of analogue black holes. (a)
Schützhold et al. proposed LC transmission lines. (b) Nation et al. proposed the dc-SQUID
arrays.

in the waveguide. They applied an external magnetic field pulse moving at a constant speed to
the dc superconducting quantum interference devices (dc SQUIDs) transmission line (Fig. 1.6
(b)). In the system, the Josephson inductance is spatially changed because it depends on the flux
through dc SQUIDs. This leads to the spatial changes in the velocity of the electromagnetic waves
propagating in the transmission line, resulting in an analogue black hole in their transmission lines.
There are many advantages such as high-precision waveguide control based on strong coupling with
electromagnetic waves and operability on the nanosecond time scale. However, the pulsed current
that generates the external magnetic flux applied to the dc SQUID array is not stable and the shape
of the wave collapses with time due to the wavenumber dispersion. This causes the problem that it
cannot create a stable analogue black hole.

In this thesis, we propose analogue black holes using solitons to overcome the problems inherent
in electric circuits. A soliton is a solitary wave created by balancing dispersion and nonlinearity of
the nonlinear dispersive media that propagate stably after the collisions with other solitons [22–24].
This unique property has led to applications to information communication such as optical solitons
and has provided a fundamental concept for understanding nonlinear physical phenomena in a
variety of systems. In electrical circuits, the Toda (voltage) solitons obeying the Korteweg-de Vries
(KdV) equation is well known in the nonlinear LC circuit with nonlinear capacitors, which gives
the basic concept of soliton theory and its use for signal transmissions [25]. We explore a soliton
obeying nonlinear evolution equations in electric circuits and apply it to the generation of analogue
black holes.

1.3 Purpose

In this thesis, we discuss the observability of Hawking radiation as a touchstone for the construction
of the quantum gravity theory. For this purpose, we propose analogue black holes on two types of
transmission lines. One is a Josephson transmission line and the other is an LC transmission line
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with nonlinear capacitors. These are electromagnetically dual to each other. We reveal that solitons
exist on these transmission lines, and show that these solitons behave as analogous black holes. We
also propose the black hole laser composed of two horizons to enhance Hawking radiation. Our
purpose is to construct a theory to verify the Hawking radiation with our systems.

1.4 Structure of this thesis

This thesis is organized as follows. In Chapter 2, we derive equations that describe the waves
hidden in the transmission lines (Josephson transmission lines and nonlinear LC transmission lines).
Starting with a description of the circuit equation in our systems, we show that there are solitons
that obey the nonlinear evolution equations. In Chapter 3, we show that the soliton obtained in
Chapter 2 spatially changes the velocity of electromagnetic waves on the transmission lines, and
then the analogue black hole is created by the solitons. In Chapter 4, we derive the Hawking
temperature using the tunneling mechanism and discuss the observability of Hawking radiation.
Chapter 5 outlines the principle of a black hole laser for the further amplification of Hawking
radiation and then we propose a system that can realize a black hole laser in an electric circuit
system. Finally, we conclude the thesis and describe the future prospects in Chapter 6.
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Chapter 2

Solitons in nonlinear transmission
lines

There have been some proposals for analogue black holes in electric circuits [11,21]. However, stable
analogue black holes are unlikely to be formed in their system due to external field instability for
control and the resulting heating problems. In this thesis, we propose analogue black holes using
solitons that stably propagate with a fixed velocity to overcome the problem. A soliton is a solitary
wave formed by balancing dispersion and nonlinearity in nonlinear dispersive systems. Therefore,
soliton formation requires the introduction of nonlinearities into the system. There are two types
of methods for introducing nonlinearity into transmission lines. One method is to use nonlinear
inductance using Josephson’s relation, and the other is to use nonlinear capacitance: Josephson
transmission lines and LC transmission lines with nonlinear capacitors. These are electromagneti-
cally dual to each other.

In this chapter, we review the concepts of solitons and their features in Section 2.1 at first. In
Section 2.2, we describe the essence of the reductive perturbation method which is used to derive the
nonlinear evolution equations from the circuit equations. Then, we derive the solitons propagating
on both Josephson transmission lines and LC transmission lines with nonlinear capacitors in Sections
2.3 and 2.4, respectively. These sections are constructed in parallel. Starting from formulating the
circuit equations for each model, we find the waves hidden in the circuit equations by using reductive
perturbation methods. We derive a scale-invariant nonlinear evolution equation by considering the
balance between dispersion and nonlinearity in the comoving frame of reference waves. Then, we
obtain soliton solutions from the nonlinear evolution equations.

2.1 Solitons

In 1965, Zabusky and Kruskal [23] numerically analyzed a nonlinear partial differential equation
called the Korteweg-de Vries equation describing water waves derived by D. J. Korteweg and G.
de Vries [26]. They found that the obtained pulsed solitary wave solutions behave like a particle
against collisions with each other and named the solitary wave as a soliton after the particle-like
feature. Solitons have been studied more energetically since a method for analytically solving the
Korteweg-de Vries equation was established in 1967 [24]. The nonlinear effect of waves makes waves
sharpen and the dispersion effect diffuses the waves. A soliton is formed by balancing the dispersion
and nonlinearity of the nonlinear dispersive media as shown in Fig. 2.1.
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Figure 2.1: The nonlinearity of waves sharpens the shape of the waves and the dispersion diffuses
the waves. A soliton is a solitary wave formed by the balance of dispersion and nonlinearity.

A soliton gives not only a fundamental concept for understanding nonlinear physical phenomena
in various fields but it also has been applied to information communication such as optical solitons
[27]. In electrical circuits, the Toda solitons [25,28] have been studied by generating voltage solitons
in the nonlinear LC circuit to explore the basic concept of soliton theory and have been utilized to
signal transmissions [29, 30].

2.2 Reductive perturbation methods

Most physical phenomena are inherently nonlinear. Nevertheless, the analysis of these phenomena
has been based on linear analysis, ignoring the nonlinearity due to mathematical difficulties for a
long time. Therefore, as a natural approach, a perturbation method came up to express weakly
nonlinear phenomena by taking into account variations from the linear approximation. The re-
ductive perturbation method is an asymptotic perturbation theory that was first used by Gardner
and Morikawa [24] to derive the KdV equation describing magnetohydrodynamic waves, and later
generalized by Taniuti et al. [31–33]. This method can be summarized as follows: in a dispersive
or dissipative medium with nonlinearity, even if their effects are small, a stable steady state is
expected to exist in a wave field (far-field) far away from the wave source since the nonlinearity
and the dispersion effect or the dissipative effect are balanced. In order to achieve this balance, we
introduce a stretched coordinate with a small parameter ε and balance both effects with respect to
this parameter to derive the nonlinear dispersive wave equation in the far-field. By this method,
complex nonlinear equations can be reduced to simple nonlinear equations by decreasing their or-
der. In this sense, this asymptotic method is then called the reductive perturbation method. In the
following, we will use the example of a nonlinear pendulum to illustrate the essence of this method,
which must be taken care of in perturbation methods in nonlinear systems, although it is not a
wave problem that we will deal with in this thesis.

The equation of motion for a pendulum of length l with respect to the rotation angle θ(t) is
given by

13



d2θ

dt2
+

g

	
sin θ = 0, (2.1)

with the initial conditions

θ(0) = a, (2.2)

dθ

dt

∣∣∣∣
t=0

= 0, (2.3)

where g is the acceleration of gravity. Under these initial conditions, the pendulum oscillates
periodically between ±a. Thus, the rotation angle and time are scaled by a and the angular
frequency ω =

√
g/l, respectively, i.e., Θ = θ/a and τ = ωt. Equation (2.1) is then rewritten as

d2Θ

dτ2
+

1

a
sin(aΘ) = 0, (2.4)

with the scaled initial conditions

Θ(0) = 1, (2.5)

dΘ

dτ

∣∣∣∣
τ=0

= 0. (2.6)

The Taylor series expansion of sin(aΘ) is expressed as

sin(aΘ(τ)) = aΘ(τ)− (aΘ(τ))3

3!
+O(a5). (2.7)

Here, assuming that the angle of rotation is small, we truncate at the first nonlinear term in the
above equation. The equation of motion of the pendulum, Eq (2.4), is given by

d2Θ(τ)

dτ2
+Θ(τ) =

a2

6
Θ3(τ). (2.8)

This is the so-called Duffing’s equation, which is well known in the field of nonlinear vibration.
This equation represents a simple pendulum if the right-hand side is zero. The right-hand side is
therefore a perturbation term that represents the non-linear effect on the linear equations. The
parameter a2 can be regarded as a small perturbation parameter.

Now, let us solve this nonlinear equation, Eq. (2.8), using the regular perturbation method.
The nonlinear equation can be solved by an asymptotic expansion that introduces the nonlinearity
perturbatively with a2 as the perturbation parameter in the vicinity of the linear approximation.
To represent the solution in the asymptotic expansion of a2, we now expand Θ(τ) in powers of a2

as

Θ(τ) = Θ0(τ) + a2Θ1(τ) +O(a4). (2.9)

Substituting this into Eq. (2.8) and rearranging them by the power of a2, we get(
d2Θ0(τ)

dτ2
+Θ0(τ)

)
+ a2

(
d2Θ1(τ)

dτ2
+Θ1(τ)− 1

6
Θ3

0(τ)

)
+O (

a4
)
= 0. (2.10)
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From this, the coefficients for each power must be identically zero in order to obtain the solution.
This yields the sequence of problems.
O(1) problem: The leading-order is unchanged from the linear system, i.e., simple pendulum.

d2Θ0(τ)

dτ2
+Θ0(τ) = 0, (2.11)

Θ0(0) = 1, (2.12)

dΘ0

dτ

∣∣∣∣
τ=0

= 0. (2.13)

The solution is given by

Θ0(τ) = cos τ. (2.14)

O(a2) problem: At O(a2), we have

d2Θ1(τ)

dτ2
+Θ1(τ)− 1

6
Θ3

0(τ) = 0, (2.15)

Θ1(0) = 0, (2.16)

dΘ1

dτ

∣∣∣∣
τ=0

= 0. (2.17)

By using the Θ0(τ) solution, this equation is rewritten as

d2Θ1(τ)

dτ2
+Θ1(τ) =

1

24
(cos(3τ) + 3 cos(τ)) , (2.18)

where the formula cos3 τ = (cos 3τ + 3 cos τ)/4 is used. This is nothing but the equation of motion
of a forced oscillation subjected to periodic external forces consisting of two different angular fre-
quencies. Thus, nonlinear oscillations involve essentially different time scales. The second term on
the right-hand side of this equation represents the resonant force. This causes a situation that is
not physically appropriate, as we will see below.

Solving the equation using the previous solution of Θ0(τ), we obtain the Θ1(τ) solution

Θ1(τ) =
1

192
(cos τ − cos 3τ) +

1

16
τ sin τ. (2.19)

As a result, the solution (2.9) incorporating up to the first-order perturbation is given by

Θ(τ) = cos τ + a2
[

1

192
(cos τ − cos 3τ) +

1

16
τ sin τ

]
+O (

a4
)
. (2.20)

This solution contains a secular term that grows linearly in τ . It is physically unsuitable for the
angle of rotation to increase even though energy is not injected from the outside. As a result,
the expansion Eq. (2.9) is not uniformly valid in τ and breaks down when τ = O(a2) and a2Θ1

is no longer a small correction to Θ. This is due to the fact that we dealt with phenomena that
appear on different time scales in linear and nonlinear systems at the same time. Therefore, this
can be avoided by using a singular perturbation method that takes them into account. Physically,
the amplitude dependence of the frequency is involved. The frequency is amplitude-independent in
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simple oscillation, whereas the frequency is amplitude-dependent in nonlinear oscillations. These
produce different frequencies equivalent to different timescales. In fact, the secular term in Eq.
(2.20) arises from the Taylor expansion of the frequency part for small ε as follows:

cos[(1 + ε)t] ∼ cos t− εt sin t+O(ε2). (2.21)

Note that this asymptotic expansion is valid only when t � 1/ε. This indicates that the frequency
modulation due to nonlinear vibration could not be properly incorporated in a regular perturbation
method with only one time scale. Therefore, it can also be improved by considering the frequency
instead of the time.

To construct a uniformly valid solution, we have to introduce multi-scale time variables. Equa-
tion (2.8) is the equation of motion for a simple pendulum with the eigenfrequency ω when the
right-hand side is zero. On the other hand, the right-hand side represents the nonlinear restoring
force, which modulates the frequency with the nonlinearity. Therefore, the frequency is no longer
fixed as described above, but must be treated as ω̄ = Ω(a2)ω, which depends on the parameter a2

for nonlinearity, where

Ω
(
a2
)
= Ω0 + a2Ω1 +O (

a4
)
. (2.22)

As shown above, this corresponds to the introduction of different time scales. By taking this
modulation into account, Eq. (2.8) becomes

Ω2
(
a2
) d2Θ(s)

ds2
+Θ(s) =

a2

6
Θ3(s), (2.23)

where s = Ω
(
a2
)
τ with the initial conditions written as

Θ(0) = 1, (2.24)

dΘ

ds

∣∣∣∣
s=0

= 0. (2.25)

Θ(s) can be expanded as

Θ(s) = Θ0(s) + a2Θ1(s) +O(a4), (2.26)

similar to Eq. (2.9). Substituting Eq. (2.26) into Eq. (2.23), we obtain(
Ω2
0(a

2)
d2Θ0(s)

ds2
+Θ0(s)

)
+a2

(
Ω2
0

d2Θ1(s)

ds2
+Θ1(s)− 1

6
Θ3

0(s)+2Ω0Ω1
d2Θ0(s)

ds2

)
+O(a4)=0, (2.27)

and the coefficients for each power must be identically zero.
O(1) problem:

d2Θ0(s)

ds2
+Θ0(s) = 0, (2.28)

Θ0(0) = 1, (2.29)

dΘ0

ds

∣∣∣∣
s=0

= 0. (2.30)
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This solution is given by

Θ0(s) = cos(s). (2.31)

O(a2) problem:

Ω2
0

d2Θ1(s)

ds2
+Θ1(s)− 1

6
Θ3

0(s) + 2Ω0Ω1
d2Θ0(s)

ds2
= 0. (2.32)

This gives rise to

d2Θ1(s)

ds2
+Θ1(s) =

(
1

8
+ 2Ω1

)
cos s+

1

24
cos 3s, (2.33)

when the solution Θ0(s) = cos(s) is taken into account. The coefficient of the term cos s that
generates the divergent solution should be zero to obtain a periodical solution. We set Ω1 = −1/16
and then obtain a solution

Θ1(s) = A1 sin s+B1 cos s− 1

192
cos 3s, (2.34)

where A1 and B1 are constants. As a result, a periodical solution described as

θ(t) = aΘ(ωt)

= a
{
Θ0(s) + a2Θ1(s)

}
+O (

a4
)

= a

{
cos s+ a2

(
A1 sin s+B1 cos s− 1

192
cos 3s

)}
+O (

a4
)

= a cos
(
Ω
(
a2
)
ωt
)
+O (

a3
)

= a cos

[{
1− 1

16
a2 +O

(
a4
)}

ωt

]
+O (

a3
)

= a cos ω̄t+O (
a3
)
, (2.35)

where

ω̄ = Ω(a2)ω =

(
1− 1

16
a2 +O (

a4
))

ω. (2.36)

The solution is also written as

θ(t) = a cosωt̄, (2.37)

with the stretched time scale

t̄ = Ω(a2)t =

(
1− 1

16
a2 +O (

a4
))

t, (2.38)

where the nonlinear effects are included in the time coordinate.
In short, regular perturbation methods for nonlinear systems breaks down since the multiple

time scales inherent in the nonlinearity cause resonance, resulting in a secular term. Therefore,
the singular perturbation method avoids this problem by introducing multiple time scales. On the
other hand, the waves treated in this thesis have degrees of freedom not only in time but also in
space. In that case, the dispersion relation plays a role in introducing different time scales. This
will be discussed in detail in the next section.
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2.3 Solitons in Josephson transmission lines

In this section, we show the existence of soliton in a Josephson transmission line. At first, we show
the circuit model for the Josephson transmission lines and derive the circuit equation. We also
explore the waves hidden in the circuit equation by using the perturbation method. And then, we
obtain the modified Korteweg-de Vries (mKdV) equation and its soliton solution.

2.3.1 Model

Let us consider a coplanar Josephson transmission line indicated in Fig. 2.2, where all Josephson
junctions are assumed to have identical critical current Ic and capacitance C. This transmission
line is a dual to nonlinear LC transmission line described in the next section.

In In+1In-1

QnQn-1 Qn+1

VnVn-1 Vn+1 Vn+2

Qn+2

Figure 2.2: Schematic diagram of a Josephson transmission line. The cross indicates a Josephson
junction. In, Vn, and Qn represent the current, voltage, and electric charge of the nth junction,
respectively.

Nonlinear inductance

The Josephson inductance is derived as follows. In general, inductance is defined as

V = L
dI

dt
, (2.39)

where V , I, and L are the voltage, current, and inductance. From Josephson relation, we obtain

∂I

∂t
=

∂I

∂θ

∂θ

∂t
= Ic cos θ

2e

h̄
V, (2.40)

for Josephson junctions, where θ is the phase difference with Ic, h̄ and e being the critical current,
the Planck constant h divided by 2π and the elementary electric charge, respectively. Compared
with Eq. (2.39), the Josephson inductance is defined as

L =
h̄

2eIc

1

cos θ
=

LJ

cos (arcsin(I/Ic))
, (2.41)

where LJ = h̄/2eIc. This means that the Josephson transmission line has a nonlinear inductance so
that it is dual to the LC transmission line with nonlinear capacitors. This implies that there exist
current solitons in Josephson transmission lines.
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Circuit equation

Now let us derive the circuit equation. From Kirchhoff’s law together with the Josephson relation,
the circuit equations are given by

In(t)− In−1(t) = C
dVn(t)

dt
, (2.42)

and

Vn+1(t)− Vn(t) =
h̄

2e

dθn(t)

dt
. (2.43)

In, Vn and θn represent the current, voltage, and phase difference of the nth Josephson junction
on the line, respectively. These equations lead to the discrete equation of motion for the phase
difference as

h̄

2e
C
d2θn(t)

dt2
= In+1(t) + In−1(t)− 2In(t). (2.44)

In continuum approximation, i.e., In(t) = I(x, t) ≡ I together with the Josephson relation

θ = sin−1 I

Ic
=

∞∑
i=1

1

(2i− 1)!

(
I

Ic

)2i−1

, (2.45)

Eq. (2.44) is reduced to

h̄

2e
C

∂2

∂t2

{ ∞∑
i=1

1

(2i− 1)!

(
I

Ic

)2i−1
}

=
∞∑
i=1

2a2i

(2i)!

∂2i

∂x2i
I. (2.46)

By introducing the normalized variables x̄ = x/a and t̄ = t/ω−1
J = t

√
Ic/(Ch̄/2e) with ωJ being

the Josephson plasma frequency, the equation reduces to

∂2

∂t̄2

{ ∞∑
i=1

1

(2i− 1)!
Ī2i−1

}
=

∞∑
i=1

2

(2i)!

∂2i

∂x̄2i
Ī , (2.47)

where Ī = I/Ic.

2.3.2 Modified Korteweg-de Vries equation Soliton

Now let us find the wave nature hidden in the circuit equation by using the reductive perturbation
method [33], which is an asymptotic perturbation expansion to derive a scale-invariant nonlinear
evolution equation in the vicinity of a linear approximation.

Firstly, let us consider the dispersion under the linear approximation. In this limit, Eq. (2.47)
becomes

∂2Ī

∂t̄2
=

∂2Ī

∂x̄2
+

1

12

∂4Ī

∂x̄4
+ · · · , (2.48)
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and we obtain

ω2 = k2 − k4

12
+O(k6), (2.49)

with the frequency ω and wavenumber k by substituting the plane solution expressed as

Ī = exp {i(kx̄− ωt̄)} . (2.50)

In the long-wavelength approximation, the wavenumber k is small and we obtain the dispersion
relation expressed as

ω � k

(
1− k2

24

)
. (2.51)

Here, we set k = εpκ with a small parameter ε to express that k is small enough, where κ is of the
order of 1 and p represents how small the wavenumber k is. The deviation k2/24 from the non-
dispersion relation ω = k should be represented by the small parameter ε ∼ k2, so we set p = 1/2.
This dispersion relation plays exactly the same role as the different frequencies shown in Eq. (2.36)
in the singular perturbation method, leading equivalently to multi-time scales in the systems. In
fact, two different time scales are introduced into the phase of the linear wave and integrated into
stretched variables that represent slow phenomena as follows

kx̄− ωt̄ = ε
1
2 (x̄− t̄)− 1

24
ε

3
2 t̄+O(ε

5
2 )

= ξ − 1

24
τ +O(ε

5
2 ), (2.52)

where the stretched (slow) variables called the Gardner-Morikawa transformation is introduced as{
ξ = ε

1
2 (x̄− t̄)

τ = ε
3
2 t̄,

(2.53)

which are slowly changed against the changes of x̄ and t̄ because ε is a small parameter. ξ =
(ε1/2/a)(x − aωJ t) is the comoving frame with the phase velocity aωJ of the linear wave in the
long-wavelength approximation and the changes of the waves caused by the dispersion are small in
this frame. In this way, the dispersion effect can be successfully described by a parameter ε. Note
again that these transformations correspond to the expansion of frequency (or time) as described
in Eq. (2.22) in the singular perturbation methods and allow us to introduce the two different time
scales. Applying these transformations into the field equation (2.47), we have(

ε
∂2

∂ξ2
− 2ε2

∂2

∂ξ∂τ
+ ε3

∂2

∂τ2

){
Ī +

Ī3

6

}
=

(
ε
∂2

∂ξ2
+

1

12
ε2

∂4

∂ξ4

)
Ī . (2.54)

Next, let us consider how to describe the nonlinear effects by the parameter ε. We assume that
the normalized current Ī is expanded in a power series of a small parameter ε, in order to include
nonlinearity perturbatively as follows,

Ī = εsĪ(1) + ε2sĪ(2) + ε3sĪ(3) + · · · . (2.55)
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The order s of ε is determined so that the dispersive and nonlinear terms are balanced. We substitute
Eq. (2.55) into Eq. (2.54) and obtain

1

6
ε1+3s∂

2
(
Ī(1)

)3
∂ξ2

− 2ε2+s∂
2Ī(1)

∂ξ∂τ
=

1

12
ε2+s∂

4Ī(1)

∂ξ4
, (2.56)

where we write only for the lowest possible terms. The dispersion and nonlinearity are balanced at
1+ 3s = 2+ s, i.e. s = 1/2. Introducing the expansion Eq. (2.55) with s = 1/2 into Eq. (2.54) and
setting the coefficients of similar powers equal to zero, we obtain a set of differential equations. For
ε

5
2 ,

2
∂2Ī(1)

∂ξ∂τ
− 1

6

∂2(Ī(1))3

∂ξ2
+

1

12

∂4Ī(1)

∂ξ4
= 0. (2.57)

From the integration of Eq. (2.57) with respect to ξ, we get

2
∂Ī(1)

∂τ
− 1

6

∂(Ī(1))3

∂ξ
+

1

12

∂3Ī(1)

∂ξ3
= g(τ), (2.58)

where g(τ) is an arbitrary function of its argument and can be chosen to be zero like

2
∂Ī(1)

∂τ
− 1

2

(
Ī(1)

)2 ∂Ī(1)
∂ξ

+
1

12

∂3Ī(1)

∂ξ3
= 0. (2.59)

By re-scaling our coordinates as Ī(1) = 2u, ξ = ξ̄/2 and τ = 3τ̄ , this finally reduces to the
modified Korteweg-de Vries equation with a negative nonlinear term [34]

∂u

∂τ̄
− 6u2

∂u

∂ξ̄
+

∂3u

∂ξ̄3
= 0. (2.60)

This equation is specifically called defocusing mKdV, or mKdV− because the sign of the nonlinear
term is negative. The difference in the sign of the nonlinear term in the KdV equation only changes
its polarity, and no significant changes appear in the soliton solution. In contrast, the difference
in the sign of the nonlinear term in the mKdV equation makes a drastic change. The mKdV−

produces an entirely new solution set shown below.

