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Abstract. It is known that a connected and simply-connected Lie group admits
only one left-invariant Riemannian metric up to scaling and isometry if and only if
it is isomorphic to the Euclidean space, the Lie group of the real hyperbolic space,
or the direct product of the three dimensional Heisenberg group and the Euclidean
space of dimension n − 3. In this paper, we give a classification of left-invariant
pseudo-Riemannian metrics of an arbitrary signature for the third Lie groups with
n ≥ 4 up to scaling and automorphisms. This completes the classifications of left-
invariant pseudo-Riemannian metrics for the above three Lie groups up to scaling
and automorphisms.

1. Introduction

In differential geometry, it is one of the central and fundamental problems
to determine whether a given differentiable manifold admits some distinguished
geometric structures or not. Such structures can be, for example, Einstein
or Ricci soliton metrics (cf. [4, 26]) for the setting of Riemannian or pseudo-
Riemannian manifolds, and Kähler-Einstein metrics for Kähler manifolds. When
one deals with these problems, it would be natural and useful to add some other
properties, such as homogeneity.

We focus on the problem whether a given Lie group admits distinguished
left-invariant metrics or not, both for the Riemannian and pseudo-Riemannian
cases. Left-invariant metrics on Lie groups have supplied many examples of
distinguished metrics, and have been studied actively. For example, we refer to
[1, 5, 15, 17, 20, 21, 22, 27] and references therein. In particular, we mention
that the Alekseevskii’s conjecture has been recently proved in [2], which had
been an open problem on homogeneous Einstein manifolds with negative scalar
curvature. However, even if we consider the Riemannian cases, the present state
is far from the complete.

If one can classify left-invariant metrics on a given Lie group, then it would
be useful to determine the existence and non-existence of distinguished metrics.
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Regarding left-invariant Riemannian metrics, Lauret ([16]) classified connected
and simply-connected Lie groups which admit only one left-invariant Riemannian
metric up to scaling and isometry. Such a Lie group is isomorphic to one of

Rn, GRHn (n ≥ 2), H3 × Rn−3 (n ≥ 3), (1)

where GRHn is so-called the Lie group of the real hyperbolic space RHn (the solv-
able part of the Iwasawa decomposition of the identity component SO0(n, 1) of
SO(n, 1), and acts simply-transitively on RHn), and H3 is the three dimensional
Heisenberg group. It is well-known that their unique metrics are flat on Rn,
negative constant sectional curvature on GRHn and Ricci soliton on H3 ×Rn−3,
respectively. For other studies on classifications of left-invariant Riemannian
metrics, we refer to [10, 11, 14, 20] and references therein.

We are interested in the classifications of left-invariant pseudo-Riemannian
metrics on Lie groups. In the three-dimensional cases, left-invariant Lorentzian
metrics have been studied in [6, 24, 25]. For higher dimensional cases, it seems
to be natural that we first consider the above three Lie groups, Rn, GRHn and
H3 × Rn−3. For any signature, it is obvious that Rn admits only one left-
invariant pseudo-Riemannian metric up to scaling and isometry, which is flat.
For any non-Riemannian signature on GRHn (n ≥ 2), there exist exactly three
left-invariant pseudo-Riemannian metrics up to scaling and isometry, all of them
have constant sectional curvatures ([12]). For the case of H3, there exist exactly
three left-invariant Lorentzian metrics up to scaling and isometry ([24, 25]), and
only one of them is flat and the other two are Ricci solitons but not Einstein
([21, 22, 25]).

In this paper, we consider left-invariant pseudo-Riemannian metrics onH3×
Rn−3 with n ≥ 4, and classify them up to scaling and automorphisms defined
as follows.

Definition 1. Let g1 and g2 be left-invariant pseudo-Riemannian metrics
on a Lie group G. Then, (G, g1) and (G, g2) are said to be equivalent up to
scaling and automorphisms if there exist c > 0 and a Lie group automorphism
ϕ : G→ G such that for any a ∈ G and x, y ∈ TaG, they satisfy

g1(x, y)a = cg2(dϕa(x), dϕa(y))ϕ(a),

where TaG is the tangent space to G at a, and dϕa is the differential map of ϕ
at a.

By Definition 1, if (G, g1) and (G, g2) are equivalent up to scaling and
automorphisms, then they are isometric up to scaling. Note that the converse
is not necessarily true (see Remark 3). In the preceding study [13], it has been
shown that there exist exactly six left-invariant Lorentzian metrics on H3×Rn−3

with n ≥ 4 up to scaling and automorphisms. The main result of this paper
is a classification of left-invariant pseudo-Riemannian metrics of an arbitrary
signature on H3 × Rn−3 with n ≥ 4 up to scaling and automorphisms.
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Theorem 1. Let p, q ∈ Z≥1 with p + q ≥ 4. Then the number of left-
invariant pseudo-Riemannian metrics of signature (p, q) on H3 × Rp+q−3 up to
scaling and automorphisms is as follows:

(1) 21 if p, q ≥ 3.
(2) 15 if p ≥ 3 and q = 2.
(3) 6 if p ≥ 3 and q = 1.
(4) 10 if p = q = 2.

Note that, for any p, q ∈ Z≥0 and a Lie group G, one has the correspondence
{

a left-invariant metric
of signature (p, q) on G

}
1:1←→

{
a left-invariant metric
of signature (q, p) on G

}
.

Therefore Theorem 1 gives a classification for every signature. Recall that H3×
Rn−3 admits only one left-invariant Riemannian metric for n ≥ 3, and exactly
three left-invariant Lorentzian metrics for n = 3. Combining these results with
Theorem 1, one has the next table of the number of left-invariant Riemannian
and pseudo-Riemannian metrics of signature (p, q) on H3×Rn−3. Note that our
theorem completes the classifications of all left-invariant metrics up to scaling
and automorphisms on Lie groups in (1).