Unlike the mKdV+ equation, the mKdV− equation has kink (or shock-wave-type) traveling wave
solutions of the form [34,35]

u(ξ̄, τ̄) = α tanh(αξ̄ + 2α3τ̄), (2.61)

where the parameter α characterizes solitons like amplitude α and velocity (−2α2). Figure 2.3
represents the solution of the soliton and the antisoliton. In terms of electric current in the system,
the normalized current soliton in the x̄− t̄ coordinate is given as

Ī(x̄, t̄) = 2α
√
ε tanh

[
2α

√
ε

{
x̄−

(
1− (α

√
ε)2

3

)
t̄

}]

= 2
√

3(1−v̄s)tanh
[
2
√
3(1−v̄s){x̄− v̄st̄}

]
, (2.62)
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where v̄s stands for the normalized soliton velocity in the x̄ − t̄ coordinate (v̄s = 1 − α′2/3) and
α′ = α

√
ε. This is exactly in agreement with the numerical results in the previous studies [36, 37].

Thus, we succeeded in demonstrating analytically the existence of shock-wave-type solutions in the
superconducting circuits that have not been solved for many years. Note that the smaller shock-
wave type soliton moves more rapidly than the larger one, contrary to the solitons of both KdV and
mKdV+ equations. In addition, discrete treatment might be required for detailed analysis when
the soliton speed is slow since the soliton width d approaches the lattice spacing a.

Figure 2.3: Schematic diagram of a soliton represented by the solid line and antisoliton indicated
by the dotted line in the comoving frame ξ̄. The amplitude and the width are given by α and d,
respectively.

2.4 Solitons in nonlinear LC transmission lines

In this section, we analytically derive the soliton in the nonlinear LC transmission lines with non-
linear capacitors. We show the circuit model for the nonlinear LC transmission lines and derive the
circuit equation. We also explore the waves hidden in it.

2.4.1 Model

Here, let us consider the LC transmission lines with a nonlinear capacitor as shown in Fig. 2.4. We
assume that the inductors have an identical fixed inductance L, while the capacitors have nonlinear
dependence on the voltage C(V ).

Nonlinear capacitor

Let us suppose nonlinear capacitors like varicap diodes. A p-n diode is composed of p-type and
n-type semiconductors. A p-type and n-type semiconductor are created by adding impurities called
acceptor and donor into an intrinsic semiconductor, respectively. A donor (acceptor) is an atom
with one more (less) valence electrons than one of the intrinsic atoms and then supplies an electron
(hole) into the semiconductor. A p-n junction has the depletion layer where there are no carriers
but ions of donor and acceptor impurities due to the cancellation of the electrons and holes as shown
in Fig. 2.5 (a). In forward bias, the electrons in the n-type region and the holes in the p-type region
are pushed toward the junction and the depletion becomes neutralized zone, reducing its width as
shown in Fig. 2.5 (b). On the other hand, in reverse bias, the electrons in the n-type region and
the holes in the p-type region are pulled away from the junction, and the width of the depletion

22



Figure 2.4: The nonlinear LC transmission line consisting of the constant inductance L and the
nonlinear capacitance depending on the voltage C(Vn). The unit cell length is denoted by a. The
current and the voltage on the nth unit cell are In and Vn, respectively.

layer increases as shown in Fig. 2.5 (c). In this case, a diode behaves as a conductor because very
little current flows. The varicap diode is used in the reverse bias and its capacitance is dependent
on the applied voltage.

In general, capacitance is defined by

C(V ) =
ΔQ

ΔV
, (2.63)

where ΔQ and ΔV represent the variations in charge in the depletion layer and voltage, respectively.
The variation on the charge ΔQ is given by

ΔQ = qNDΔxn, (2.64)

where q is the charge per a donor ion, ND is the density of donor ions, xn is the width of the
depletion layer of the n-side, and Δxn is its changes. The width xn depends on the applied voltage
as

xn(V ) =

√
2ε

qND

NA

NA +ND
(V0 + V ), (2.65)

where NA is the acceptor ion density, V0 is built-in voltage and ε is the permittivity. The width
when further applied ΔV is approximated as

xn(V +ΔV ) =

√
2ε

qND

NA

NA +ND
(V0 + V )

√
1 +

ΔV

V0 + V

� xn0

(
1 +

1

2

ΔV

V0 + V

)
, (2.66)

where

xn0 =

√
2ε

qND

NA

NA +ND
(V0 + V ). (2.67)
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Then we obtain the changes in the width

Δxn(ΔV ) =
xn0
2

ΔV

V0 + V
. (2.68)

From Eq. (2.63), the capacitance is derived as [38]

C(V ) = C0
V0

V0 + V
, (2.69)

where C0 is the characteristic capacitance such that C0V0 = qNDxn0/2. The capacitance has a
nonlinear dependence on the voltage V .

Circuit equation

Now let us derive the circuit equation. From Faraday’s law, the voltage applied to the nth inductor
with inductance L is given by

Vn − Vn−1 = −L
dIn
dt

, (2.70)

where Vn is the voltage applied to the nth capacitor and In is the current flowing nth inductor. We
obtain

d

dt
(In+1 − In) = − 1

L
(Vn+1 − 2Vn + Vn−1) , (2.71)

by taking the difference with the equation for the (n + 1)th inductor. From Kirchhoff’s law, we
obtain

In+1 − In = − d

dt
{C(Vn)Vn} . (2.72)

Substituting Eq. (2.72) for Eq. (2.71), we obtain the circuit equation

d2

dt2
{C(Vn)Vn} − 1

L
(Vn+1 − 2Vn + Vn−1) = 0. (2.73)

Note that the nonlinear capacitance can be expanded as

C(Vn) = C0

(
1− αVn + βV 2

n − · · · ) , (2.74)

where α = 1/V0 and β = 1/V 2
0 are positive parameters.

2.4.2 Nonlinear Schrödinger Soliton

Now let us explore the waves hidden in our circuit using the discrete reductive perturbation method
[32,39–43], which allows us to extract the waves balancing the nonlinearity and the dispersion from
the circuit equation (2.73) as in the previous section. The discrete reductive perturbation method
starts by introducing the stretched variables as follows.{

ξ = ε (an− vgt)
τ = ε2t,

(2.75)
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Figure 2.5: (a) Schematic diagram of a p-n junction composed of p-type and n-type semiconductors.
There are the donor ions represented by circled plus signs and electrons indicated by the blue circles
in n-type semiconductors, while there are the acceptor ions respected circled minus signs and holes
indicated by the red circles in p-type semiconductors. Electrons and holes at the interface combine
to form a carrier-free layer (depletion layer). (b) The electrons in the n-type region and the holes in
the p-type region come into the depletion layer and they are combined, resulting in the reduction
of the depletion layer when applied the forward bias. (c) In reverse bias, the electrons in the n-type
region and holes in the p-type region go to the electrode, resulting in expansion of the depletion
layer.
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Figure 2.6: Diagram of dispersion relation in our system. We set the circuit parameters to a =
10−3m, L = 0.4× 10−9H, and C0 = 0.4× 10−12F.

where ε is a small dimensionless parameter (0 < ε � 1) and vg represents the group velocity. The
order of ε is determined in the same way as described in the previous section. These transformations
extract slowly varying waves in comoving frames with group velocities vg from the circuit equations.
We also expand the voltage as [33],

Vn = V (0) +
+∞∑

l=−∞

∑
α=1

εαV
(α)
l (ξ, τ) exp[il(kan− ωt)], (2.76)

where the rapidly varying phase i(kan − ωt) preserves the discrete character of the system even
in slow varying frames. We restrict our analysis to the so-called rotating-wave approximation that
consists essentially of neglecting higher harmonics:

Vn(t) � εV
(1)
1 (ξ, τ) exp[i(kan− ωt)] + εV

∗(1)
1 (ξ, τ) exp[−i(kan− ωt)]. (2.77)

Substituting Eqs. (2.75) and (2.77) into Eq. (2.73) (the circuit equation), we obtain some important
formulae for each ε order.

For the εei(kan−ωt) order, the dispersion relation in our system is obtained as

ω = ± 2√
LC0

sin
ka

2
, (2.78)

as shown in Fig. 2.6. This is because this lowest order corresponds to non-perturbative linear waves.

For the ε2ei(kan−ωt) order, the group velocity that matches the expression from the definition
vg = ∂ω/∂k is also derived as

vg =
1

ω

a

LC0
sin ka = ±v0 cos

ka

2
, (2.79)
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Figure 2.7: Phase velocity vp (solid line) and group velocity vg (dashed line) as a function of
wavenumber k. The circuit parameter values are the same as in Fig. 2.6. The phase velocity is
always larger than the group velocity.

with v0 = a/
√
LC0. As a result, our system has a normal dispersion, since the phase velocity

vp =
ω

k
= ±v0

2

ka
sin

ka

2
, (2.80)

is always larger than the group velocity vg in our system as shown in Fig. 2.7. For this order,
nonlinear effects are not yet involved.

Finally, we also derive the desired nonlinear evolution equation, the so-called nonlinear Schrödinger
equation, for the ε3ei(kan−ωt) order, as

i
∂V

(1)
1

∂τ
+ P

∂2V
(1)
1

∂ξ2
+QV

(1)
1 |V (1)

1 |2 = 0, (2.81)

where

P =
1

2ω

(
a2

LC0
cos ka− v2g

)
= ∓a

4
v0 sin

ka

2
, (2.82)

Q =
3βω

2
= ± 3β√

LC0
sin

ka

2
. (2.83)

The coefficient P represents the group velocity dispersion and has the well-known relation expressed
as

P =
1

2

dvg
dk

. (2.84)

Thus, by this method, a complex nonlinear equation (2.73) can be reduced to a simple nonlinear
equation (2.81) by reducing its order.
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Figure 2.8: Schematic diagram of (a) a bright soliton and (b) a dark soliton in the comoving frame
η described by Eqs. (2.85) and (2.86), respectively. The amplitude is represented by VA.

The nonlinear Schrödinger equation has the soliton solutions depending on the sign of the
product PQ. The bright soliton

V
(1)
1 = VA sech

(
VA

√∣∣∣∣ Q2P
∣∣∣∣(ξ − uτ)

)
ei(kξ−ωτ), (2.85)

is formed when PQ > 0 and the dark soliton

V
(1)
1 = VA tanh

(
VA

√∣∣∣∣ Q2P
∣∣∣∣(ξ − uτ)

)
ei(kξ−ωτ), (2.86)

is obtained when PQ < 0, where VA is the amplitude and u is the relative velocity of the soliton in
the ξ − τ coordinates as shown in Fig. 2.8. In our system, the product is given by

PQ = −3β

4
v20 sin

2 ka

2
, (2.87)

so the sign is always negative (PQ < 0), and then the dark solitons are admitted. The soliton width
is written by w = 2arccosh(

√
2)
√|2P/Q|/A, where √|2P/Q| = aV0/

√
6. This will be used later to

evaluate the validity of the continuum approximation.

2.5 Summary

In this chapter, we have devised new types of transmission lines that contain nonlinear elements
and have shown that current or voltage solitons exist there. Specifically, we have considered two
types of transmission lines that are dual to each other: one has a nonlinear inductance and the other
has a nonlinear capacitance. The nonlinear evolution equation has been derived from each of the
circuit equations by using the reductive perturbation method. One is the modified Koreteweg-de
Vries equation for nonlinear inductance transmission lines and the other is the nonlinear Schrödinger
equation for nonlinear capacitance transmission lines. In the next chapter, we will discuss how these
solitons behave as analogue black holes.
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Chapter 3

Analogue black holes

In this chapter, we discuss the analogue black holes with the solitons in electric circuits discussed
in the previous chapter based on the idea by Unruh et al. [7]. Please remember the model of carp
swimming at a waterfall as discussed in chapter 1. In our proposals, the electromagnetic wave and
soliton play the roles of the carp and waterfall, respectively. The velocity of electromagnetic waves
propagating in transmission lines is given by v = a/

√
LC as described in Section 3.1. We can

modify the velocity of electromagnetic waves through the nonlinearity of inductance or capacitance.
Note that the velocity of the electromagnetic wave changes spatially while the soliton velocity is
a constant. This means that the carp in our system swim at spatially varying velocity, while the
water in the river flows at a constant speed, unlike the sonic black holes by Unruh et al. [7]. Despite
the differences in these roles, the same situation is realized in our systems, and both systems have
the same spacetime metric as the real black holes. Comparing the metric, the event horizons of
analogue black holes appear where the velocity of the electromagnetic wave is equal to the velocity
of the reference wave, i.e., the soliton.

This chapter is organized as follows: we first describe how the electromagnetic waves propagate
on transmission lines in Section 3.1. Then, we propose analogue black holes in transmission lines
with nonlinear inductors in Section 3.2 and nonlinear capacitors in Section 3.3 by deriving the
spatial varying velocity of the electromagnetic waves. We also show that the metric of our systems
is similar to that of an actual black hole.

3.1 Velocity of electromagnetic waves on transmission lines

Here we briefly review the LC transmission lines. The LC circuit indicated in Fig. 3.1 (a) consists
of an inductor and a capacitor describing the magnetic field and the electric field, respectively. This
is a fundamental component of the electric circuit. The electromagnetic waves are generated by the
variation of magnetic field and electric field in the LC circuit. The LC transmission line represented
in Fig. 3.1 (b) is formed by the array of the LC circuit and the electromagnetic waves propagate
through it. Suppose that inductance L0 and capacitance C0 are constant, the circuit equation is
derived as follows. From Faraday’s law, the voltage applied to the nth inductor is derived by

Vn − Vn−1 = −L0
dIn
dt

, (3.1)
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Figure 3.1: (a) LC circuit composed of an inductor and a capacitor is a fundamental component
in electric circuits. (b) An LC transmission line is formed by connecting the LC circuit as the
fundamental component. All inductors and capacitors have identical fixed inductance L0 and C0,
respectively, and the length of the unit cell is a. The electromagnetic waves propagate through the
LC transmission line with the velocity v = a/

√
L0C0.

where Vn is the voltage applied to the nth capacitor and In is the current flowing through the nth
inductor. We obtain

d

dt
(In+1 − In) = − 1

L0
(Vn+1 − 2Vn + Vn−1) , (3.2)

by taking the difference with the equation for the (n + 1)th inductor. From Kirchhoff’s law, we
obtain

In+1 − In = − d

dt
C0Vn. (3.3)

The circuit equation is given by

d2Vn

dt2
− 1

L0C0
(Vn+1 − 2Vn + Vn−1) = 0, (3.4)

by substituting Eq. (3.3) for Eq. (3.2). This equation is equivalent to the equation for lattice
vibration with a linear coupling constant. We can apply it to the continuum approximation Vn ≡
V (x, t) under the condition of unit cell length a � 1 and perform Taylor expansion as

Vn±1(t) = V (x± a, t)

= V ± a
∂V

∂x
+

a2

2!

∂2V

∂x2
± a3

3!

∂3V

∂x3
+O(a4), (3.5)

to obtain the wave equation. Equation (3.4) leads to

∂2V

∂t2
=

2

L0C0

∑
m=1

a2m

(2m)!

∂2mV

∂x2m
. (3.6)

Substituting the plane wave solution V = exp{i(kx − ωt)}, the dispersion relation in these trans-
mission lines is given as

ω = ± 2√
L0C0

sin
ka

2
, (3.7)
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as shown in Fig. 3.2. If there are multiple modes with various wavenumbers or frequencies, a
wave packet composed of waves with various frequencies moves with the group velocity. The phase
velocity and the group velocity are given by

vp =
ω

k
=

a

k
√
L0C0

sin
ka

2
, (3.8)

and

vg =
dω

dk
=

a√
L0C0

cos
ka

2
, (3.9)

respectively. In the long-wavelength approximation, the dispersion relation Eq. (3.7) reduces to

ω(k) = v0k, (3.10)

where there are no dispersion, i.e., vp = vg = v0 with

v0 =
a√
L0C0

. (3.11)

The velocity of electromagnetic waves propagating on the transmission lines depends on both in-
ductance and capacitance. Equation (3.6) becomes the well-known wave equation

∂2V

∂t2
= v20

∂2V

∂x2
. (3.12)

We restrict our analysis to a single mode with a small wavenumber when we consider analogue
horizons. If both or either of the capacitor and inductance is nonlinear, the velocity of electromag-
netic waves is no longer a constant as follows,

v =
a√

L(I)C(V )
. (3.13)

Therefore, the velocity is modulated if either of the inductance or capacitance are not constants.
In this paper, we propose two different types of systems with nonlinear inductance and capacitance
for analogue black holes.

3.2 Analogue black holes in Josephson transmissions lines

Firstly, we propose analogue black holes in the Josephson transmission line with a nonlinear inductor
as discussed in Section 2.3. The effective geometry of our analogue black holes is derived as follows.
By defining the potential An as

Vn = An+1 −An, (3.14)

In = −C
d

dt
An. (3.15)

By using these definitions, these circuit equations

In − In−1 = C
dVn

dt
, (3.16)

Vn+1 − Vn = Ln
dIn
dt

, (3.17)
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Figure 3.2: Schematic diagram of the dispersion relation in the LC transmission line.

become

An+1 − 2An +An−1 =
d

dt
LC

d

dt
An. (3.18)

In the continuum approximation, we obtain the wave equation for the potential A as(
∂

∂t

1

v2(x, t)

∂

∂t
− ∂2

∂x2

)
A = 0. (3.19)

The velocity of electromagnetic waves is then given as

v(x, t) =
a√

L
(
Ī
)
C

= v0

√
cos(arcsin Ī(x, t)), (3.20)

where v0 = a/
√
LJC. Since the current soliton depends on the position, the velocity of the electro-

magnetic wave is modulated in space as

v(x̄, t̄) = v0
√

cos[arcsin{2α′ tanh {2α′ (x̄− v̄st̄)}}]. (3.21)

The soliton parameter α′ is restricted to |α′| ≤ 1/2 due to the range −1 ≤ x ≤ 1 of the inverse sine
function (arcsin(x)). Equation (3.21) is rewritten by

v̄(x̄, t̄) =
[
1− 12(1− v̄s) tanh

2
{
2
√
3(1− v̄s) (x̄− v̄st̄)

}] 1
4
, (3.22)

where v̄(x̄, t̄) is the normalized velocity of the electromagnetic wave, i.e., v̄(x̄, t̄) = v(x̄, t̄)/v0, in the
Josephson transmission lines.

In this system, the electromagnetic wave and soliton play the roles of the carp and waterfall,
respectively. Note that the velocity of the electromagnetic wave changes spatially while the soliton
velocity is a constant. This means that the carp in our system swim at spatially varying velocities,
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while the water in the river flows at a constant velocity. In the comoving frame with the soliton
velocity vs, it becomes [(

∂

∂τ
− vs

∂

∂η

)
1

v2(η)

(
∂

∂τ
− vs

∂

∂η

)
− ∂2

∂η2

]
A = 0, (3.23)

where η = x− vst and τ = t. The inverse of the metric matrix gμν is defined as

(
∂τ ∂η

)
gμν

(
∂τ
∂n

)
A = 0, (3.24)

where

gμν = − 1

v2(η)

(
1 −vs

−vs v2s − v2(η)

)
. (3.25)

Therefore the metric matrix is derived as

gμν = (gμν)−1 =

(
v2s − v2(η) vs

vs 1

)
. (3.26)

The metric for this system is given as

ds2 = − (v2(η)− v2s
)
dt2 + 2vsdtdx+ dx2, (3.27)

which is the same form as the metric of acoustic analogue black hole Eq. (1.16). This implies that
the velocity of the carp is constant and the water flow varies spatially in an acoustic analogue black
hole, whereas the velocity of the carp varies spatially and the water flow is constant in a soliton
black hole.

Figure 3.3 shows the correlation diagram of a current soliton (b) and the velocity of the electro-
magnetic wave (c) in the Josephson transmission line (a). Two event horizons are formed due to the
spatially varying velocities of the electromagnetic wave, leading to a pair of black holes and white
holes as presented in nonlinear optical fibers [12]. The event horizons appear where the velocity
of electromagnetic wave v̄(x̄, t̄) is equal to the velocity of the reference wave, i.e., the normalized
current soliton v̄s = vs/v0. The positions of the horizons are derived as

x̄±h = ± 1

2
√
3(1− v̄s)

tanh−1

(√
(1 + v̄s)(1 + v̄2s)

12

)
. (3.28)

In short, the velocity of the current soliton determines the position of the event horizon. In our
system, a pair of black holes and white holes occur within 11/12 ≤ v̄s < 1 as follows. The lower
bound is given by the condition |α′| = |√3(1− v̄s)| ≤ 1/2 demonstrated above. This is also
equivalent to the condition that the soliton width is larger than the lattice spacing. In other words,
the continuum approximation is justified for soliton velocities greater than this. On the other hand,
the upper bound is determined by the condition that the velocity of the soliton is smaller than the
velocity of the electromagnetic wave v0.

The area behind the soliton corresponds to a black hole because the electromagnetic waves
cannot overtake the soliton there, while the front side of the soliton is a white hole because the
electromagnetic waves in solitons cannot propagate forward. The normal area between two horizons
is determined by the shape of the soliton and cannot be freely changed. In the Appendix, we will
propose a scheme to design the configuration of black holes on demand by combining solitons and
antisolitons.
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Figure 3.3: (a) Josephson transmission line, (b) shock-wave-type normalized current soliton at
t̄ = 0 with the velocity v̄s = 0.98, (c) normalized velocity of the electromagnetic wave at t̄ = 0. The
horizontal dotted line represents the normalized soliton velocity v̄s. x−h and x+h indicate the black
hole and white hole horizon positions, respectively.

3.3 Analogue black holes in nonlinear LC transmission lines

Next, we propose analogue black holes on the LC transmission line with nonlinear capacitance as
discussed in Section 2.4. Now, we show that the velocity of the electromagnetic waves changes in
space due to the voltage solitons. In LC transmission lines with nonlinear capacitance depending
on the voltage expressed as

C(V ) = C0
V0

V0 + V
, (3.29)

the following two sets of circuit equations

In+1 − In = − d

dt
{C (Vn)Vn} , (3.30)

Vn − Vn−1 = −L
dIn
dt

, (3.31)

are given. The effective geometry of our analogue black holes is derived as follows in the procedures
parallel to the previous section. By defining the potential An as

Vn = An+1 −An, (3.32)

In = −C
d

dt
An, (3.33)
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the integrated circuit equation is written as

An+1 − 2An +An−1 =
d

dt
LC

d

dt
An. (3.34)

In a continuum approximation, we obtain(
∂

∂t

1

v2(x, t)

∂

∂t
− ∂2

∂x2

)
A = 0, (3.35)

where the velocity of electromagnetic waves depends on the voltage soliton V
(1)
1 and varies spatially

as follows,

v(x, t) =
a√

LC
(
V

(1)
1

) = v0

√
1 +

V
(1)
1 (x, t)

V0
, (3.36)

where v0 = a/
√
LC0. The metric is described by

ds2 = − (v2(η)− v2s
)
dt2 + 2vsdtdx+ dx2, (3.37)

as same as Eq. (3.27).
Figure 3.4 represents the correlation diagram of voltage soliton (b) and the velocity of the

electromagnetic waves (c) in the nonlinear LC transmission lines (a). The horizon occurs where
g00 = 0 in the metric matrix, i.e. v2(η) = v2s . The position of the event horizon is given as

ηh =
a√
6

V0

VA
arctanh

{
V0

VA

(
v2s
v20

− 1

)}
. (3.38)

The soliton velocity is restricted in the range between the minimum and maximum of vg(η) for the
generation of the event horizon, i.e., v0

√
1− VA/V0 ≤ vs ≤ v0

√
1 + VA/V0.

3.4 Summary

In this chapter, we have proposed the analogue black holes induced by the solitons in both Josephson
transmission lines with nonlinear Josephson inductors and LC transmission lines with nonlinear
capacitors. In electric circuits, analogue black holes are generated using electromagnetic waves
with spatial varying velocities. The velocity of electromagnetic waves is changed in space due to
the nonlinear inductance or capacitance depending on the current solitons or the voltage soliton,
resulting in the analogue black holes. We have confirmed that the same metric as a Schwarzschild
black hole has been realized. The number of horizons is different between our two systems due to the
difference in dependencies of the nonlinear inductors or capacitors on current or voltage solitons. In
the next chapter, we evaluate the observability of Hawking radiation on our systems by estimating
the Hawking temperature.
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Figure 3.4: (a) Schematic diagram of the nonlinear transmission lines. (b) A voltage soliton V
(1)
1

in the comoving frame η. We set VA = 0.1V and V0 = 1V, and the other circuit parameters are the
same as in Fig. 2.6. The soliton width is about w ∼ 7a. (c) The spatially varying group velocity of
the electromagnetic waves in the comoving frame η for the wavenumber k = 100/m with the same
circuit parameters. The horizontal dashed line represents the soliton velocity vs. The event horizon
is formed at ηh, where v2g = v2s .
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Chapter 4

Analogue Hawking radiation

A black hole is an area of space where a gravitational field is so strong that no matter or radiation
(including light) can escape. However, Hawking proposed that virtual particle-antiparticle pairs
arising quantum-mechanically from a vacuum near the event horizon may result in one particle’s
escape as Hawking radiation in the vicinity of the black hole while the partner particle with negative
energy falls into it before the pair annihilation can happen [4,44]. The Hawking temperature is an
important measure to assessing the observability of Hawking radiation in our systems.

In this chapter, we derive the Hawking temperature by using the tunneling mechanism. We
also estimate the Hawking temperature using the obtained formula in our analogue black holes and
discuss the observability of Hawking radiation.

4.1 Tunneling mechanism

Now let us derive the general formula for the Hawking temperature to discuss the observability of
Hawing radiation in our systems. In the previous papers [45], it was evaluated from the surface
gravity of the effective horizon that depends on the rate of spatial change of the light velocity in the
laboratory frame across the horizon. Here we employ the tunneling mechanism known as the radial
null geodesic method [46,47]: a particle with the positive energy of virtual particle-antiparticle pairs
tunnels through the event horizon toward the outside of the black hole.

Firstly, let us derive the tunneling probability in the semi-classical approximation. In the
Wentzel-Kramer-Brillouin (WKB) approximation, we assume the wave function ψ(x, t) as

ψ(x, t) = e−
iEt
h̄ u(x), (4.1)

u(x) = e
i
h̄
S , (4.2)

where S is the classical action of the trajectory. The tunneling probability Γ of the classically
forbidden trajectory from the inside (xin) to the outside (xout) of the horizon, per unit time per
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unit volume in the semi-classical approximation is given by the following formula,

Γ = |ψ(x, t)|2
= |u(x)|2

= exp

{
1

h̄
(−i�S −�S)

}
exp

{
1

h̄
(i�S −�S)

}

= exp

(
−2�S

h̄

)
. (4.3)

The classical action of the trajectory is defined by

S =

∫
Ldt, (4.4)

where Lagrangian is given as

L(x, ẋ) = pẋ−H(x, p) (4.5)

with Hamiltonian H and momentum p. The classical action is reduced to

S =

∫
(pẋ−H(x, p))dt

=

∫ xout

xin

∫ p

0
dp′dx−

∫
H(x, p)dt

=

∫ xout

xin

∫ E(t)

0

dH

dx/dt
dx−

∫
H(x, p)dt, (4.6)

where Hamilton’s equation of motion ẋ = dH/dp is used. To evaluate the imaginary part of the
action, we need to express dx/dt concretely.

In the Painléve-Gullstrand coordinates [11, 21], the metric of our systems is

ds2 = −(v2 − v2s)dt
2 + 2vsdxdt+ dx2. (4.7)

The radial null geodesic (ds2 = 0) leads to

(
dx

dt

)2

+ 2vs
dx

dt
− (v2 − v2s) = 0. (4.8)

The solution is then given as

dx

dt
= −vs ± v, (4.9)

where the positive (negative) sign in the second term of the right side represents the external
(internal) mode. For the external mode, Eq. (4.6) is reduced to

S =

∫ xout

xin

∫ E(t)

0

dH ′

v − vs
dx−

∫
H(x, p)dt. (4.10)
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Hereafter the second term of this equation is ignored since it is real. Taylor expansion of v(x, t)
near the position of the event horizon xh is written as

v(x, t) = v(xh, t) +
∂v

∂x

∣∣∣
x=xh

(x− xh) +O((x− xh)
2)

� vs +
∂v

∂x

∣∣∣
x=xh

(x− xh), (4.11)

and then the action becomes

S � − E(t)

∂v
∂x

∣∣∣
x=xh

∫ xout

xin

1

x− xh
dx. (4.12)

This is impossible to integrate in the usual sense because there is a singular point xh on the integral
path.

Here, let us review the singular integral which can integrate even when the integrand has an
infinite value at one or more points in the domain of integration. We consider the integral on the
real axis as ∫ ∞

−∞
f(x)

x− x0
dx, (4.13)

which is rewritten as the complex integral ∮
C

f(z)

z − x0
dz, (4.14)

where the integral path C consists of the path on the real axis −∞ < x < ∞ and CR which is the
upper semicircle path centered on the origin with the radius R → ∞. In this case, the singular
point x0 exists on the integral path, and it cannot be integrated in the usual sense. One of the
approaches for solving this problem is modifying the integral path to avoid the singular point. We
define upper semicircle clockwise path C+ε and lower semicircle counterclockwise path C−ε centered
at the singular point with the radius ε as shown in Fig. 4.1. When the integral path is modulated
into a path that excludes singular points through path C+ε, the integral path becomes a closed path
that does not include the singular points. The integral becomes 0 according to the residue theorem
as ∫

CR

f(z)

z − x0
dz +

∫ x−ε

−∞
f(x)

x− x0
dx+

∫
C+ε

f(z)

z − x0
dz +

∫ ∞

x+ε

f(x)

x− x0
dx = 0. (4.15)

On the other hand, when the integral path is deformed into the closed path through C−ε, it includes
the singular point and the integral becomes 2iπf(x0) as∫

CR

f(z)

z − x0
dz +

∫ x−ε

−∞
f(x)

x− x0
dx+

∫
C−ε

f(z)

z − x0
dz +

∫ ∞

x+ε

f(x)

x− x0
dx = 2iπf(x0). (4.16)

If f(z) approaches zero quickly enough on CR with R → ∞, we obtain∫
CR

f(z)

z − x0
dz = 0. (4.17)
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In the limit of ε → 0, these equations are reduced to

lim
ε→0

∫
C+ε

f(z)

z − x0
dz + lim

ε→0

{∫ x−ε

−∞
f(x)

x− x0
dx+

∫ ∞

x+ε

f(x)

x− x0
dx

}
= 0, (4.18)

lim
ε→0

∫
C−ε

f(z)

z − x0
dz + lim

ε→0

{∫ x−ε

−∞
f(x)

x− x0
dx+

∫ ∞

x+ε

f(x)

x− x0
dx

}
= 2iπf(x0). (4.19)

By changing the variable as z = εeiθ + x0, we obtain the following expressions

lim
ε→0

∫
C+ε

f(z)

z − x0
dz = lim

ε→0

∫ 0

π

f
(
εeiθ + x0

)
εeiθ

iεeiθdθ

= lim
ε→0

i

∫ 0

π
f
(
εeiθ + x0

)
dθ

= i

∫ 0

π
f (x0) dθ

= −iπf (x0) , (4.20)

lim
ε→0

∫
C−ε

f(z)

z − x0
dz = lim

ε→0

∫ 2π

π

f
(
εeiθ + x0

)
εeiθ

iεeiθdθ

= lim
ε→0

i

∫ 2π

π
f
(
εeiθ + x0

)
dθ

= i

∫ 2π

π
f (x0) dθ

= iπf (x0) . (4.21)

Then, Eq. (4.18) and Eq. (4.19) reduce to

lim
ε→0

{∫ x−ε

−∞
f(x)

x− x0
dx+

∫ ∞

x+ε

f(x)

x− x0
dx

}
= iπf(x0), (4.22)

where the term on the left hand is called Cauchy principal value represented by

P
∫ ∞

−∞
f(x)

x− x0
dx = lim

ε→0

{∫ x−ε

−∞
f(x)

x− x0
dx+

∫ ∞

x+ε

f(x)

x− x0
dx

}
. (4.23)

As a result, we obtain the expression

P
∫ ∞

−∞
f(x)

x− x0
dx = iπf(x0). (4.24)

So far, we have tried complex integral ∮
C

f(z)

z − x0
dz, (4.25)

by transforming the integral path. Another coping method is to shift the singular point as shown
in Fig. 4.2. If we shift the singular point by ε in the imaginary axis, the closed integral path does
not include the singular point and we obtain∮

C

f(z)

z − x0 − iε
dz =

∫ ∞

−∞
f(x)

x− x0 − iε
dx = 2iπf (x0) . (4.26)
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Figure 4.1: The integral path is modulated. CR is the upper semicircle path centered on the origin
with the radius R → ∞. C+ε and C−ε are upper semicircle clockwise path and lower semicircle
counterclockwise path, respectively.
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On the other hand, if we shift the singular point by −ε in the imaginary axis, the singular point is
included in the closed integral path and we obtain∮

C

f(z)

z − x0 + iε
dz =

∫ ∞

−∞
f(x)

x− x0 + iε
dx = 0. (4.27)

From Eq. (4.24), we obtain the Hilbert formula∫ ∞

−∞
f(x)

x− x0 ∓ iε
dx = P

∫ ∞

−∞
f(x)

x− x0
dx± iπf (x0) . (4.28)

Figure 4.2: The singular point x0 is shifted by ±ε in the imaginary axis.

According to the Hilbert formula, the action is described as

S �
∫ xout

xin

∫ H

0

dH ′

− ∂v
∂x

∣∣∣
x=xh

(x− xh)
dx

= −P
∫ xout

xin

E(t)

∂v
∂x

∣∣∣
x=xh

(x− xh)
dx− iπ

⎛
⎜⎝− E(t)

∂v
∂x

∣∣∣
x=xh

⎞
⎟⎠. (4.29)

Since the principal value is real, the imaginary part of the action is given as

�S =
πE(t)

∂v
∂x

∣∣∣
x=xh

. (4.30)
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The tunneling rate is then expressed as

Γ � exp

(
−2�S

h̄

)
= exp

⎛
⎜⎝− 2πE(t)

h̄ ∂v
∂x

∣∣∣
x=xh

⎞
⎟⎠ . (4.31)

The Hawking temperature TH is defined by assuming that the tunneling rate is related to the
Boltzmann factor exp(−E(t)/kBTH) with kB being the Boltzmann constant. That reads

TH =
h̄

2πkB

∣∣∣∣∂v∂x
∣∣∣∣
x=xh

. (4.32)

This is exactly identical with Unruh’s expression [45] despite being derived in a different way. Higher-
order quantum corrections will appear in the theory beyond the semiclassical approximation. This
will be discussed elsewhere.

We also estimate the radiation power of Hawking radiation. The radiation power for black holes
in 1 + 1 dimensional asymptotically flat spacetime [48,49] is given by

dE

dt
=

kBT

2π

∫ ∞

0
dω

h̄ω
kBT

e
h̄ω

kBT − 1
=

π

12h̄
(kBTH)2. (4.33)

It is interesting to note that the radiation power depends only on the Hawking temperature.

4.2 Hawking temperature in Josephson transmission lines

The Hawking temperature in our Josephson transmission lines is derived as

TH =
h̄

2πk0

(
v0

dx̄

dx

) ∣∣∣∣∂v̄∂x̄
∣∣∣∣
x̄=x̄h

= T 0
Hf(v̄s), (4.34)

where the bare Hawking temperature T 0
H is the dominant term of Hawking temperature expression

and determines the order of the temperatures, while f(v̄s) represents the dynamical contribution to
the Hawking temperature of solitons as defined below,

T 0
H =

h̄

2πkB

(
1√
LJC

)
, (4.35)

f(v̄s) =

∣∣∣∣∂v̄∂x̄
∣∣∣∣
x̄=x̄h

=

∣∣∣∣∣
√

1− v̄4s
(
12v̄s − v̄4s − 11

)
2v̄3s

∣∣∣∣∣ . (4.36)

Here we use the position of the event horizon arising under the condition of v̄2s(x̄) = v̄2(x̄) as follows

x̄±h = ± 1

2
√
3(1− v̄s)

tanh−1

(√
(1 + v̄s)(1 + v̄2s)

12

)
. (4.37)

The Hawking temperature is essentially determined by the characteristic time scale (1/
√
LJC)

as shown in Eq. (4.35). This implies that the Hawking temperature can be controlled by designing
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Figure 4.3: Diagram of junction parameter (the capacitance C and critical current Ic) dependence
on the bare Hawking temperature T 0

H defined in Eq. (4.35).
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the circuit. In fact, the bare Hawking temperature T 0
H changes with the junction parameters C

and Ic as shown in Fig. 4.3. Note that the bare Hawking temperature is in the order of the Kelvin
temperature range that is accessible experimentally in existing technologies. This result shows that
analogue Hawking radiation is observable in our Josephson transmission lines.

In addition, there is a completely new contribution to the Hawking temperature in our expression
that has not been found in the previous theories. That is the dynamical contribution of the soliton
represented by f(v̄s) as depicted in Fig. 4.4. This stems from the change in the shape of the soliton
depending on the soliton velocity as shown in Fig. 4.5. This contribution indicates that the Hawking
temperature can be controlled simply by changing the soliton velocity without changing the circuit
at all. Therefore, it can be confirmed that the experimentally detected radiation is indeed due to
Hawking radiation through this change. This is an advantageous feature that has never existed
before. Considering this effect, the Hawking temperature eventually reaches tens milli-Kelvin order
for vs = 0.98v0 and is sufficiently observable.

Using the results obtained above, the radiation power can be estimated to be in the region of
10−17W to 10−15W for vs = 0.98v0. Therefore, Hawking radiation can be detected experimentally
enough from the viewpoint of the radiation power.

Figure 4.4: Diagram of soliton velocity v̄s dependence on Hawking temperature f(v̄s) given in Eq.
(4.36).

4.3 The Hawking temperature in nonlinear LC transmission lines

Now let us evaluate the Hawking temperature in nonlinear LC transmission lines. The Hawking
temperature is described by [50]

TH =
h̄

2πkB

∣∣∣∣∂vg∂η

∣∣∣∣
η=ηh

. (4.38)
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Figure 4.5: The shape of the solitons depends on the soliton velocity. The red (blue) solid line
represents the normalized velocity of the electromagnetic waves at v̄s = 0.92 (0.98). The horizontal
dotted lines and circles represent the normalized soliton velocity v̄s and the position of the event
horizons.

The gradient of the electromagnetic-wave velocity is given as

∂vg
∂η

=
v0
a

√
6

2

V 2
A

V 2
0

{
1 +

VA

V0
tanh

(√
6

a

VA

V0
η

)}− 1
2

sech2

(√
6

a

VA

V0
η

)
cos

ka

2
. (4.39)

Together with Eq. (3.38) and (4.39), the Hawking temperature is given as

TH =
h̄

2πkB

v0
a

√
6

2

V 2
A

V 2
0

v0
vs

⎧⎨
⎩1− V 2

0

V 2
A

(
v2s

v20 cos
2 ka

2

− 1

)2
⎫⎬
⎭ cos2

ka

2
. (4.40)

The Hawking temperature depends on the soliton velocity as shown in Fig. 4.6. The Hawking
temperature reaches the maximum T̃H where the gradient of the electromagnetic-wave velocity at the
horizon ηh is the largest. The soliton velocity ṽs, which gives the maximum Hawking temperature,
is derived by

dTH

dvs
= 0. (4.41)

Solving this equation, we obtain

ṽs = v0

√√√√1

3

(
1 +

√
4− 3

V 2
A

V 2
0

)
cos

ka

2
, (4.42)

and

T̃H =
h̄

2πkB

v0
a

⎧⎨
⎩2

√
2

3
cos

ka

2

(
3
V 2
A

V 2
0

− 2 +

√
4− 3

V 2
A

V 2
0

)(
1 +

√
4− 3

V 2
A

V 2

)− 1
2

⎫⎬
⎭ , (4.43)

which means that the order of magnitude of the Hawking temperature is dominated by v0/a =
1/

√
LC0. The Hawking temperature reaches the milli-Kelvin order with experimentally feasible

circuit parameters as shown in Fig. 4.6. This shows that Hawking radiation is observable in
nonlinear LC transmission lines.

46



Figure 4.6: The dependence of the Hawking temperature on the soliton velocity in the nonlinear
LC transmission lines. The Hawking temperature reaches the maximum T̃H at the soliton velocity
ṽs. The circuit parameters are the same as in Fig. 3.4.

4.4 Summary

In this chapter, we have derived the Hawking temperature using a tunneling mechanism and eval-
uated it on our systems. The Hawking temperature was found to be experimentally accessible.
The resulting formula also showed that the experimentally observed temperature was indeed due
to Hawking radiation by confirming the dependence of soliton velocity on the temperature without
changing circuit parameters.
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Chapter 5

Quantum-circuit black hole lasers

So far, we have discussed analogue black holes in order to propose a system in which Hawking radia-
tion can be observed. Along with the analogue black hole idea, an extremely unique proposal called
a black hole laser has been made by Corley and Jacobson [51–53] to further enhance the Hawking
radiation. This amplifies Hawking radiation by the stimulated emissions within an analogue cavity
composed of both a black hole and a white hole for reliable observations. The dispersion relation of
the system is not involved in analogue black holes but plays an important role in establishing the
black hole laser, which will be discussed later. Corley and Jacobson showed that for the bosonic
field, the negative energy partner goes back and forth between two horizons if the dispersion is su-
perluminal. Some of the particles with negative energy are transformed into particles with positive
energy by the mode conversion caused on the event horizons during repeating these processes. It
leads to an amplification of the Hawking process.

In fact, experimental studies on black hole lasers have progressed in BECs with anomalous
dispersion by Steinhauer et al. [54]. They reported the standing waves that formed between two
horizons. This means that a partner Hawking particle with negative energy bounces at horizons.
They also observed self-amplifying Hawking radiation. On the other hand, Faccio et al. proposed
black hole lasers in optical fibers with normal dispersion [55]. In their system, the probe pulse is
confined in a cavity consisting of two pulses. This is because the probe light slows down near the two
pulses due to the optical Kerr effect, resulting in the formation of the event horizons. Stimulated
emission in the cavity amplifies Hawking radiation.

In contrast, despite significant advances in detection techniques on extremely weak electromag-
netic fields in the study of the dynamical Casimir effect [20], there have been no reports on black
hole lasers in electric circuits. This is due to the absence of the anomalous dispersion required for
black hole lasers in the previous electric circuits. However, there is a possibility of establishing the
black hole lasers by engineering the desired dispersion relation as proposed in optical fibers, even
though the system has a normal dispersion. Here, we propose the analogue back hole lasers in
electric circuits.

This chapter is organized as follows. Firstly, we clarify the requirements for black hole lasers
reviewing the proposals by Corley et al. [51–53] and point out the problems for proposing the black
hole lasers in electric circuits. Then, we propose the black hole lasers in Josephson transmission
lines with the metamaterial elements. In addition, we evaluate the entanglement entropy, which
measures the degree of entanglement of particles and antiparticles created in pair production near
the event horizons, in order to confirm that the emitted light is surely Hawking radiation. It is
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revealed that entanglement entropy is characterized by squeezing parameters related to the Hawking
temperatures, which depend on the velocity of the soliton.

5.1 Requirements for constructing black hole lasers

Here, let us briefly review the seminal works of Corley et al. [51–53] on black hole lasers and consider
the conditions necessary for these. In general, the main requirements for a laser are to have a cavity
and to amplify the light. The cavity is composed of two mirrors facing each other, and the light
travels back and forth between them as represented in Fig. 5.1 (a). Standing waves are formed in
the cavity when the spacing between the mirrors is an integer multiple of the half-wavelength of
the light. This causes the light to be in phase. The optical amplification is based on the stimulated
emission in the medium inside the cavity as follows. Stimulated emission requires a population
inversion, in which the probability is distributed higher in the excited state than in the ground
state. This population inversion is formed by pumping ground-state atoms that absorb pump light
in a laser medium and are excited to an excited state. In population inversion, stimulated emission
predominates over absorption. When light injects a medium with a population inversion, the excited
atoms are stimulated to undergo quantum transitions with the emission of light equal to its energy
difference to the ground state and in phase as the incident light. This light serves as a seed to
stimulate other atoms in the excited level, resulting in a quantum transition to the ground level.
This chain process, called stimulated emission, amplifies the light (Fig. 5.1 (b)). The light is further
amplified since it travels back and forth through the medium between the mirrors. Finally, a part
of the amplified light can be taken out as laser light if the mirror on one side is semitransparent.

Figure 5.1: (a) A laser device consists of two mirrors and a lasing medium. The light bounces off the
mirrors. The atoms in the lasing medium are excited by the external pumping, resulting in forming
the population inversion in the probability distribution. The amplified light is emitted through the
partially reflective mirror. (b) The stimulated emission occurs in the lasing medium. When the
light of a specific frequency is incident on the population inversion, the excited atom undergoes a
quantum transition to the ground state, and light with the same phase and direction as the incident
light is emitted. This emitted light induces quantum transitions in the same way for other atoms,
producing new in-phase light. The light in the resonator is amplified in this chained process.

Now let us review the black hole laser proposed by Corley et al. [53]. In their proposal, two
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horizons play the role of a cavity. They assume the Reissner-Nordström black hole spacetime in
Painlevé Gullstrand coordinates as

ds2 =
(
c2 − v2(x)

)
dt2 + 2v(x)dtdx+ dx2, (5.1)

where the free-fall velocity is given as v(x) = −√2GM/x−Q2/x2 with the gravitational constant
G, the mass M and the charge Q of the black hole, and the speed of light in the vacuum c. The
event horizon is formed under the condition c2 = v2(x). When applied to the model of carp climbing
a waterfall, the free-fall speed corresponds to the space-dependent water flow speed, while the speed
of light is the speed of the carp swimming in still water, which is a constant. Since two horizons are
required to construct the resonator, let us consider the downstream of the waterfall in addition to
the model considered for a single black hole as shown in Fig. 5.2. In this case, the carp can swim
freely upstream (Region I) and downstream (Region III) of the waterfall, because the water flow is
gentle. On the other hand, carp in the waterfall (Region II) cannot climb up and is washed away
due to the fast flow. As a result, the boundary of Region I and II becomes a black hole horizon
because the carp in Region II cannot escape to Region I, and another boundary (Region II and III)
becomes a white hole horizon since the carp in Region III cannot enter to Region II. These horizons,
however, do not work as mirrors of a cavity because the carp that reaches the white hole horizon
do never return to the black hole. By making these horizons act as mirrors, the carp can climb up
without being swept away. This requires the anomalous dispersion as described below.

Figure 5.2: The model of carp climbing up the waterfall for a black hole and a white hole. Suppose
a carp has the ability to swim at a constant velocity of c against still water. The velocity of the
water flow depends on the space. The carp at both sides of the waterfall (Region I and III) can
climb up because the water flow is gentle upstream and downstream where |v(x)| < |c|, whereas
the carp inside the waterfall (Region II) cannot climb up at all where |v(x)| > |c|. Therefore, two
event horizons are generated where v2(x) = c2. A black hole horizon is located at the boundary of
Region I and II, while a white hole horizon is settled at the boundary of Region II and III.
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Here we explain that the horizons behave as the mirrors if the system has anomalous dispersion.
At first, we derive the equation of motion for the bosonic field φ according to their work. They
adopted a linear field theory with higher spatial derivatives in the potential as

U = −φF̂ (∂x)φ, (5.2)

F̂ (∂x) = c2
(
∂2
x −

1

k20
∂4
x

)
, (5.3)

in order to provide an anomalous dispersion relation. When there is no background flow, the kinetic
energy is given as

K =
1

2
m

(
∂φ

∂t

)2

, (5.4)

where m represents the mass of the boson. The Lagrangian density is given as

L =
1

2

(
∂φ

∂t

)2

+ φF̂ (∂x)φ, (5.5)

where we set m = 1 for simplicity. When the background velocity is −v, the Lagrangian density is
modulated as

L =
1

2

[(
∂

∂t′
+ v

∂

∂x′

)
φ

]2
+ φF̂ (∂x′)φ, (5.6)

through the coordinate transformations {
x′ = x+ vt
t′ = t,

(5.7)

and their derivatives

∂

∂t
=

∂x′

∂t

∂

∂x′
+

∂t′

∂t

∂

∂t′
= v

∂

∂x′
+

∂

∂t′
, (5.8)

∂

∂x
=

∂x′

∂x

∂

∂x′
+

∂t′

∂x

∂

∂t′
=

∂

∂x′
, (5.9)

which mean the coordinate system (x′, t′) of an observer on a conveyor belt moving at −v as shown
in Fig. 5.3 (a). These transformations can also be interpreted as a stationary observer looking at
the field on the conveyor belt moving at the velocity v as shown in Fig. 5.3 (b). We express the
laboratory coordinate as (x, t) and the Free-fall frame as (x′, t′) to match the notation with their
paper. The Lagrangian density is written as

L =
1

2

[(
∂

∂t
+ v

∂

∂x

)
φ

]2
+ φF̂ (∂x)φ, (5.10)

and the action is given as

Sφ =

∫∫
L dxdt =

1

2

∫
d2x

{
[(∂t + v∂x)φ]

2 + φF̂ (∂x)φ
}
. (5.11)
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From the principle of least action δSφ = 0, the Euler-Lagrange equation is given as

∂L

∂φ
− d

dt

∂L

∂ (∂tφ)
− d

dx

∂L

∂ (∂xφ)
= 0. (5.12)

From the Euler-Lagrange equation, we obtain the wave equation

(∂t + ∂xv) (∂t + v∂x)φ = c2
(
∂2
xφ− 1

k20
∂4
xφ

)
. (5.13)

We replace the wave solution like

φ(t, x) = exp

(
−iωt+ i

∫ x

k
(
x′
)
dx′

)
, (5.14)

into Eq. (5.13) and obtain the dispersion relation

(ω − vk)2 = F 2(k), (5.15)

F 2(k) = c2
(
k2 +

k4

k20

)
, (5.16)

where ω and k are the frequency and the wavenumber in the laboratory system. The frequency
relation between in the free-fall frame ω′ and laboratory frame can be written as ω′ = ω − vk by
the Doppler effect. The frequency in the free-fall frame is written by the two following equations

ω′ = ω0 − vk, (5.17)

ω′ = ±F (k), (5.18)

where the observed frequency in the laboratory system is ω0 and F (k) is a function with a positive
gradient.

For a sake of simplicity, let us first consider the dispersionless case

F (k) = ck. (5.19)

In this case, the phase velocity is equal to group velocity. Figure 5.4 (A) shows the dispersion
relation Eq. (5.18). The lines represent the Doppler shift ω′ expressed in Eq. (5.17). In this
Figure, a black solid (dotted) line represents the solution of ω′ = F (k) (ω′ = −F (k)). The black
solid and dotted lines are straight because there are no nonlinear terms in the dispersion relation
of Eq. (5.19). The gradient of these black lines represents the group velocity in the free-fall frame
v′g = dω′/dk = ±dF (k)/dk. Therefore, the black solid (dotted) line represents a wave going to the
right (left) side with a positive (negative) velocity in the free-fall frame because it has a positive
(negative) gradient. The green, red, and blue lines shows the Doppler shifts expressed in Eq. (5.17)
when v = 0, 0 < |v| < |c|, and |v| > |c|, respectively. The intersections of the black lines and the
colored lines represent the modes of the background flow that satisfy the dispersion relation. When
there is no background flow, the intersections of the green line and the black lines correspond to
the modes propagating in the system. The green-filled circle is the mode propagating to the right
with the velocity c and the green open circle represents the mode propagating to the left with the
velocity −c. In short, light can propagate at the speed c, when the background velocity is zero. The
background flow v(x) causes the Doppler shift. When the speed of background flow is slower than
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Figure 5.3: Two interpretations of the Galilei transformation (5.7). (a) The coordinate system (x, t)
is seen from an observer (x′, t′) on a conveyor belt that moves with −v . (b) The coordinate system
(x, t) on the conveyor moving with v is seen from a fixed observer (x′, t′).

that of the light, i.e., |v| < |c|, the gradient of the red line is smaller than that of the black line. In
that case, a red-filled circle is a mode propagating to the right with the velocity c and a red open
circle is a mode propagating to the left with the velocity −c in the free-fall frame. The Doppler
shift causes an increase (decrease) in the frequency of the right (left) traveling mode compared to
the case without background flow. When the background flow speed is faster than the light speed
|v| > |c|, the blue line is inclined more than the blue line. There are two modes represented by a
blue-filled circle and a blue open circle. The blue-filled one is the mode propagating to the right
with the velocity c in the free-fall frame and can be regarded as an antiparticle with negative energy.
The other mode represented by a blue open circle is a mode traveling to the left with the velocity −c
in the free-fall frame. We focus on the modes traveling in the opposite direction of the background
flow. In other words, we handle carp against the flow of the river. Hereafter, we ignore the left
traveling modes represented by the open circles.

We have discussed modes in the free-fall frame in Fig. 5.4 (A) above. Now, let us reconsider how
those modes travel for the observer in the laboratory system. The group velocity in the laboratory
system is given by

vg = ±dF (k)

dk
+ v = v′g + v, (5.20)

which is the inclination of a black line subtracted by that of a colored line in Fig. 5.4 (A). To put
it another way, the dispersion relation in the laboratory system can be reworked as follows,

ω = ω0, (5.21)

ω = vk ± F (k). (5.22)

In Fig. 5.4 (a), the black line parallel to the k-axis represents the observed frequency ω0 given
by Eq. (5.21) and the colored lines are the dispersion relation in the laboratory system at several
velocities by Eq. (5.22). The intersections of the black line and the colored lines represent the
modes realized in the system. The group velocity in the laboratory system is given by the gradient

53



Figure 5.4: (A)(B) The graph of the dispersion relation in the free-fall frame (black lines) given by
Eq. (5.18) and the Doppler shift (colored lines) given by Eq. (5.17). The horizontal axis represents
the wavenumber k and the vertical axis with the frequency ω′ in the free-fall frame. The solid
black line plot the solution with the positive group velocity (ω′ = F (k)) and the black dotted line
represents the solution with the negative group velocity (ω′ = −F (k)) in Eq. (5.18). The green,
red and blue lines represent the Doppler shift given by Eq. (5.17) when the background flow is
0, 0 < |v| < |c|, and |v| > |c|, respectively. The modes that are the solutions of Eq. (5.18) and
Eq. (5.17) are given by the intersections of the black lines and the colored lines. The right-moving
modes in the free-fall frame are marked by the open circles and the left traveling modes are depicted
by the filled circles. (a) (b) The Diagram of the dispersion relation in the laboratory system given
by Eq. (5.22), where we focus on the solution ω = vk + F (k). The horizontal axis and the vertical
axis indicate the wavenumber k and the frequency ω in the laboratory frame. The green, red and
blue lines represent the dispersion relation given by Eq. (5.22) when the background flow is 0,
0 < |v| < |c|, and |v| > |c|, respectively. The intersections of the colored curves and the parallel
black line representing Eq. (5.17) are existing modes. We use Eq. (5.19) for (A) and (a), and Eq.
(5.23) for (B) and (b).
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of the dispersion relation. When the background speed is smaller than the light speed 0 < |v| < |c|,
there is a mode traveling to the right indicated by the red-filled circle in the laboratory system. On
the other hand, there exists a left traveling mode for |v| > |c|.

Now, let us return to the dispersion relation with a nonlinear term given by Eq. (5.16) where
F (k) is defined as

F (k) =

⎧⎨
⎩

c
√
k2 + k4

k20
k ≥ 0

−c
√
k2 + k4

k20
k < 0.

(5.23)

Figures 5.4 (B) and (b) show the dispersion relation in the free-fall frame and the laboratory frame
as in Figures 5.4 (A) and (a), respectively. The nonlinearity distorts the dispersion relation as shown
in Fig. 5.4 (B). The dispersion is called anomalous dispersion, where the larger the wavenumber,
the faster the phase velocity and the smaller the refractive index. In the long-wavelength limit,
the dispersion relation approaches a dispersion-less one. Therefore, for 0 ≤ |v| < |c|, there is the
same number of modes as when the dispersion relation is linear. On the other hand, there are three
right-moving modes in the free-fall frame indicated by blue-filled circles and a left traveling mode in
the free-fall frame depicted by a blue open circle. The two modes are added at the region with the
large wavenumber due to the anomalous dispersion. Figure 1.4 (b) shows the dispersion relation
in the laboratory frame. In this figure, we consider only the modes that travel to the right in the
free-fall frame. The two modes added to Fig. 5.4 (a) are depicted by blue circles on both sides
and have positive group velocity due to their positive gradient. These modes correspond to carp
overcoming the flow of the waterfall as shown in Fig. 5.5 (a)． This causes the two horizons to play
the role of mirrors as described later.

Here, let us show how these modes propagate. There is one right-traveling mode as particles
outside horizons for 0 < |v| < |c|, which we call the T mode. On the other hand, there exist three
modes between horizons for |v| > |c|. One is the N mode which propagates to the right as an
antiparticle, another is the P mode which travels to the right as a particle, and the other is the IN
mode traveling to the left as an antiparticle. In Fig. 5.5, the solid and the dotted arrows represent
a particle with positive energy (ω′ > 0) and an antiparticle with negative energy (ω′ < 0) in the
free-fall frame, respectively. Figure 5.5 (b) shows the trajectories of propagating modes. At first,
a particle (T mode) and an antiparticle (IN mode) are pair-created by the quantum fluctuations
in the vacuum at the black hole horizon. The T mode is emitted as Hawking radiation, while the
IN mode falls to the white hole horizon. The IN mode transfers to the P mode and N mode with
higher group velocity and then can turn back to the black hole horizon by the mode conversion at
the white hole horizon. Then the P mode crosses the black hole horizon, while the N mode bounces
back at the black hole horizon. In other words, the antiparticle modes bounce at horizons while the
particle modes are emitted as Hawking radiation. As a result, the anomalous dispersion realizes a
carp that overcomes the background flow, making the horizons behave like mirrors.

Next, we briefly review the essence of the amplification mechanism by Corley et al. From the
conservation of the Noether current for the time

∂

∂t

∫
d3xJ0 = 0, (5.24)

we can define a conserved value as

(f, g) = i

∫
dx [f∗ (∂t + v∂x) g − g (∂t + v∂x) f

∗] , (5.25)
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which is called Klein Gordon inner product, where f and g are the solutions of the Eq. (5.13). The
norm of the modes is conserved through the process as follows,

‖INm‖ = ‖INm+1‖+ ‖Tm+1‖, m ≥ 0, (5.26)

where ‖Xm‖ denotes the norm defined by the Klein Gordon inner product of the mth X mode. Since
‖INm‖ > 0 and ‖Tm+1‖ < 0, this results in ‖INm+1‖ > ‖INm‖. Therefore, the Hawking radiation is
amplified by the mode transformations based on the norm conservation at the event horizon. This
is the essential concept of the black hole laser [51–53]. The detailed derivation of the amplification
is described in [51–53].

Figure 5.5: (a) Image of the mode propagation. The anomalous dispersion creates a yellow carp
that can climb the waterfall against strong currents, resulting in a horizon acting as a mirror. (b)
Schematic diagram of the trajectories of modes. The solid (dashed) lines represent modes with
positive (negative) frequencies for antiparticles (particles).

5.2 Identifying issues and their approaches

The black hole laser originally requires the anomalous (superluminal) dispersion with a positive
curvature in the dispersion curve of the system [51–53]. However, the anomalous dispersion required
for black hole lasers has not been reported in the electric circuits so far. In addition, nonlinear effects
have not been actively considered because they are not a necessary condition for analogue gravity
effects. These are ones of the reasons why no black hole laser has been proposed so far.

To overcome the first issue, we use the model that a black hole laser is feasible even in subluminal
dispersion where the dispersion curve is well designed as in optical fibers [56]. A carp that can climb
up the waterfall without flowing (hereinafter referred to as “super carp”) is required to obtain two
horizons that behave like mirrors as described above. In order to produce super carp in normal
dispersion, the dispersion curve needs to form a mode in which it has a large curvature at low
frequencies and propagates with a group velocity faster than the reference wave. In the desired
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normal dispersion relation, there is only one mode in which the super carp climbs the waterfall and
reaches the black hole horizon. Then, the super carp turns into ordinary carp and drifted off to
the white hole horizon. After that, some become super carp again, while others flow downstream.
In that way, two horizons behave as mirrors even in the normal dispersion by creating the desired
dispersion relation.

Figure 5.6: (a) A right-handed transmission line with the inductance Lrh and capacitance Crh.
(b) A left-handed transmission line with the inductance Llh and capacitance Clh. (c) A composite
right/left-handed transmission line called CRLH.

To create the desired dispersion relation in electric circuits, we employ dispersion engineering
using metamaterials made of sub-wavelength inclusions that provide tremendous degrees of freedom
to manipulate the electromagnetic parameters of materials and modes with high precision. In
fact, metamaterials create a medium in which the permittivity and permeability are simultaneously
negative, which does not exist in nature, and enables the unique property that the phase velocity
and group velocity of electromagnetic waves are opposite to each other. Figure 5.6 (a) and (b)
represent right-handed components and left-handed components on transmission lines, respectively.
The dispersion relation on the right-handed transmission lines is given by

ω =
2√

LrhCrh
sin

ka

2
, (5.27)

where Lrh and Crh are the inductance and the capacitance. On the other hand, the dispersion
relation on the left-handed transmission lines is given by

ω = − 2√
LlhClh

1

sin ka
2

, (5.28)

where Llh and Clh are the inductance and the capacitance. The left-handed transmission lines are
not realized practically, because the group velocity would become infinity as the frequency increases
and then faster than the light velocity c. In practice, we need to consider the composite of the
right-handed and the left-handed elements which is called CRLH(Composite Right/Left-Handed)
as shown in Fig. 5.6 (c). It has the dispersion relation as

k =
1

a
arccos

{
1− 1

2

(
ωLrh − 1

ωClh

)(
ωCrh − 1

ωLlh

)}
. (5.29)

The left-handed elements are dominant in low frequencies and the right-handed elements are dom-
inant in high frequencies. In this way, we can engineer the dispersion relation by adding the
metamaterial elements into transmission lines.
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We also introduce the Josephson effect in the transmission line for addressing the second issue.
It provides the Kerr nonlinearity [57, 58] essential for black hole laser, which determines the group
velocity, required to select the propagation modes in the system.

5.3 Model

Figure 5.7: Schematic representation of the composite right/left-handed nonlinear transmission
line. Each unit cell consists of a linear inductive element of inductance Lrh in parallel with a linear
capacitance Clh in the series branch, which constitute the linear dispersive element of the line, and
a linear inductive element of inductance Llh in parallel with a linear capacitor of capacitance Crh

as well as the Josephson element responsible for the nonlinearity of the system in the shunt branch.
The dotted vertical lines mark the unit cell of the lattice.

Here, we propose black hole lasers in transmission lines by introducing metamaterial elements
into the circuit that realize particle-antiparticle pair propagation modes possible with anomalous
dispersion into a normal one, as well as the Kerr nonlinearity for controlling propagating mode
selection in the cavity and amplifying the Hawking process. Suppose a Josephson metamaterial
transmission line which consists of a number of LC blocks each comprised of composite right/left-
handed components together with a Josephson element in the shunt branch as illustrated in Fig.
5.7. Starting from the application of Kirchhoff’s law to this system together with the Josephson
relation, the current conservation at the nth node is expressed as

In − In−1 = −IJ,n − ICrh,n − ILlh,n, (5.30)

where In is the current through the nth node comprising of the current through the right-handed
(rh) inductor with inductance Lrh and the left-handed (lh) capacitor with capacitance Clh at the
nth cell, i.e., In = ILrh,n + IClh,n,

ILrh,n = − h̄

2e

1

Lrh
(θn+1 − θn) , (5.31)

IClh,n = − h̄

2e
Clh

d2

dt2
(θn+1 − θn) , (5.32)

where Ic, h̄, e, and θn are the Josephson critical current, Dirac’s constant, an elementary charge,
and the phase difference in the nth junction, respectively. The currents on the right-hand side of
Eq. (5.30) are the Josephson current IJ,n, the displacement current ICrh,n flowing through the nth
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Josephson junction with capacitance Crh, and the current ILlh
through the left-handed inductor

with inductance Llh. Combining these relations, we obtain the following circuit equation,

Crh
d2θn
dt2

+
1

Llh
θn +

1

LJ

(
θn − θ3n

3!

)
−
(

1

Lrh
+ Clh

d2

dt2

)
(θn+1 + θn−1 − 2θn) = 0, (5.33)

where we use sin θn � θn − θ3n/6 and LJ = h̄/(2eIc).

Now let us derive the dispersion relation of this transmission line by ignoring the nonlinear
terms of the Josephson effect. We substitute a plane-wave solution θ ∼ exp[i(kna − ωt)] with the
wavenumber k and the frequency ω for Eq. (5.33) and obtain the dispersion relation

sin2
k

2
=

1

4

{
ω2

ω2
rh

− Lrh

(
1

Llh
+

1

LJ

)}(
1− γ

ω2

ω2
rh

)−1

, (5.34)

where ωrh = 1/
√
CrhLrh and γ = Clh/Crh. We also set a = 1 for simplicity. In the regime of

γω2 � ω2
rh, this reduces to

k � ω

ωrh
+

γ

2

ω3

ω3
rh

, (5.35)

by designing the circuit so that Llh = −LJ [59]. This dispersion relation is the same as that of
optical fibers considering black hole lasers [56]. Thus, our proposed circuit can be regarded as a
circuit version of an optical fiber [56, 60] at the nanometer scale.

Figure 5.8: Schematic diagram of a black hole laser in an electric circuit. The refractive index
perturbation δn(η) (green) moving with the velocity vs changes the velocity of the probe pulses
(orange wave packets) and classically traps them inside the soliton acting as the cavity. The probe
pulses can be radiated quantum-mechanically as Hawking radiation (blue) by pair productions near
the horizon.

Our circuit equation contains a third-order nonlinear term just like an optical fiber, so the
existence of a nonlinear wave is highly expected. Next, let us explore the waves hidden in the
circuit equation (5.33) by using the discrete reductive perturbation method as follows [32, 39–43].
We introduce two slow stretched space and time variables ξ = ε (n− vgt) and τ = ε2t with the small
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dimensionless parameter ε (0 < ε � 1) and group velocity vg to separate fast and slow variations
of θn and expand θn in principle as

θn = θ(0) +

+∞∑
l=−∞

∑
α=1

εαθ
(α)
l (ξ, τ) exp[il(kn− ωt)]. (5.36)

Here, our analysis is restricted to the so-called rotating-wave approximation consisting essentially
in neglecting higher harmonics,

θn(t) � εθ
(1)
1 (ξ, τ) exp[i(kn− ωt)] + εθ

∗(1)
1 (ξ, τ) exp[−i(kn− ωt)]. (5.37)

Inserting these formulas into Eq. (5.33) in order to find balanced dispersion and nonlinearity, we
obtain the following equation for the ε3 order,

i
∂θ

(1)
1

∂τ
+ P

∂2θ
(1)
1

∂ξ2
+Q

∣∣∣θ(1)1

∣∣∣2 θ(1)1 = 0, (5.38)

where

P =
ωΩ̄

2

[
cos k − ω2

c

(
1

ω2
+

3γ

ω2
rh

)
sin2 k

]
, (5.39)

Q =
1

4ωLJCc
, (5.40)

Cc = Crh + 4Clh sin
2 k

2
, (5.41)

Ω̄ =
ω2
c

ω2

(
1− γ

ω2

ω2
rh

)
, (5.42)

ωc =
1√

LrhCc
. (5.43)

This is a well-known nonlinear Schrödinger equation found in various systems including optical
fibers [61], which contains soliton solutions. One such solution is a dark soliton expressed as,

θ
(1)
1 (ξ, τ) = A tanh

(
A

√∣∣∣∣ Q2P
∣∣∣∣(ξ − uτ)

)
ei(kξ−ωt), (5.44)

as shown in Fig. 5.9 (a), where A is the soliton amplitude and u is the relative soliton velocity in
the ξ − τ coordinate. The solution holds under the condition PQ < 0, which is always satisfied in
our system.

5.4 Quantum-circuit black hole lasers

Our system equipped with both the desired normal dispersion supporting pair-propagating modes
and a Kerr effect is expected to be a circuit version of black hole lasers in optical fibers [56, 60].
Here we briefly review the black hole laser in an optical fiber as an example and reorganize the
key parameters appropriate for our system. The fundamental idea is to amplify a probe pulse as
Hawking radiation confined in the cavity formed by the two propagating solitons with the same
velocity vs acting as mirrors in a conventional laser.
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5.4.1 Horizon resonators

The event horizons occur at the points where the group velocity veffg of the probe pulse in the system

cannot keep up with the soliton velocity vs, i.e., v
eff
g = vs. In other words, the probe pulse is trapped

in the cavity and it cannot escape from the cavity, i.e., it cannot go outside the horizons classically.
The effective group velocity under the Kerr modulations is given as

veffg =
c

ng + δn(η)
, (5.45)

where ng and δn(η) represent the unperturbed group index and the refractive index perturbation
modified by the Kerr effect of Josephson junctions in the comoving frame (η = ξ−uτ), respectively.

�

Figure 5.9: Schematic diagrams of a) the phase soliton with the amplitude A, b) the electric field
with the amplitude Emax = (−h̄/2ed)A2

√|Q/2P |u, and c) the cavity formed by the single dark
soliton with the amplitude δnmax. The filled circle and open circle represent the horizon of the
black hole and white hole, respectively. The size of arrows representing the velocity of the probe
pulse varies in space.

The Kerr effect can cause a change in the refractive index depending on the strength of the
electric field, equivalently the strength of the voltage in our circuit [62]. The refractive index
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perturbation under the soliton propagation is expressed as

δn(η) = χE2, (5.46)

where χ is the third-order nonlinear susceptibility [63], which is a negative constant in the case of
the circuit with Josephson junctions [57, 58] and the electric field E is given by V/d with d being
the distance between plates. The voltage V across the junction is derived from the Josephson
acceleration relation V = (h̄/2e)∂θ/∂τ and is expressed as

V = − h̄

2e
A2

√∣∣∣∣ Q2P
∣∣∣∣ u sech2

(
A

√∣∣∣∣ Q2P
∣∣∣∣η
)
. (5.47)

The soliton width w is roughly evaluated by 2
√|2P/Q|/A and is about w � 150a for the soliton

centered at the frequency ωs = 4.3 × 109 Hz with A = 0.01, which is large enough to apply
the continuum approximation. Figure 5.9 shows the electric field E (b) and the refractive index
perturbation δn (c). The probe pulses are trapped in the soliton because the refractive index
perturbation is negative [55]. In other words, a single soliton behaves as the cavity in our system
as shown in Fig. 5.8.
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Figure 5.10: The frequencies relation between the frequency ω in the laboratory frame and the
frequency ω′ in the comoving frame by the Doppler shift. The dashed, solid and dotted curved
lines represent the ω − ω′ relation at the perturbed index δn = 0, δn = δn(ηh) and δn = δnmax,
respectively. The horizontal line shows the invariant frequency ω′

0 in the comoving frame and the
intersections with the curved lines correspond to the modes.

Now let us find the frequency modes satisfying the dispersion relation. The frequency ω′ in the
comoving frame is given by the Doppler relation as follows,

ω′(ω) = ω − ω
vs
c
[n(ω) + δn(η)], (5.48)

with the soliton velocity vs = u + vg(ωs) in the laboratory frame. The modes are given by the
solutions of ω′

0 = ω′(ω), where ω′
0 is the invariant frequency in the comoving frame for the given
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input frequency ωIN. Figure 5.10 shows the Doppler relation in frequencies between the laboratory
frame and comoving frame. The intersections of the horizontal line and the curved lines represent
the modes that are realized in the system. For δn = δnmax, there are three modes ωIN, ωP and
ωN between horizons, whereas for δn = 0 there is only one mode ωT outside the horizons. The
frequency ωh at the event horizon satisfies dω′/dω|ω=ωh

= 0 and ω′(ωh) = ω′
0. We can find the

position of the event horizon ηh by solving these equations.
In the laboratory frame, Eq. (5.48) is transformed as

keff(ω) =
ω − ω′

0

vs
, (5.49)

where keff(ω) represents the effective dispersion relation in the laboratory system modulated by the
refractive index perturbation δn(η) as

keff(ω) =
ω

c
(n(ω) + δn(η)). (5.50)

Figure 5.11 depicts the effective dispersion relation keff(ω) as a curve and the Doppler shift as a
straight line in a laboratory system, where the horizontal axis is the wavenumber k and the vertical
axis is the frequency ω. The intersections of the curved lines and the straight line are the modes
satisfying Eq. (5.49). The gradient of the curved line represents the group velocity veffg in the
laboratory frame, while the gradient of the straight line is the soliton velocity vs. Contrary to
Corleys’ system, the soliton velocity corresponding to the waterfall flow velocity is constant, and
the group velocity corresponding to the carp velocity depends on the space.

In our proposal, the cavity formed by two horizons is moving at the soliton velocity vs. Therefore,
the direction of traveling mode in the cavity is determined by the group velocity of the modes in
the comoving frame. The gradient of the dispersion curve in Fig. 5.10 gives the group velocity of
the mode in the comoving frame. The P, N, and IN modes travel to the left, while IN mode moves
to the right. The IN mode corresponds to the yellow carp overcoming the waterfall flow as shown
in Fig. 5.12 (a) and gives the function of the mirror to two horizons. This was achieved by adding
the metamaterial elements into the circuit. The evolution of these modes is shown in Fig. 5.12 (b).
The IN mode propagates towards the black hole horizon and turns back as the P mode to the white
hole horizon together with the N mode where both modes undergo partial mode conversion. The P
mode bounces at the white hole horizon and then becomes the IN mode propagating to the black
hole horizon, while the N mode crosses the white hole horizon and is emitted as the T mode. Note
that the antiparticles (T mode) with negative energy are emitted from the white hole horizon as
partner Hawking radiation just as in the case with an optical fiber under normal dispersion. This
is dual to the particle emission from the black hole horizon as Hawking radiation as shown in Fig.
5.13.

In fact, Equation (5.48) is rearranged as

(W − v(η)K)2 = F 2(K), (5.51)

where ⎧⎨
⎩

W = vgω
′

K = ω
F (K) = vsvgk(ω),

(5.52)

which is the same as the dispersion relation of the black hole lasers by Corley et al. The trajectories
of the modes are represented in Fig. 5.5, where the modes corresponding to the particles and
antiparticle are reversed to each other as well as reversed horizons.
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Figure 5.11: The graph of the dispersion relation (curved lines) and the Doppler shift ω = ω′
0 + vsk

(straight line) in the laboratory frame. The horizontal axis represents the wavenumber k and the
vertical axis is the frequency ω in the laboratory system. The dashed, solid and dotted curved lines
represent the dispersion relation at the perturbed index δn = 0, δn = δn(ηh) and δn = δnmax,
respectively. The intersections of the straight line with the curved lines correspond to the modes
realized in the system.

Figure 5.12: (a) Image of the mode propagation. A yellow carp is created by adding the metamaterial
elements into the circuit and it can climb the waterfall against a strong current, resulting in the
horizons acting like mirrors. (b) Schematic diagram of the trajectories of modes. The solid (dashed)
lines represent the mode with positive (negative) frequencies for antiparticles (particles).
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Figure 5.13: (a) Sketch of the black hole horizon. No particles cannot go out from the black hole and
no antiparticles cannot enter it classically. In quantum mechanics, the particle with positive energy
is released as Hawking radiation and the partner with negative energy falls into the black hole. (b)
Sketch of the white hole horizon. No particles cannot enter the white hole and no antiparticles
cannot escape from it classically. In quantum mechanics, the antiparticle with negative energy is
radiated as partner Hawking radiation and the particle with positive energy climbs into the white
hole.

5.4.2 Amplification of Hawking radiation

In our study, we consider the Josephson parametric amplification as well as the original amplification
mechanism by Corley et al. In this section, we describe the amplification processes of Hawking
radiation in the horizon resonator by the Josephson parametric amplification newly used in this
thesis.

Here, we describe the Josephson parametric amplification in our system based on the theory of
Fasolo et al. [64]. A Josephson junction has a nonlinear element that induces a four-wave mixing
process. The process occurs when lights with more than two different wave-lengths are incident in a
nonlinear medium. The energy of the pump with the frequency ωp is transferred to signal and idler
with the frequencies ωs and ωi, respectively, and then the signal and idler is amplified by parametric
amplification under the relation ωp = ωs + ωi. In our system, the soliton is the classical pump, the
particle and antiparticle modes behave as signal and idler.

Now, let us begin with the Lagrangian in our system to derive the equation of the motion for
the signal and idler. The Lagrangian is given as

L =

∫ ∞

−∞
L dx, (5.53)

where the Lagrangian density L is written as

L =

(
h̄

2e

)2 [crh
2

(∂tθ)
2 +

clh
2
a2 (∂x∂tθ)

2 − 1

2lrha2
a2 (∂xθ)

2 − 1

2llha2
θ2 − 1

lJa2
(1− cos θ)

]
, (5.54)

with the capacitance and inductance of the left(right)-handed element per unit length a denoted
as clh(crh) and llh(lrh), respectively as well as lJ being the Josephson inductance per unit length.
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Using the Taylor expansion up to the fourth-order for cos θ and setting llh = −lJ , we obtain the
following Lagrangian

L =

(
h̄

2e

)2 [crh
2

(∂tθ)
2 +

clh
2
a2 (∂x∂tθ)

2 − 1

2lrha2
a2 (∂xθ)

2 +
1

24lJa2
θ4
]
. (5.55)

From the Euler-Lagrange equation for the above Lagrangian L(θ, ∂tθ, ∂xθ, ∂x∂tθ) expressed as,

∂L

∂θ
− ∂

∂x

∂L

∂(∂xθ)
− ∂

∂t

∂L

∂(∂tθ)
+

∂2

∂x∂t

∂L

∂(∂x∂tθ)
= 0, (5.56)

the wave equation described by Eq. (5.33) can be reproduced.

The canonical momentum π is given by

π(x, t) =
δL

δ(∂tθ(x, t))

=
∂L

∂ (∂tθ (x, t))
− ∂x

∂L

∂ (∂x∂tθ (x, t))

=

(
h̄

2e

)2 {
crh (∂tθ)− clha

2
(
∂t∂

2
xθ
)}

. (5.57)

The Hamiltonian density can be derived by the Legendre transformation from Lagrangian as

H =

(
h̄

2e

)2 [crh
2

(∂tθ)
2 +

clh
2
a2 (∂x∂tθ)

2 +
1

2lrha2
a2 (∂xθ)

2 − 1

24lJa2
θ4
]
. (5.58)

Let us explain how Hawking and its partner particle are generated from the vacuum. Suppose that
the Josephson phase difference can be represented by the classical value θc and quantum fluctuation
δθ around it, i.e., θ = θc + δθ. The Hamiltonian density can be divided into three parts by ignoring
the small values O(δθ3) as follows

H = Hc + Hq + Hint, (5.59)

where Hc and Hq are the Hamiltonian density for a classical phase variable and its quantum
fluctuation, respectively

Hc =

(
h̄

2e

)2 [crh
2

(∂tθc)
2 +

clh
2
a2 (∂x∂tθc)

2 +
1

2lrha2
a2 (∂xθc)

2 − 1

24lJa2
θ4c

]
, (5.60)

Hq =

(
h̄

2e

)2 [crh
2

(∂tδθ)
2 +

1

2lrha2
a2 (∂xδθ)

2

]
. (5.61)

The interaction Hamiltonian density Hint arising from the fourth-order nonlinearity will be discussed
later. The Hamiltonian density for quantum fluctuation is rewritten as

Hq =
1

2
crh d2eff

(
E2 + c2B2

)
, (5.62)

through the Josephson relations
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∂t(δθ) =
2e

h̄
V, (5.63)

∂x(δθ) =
2e

h̄
deffB, (5.64)

where deff is the effective barrier thickness of the junction and B is the magnetic flux density.
This represents exactly the Hamiltonian of electromagnetic waves. Therefore, the fluctuations of
the Josephson phase generate electromagnetic waves. This is a source of Hawking radiation in our
system.

Let us get back to the derivation of the equation of motion for the parametric amplification.
The Hamiltonian is separated by the linear part H0 and nonlinear one H1 that can induce the
parametric amplification as follows,

H =

∫ ∞

−∞
H dx = H0 +H1, (5.65)

where

H0 =

∫ ∞

−∞
dx

(
h̄

2e

)2 [crh
2

(∂tθ)
2 +

clh
2
a2 (∂x∂tθ)

2 +
1

2lrha2
a2 (∂xθ)

2

]
, (5.66)

H1 = −
∫ z

0
dx

(
h̄

2e

)2 [ 1

24lJa2
θ4
]
. (5.67)

Particles and antiparticles can be pair-produced anywhere along the transmission line, but let us
set x = 0 where the pair-production occurs and consider its amplification at x = z. The Poisson
bracket between θ and π is given as

{θ(x, t), π(y, t)} =

∫
dz

(
δθ(x, t)

δθ(z, t)

δπ(y, t)

δπ(z, t)
− δπ(y, t)

δθ(z, t)

δθ(x, t)

δπ(z, t)

)

=

∫
dzδ(x− z)δ(y − z)

= δ(x− y). (5.68)

According to the conventional quantization procedure, it is canonically quantized with the commu-
tation relation as [

θ̂(x, t), π̂(y, t)
]
= ih̄δ(x− y). (5.69)

Based on the plane-waves modes decomposition, the phase difference operator is expressed as

θ̂(x, t) =

∫ ∞

−∞
dk

2e

h̄

√
h̄ω(k)lrh
4πk2

[
âke

i(kx−ω(k)t) + â†ke
−i(kx−ω(k)t)

]
, (5.70)

where âk and â†k are the creation and annihilation operators and the commutation relations obey[
âk, â

†
k′

]
= δ(k − k′), (5.71)

[âk, âk′ ] =
[
â†k, â

†
k′

]
= 0. (5.72)
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The linear Hamiltonian is diagonalized as

Ĥ0 =

∫ ∞

–∞
dkh̄ω(k)â†kâk, (5.73)

where the zero-point energy is ignored. The field is considered as a set of an infinite number of
harmonic oscillators with the frequencies ω(k).

Assuming that the pump is strong enough to be treated as classical value, we replace âk →
âk + b(ω(k)) with the complex function b(ω(k)) centered at ωp = ω(k̄p). Equation (5.70) becomes

θ̂(x, t) =

∫ ∞

−∞
dkc(k)

[
{âk + b(ω(k))} ei(kx−ω(k)t) +

{
â†k + b∗(ω(k))

}
e−i(kx−ω(k)t)

]
, (5.74)

where

c(k) =
2e

h̄

√
h̄ω(k)lrh
4πk2

. (5.75)

In the rotating wave approximation, the nonlinear Hamiltonian is composed of three parts as

Ĥ1(t) = ĤCPM (t) + ĤSQ +HSPM (t), (5.76)

where the first part represents the cross-phase modulation

ĤCPM (t) =
8

24lJ

(
h̄

2e

)2 ∫ ∞

0
dksdkidkpdkp′c (ks) c (ki) c (kp) c

(
kp′
)
b∗ (ω(kp)) b

(
ω(kp′)

)
â†ks âkie

i(ω(ks)−ω(ki)+ω(kp)−ω(kp′ ))t
∫ z

0
dxe−i(ks−ki+kp−kp′)x +H.c., (5.77)

the second one is broadband squeezing

ĤSQ(t) = − 4

24lJ

(
h̄

2e

)2 ∫ ∞

0
dksdkidkpdkp′c (ks) c (ki) c (kp) c

(
kp′
)
b (ω(kp)) b

(
ω(kp′)

)
â†ks â

†
ki
ei(ω(ks)−ω(kp)+ω(ki)−ω(kp′ ))t

∫ z

0
dxe−i(ks−kp+ki−kp′)x +H.c., (5.78)

and the last one describes the self-phase modulation

HSPM (t) = − 2

24lJ

(
h̄

2e

)2 ∫ ∞

0
dksdkidkpdkp′c (ks) c (ki) c (kp) c

(
kp′
)
b∗ (ω(kp)) b

(
ω(kp′)

)
b∗ (ω(ks)) b (ω(ki)) ei(ω(ks)−ω(ki)+ω(kp)−ω(kp′ ))t

∫ z

0
dxe−i(ks−ki+kp−kp′)x +H.c.. (5.79)

Here, we discuss the Hamiltonian in the interaction picture. Note that our Hamiltonian is
composed of the time-independent unperturbed Hamiltonian Ĥ0 and time-dependent perturbed
Hamiltonian Ĥ1. The annihilation operator âk(t) evolves as

âk(t) = û†0(t)âkû0(t), (5.80)
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The differential equation is obtained as follows,

∂âk(t)

∂t
=

i

h̄
[Ĥ0, âk(t)]

= −iω(k)âk(t), (5.81)

and it can be solved as

âk(t) = e−iω(k)tâk(t0), (5.82)

where t0 is the initial time of the interaction.The time evolution of Ĥ1 is written as

Ĥ int
1 (t) = û†0(t)Ĥ1(t)û0(t)

= Ĥ int
CPM (t) + Ĥ int

SQ(t) +HSPM (t), (5.83)

where

Ĥ int
CPM (t) =û†0(t)ĤCPM (t)û0(t)

=− 8

24lJa2

(
h̄

2e

)2 ∫ ∞

−∞
dksdkic (ks) c (ki) c

2
(
k̄p
) ∣∣b (ω(k̄p))∣∣2 e2i(ω(ks)−ω(ki))t

×
∫ z

0
dxe−i(ks−ki)xâ†ks(t0)âki(t0) +H.c., (5.84)

Ĥ int
SQ(t) =û†0(t)ĤSQ(t)û0(t)

=− 4

24lJa2

(
h̄

2e

)2 ∫ ∞

−∞
dksdkic (ks) c (ki) c

2
(
k̄p
)
b2
(
ω(k̄p)

)
e2i(ω(ks)+ω(ki)−ω(k̄p))t

×
∫ z

0
dxe−i(ks+ki−2k̄p)xâ†ks(t0)â

†
ki
(t0) +H.c., (5.85)

and

HSPM (t) = − 2

24lJ

(
h̄

2e

)2 ∫ ∞

0
dksdkic (ks) c (ki) c

2
(
k̄p
) ∣∣b (ω(k̄p))∣∣2

× b∗ (ω(ks)) b (ω(ki)) ei(ω(ks)−ω(ki))t

∫ z

0
dxe−i(ks−ki)x +H.c., (5.86)

in the monochromatic degenerate pump limit, i.e. b
(
ω(kp′)

)
= b (ω(kp)) → b (ω(kp)) δ

(
kp − k̄p

)
.

The asymptotic output field is defined as

âoutk = Û âk(t0)Û
†, (5.87)

where we set initial time t0 = −∞ and the final time t1 = ∞ of the interaction. The asymptotic
evolution operator is given as

Û ≡ Û(−∞,∞) = e−
i
h̄
K̂1 , (5.88)
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with

K̂1 =

∫ ∞

−∞
Ĥ1(t)dt = K̂CPM + K̂SQ +KSPM , (5.89)

where the time ordering does not need to be considered since [Ĥ1(t), Ĥ1(t
′)] = 0. Each part of K̂1

is derived as

K̂CPM = − 32π

24lJ

(
h̄

2e

)2

z

∫ ∞

0
dksc

2 (ks) c
2
(
k̄p
) ∣∣b (ω(k̄p))∣∣2 â†ks(t0)âks(t0), (5.90)

K̂SQ=− 8π

24lJ

(
h̄

2e

)2∫ ∞

0
dksc (ks) c(ki)c

2
(
k̄p
)
b2
(
ω(k̄p)

)
â†ks(t0)â

†
ki
(t0)

eiΔkz − 1

iΔk
+H.c., (5.91)

and

KSPM = − 8π

24lJ

(
h̄

2e

)2

c4
(
k̄p
) ∣∣b (ω(k̄p))∣∣4 z, (5.92)

where ω(ki) = ω(k̄p)− ω(ks) and Δk = 2k̄p − ks − ki.

Defining the initial creation and annihilation operator as âks(i)(t0) ≡ âks(i) and â†ks(i)(t0) ≡ â†ks(i) ,
respectively, Eq. (5.87) is rewritten as

âk = Û †âoutk Û . (5.93)

By the differential for z, the equation of motion for âks(i) is derived as

dâks(i)
dz

=
i

h̄

[
dK̂1

dz
, âks(i)

]
. (5.94)

After some calculations, this leads to

dâks(i)
dz

=
ilrh
6lJa2

(
2
ω (ks)

k2s
|βp|2 âks(i) +

√
ω (ks)ω (ki)

k2sk
2
i

β2
pe

iΔkzâ†ki(s)

)
, (5.95)

where βp ≡ c
(
k̄p
)
b
(
ω(k̄p)

)
. In the corotating-framework, replacing the fields with

âks(i) =
ˆ̃aks(i)e

2iγω(ks(i))|βp|2z/k2s(i) , (5.96)

and

βp = β̃pe
iγω(k̄p)|βp|2z/k̄2p , (5.97)

where γ = lrh/(6lJa
2), Eq. (5.95) becomes

∂ˆ̃aks(i)
∂z

= iγ

√
ω (ks)ω (ki)

k2sk
2
i

β̃p
2ˆ̃a†ki(s)e

iΨz, (5.98)
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with the total phase mismatch

Ψ = Δk + 2γ

(
ω
(
k̄p
)

k̄2p
− ω (ks)

k2s
− ω (ki)

k2i

)
|βp|2 . (5.99)

Solving Eq. (5.98), we obtain

ˆ̃aks(i)(z) = ei
Ψ
2
z

[
i
γ

g

√
ω (ks)ω (ki)

k2sk
2
i

β̃2
p
ˆ̃a†ki(s) sinh gz +

ˆ̃aks(i)

(
− iΨ

2g
sinh gz + cosh gz

)]
, (5.100)

where

g =

√
γ2

ω (ks)ω (ki)

k2sk
2
i

∣∣∣β̃p∣∣∣4 −
(
Ψ

2

)2

. (5.101)

At Ψ = 0, this becomes

ˆ̃aks(i)(z) = iˆ̃a†ki(s) sinh gz +
ˆ̃aks(i) cosh gz, (5.102)

which means that the signal ˆ̃aks and idler ˆ̃aki are amplified. This is exactly the Bogoliubov trans-
formation represented by(

ˆ̃aks(L)
ˆ̃a†ki(L)

)
≡ Uζ

(
ˆ̃aks
ˆ̃a†ki

)
U †
ζ

=

(
cosh gz eiπ/2 sinh gz

e−iπ/2 sinh gz cosh gz

)( ˆ̃aks
ˆ̃a†ki

)
,

(5.103)

where

Uζ = exp
{
ζ
(
ˆ̃aks ˆ̃akie

−iπ/2 − ˆ̃a†ks
ˆ̃a†kie

iπ/2
)}

, (5.104)

with the squeezing parameter ζ = gL and the distance between horizons L. The Bogoliubov
transformation mixes creation and annihilation operators of the two different modes.

The parametric amplification occurs everywhere in our system. However, only the particles and
antiparticles that are pair-generated near the horizon survive and are amplified without being offset
because the horizons behave as a resonator. The particle and antiparticle modes corresponding
to the signal and idler are amplified by gaining the energy of the soliton corresponding to the
pump. Therefore, the soliton gradually decays and disappears in the end. This is an analogy of the
evaporation of a black hole. In this thesis, we consider the steady state before decaying.

In the following, we incorporate the nonlinear mode conversions near the event horizon by
adopting the model considered by Leonhardt et al. [65] from the standpoint of nonlinear quantum
optics and then find that our laser is a squeezed state laser. Figure 5.14 represents the trajectories
of modes with the operators. Consider the mth amplification process in the horizon cavity. The
two modes pair produced by mode conversion (B1) at the black hole horizon propagate toward the
white hole horizon (B2). At the white hole horizon, the two modes again undergo a time-reversed
mode conversion (B3) opposite to the previous one and then propagate toward the departed black

71



Figure 5.14: Sketch of the trajectories of modes. The solid (dashed) lines represent the mode with
positive (negative) frequencies for particles (antiparticles). The dotted line is a virtual input mode
for antiparticles.
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hole horizon (B4). These four distinct processes are incorporated in the matrix B, allowing it to be
expressed as

B = B4B3B2B1, (5.105)

where

B1 =

(
cosh ζ − sinh ζ
− sinh ζ cosh ζ

)
, (5.106)

B2 =

(
e−iθ− 0
0 eiθ+

)
, (5.107)

B3 =

(
cosh ζ sinh ζ
sinh ζ cosh ζ

)
, (5.108)

B4 =

(
e−iθ0 0
0 1

)
, (5.109)

with the phases θ0, θ− and θ+ acquired during propagation for each mode. As a result, the input
modes at the mth amplification process are transformed to the output modes by a Bogoliubov
transformation B as follows, (

â′−m

â′†+m

)
= B

(
â−m

â†+m

)
, (5.110)

where â+(−)m (â†+(−)m) represents annihilation (creation) operator of the mth input mode for par-

ticles (antiparticles), while â′+(−)m (â′†+(−)m) are those of output modes for particles (antiparticles).

The output modes serve as further input modes (â′+m = â+(m+1)). As shown in Fig. 5.14, the

virtual antiparticle in the T̃ mode incident from the right side of the black hole event horizon and
the particle in the IN mode inside the cavity are input modes, while the antiparticle in the outgoing
T mode and the particle in the IN mode are output modes.

The transfer matrix B essentially represents squeezing transformation. Therefore, the laser
discussed here is nothing but a squeezed state laser. The squeezing parameter ζ is given by

tanh2 ζ = e
− h̄ω

kBTH , (5.111)

where kB is the Boltzmann constant and TH is the Hawking temperature which is proportional to
the gradient of the velocity as follows [50],

TH =
h̄

2πkB

∣∣∣∣∣∂v
eff
g

∂η

∣∣∣∣∣
η=ηh

, (5.112)

where ∣∣∣∣∣∂v
eff
g

∂η

∣∣∣∣∣
η=ηh

=
4Aδn(ηh)

c

√∣∣∣∣ Q2P
∣∣∣∣ tanh

(
A

√∣∣∣∣ Q2P
∣∣∣∣ηh
)
u2. (5.113)
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Figure 5.15: The dependence of the Hawking temperature TH on the relative soliton velocity u.
We set the circuit parameters as Lrh = 4 × 10−8H, Crh = 2.5 × 10−16F, γ = 5000, Ic = 10−8A,
ω0 = 2× 108Hz, ωs = 4.4× 109Hz, and a = 10−6m.

The Hawking temperature depends on the relative soliton velocity u as depicted in Fig. 5.15. The
Hawking temperature reaches the well-observable milli-Kelvin order under the circuit parameters
feasible with current technology.

The number of antiparticles outside the horizon after m steps amplified by our black hole laser
is estimated as 〈

N̂−m

〉
=
〈
â′†−mâ′−m

〉
= |μ|2m (1− |μ|−2

)
, (5.114)

where

|μ|2 = 1

2

[
1 + cosh2(2ζ)− cos (θ+ + θ−) sinh2(2ζ)

]
, (5.115)

under the reformed Bogoliubov transformation operator

B = eiψ
(

μ ν∗

ν μ∗

)
, (5.116)

with |μ|2 − |ν|2 = 1 and ψ is real. The amplification of the number of partner Hawking particles
with each bounce process at the black hole horizon is depicted in Fig. 5.16 for the resonant case
with cos (θ+ + θ−) = 0. This typical enhancement shows surely lasing. Therefore, the resulting
Hawking radiation is a squeezed state laser with squeezing parameters due to the nonlinearity of
solitons.
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Figure 5.16: The number of outgoing antiparticles as a function of the amplification steps at the
fixed relative soliton velocities u = 2.99× 105m/s (dotted line), u = 3.00× 105m/s (solid line) and
u = 3.01× 105m/s (dashed line). The circuit parameters are the same as in Fig. 5.15.

Figure 5.17: The dependence of the entanglement entropy S on the relative soliton velocity u. The
circuit parameters are the same as in Fig. 5.15.
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5.5 Entanglement entropy

Hawking radiation originates from pair production from the vacuum inside near the horizon. The
produced particle and antiparticle are inherently entangled with each other. Therefore, the detection
of this entanglement is indispensable for the confirmation of Hawking radiation. However, it is
unlikely to confirm the entanglement by conventional detection methods utilizing simultaneous
observation of particle-antiparticle pairs because of the difficulty of detecting partner particles left
inside the horizon cavity. Here, we evaluate it using entanglement entropy thanks to the fact
that an entangled particle bears the shadow of its partner particle. Entanglement entropy is a
measure of quantum correlation between two particles labeled A and B and is defined by S (ρA) =
−Tr [ρA log ρA] where ρA = TrB (ρAB) is the reduced density matrix of a pure state density matrix
ρAB. Therefore, the degree of entanglement can be evaluated without simultaneous observation of
the partner particles.

Fortunately, our black hole laser is a laser with a two-mode squeezed state due to Hawking
radiation and its partner. The quantum correlation between the two modes is naturally incorporated
into the squeezed parameter. This squeezing parameter is responsible for the quantum correlation
with unobservable partner particles trapped in the cavity. The entanglement entropy for the two-
mode squeezed states is given in the well-known form [66,67] as

S = 2kB
[
cosh2 ζ ln

(
cosh2 ζ

)− sinh2 ζ ln
(
sinh2 ζ

)]
. (5.117)

Note that the entanglement entropy depends on the relative soliton velocity u as shown in Fig.
5.17 since the squeezing parameter ζ involves the Hawking temperature depending on the soliton
velocity. This soliton velocity dependence provides useful evidence for identifying the detected laser
as being derived from Hawking radiation.

5.6 Summary

In this chapter, we have proposed the black hole laser in the electric circuit. The black hole
laser is an analogue gravity-derived laser that amplifies Hawking photons generated from vacuum
fluctuations inside near the event horizon in a cavity formed by two horizons viewed as mirrors.
It requires Hawking-related propagation modes with positive (particle) and negative (antiparticle)
frequencies, which can be generated by using anomalous dispersion for example, in an analogue
resonator. We have applied dispersion engineering that deforms the dispersion relation by adding
metamaterial elements to ordinary transmission lines in order to realize Hawking-related modes
despite the ordinary dispersion relation in the transmission line. In addition, the third-order Kerr
effect through the Josephson nonlinear inductance is introduced to control those modes. Based
on these, we have proposed an optical analogue black hole laser in a Josephson transmission line
with metamaterial elements. Unlike previous optical black hole lasers, our black hole laser still
has a black hole/white hole cavity formed within a single dark soliton, where Hawking radiation is
emitted into the normal region outside of solitons rather than inside of solitons. This selection can
be achieved by controlling the Kerr effect through Josephson nonlinear inductance. Unfortunately,
Hawking radiation obtained here has a negative frequency due to normal dispersion like an optical
black hole laser and is different from actual Hawking radiation with a positive frequency. This will
be solved if anomalous dispersion can be introduced in the transmission line.

We have also shown that our laser is a squeezed state laser based on Leonhardt’s quantum
optical treatment of mode conversions in the horizon. This facilitates the analysis of the quantum
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entanglement required to identify the origin of Hawking radiation. In particular, entanglement
entropy, which measures the degree of entanglement, is very effective when direct observation of
partner radiation is difficult. The resulting entanglement entropy was found to be characterized by
a squeezed parameter defined by the Hawking temperature that depends on the soliton velocity.
It can be proved that Hawking radiation is strongly related to the soliton providing the analogue
horizon if the entanglement entropy involved in this soliton velocity can be evaluated.

Black hole lasers have not been discussed in superconducting transmission lines so far. However,
there are some advantages to the study of black hole lasers due to the latest technology accumulated
in research such as quantum computers. In particular, the scalability and controllability of the
system is an advantage over other systems. In addition, the detection of microwave photons and
their quantum correlations in Josephson transmission lines has been proven through the study of
the dynamical Casimir effect [20]. The observation of Hawking radiation is also highly promising if
our proposal is implemented.
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Chapter 6

Conclusion

6.1 Summary and conclusion

Observation of Hawking radiation, which is a quantum phenomenon in gravity, is a key to unifying
general relativity and quantum mechanics. However, it is extremely difficult to observe Hawking
radiation from an actual black hole because it is much smaller than the background radiation in
the universe. There are proposals of analogue black holes to explore it with observable Hawking
temperature in laboratory systems instead.

In electrical circuits, analogue black holes have been proposed by using the spatial changes in
the circuit parameters (inductance or capacitance) which cause the spatial varying velocity of the
electromagnetic waves. However, there are serious problems in modulating the circuit parameters,
such as unstable control of the external field or overheating the circuit.

6.1.1 Analogue Hawking radiation

In this study, we have proposed analogue black holes induced by solitons propagating on the trans-
mission lines to overcome the problems mentioned above. We have introduced the nonlinearity to
the circuit parameters on transmission lines and derived solitons using the reductive perturbation
method by focusing on the waves with the balance between the nonlinearity and the dispersion.
In the Josephson transmission lines with nonlinear inductance, we have obtained the defocusing
(negative) modified Korteweg de Vries (mKdV) equation with the current soliton solution. On the
other hand, in the nonlinear LC transmission lines with nonlinear capacitance, we have shown the
existence of the voltage solitons obeying the nonlinear Schrödinger equation. The velocity of the
electromagnetic waves is modulated by the solitons, resulting in the generation of analogue black
holes. In addition, we have derived the Hawking temperature based on the tunneling mechanism for
Hawking radiation, supposed that particles are pair-generated by the quantum fluctuations around
the classical soliton and passes across the horizon of an analogue black hole. We have evaluated the
observability of Hawking radiation in terms of the Hawking temperature and clarified that it is on
the order of milli-Kelvin, which is sufficient to be observable. We have also revealed the dynamical
contribution of the soliton. This indicates that the Hawking temperature can be controlled simply
by changing the soliton velocity without changing the circuit parameters at all. Therefore, this
change allows us to confirm that the radiation detected in the experiment is indeed due to Hawking
radiation. This is an advantageous feature that has never existed before.
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6.1.2 Quantum-circuit black hole lasers

To further amplify Hawking radiation, black hole lasers with a pair of horizons acting as a resonator
have been proposed in various systems. However, there are no proposals in the electric circuits due
to the lack of anomalous dispersion required for black hole lasers. In this study, we succeeded in
constructing a theory of analogue black hole laser in an electric circuit for the first time by proposing
a Josephson transmission line using metamaterial elements. We have revealed that there is a phase
soliton that obeys a nonlinear Schrödinger equation in the circuit equation by using the reductive
perturbation method. The phase soliton spatially modulates the refractive index in proportion to
the square of the norm of the electric field through the Kerr effects caused by the nonlinearity of the
Josephson inductance. This changes the velocity of electromagnetic waves inside the soliton, and
traps the electromagnetic waves, resulting in the creation of a black hole-white hole pair within the
soliton. We have shown that these horizons behave like a resonator by introducing the metamaterial
elements which control the dispersion relation. The control of the dispersion relation realizes the
black hole lasers even though the system has the normal dispersion. There are modes corresponding
to particles and antiparticles, and the particle modes are trapped between the horizons while some
antiparticle modes are emitted as anti-Hawking radiation from the white hole horizon. We have
clarified that the Hawking radiation is exponentially amplified by the parametric amplification as
well as the nonlinear mode conversions at the horizons. Unlike black hole lasers in optical fibers, our
black hole lasers have both a black hole and a white hole horizon within a single dark soliton and
the radiation is emitted into the normal region outside the soliton rather than inside. Therefore, it
is easy to observe Hawking radiation. We have also shown that our laser is a squeezed-state laser
based on Leonhardt’s quantum optical treatment of mode conversions in the horizon. We have also
estimated the entanglement entropy, which represents the degree of entanglement, and found that
it depends on the soliton velocity. This dependence is one clear evidence for the identification of
Hawking radiation.

6.2 Features and impacts

Analogue black holes in electric circuits have advantages over other systems, such as high-precision
electromagnetic detection. Our study is an extension of the previous studies, but is unique in
that analogue black holes are solitons in electric circuits. As a result, it can be expected that the
Hawking temperature can be controlled by changing only the soliton characteristics such as the
soliton velocity without changing the parameters of the circuit at all.

This study makes it possible to explore the characteristics of black holes, such as the dynam-
ical behaviors of black holes and their birth (quantum generation), which have not been able to
be investigated with existing systems. Furthermore, our systems are also experimentally feasible
because it does not require any special technology for soliton generation and control due to its self-
forming ability. Therefore, these systems will bring us to experimentally access various quantum
gravity phenomena such as Hawking radiation instead of the cosmic theory (high-energy physics)
in which their observations are difficult. We can confirm the basic principle of these phenomena
with our analogue systems and then feedback to the theory of the universe. In addition, our black
hole lasers are expected to be applied to quantum information as a new light source with quantum
entanglement. In this way, the impact on both academia and engineering is immeasurable.
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6.3 Future prospects

Present problems

In an actual black hole, particles with positive energy are emitted as Hawking radiation while the
partner with the negative energy falls into a black hole. However, antiparticles with negative energy
are emitted from the white hole horizon in our system of black hole lasers like optical fibers, because
it has normal dispersion. This is different from original black hole lasers. The problem will be solved
if anomalous dispersion is realized in the transmission lines. We will examine whether such a circuit
is feasible. In addition, it is necessary to refine our circuits assuming an experiment in our feature
works, where we will design the identical circuits using numerical simulation and propose a feasible
observation method for Hawking radiation.

Evaporation of black holes

Until now, we have thought that black holes remain unchanged after Hawking radiation. In fact,
the black hole loses the energy because of the emissions with positive energy and eventually evap-
orates after successive Hawking radiation. We are planning to reproduce this evaporation process
in our analogue system. Specifically, we consider the effect of dissipation on the black-hole soliton
when Hawking particles are emitted outside the soliton. The decay rate of the black hole solitons
is analytically derived by considering the dissipation-fluctuation theorem under the semiclassical
approximation. In addition, we also perform numerical simulations to check the validity of semi-
classical approximation and to investigate the evaporation processes beyond the approximation.

We also plan to study the information paradox based on the formula for the decay process of the
black hole solitons. According to the general theory of relativity, a black hole is a local spacetime
from which even light cannot escape. Therefore, the information in the black hole cannot go out
beyond the event horizon and it seems like a device (a trash can) that erases the information for
observers outside the black hole. On the other hand, quantum mechanics predicts that particles
are emitted from a black hole as Hawking radiation due to fluctuations in the vacuum. This means
that information can be extracted from the black hole. Also, since quantum-mechanical processes
are reversible, the information is never lost. In other words, black holes are thought to act as
storage devices with a huge storage capacity. The amount of memory is roughly estimated to be
1077 bits. The question of whether a black hole is a “trash can” or a “memory” is known as the
information paradox of black holes and has plagued physicists for many years. We also try to solve
the problem of whether the information is erased or retained by evaluating the entanglement entropy
representing the degree of quantum correlation between black hole solitons and emitted particles
(Hawking radiation).

Novel phenomena utilizing the dynamic characteristics of solitons

Finally, our challenging goals are directed to study a novel phenomenon that positively utilizes
the dynamic characteristics of solitons. One example is the breathing mode between solitons and
antisolitons. This causes the event horizon to oscillate in time, resulting in the situation as same
as the dynamical Casimir effect induced by oscillations in the spacing of the resonator. Thus,
Hawking radiation is expected to be enhanced as the dynamic Casimir effect enhances photon-pair
productions. This enhancement will not only increase the observability of Hawking radiation but
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also provide a new platform to verify dynamic vacuum fluctuations (dynamic Casimir effect) in an
analogue gravitational field.
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Appendix A

Designed analogue Black Hole Solitons
in Josephson Transmission Lines

In the main text, we clarified the wave nature hidden in the circuit equation by using the reductive
perturbation method [33]. As a result, it was found that the defocusing modified Korteweg-de Vries
(mKdV) equation is obtained with shock-wave-type soliton solutions in Josephson transmission
lines. This is consistent with the numerical results obtained in the previous studies [36] and is
the first clarification of the existence of current solitons. In addition, we demonstrated that this
current soliton behaves like black holes in the circuit [11,21]. In the LC circuit, the velocity c of the
electromagnetic wave depends on both the inductance L and the capacitance C via c = a/

√
LC with

a being the unit length of the circuit. Current solitons are formed by balancing the nonlinearity
of the inductance and the wavenumber dispersion, leading to a spatial change in the velocity of
the electromagnetic wave through the nonlinear inductance induced by the current soliton. This
eventually produces an analogue black hole in Josephson transmission lines. However, the resulting
analogue black hole is spatially restricted by the shape of the soliton, and its configuration cannot
be freely controlled. Here, we propose a simple scheme to design the configuration of analogue black
holes on demand by combining the solitons and antisolitons.

A.1 Designed analogue black hole solitons

In the main text, we show that a single current soliton produces a pair of analogue black holes
in the Josephson transmission line. However, the black holes are located on both sides of the
transmission line and cannot be freely changed because they are determined by the shape of the
soliton solution. Here we propose a scheme to design the configuration of black holes on demand by
combining solitons and antisolitons. Let us consider a pair of analogue black hole solitons created
by an approximate solution consisting of a superposition of two single-soliton solutions

Īs,s′(η̄) = sĪ(η̄ + Δ̄) + s′Ī(η̄ − Δ̄), (A.1)

where the subscripts specify a soliton (s, s′ = 1) or an antisoliton (s, s′ = −1). Ī(η̄ ± Δ̄) represents
the current soliton with the center position shifted by Δ̄ = Δ/a expressed as,

Ī(η̄ ± Δ̄)=2
√
3(1− v̄s) tanh

[
2
√
3(1− v̄s)

(
η̄ ± Δ̄

)]
. (A.2)
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There are four types of linear combinations of soliton and antisoliton, which are classified into
heterogeneous soliton pairs and homogeneous soliton pairs. The electromagnetic wave velocity is
modulated by current solitons through the nonlinear inductance in the circuit as follows,

c̄(η̄) =
√

cos(arcsin Īs,s′(η̄))

=
[
1− {

sĪ(η̄ + Δ̄) + s′Ī(η̄ − Δ̄)
}2] 1

4
. (A.3)

The electromagnetic waves with spatially varying velocities generate analogue black holes. Different
types of black holes are formed by the heterogeneous soliton pairs and homogeneous soliton pairs.

A.1.1 Heterogeneous soliton pairs

The heterogeneous soliton pairs are the combinations of single soliton and antisoliton (Ī1,−1 and
Ī−1,1) as shown in Fig. A.1 (A) and (B), respectively. They produce the electromagnetic wave with
spatially varying velocity as depicted in Fig. A.1 (a) and (b), respectively. The positions of event
horizons where the electromagnetic wave velocity equals the soliton velocity are given as

η̄h = ± 1

2α′ tanh
−1

[√
2 tanh(Δ̃)− w

tanh(Δ̃)(2− wtanh(Δ̃))

]
, (A.4)

where Δ̃ = 2
√

3(1− v̄s)Δ̄ and w =
√

(1 + v̄s) (1 + v̄2s) /12. The black holes are located insides the
two event horizons, where |c̄(η̄)| < |v̄s|.

A.1.2 Homogeneous soliton pairs

A pair of homogeneous current soliton is a combination of two solitons Ī1,1 or two antisolitons Ī−1,−1

as depicted in Fig. A.1 (C) and (D), respectively. They create the spatially varying electromagnetic
wave velocity as shown in Fig. A.1 (c) and (d), respectively. The positions of event horizons are
given as

η̄h = ± 1

2α′ tanh
−1

⎡
⎣1− tanh2 Δ̃−

√
1 + (w2 − 2) tanh2Δ̃ + tanh4 Δ̃

w tanh2 Δ̃

⎤
⎦ . (A.5)

The black holes are generated outsides the two event horizons, where |c̄(η̄)| < |v̄s|.
Heterogeneous soliton pairs and homogeneous soliton pairs produce different types of black holes.

Both of these black holes are realized under condition 47/48 ≤ v̄s < 1 from the real-valued velocity
in Eq. (A.3), i. e., |Īs,s′(η̄)| ≤ 2×2

√
3(1− v̄s) ≤ 1. The width of black holes is controlled by setting

Δ̃.

A.2 Analogue Hawking radiation

Now, let us discuss analogue Hawking radiation from an analogue black hole formed inside the two
event horizons (heterogeneous soliton pairs), which provides a new light source originating from
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Figure A.1: Normalized current solitons (A) Ī1,−1, (B) Ī−1,1, (C) Ī1,1, and (D) Ī−1,−1. The normal-
ized spatially varying electromagnetic wave velocity (a)-(d) induced by current solitons (A)-(D),
respectively. The horizontal dotted line indicates the normalized soliton velocity v̄s = 0.98. Two
event horizons occur at η̄±h .
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the quantum fluctuation near the classical solitons in quantum Josephson circuits. The Hawking
temperature TH that characterizes Hawking radiation is given by the formula [50]

TH =
h̄

2πkB

∣∣∣∣ ∂c∂η
∣∣∣∣
η=ηh

, (A.6)

with the Boltzmann constant kB. For analogue black holes induced by the heterogeneous soliton
pairs, we obtain

TH =
h̄

2πkB

c0
a
f (v̄s) , (A.7)

where f(v̄s) is the dynamical contribution of solitons to the Hawking temperature expressed as

f (v̄s) =
α′(1− v̄4s

)
v̄3s

√
(2 tanhΔ̃−w)(2−w tanhΔ̃)

tanh Δ̃
(A.8)

and is depicted in Fig. A.2. The Hawking temperature reaches sufficiently observable tens milli-
Kelvin order in existing technologies.

Figure A.2: The dynamical contribution for the Hawking temperature f(v̄s).

A.3 Summary

We have proposed the analogue black holes designed by current soliton pairs. This scheme allows
us to control the configuration of analogue black holes on demand. In other words, the black hole
region can be set as desired. The result provides a new platform for exploring Hawking radiation
if the quantum fluctuation of the classical soliton is taken into account. This is particularly useful
for the design of the black hole laser devised in Chapter 5. Hawking radiation produced near event
horizons is amplified by a stimulated emission of radiation between the event horizons, which can be
considered as a resonator for electromagnetic fields. The proposed scheme allows the event horizon
to be freely designed so that the resonator can be controlled to satisfy the phase-matching conditions
required for laser operation. This contributes to the observation of Hawking radiation that cannot
be observed due to the background radiation of the universe.
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Appendix B

Solitonic black holes induced by
magnetic solitons in a dc-SQUID
array transmission line coupled with a
magnetic chain

We have proposed analogue black holes in two types of nonlinear transmission lines, namely Joseph-
son transmission lines and nonlinear LC transmission lines with nonlinear capacitors, in the main
text. These black holes behave as solitons and can exist stably in transmission lines. The unique
properties of solitons have also been very useful in the identification of Hawking radiation. However,
soliton formation requires nonlinearity in the system.

In this appendix, we propose a scheme to introduce a black hole soliton into a linear system
where no soliton exists. Specifically, we propose to create an analogue black hole by controlling
an external magnetic field using magnetic solitons. Solitons in magnetic chains with easy-axis
anisotropy are formed by the competition between the exchange energy J and the anisotropy energy
D, leading to moving domain walls connecting between two different but energetically degenerate
ground states [68, 69]. In a ferromagnet, a π-soliton mediates between the ground states of the
upward and downward magnetic moments for example. In our proposed system, magnetic solitons
play a role in generating the magnetic field applied to the dc SQUID array. Thus, single-domain
magnetic nanoparticles are aligned just below the dc SQUID transmission line indicated in Fig.
B.1.

We begin with a description of the magnetic soliton in a single-domain magnetic nanoparticle
chain that provides the external magnetic field applied to the SQUID array, which is the key issue
in this appendix. In particular, the alternating upward and downward magnetic moments in the
chain in Fig. B.1 (b) are effectively treated as the magnetic moments pointing in the same direction.
We consider two types of solitons that produce black holes and black hole-white hole pairs. We
then describe black holes using solitons and discuss the observability of Hawking radiation in our
analogue black holes by assessing the Hawking temperature. The soliton characteristics appearing
in the Hawking temperature formula play a critical role in the identification of Hawking radiation.
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B.1 Magnetic solitons

We propose the dc-SQUID (superconducting quantum interference device) array transmission line
coupled with a magnetic chain as our third proposal for analogue black holes. The Josephson
inductance is controlled by the external magnetic fields. In this section, we describe the magnetic
soliton in a single-domain magnetic nanoparticle chain that provides the external magnetic field
applied to the SQUID array.

B.1.1 Model

Let us consider a coplanar dc-SQUID array consisting of identical capacitance C and critical current
Ic in all Josephson junctions together with a single-domain magnetic nanoparticle chain as shown
in Fig. B.1. As shown in Fig. B.1 (b), the chain composed of alternating nano-sized single-domain
magnets with different magnetic moments spacing a/2 is arranged in parallel at a distance l just
below the dc-SQUID array. Suppose that all of the single-domain nanoparticles have the same
size. The magnetic moments in the single-domain nanoparticle chain are inevitably forced to align
alternately due to the dipole-dipole interaction. Therefore, we have no choice but to use a soliton-
bearing nanoparticle model with antiferromagnetic interaction [70] as a starting point. However,
the single-domain nanoparticle chain with antiferromagnetic interaction results in generating a non-
magnetic field. In order to generate the suitable external magnetic field applying to the dc-SQUID
array, we adopt the arrangement of single-domain nanoparticles of two sizes that alternate, in which
magnetic moments alternate upward and downward similar to ferrimagnet as shown in Fig. B.1 (b).
Hereafter we call this chain a ferrimagnetic-aligned nanoparticle chain. In the following, we will
show that a nanomagnetic material with a small magnetic moment is substantially renormalized
into a nanomagnetic material with a large magnetic moment in the ferrimagnetic-aligned nanopar-
ticle chain, and can be effectively regarded as an alignment of same-sized nanoparticles similar to
ferromagnets i.e. a ferromagnetic-aligned nanoparticle chain. The system we consider is thus a
system that introduces a magnetic field generated by a well-controllable soliton into the framework
of Nation’s black hole system.

B.1.2 Ferrimagnetic-aligned nanoparticle chains

The model Hamiltonian for the ferrimagnetic-aligned nanoparticle chain with different sublattice
anisotropies placed just below the dc SQUID array is represented by

Ĥ =J
∑
n

(
Ŝ2n−1 · σ̂2n + σ̂2n · Ŝ2n+1

)
+
∑
n

{
Kz

σ (σ̂
z
2n)

2 −Kx
σ (σ̂x

2n)
2
}

+
∑
n

[
Kz

S

(
Ŝz
2n−1

)2 −Kx
S

(
Ŝx
2n−1

)2 − Kxy
S

4

{(
Ŝx
2n−1

)2 − (
Ŝy
2n−1

)2}2
]
, (B.1)

where the operators Ŝn and σ̂n refer to the large and small magnetic moments of the single-domain
magnets at the nth site of each sublattice, respectively. The first parenthesis of the right-hand side
of Eq. (B.1) represents the dipole-dipole interaction energy with antiferromagnetic coupling (J > 0)
between them. The second one represents magnetic anisotropy energy for small magnetic moments

with K
x(z)
σ (> 0) being the magnetic anisotropy parameter of the x(z) component. Similarly, the

last one expresses magnetic anisotropy energy for large magnetic moments, including two types
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Figure B.1: (a) Diagram of a dc-SQUID array transmission line with identical capacitance C and
critical current Ic in all Josephson junctions (top view). A circled dot and a cross inside the circle
represent the magnetic flux applied from back to front and opposite direction, respectively when
viewed from a vertical direction on a page. (b) Schematic diagram of our system. Nanosized single-
domain magnets with magnetic moments different in size arranged below the dc SQUID transmission
line. The magnetic flux line exits from the large upward magnetic moment and enters the small
downward magnetic moment.
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of anisotropy. One is uniaxial anisotropy with K
x(z)
S (> 0) being the anisotropy parameter of the

x(z) component, similar to small magnetic moments. The other is biaxial anisotropy [71] with
anisotropy constant Kxy

S (> 0) coming from fourfold symmetric, which is not available in small
magnetic moments. Let us assume here the relations Kz

S � Kx
S ,K

xy
S and Kz

σ � Kx
σ . This implies

that the single-domain magnetic nanoparticle at each site has a xy easy plane. In this paper, the
magnetic moment operators can be treated as classical vectors due to large magnitudes of magnetic
moments in the single-domain nanoparticles; Ŝn → Sn = (Sx

n, S
y
n, Sz

n), σ̂n → σn = (σx
n, σ

y
n, σz

n).

B.1.3 Effective ferromagnetic-aligned nanoparticle chains

Here we derive the effective ferromagnetic Hamiltonian from our original ferrimagnetic Hamiltonian
for a single-domain ferrimagnetic-aligned nanoparticle chain by eliminating the variables σ for small
magnetic moments [72]. This can be achieved by tracing out the relevant variables in the partition
function. For the sake of simplicity, let us focus on the specific Hamiltonian H(2n), which is related
only to S2n±1 and σ2n. By integrating the classical partition function over σ2n, the effective
Hamiltonian H ′(2n) depending only on S2n is obtained as follows: The partition function is given as

Z =

∫
dσ2n exp(−βH(2n)) = exp[−βH ′(2n)], (B.2)

with inverse temperature β and the Hamiltonian H(2n) written as

H(2n) = H
(2n)
S +H(2n)

σ +H
(2n)
Sσ , (B.3)

where the first and second terms are Hamiltonians for large magnetic moments and small magnetic
moments, respectively, and the last term is their interaction Hamiltonian. In carrying out the
integration over σ2n, it is convenient to introduce a mean field for the magnetic moment, i.e.,

H(2n)
σ +H

(2n)
Sσ = −σ2n ·B2n −Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2 , (B.4)

with

B2n =− J(S2n−1 + S2n+1)− 2Kz
σ〈σz

2n〉ez + 2Kx
σ〈σx

2n〉ex, (B.5)

under the mean field approximation
(
σ
x(z)
2n − 〈σx(z)

2n 〉
)2 � 0, where ex(z) represents the unit vector

pointing in x(z) direction. Based on the calculations shown in Appendix, we obtain the effective
Hamiltonian H ′

H ′ = −J ′∑
〈i,j〉

Si · Sj +
∑
i

[
K ′

z (S
z
i )

2 −K ′
x (S

x
i )

2 − Kxy
S

4

{
(Sx

i )
2 − (Sy

i )
2
}2
]
, (B.6)

where 〈i, j〉 represents the sum over the nearest neighbors only. The exchange (J ′ > 0) and
anisotropy (K ′

x and K ′
z) coefficients together with the conditions J ′ > 0, K ′

z � K ′
x, and Kxy

S > 0
are given by

J ′ =
Jσ

2S
, (B.7)

K ′
x = Kx

S − σ2

S2
Kx

σ , (B.8)

K ′
z = Kz

S +
σ2

S2
Kz

σ. (B.9)
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This means that the ferrimagnetic-aligned nanoparticle chain indicated in Fig. B.2 (a) can be
effectively considered as single-domain magnets with the same size magnetic moments aligned with
a fixed space a, leading to the ferromagnetic-aligned nanoparticle chain as shown in Fig. B.2 (b).
The magnetic moment vector S rotates in xy plane due to the condition K ′

z � K ′
x,K

xy
S .

Figure B.2: (a) Ferrimagnetic-aligned nanoparticle chain. The nanoparticles of different sizes are
aligned with fixed space a/2. The magnetic moments alternatively direct upward and downward
for the energetical stability similar to the ferrimagnets. (b) The effective ferromagnetic-aligned
nanoparticle chain, where the same size magnetic moments are aligned with fixed space a.

B.1.4 Magnetic solitons as a magnetic-field source

Now let us consider the dynamics of magnetic moments in the effective ferromagnetic chain obtained
above and derive two types of soliton solutions as a magnetic-field source. The effective magnetic
field Bi generated by the magnetic moment Si in the nanoparticles is given as

Bi = −dH ′

dSi
. (B.10)

This causes Larmor precession in magnetic moments [68]. The equation of the motion is

dSi

dt
= Si ×Bi. (B.11)
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Under the continuum approximation, magnetic moments are expressed in spherical coordinates as
follows

Si = S(z)

= S
(
cos δ cosφ(z) cos δ sinφ(z) sin δ

)
, (B.12)

where φ is the azimuthal angle and δ(= π/2 − θ) is the perturbation angle with θ being the polar
angle. The perturbation angle δ is assumed to be sufficiently small, so that sin δ � δ and cos δ � 1
hold．We also use the approximation (∂φ/∂z)2 � 0. From Eq. (B.11), we obtain

∂δ

∂t
= J ′Sa2

∂2φ

∂z2
−K ′

xS sin 2φ− 1

2
Kxy

S S3 sin 4φ, (B.13)

∂φ

∂t
= 2K ′

zSδ + 2K ′
xSδ cos

2 φ+Kxy
S S3δ cos2 2φ

� 2K ′
zSδ, (B.14)

leading to double sine-Gordon equation

∂2φ

∂t2
− v20

∂2φ

∂z2
+m2

1 sin 2φ+m2
2 sin 4φ = 0, (B.15)

where v20 = 2K ′
zJ

′S2a2, m2
1 = 2K ′

xK
′
zS

2, and m2
2 = Kxy

S K ′
zS

4. v0 stands for the velocity of the
linear wave. The double sine-Gordon equation has been investigated in detail and is known to have
various types of soliton solutions depending on the parameters [73]. Here let us focus on two types
of solitons that are useful for the generation of black hole solitons to be discussed below.

B.1.5 90-degree magnetic solitons

The first type of soliton is 90-degree (⊥) magnetic soliton as shown in Fig. B.3 (a), which repro-
duces a single black hole equivalent to the black hole proposed by Nation et al. [21] except for the
characteristics of the soliton. This soliton solution is obtained in the double sine-Gordon equation
Eq. (B.15) when m1 = 0, that is, the uniaxial coefficient K ′

x is 0. The 90-degree magnetic soliton
solution is expressed as

φ⊥(z, t) = arctan

{
e
± γ

d⊥0
(z−vst)

}
, (B.16)

with the soliton velocity vs, d
⊥
0 = a

√
J ′/4Kxy

S S2, and Lorentz factor γ = 1/
√
1− (vs/v0)2. Figure

B.3 (a) shows the 90-degree magnetic soliton expressed by the soliton solution Eq. (B.16) with the
width d ∼ 2d⊥0 /γ. The continuum approximation is applicable when the soliton width is larger than

the unit length d/a ∼
√

J ′/4Kxy
S S2/γ > 1. This condition can be satisfied by properly designing

the system parameters and soliton velocity. This type of soliton results from biaxial magnetic

anisotropy with the anisotropy energy −Kxy
S

{
(Sx

i )
2 − (Sz

i )
2
}2

/4 where the magnetization along

+x and +y are degenerate. Therefore, the magnetic moments in a single-domain magnets chain are
forced to rotate 90 degrees for a transition between two equilibrium states.
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B.1.6 180-degree magnetic solitons

On the other hand, the 180-degree (‖) magnetic solitons are formed when m2 = 0, equivalently,
the biaxial magnetic anisotropy constant Kxy

S = 0. The soliton solution of Eq. (B.15) is similarly
expressed as

φ‖(z, t) = 2 arctan

{
e
± γ

d
‖
0

(z−vst)
}
, (B.17)

with d
‖
0 = a

√
J ′/2K ′

x. Figure B.3 (b) shows the 180-degree magnetic soliton formed by the soliton

solution Eq. (B.17) with the width d ∼ 2d
‖
0/γ. In this case, the magnetization along +x and −x

are degenerate due to the uniaxial magnetic anisotropy energy −K ′
x (S

x
i )

2. The magnetic moments
in a single-domain magnets chain are forced to rotate 180 degrees for a transition between two
equilibrium states. This is the origin of the 180-degree magnetic soliton generation. Unlike 90-
degree magnetic solitons, the 180-degree magnetic solitons form black hole pairs as described below.

Figure B.3: Sketch of the soliton with the width d ∼ 2d
⊥(‖)
0 /γ in the effective ferromagnetic-aligned

nanoparticle chain, where nanoparticles are arranged at uniform distance a. z/a denotes the number
of dc SQUIDs. (a) 90-degree magnetic soliton and (b) 180-degree magnetic soliton.

B.2 Magnetic soliton induced analogue black hole

Here let us discuss black hole solitons generated using magnetic solitons. In the Josephson circuit,
the kinetic inductance L(Φ) of the junction depends on the flux Φ through dc SQUID as follows,

L(Φ) =
L0

cos(2πΦ/Φ0)
, (B.18)

with magnetic flux quantum Φ0 = h/2e and the Josephson inductance L0 = h̄/2eIc. As is well
known, the propagation velocity of electromagnetic wave c in this circuit is given by c = a/

√
LC.
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Thus, the propagation velocity depending on the magnetic flux through dc SQUID is expressed as

c̄(Φ) =
√

cos(2πΦ/Φ0), (B.19)

where c is normalized by c0 = a/
√
L0C. In our model, the magnetic field perpendicular to the

SQUID is generated by the magnetic moments of the single-domain magnets chain. The magnetic
flux threading through the dc SQUID with its area A is

Φ = BxA =
SA

2πl3
cosφ =

Φ1

2π
cosφ (B.20)

with Φ1 = SA/l3. By substituting soliton solutions for the azimuthal angle φ of the magnetic
moments, the magnetic flux is then obtained. The magnetic flux induced by the magnetic solitons
modulates the velocity of an electromagnetic wave spatially as

c̄(z, t) =
√
cos

{
Φ̄ cosφ(z, t)

}
(B.21)

where Φ̄ = Φ1/Φ0, leading to the analogue black holes.
There are three conditions for creating analogue black holes in our system. First, the velocity

of an electromagnetic wave in the circuit expressed in Eq. (B.21) must be real. This leads to the
condition 0 ≤ Φ̄ ≤ π/2. Second, the soliton velocity is faster than the lower limit of the velocity

of an electromagnetic wave in the circuit, i.e., limx→±∞ c̄(x, t) =
√
cos Φ̄ < v̄s．The third is the

natural condition that the velocity of an electromagnetic wave in the circuit under the magnetic
field is slower than the velocity of an electromagnetic wave with no magnetic field. As a result, the
soliton velocity is restricted in the range

√
cos Φ̄ < v̄s < 1.

B.2.1 Black hole solitons induced by the 90-degree magnetic solitons

Here, let us consider the black hole solitons induced by 90-degree magnetic soliton obeying Eq.
(B.16). The magnetic flux through the dc SQUID is written as

Φ⊥(z, t) =
Φ1

2π
cos

[
arctan

{
e
± γ

d⊥0
(z−vst)

}]

=
Φ1

2π

√
1

2

{
1∓ tanh

(
γ (z − vst) /d⊥0

)}
, (B.22)

by using Eq. (B.20). The magnetic flux through the dc SQUID in the transmission line changes
spatially between 0 and Φ1/2π as shown in Fig. B.4 (b) since the magnetic moments rotate 90
degrees as shown in Fig. B.4 (a). From Eq. (B.18), one has the spatially varying Josephson
inductance L(Φ) as follows,

L⊥(Φ) =
L0

cos
[
Φ̄
√

1
2

{
1∓ tanh

(
γ (z − vst) /d⊥0

)}] . (B.23)

As a result, the effective velocity of an electromagnetic wave in the dc-SQUID array transmission
line is obtained from Eq. (B.19) as

c̄⊥(z, t) =

√
cos

[
Φ̄√
2

{
1∓ tanh

(
γ (z − vst) /d⊥0

)}1/2]
. (B.24)
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Figure B.4 (c) shows the normalized space-dependent velocity of an electromagnetic wave in the

comoving frame at v̄s = 0.98 as an example. The event horizon occurs at
(
c̄(ξ⊥h )

)2
= v̄2s . The

position of the event horizon in the comoving frame is given by

ξ⊥h = ±d⊥0
γ

arctanh

(
2

Φ̄2
arccos2 v̄2s − 1

)
(B.25)

and is shown in Fig. B.6 (b). An analogue black hole can be formed where the velocity of the
electromagnetic wave is slower than the soliton velocity.

Figure B.4: (a) The rotation angle of the magnetic moments in xy plane at ξ in the comoving frame.
(b) The spatially varying magnetic flux applying to the dc-SQUID array in the comoving frame.
(c) The normalized velocity of the electromagnetic wave with Φ̄ = 1. The horizontal dotted line
represents the normalized soliton velocity v̄s. ξ

⊥
h indicates the position of the event horizon.

B.2.2 Black hole solitons induced by the 180-degree magnetic solitons

Here, let us consider the black hole solitons created by 180-degree magnetic soliton obtained in Eq.
(B.17). The magnetic flux through the dc SQUID is written as

Φ‖(z, t) =
Φ1

2π
cos

[
2 arctan

{
e
± γ

d
‖
0

(z−vst)
}]

=
Φ1

2π
tanh

{
∓γ (z − vst) /d

‖
0

}
, (B.26)

by using Eq. (B.20). The magnetic flux through the dc SQUID in the transmission line changes
spatially between −Φ1/2π and Φ1/2π as shown in Fig. B.5 (b) since the magnetic moments rotate
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180 degrees shown in Fig. B.5 (a). From Eq. (B.18), the Josephson inductance is given as

L‖(Φ) =
L0

cos
[
Φ̄ tanh

{
∓γ (z − vst) /d

‖
0

}] . (B.27)

The effective velocity of an electromagnetic wave in the transmission line is then obtained from Eq.
(B.19) as

c̄‖(z, t) =
√
cos

[
Φ̄ tanh

{
∓γ (z − vst) /d

‖
0

}]
. (B.28)

Figure B.5 (c) shows the normalized space-dependent velocity of the electromagnetic wave in the
comoving frame at v̄s = 0.98 similar to the example at the 90-degree soliton. The event horizon

occurs at (c̄(ξ
‖
h))

2 = v̄2s . The position of the event horizon in the comoving frame is given by

ξ
‖±
h = ±d

‖
0

γ
arctanh

(
1

Φ̄
arccos v̄2s

)
, (B.29)

(see Fig. B.7 (b)). Unlike the analogue black hole induced by 90-degree magnetic solitons, the pair
of analogue black holes can be created where the velocity of the electromagnetic wave is slower than
the soliton velocity.

Figure B.5: (a) The rotation angle of the magnetic moments in xy plane at ξ in the comoving frame.
(b) The spatially varying magnetic flux applying to the dc SQUID array in the comoving frame.
(c) The normalized velocity of the electromagnetic wave with Φ̄ = 1. The horizontal dotted line

represents the normalized soliton velocity v̄s. ξ
‖−
h and ξ

‖+
h indicate the black hole and white hole

horizon positions, respectively.
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B.2.3 Magnetic soliton induced analogue black hole

Black hole solitons induced by the 90-degree magnetic solitons

Now, we derive the Hawking temperature in the obtained analogue black hole. Substituting Eq.
(B.24) into Eq. (A.6), we obtain the formula,

T⊥
H = (T 0

H)⊥f⊥(v̄s), (B.30)

where (T 0
H)⊥ and f⊥(v̄s) stand for bare Hawking temperature and soliton characteristic function,

respectively, and are given as follows:

(
T 0
H

)⊥
=

h̄

2πkB
c0

1

d⊥0
, (B.31)

f⊥ (v̄s) =
1

2

(
arccos v̄2s

)√
1 +

1

v̄2s

∣∣∣∣∣1−
(
arccos v̄2s

Φ̄

)2
∣∣∣∣∣ . (B.32)

The bare Hawking temperature
(
T 0
H

)⊥
given solely by the system parameters determines the rough

temperature scale. Thus one can control
(
T 0
H

)⊥
by designing the system parameters. For example,

assuming d ∼ 2d⊥0 /γ > a to satisfy the continuum approximation together with circuit parameters
accessible with current technology, typically, C ∼ 10−16F and I0 ∼ 10−7A, the bare Hawking
temperature T 0

H is in the sub-Kelvin order and is fully observable.
In addition, it is found that the Hawking temperature also depends on the soliton velocity v̄s

as shown in Fig. B.6 (d), which was not found in previous studies. This is essentially due to the
relativistic dynamical contribution of the soliton f⊥(v̄s) through the Lorentz factor as discussed
below. According to Eq. (A.6), the Hawking temperature is determined by the velocity gradient
of the electromagnetic wave in the circuit at the event horizon. The two elements of the definition,
the velocity gradient and the position of the event horizon, both depend on the soliton velocity.

First, let us discuss the velocity gradient of the electromagnetic wave in the circuit, which is
introduced by the magnetic soliton. The velocity gradient then depends on the soliton shape that
is characterized by the soliton width d ∼ 2d⊥0 /γ. A short soliton width means a steep velocity
gradient. The width contains the Lorentz factor γ depending on the soliton velocity. Thus, the
soliton width decreases as the soliton velocity increases due to the Lorentz contraction. This makes
the tanh-type soliton shape steeper. In other words, the relativistic effect γ increases the slope of
the soliton, resulting in the steeper velocity gradient of the electromagnetic wave.

The second factor that affects the Hawking temperature, which involves the soliton velocity, is
the position of the event horizon. Figure B.6 (b) shows the position of the event horizon as a function
of soliton velocity. This strange behavior is due to the peculiar soliton-velocity dependence on the
Lorentz factor. As you can see in Fig. B.6 (a), when the soliton velocity increases, the position of
the event horizon shifts to the right at first. This is simply because c̄⊥(ξ⊥h ), which satisfies the event
horizon condition, increases. Lorentz contractions are less important for slow solitons. However, it
then turns to the left from a certain point. This is due to the Lorentz contraction manifested at a
soliton velocity close to the speed of light. The soliton width becomes shorter and the points that
satisfy the condition shift to the left.

To summarize the above discussion, the Hawking temperature increases monotonically with
increasing soliton velocity and decreases rapidly to zero at high velocities where Lorentz contraction
becomes prominent. In these decreasing parts in temperature, the soliton width shortens rapidly
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and the velocity gradient |∂c̄⊥/∂ξ| approaches the delta function. Therefore, the velocity gradient
at the event horizon decreases rapidly and finally becomes 0. In other words, the change of the
velocity gradient approaching the delta function is more rapid than the change of the position of
the event horizon as a function of the soliton velocity.

Figure B.6: (a) Spatial dependence of squared velocity of the electromagnetic wave
(
c̄⊥(ξ)

)2
for some

typical soliton velocities; v̄s = 0.75 (dotted line), 0.87 (one-dot chain line), 0.91 (dashed line), and
0.99 (solid line). The position of event horizons is depicted by the bold line with circles corresponding
to the typical soliton velocities shown above, such as v̄s =0.75 (cross inside a circle), 0.86 (open
circle), 0.91 (circled dot), and 0.99 (filled circle). The circles in all embedded figures correspond
to these values. (b) The position of the event horizon as a function of the soliton velocity. (c)
The velocity gradient of the electromagnetic wave |∂c̄⊥/∂ξ|. (d) The Hawking temperatures f⊥(v̄s)
given in Eq. (B.32) under the condition Φ̄ = 1 as a function of the soliton velocity v̄s.

Black hole solitons induced by the 180-degree magnetic solitons

Here we discuss the observability of the Hawking radiation in the pair of the analogue black holes
by deriving the Hawking temperature analytically using the formula Eq. (A.6). The Hawking
temperature is expressed as

T
‖
H = (T 0

H)‖f‖(v̄s), (B.33)

where (T 0
H)‖ and f‖(v̄s) represent the bare Hawking temperature and the soliton characteristic

function, respectively, and are written as follows:(
T 0
H

)‖
=

h̄

2πkB
c0Φ̄

1

d
‖
0

, (B.34)

f‖ (v̄s) =
1

2

√
1 +

1

v̄2s

∣∣∣∣∣1−
(
arccos v̄2s

Φ̄

)2
∣∣∣∣∣ . (B.35)
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The bare Hawking temperature (T 0
H)‖ determines the rough temperature scale. One can control

(T 0
H)‖ by designing the system parameters since it depends solely on the system parameters. For

example, assuming d ∼ 2d
‖
0/γ > a at Φ̄ = 1 together with circuit parameters accessible with current

technology, the bare Hawking temperature T 0
H is in the sub-Kelvin order and is also observable.

Similar to the black hole soliton formed by the 90-degree magnetic solitons, the Hawking tem-
perature is also found to be dependent on the soliton velocity v̄s as shown in Fig. B.7 (d), which
has not been found in the previous studies. This is due to the same relativistic mechanism as the
black hole soliton induced by 90-degree magnetic solitons. Here, only the differences are described.
The velocity of the electromagnetic wave in the circuit is symmetric with respect to the origin. This
is the origin of two degenerate event horizons. Therefore, the soliton-velocity dependence is the
same for two event horizons. In fact, the soliton-velocity dependence on the Hawking temperature
is exactly the same for black holes and white holes as shown in Fig. B.7 (d).

To summarize our black hole solitons, their Hawking temperatures reflect the dynamic properties
of soliton and show unprecedented properties that depend on the soliton velocity. This dependence
implies that the Hawking temperature can be controlled simply by changing the soliton velocity
without changing the circuit configuration at all. Therefore, this change confirms that the exper-
imentally detected radiation is actually due to Hawking radiation. This is an excellent advantage
that has never been seen before.

B.3 Summary

We have investigated analogue black holes generated in an array of dc SQUIDs coupled in par-
allel with a one-dimensional chain of single-domain nanomagnets. Starting with a ferrimagnetic-
aligned nanoparticle chain with alternating magnetic moments both in direction and magnitude,
we have shown that the ferrimagnetic-aligned nanoparticle chain can be effectively reduced to a
ferromagnetic-aligned nanoparticle chain. Then, we derived two types of solitons that appear there.
The magnetic solitons in the chain produce magnetic fields perpendicular to the SQUID array, lead-
ing to the spatially varying velocities of electromagnetic waves through the nonlinear inductance
in the array. The effective event horizon is established where the soliton velocity is equal to the
spatially varying velocity of the electromagnetic wave in the circuit. Therefore, an analogue black
hole is created in the region of the circuit with an effective velocity of the electromagnetic wave lower
than the soliton velocity. It was found that 90-degree magnetic solitons produce single analogue
black holes as described in previous studies, whereas 180-degree magnetic solitons produce analogue
black hole pairs.

We have also derived the Hawking temperature in these analogue black holes based on the
tunneling mechanism for Hawking radiation. In our system, the electromagnetic wave produced
by the quantum fluctuation of the Josephson phase near the classical soliton is observed as the
Hawking radiation. According to the formula, Hawking radiation is observable in the circuit using
existing technologies. In addition, the Hawking temperature reflects the characteristics of solitons
because the black holes are derived from solitons. That is, it depends on the soliton velocity. If
this dependence can be confirmed experimentally, it can be identified that the observed radiation
is certainly from an analogue black hole. This might reinforce the previously known identification
method based on the entanglement of radiated light [15].
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Figure B.7: (a) Spatial dependence of squared velocity of the electromagnetic wave (c̄‖(ξ))2 for
some typical soliton velocities; v̄s = 0.75 (dotted line), 0.87 (one-dot chain line), 0.91 (dashed line),
and 0.99 (solid line). The pair of event horizons are formed for each soliton velocities, unlike 90-
degree magnetic solitons. The position of event horizons is depicted by the bold line with circles
corresponding to the typical soliton velocities shown above, such as v̄s =0.75 (cross inside a circle),
0.86 (open circle), 0.91 (circled dot), and 0.99 (filled circle). The circles in all embedded figures
correspond to these values. (b) The position of the event horizon as a function of the soliton velocity.
(c) The velocity gradient of the electromagnetic wave |∂c̄‖/∂ξ|. It is symmetric about the vertical
axis so that the Hawking temperatures are the same at both positions of the event horizons. (d)
The Hawking temperatures f‖(v̄s) given in Eq. (B.35) under the condition Φ̄ = 1 as a function of
the soliton velocity v̄s.
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B.4 Supplementary

Here we derive the effective ferromagnetic Hamiltonian starting from our original ferrimagnetic
Hamiltonian for a single-domain ferrimagnetic chain given in Eq. (B.1), which is rewritten as

H =
∑
n

(H
(2n)
Sσ +H

(2n)
S +H(2n)

σ ), (B.36)

where

H
(2n)
Sσ = J (S2n−1 · σ2n + σ2n · S2n+1) , (B.37)

H
(2n)
S = Kz

S

(
Sz
2n−1

)2 −Kx
S

(
Sx
2n−1

)2
− Kxy

S

4

{(
Sx
2n−1

)2 − (
Sy
2n−1

)2}2
, (B.38)

H(2n)
σ = Kz

σ (σ
z
2n)

2 −Kx
σ (σx

2n)
2 . (B.39)

In order to remove the variables σ2n from this Hamiltonian, let us consider the integration over σ2n

of the partition function as follows,

Z(2n) = Z
(2n)
S · Z(2n)

σ,Sσ, (B.40)

where

Z
(2n)
S = exp(−βH

(2n)
S ) (B.41)

Z
(2n)
σ,Sσ =

∫
dσ2n exp{−β(H(2n)

σ +H
(2n)
Sσ )}. (B.42)

Equation (B.4) is derived by substituting Eq. (B.43) for Eq. (B.39) with
(
σ
x(z)
2n − 〈σx(z)

2n 〉
)2 � 0,

(
σ
x(z)
2n

)2
=
(
σ
x(z)
2n −

〈
σ
x(z)
2n

〉
+
〈
σ
x(z)
2n

〉)2
� 2

(
σ
x(z)
2n −

〈
σ
x(z)
2n

〉)〈
σ
x(z)
2n

〉
+
〈
σ
x(z)
2n

〉2
. (B.43)

Then, we obtain

Z
(2n)
σ,Sσ =

∫
dσ2n exp{−β(−σ2n ·B2n

−Kz
σ 〈σz

2n〉2 +Kx
σ

〈
σx
2n

〉2
)}. (B.44)

100



In order to carry out the integration over σ2n in Eq. (B.44), we use the polar variables with the
azimuthal angle φ and the angle Θ between σ2n and B2n as follows,

Z
(2n)
σ,Sσ =

∫ 2π

0

∫ 1

−1
exp [−β (−σ |B2n| cosΘ

−Kz
σ 〈σz

2n〉2 +Kx
σ 〈σx

2n〉2
)]

d(cosΘ)dφ (B.45)

= 2π exp
[
−β

(
−Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2

)]
×
∫ 1

−1
exp [βσ |B2n| cosΘ] d(cosΘ) (B.46)

=
2π

βσ |B2n| exp
[
−β

(
−Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2

)]
× (exp [βσ |B2n|]− exp [−βσ |B2n|]) . (B.47)

In the limit β → 0, Z
(2n)
σ,Sσ converges as follows,

Z
(2n)
σ,Sσ → 2π

βσ |B2n| exp
[
−β

(
−Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2

)]
× exp [βσ |B2n|] (B.48)

∼ exp
[
−β

(
−σ |B2n| −Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2

)]
. (B.49)

From Eq. (B.40), we obtain

Z(2n)∼exp
[
−β

(
H

(2n)
S −σ|B2n|−Kz

σ〈σz
2n〉2+Kx

σ〈σx
2n〉2

)]
. (B.50)

In comparison with the right-hand side of Eq. (B.2), the effective Hamiltonian is given as

H ′(2n) ∼ H
(2n)
S − σ|B2n|−Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2 . (B.51)
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Now let us derive |B2n| from Eq. (B.5) as follows,

|B2n|2 = J2(S2n−1 + S2n+1)
2

+ 4 (Kz
σ)

2 〈σz
2n〉2e2z + 4 (Kx

σ)
2 〈σx

2n〉2e2x
+ 4JKz

σ(S2n−1 + S2n+1)〈σz
2n〉ez

− 4JKx
σ(S2n−1 + S2n+1)〈σx

2n〉ex
− 4Kx

σK
z
σ〈σx

2n〉〈σz
2n〉ez · ex

= 4J2S2 − J2(S2n−1 − S2n+1)
2

+ 4 (Kz
σ)

2 〈σz
2n〉2 + 4 (Kx

σ)
2 〈σx

2n〉2
+ 4JKz

σ(S
z
2n−1 + Sz

2n+1)〈σz
2n〉

− 4JKx
σ(S

x
2n−1 + Sx

2n+1)〈σx
2n〉

� 4J2S2 − J2(S2n−1 − S2n+1)
2

+ 4JKz
σ(S

z
2n−1 + Sz

2n+1)〈σz
2n〉

− 4JKx
σ(S

x
2n−1 + Sx

2n+1)〈σx
2n〉

= 4J2S2

{
1− 1

4S2
(S2n−1 − S2n+1)

2

+
Kz

σ

JS2
〈σz

2n〉(Sz
2n−1 + Sz

2n+1)

− Kx
σ

JS2
〈σx

2n〉(Sx
2n−1 + Sx

2n+1)

}
, (B.52)

where we use the approximation 4 (Kz
σ)

2 〈σz
2n〉2 + 4 (Kx

σ)
2 〈σx

2n〉2 � J2S2. This leads to

|B2n| � 2JS

{
1− 1

8S2
(S2n−1 − S2n+1)

2

− Kz
σ

2JS2
〈σz

2n〉(Sz
2n−1 + Sz

2n+1)

+
Kx

σ

2JS2
〈σx

2n〉(Sx
2n−1 + Sx

2n+1)

}
, (B.53)

by applying the approximation
√
1 + x � 1 + x/2 for small x. We obtain

Z
(2n)
σ,Sσ ∼ exp

[
−β

{
−2JSσ +

Jσ

4S
(S2n−1 − S2n+1)

2

+
σKx

σ

S

〈
σ2
2n

〉 (
Sx
2n−1 + Sx

2n+1

)
−σKz

σ

S

〈
σ2
2n

〉 (
Sz
2n−1 + Sz

2n+1

)
−Kz

σ 〈σz
2n〉2 +Kx

σ 〈σx
2n〉2

}]
. (B.54)

by substituting Eq. (B.53) into Eq. (B.49). The quantity 〈σx
2n〉 is obtained in self-consistent

calculations using the following relation

〈σx
2n〉2 =

1

β

∂

∂Kx
σ

lnZ
(2n)
σ,Sσ, (B.55)
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that holds from Eq. (B.44). In addition, Eq. (B.54) leads to the relation as follows,

1

β

∂

∂Kx
σ

lnZ
(2n)
σ,Sσ ∼ −σ

S

〈
σ2
2n

〉 (
Sx
2n−1 + Sx

2n+1

)− 〈σx
2n〉2 . (B.56)

These relations result in

〈σx
2n〉2 = −σ

S
〈σx

2n〉
(
Sx
2n−1 + Sx

2n+1

)− 〈σx
2n〉2 (B.57)

〈σx
2n〉 = − σ

2S
(Sx

2n−1 + Sx
2n+1). (B.58)

We also obtain

〈σz
2n〉 = −σ

S
(Sz

2n−1 + Sz
2n+1), (B.59)

through procedures parallel to those described above.
Finally, we reach the effective Hamiltonian by substituting Eqs. (B.53), (B.58), and (B.59) into

Eq. (B.51) as follows,

H ′(2n) ∼ H
(2n)
S − 2JSσ +

Jσ

4S
(S2n−1 − S2n+1)

2

+
σ2Kz

σ

4S2

(
Sz
2n−1 + Sz

2n+1

)2
− σ2Kx

σ

4S2

(
Sx
2n−1 + Sx

2n+1

)2
(B.60)

∼ H
(2n)
S − Jσ

2S
S2n−1 · S2n+1

+
σ2

S2
Kz

σ

(
Sz
2n−1

)2 − σ2

S2
Kx

σ

(
Sx
2n−1

)2
, (B.61)

where S
x(z)
2n−1 � S

x(z)
2n+1. The total effective ferromagnetic Hamiltonian for a ferrimagnetic-aligned

nanoparticle chain is shown in Eq. (B.6).
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