Table 1. The number of left-invariant metrics on H3 × Rn−3

up to scaling and automorphisms

!!!!!p
q

0 1 2 3 4 · · ·

0 1 1 · · ·
1 3 6 6 · · ·
2 3 10 15 15 · · ·
3 1 6 15 21 21 · · ·
4 1 6 15 21 21 · · ·
...

...
...

...
...

...
. . .

In the proof of Theorem 1, the key idea is a group action on a flag manifold.
In fact, the equivalence classes of left-invariant pseudo-Riemannian metrics of
signature (p, q) onH3×Rn−3 up to scaling and automorphisms correspond to the
orbits of the group action of the parabolic subgroup of the block decomposition
(1, n− 3, 2)










∗ ∗ · · · ∗ ∗ ∗
0 ∗ · · · ∗ ∗ ∗
...

...
. . .

...
...

...
0 ∗ · · · ∗ ∗ ∗
0 0 · · · 0 ∗ ∗
0 0 · · · 0 ∗ ∗





∈ GL(n,R)






(2)
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on GL(n,R)/O(p, q), which is a pseudo-Riemannian symmetric space. Moreover,
this action corresponds to the action of O(p, q) on the flag manifold given by
the above parabolic subgroup. With respect to the latter action, it has been
already known that the number of the orbits is finite in [28]. Determining the
orbit space of the latter action, we classified left-invariant pseudo-Riemannian
metrics of signature (p, q) on H3 × Rn−3 up to scaling and automorphisms. In
[13], the classification of left-invariant Lorentzian metrics on this Lie group has
been obtained by matrices calculations. However if one tries to classify left-
invariant non-Lorentzian metrics on it by the same method, the procedure will
be very complicated, since the method depends on the signature. In this paper,
we classify left-invariant pseudo-Riemannian metrics by a method which does
not depend on the signature.

We here mention the curvature properties of left-invariant pseudo-Riemannian
metrics onH3×Rn−3 with n ≥ 4. Recall that there exist exactly six left-invariant
Lorentzian metrics up to scaling and automorphisms ([13]). In this case, cur-
vatures are completely calculated, and only one of them is flat and the other
five are Ricci solitons but not Einstein ([13]). For the non-Lorentzian cases, the
author has partially calculated curvatures (see Remark 3), which will be in the
forthcoming paper.

2. Preliminaries

In this section, we recall general theories on inner products on vector spaces,
which are not necessarily nondegenerate, and left-invariant pseudo-Riemannian
metrics on Lie groups.

2.1. Vector spaces with inner products. In this subsection, we recall some
terminologies on vector spaces with inner products used throughout this paper,
and set notations.

First of all, let us recall the signature of an inner product. Let V be an
n-dimensional real vector space, and 〈, 〉 be an inner product on it, which is not
necessarily nondegenerate. Fix a basis {v1, . . . , vn} of V , and identify V ∼= Rn.
Then there exists a real symmetric matrix A such that for any x, y ∈ V ,

〈x, y〉 = txAy.

Since A is a real symmetric matrix, every eigenvalue of A is a real number. Note
that 0 can be its eigenvalue since 〈, 〉 is not necessarily nondegenerate. Then the
triplet of the numbers of positive, negative and zero eigenvalues of A counted
with multiplicities is called the signature of 〈, 〉 on V , and we denote it by

sign(V, 〈, 〉) = (p, q, r) (p, q, r ∈ Z≥0).

In the cases of r = 0, that is, when 〈, 〉 is nondegenerate on V , we may write
sign(V, 〈, 〉) = (p, q). If we do not need to specify 〈, 〉, we denote it by signV
for simplicity. We use this notation for a subspace W of V as well, that is, we
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denote the signature of 〈, 〉 |W×W on W by

sign(W, 〈, 〉 |W×W ) = (s, t, u) (s, t, u ∈ Z≥0).

In this case, we write sign(W, 〈, 〉) or signW for simplicity.
Next we recall the radical. The radical rad(V, 〈, 〉) of V with respect to 〈, 〉

is a subspace of V such that its vector is orthogonal to every vector of V , that
is,

rad(V, 〈, 〉) := {v ∈ V | ∀w ∈ V, 〈v, w〉 = 0}.
Similarly, we may write radV for simplicity. For a subspace W of V , we simply
denote the radical of W with respect to 〈, 〉 |W×W by rad(W, 〈, 〉) or radW .

2.2. The spaces of left-invariant pseudo-Riemannian metrics on Lie
groups. In this subsection, we recall the notion of the spaces of left-invariant
pseudo-Riemannian metrics on Lie groups. This has been introduced in [12].
We refer to [14] for the Riemannian case. In the following arguments, let G be
a real Lie group of dimension n, and g be the corresponding Lie algebra. We fix
a basis {e1, . . . , en} of g, and identify g ∼= Rn as vector spaces.

Let p, q ∈ Z≥1. Recall that a pseudo-Riemannian metric has signature
(p, q) if so is the induced inner product on each tangent space. We are interested
in a classification of left-invariant pseudo-Riemannian metrics on G. For this
purpose, we denote the space of left-invariant pseudo-Riemannian metrics by

M(p,q)(G) := {a left-invariant metric of signature (p, q) on G}.
We then consider the counterpart in the Lie algebra g of G, and denote it by

M(p,q)(g) := {〈, 〉 : an inner product of signature (p, q) on g}.

It is well-known that there exists a one-to-one correspondence betweenM(p,q)(G)
and M(p,q)(g). Recall that we identify g ∼= Rn. Then GL(n,R) acts transitively
on M(p,q)(g) by

g.〈x, y〉 := 〈g−1x, g−1y〉 (∀g ∈ GL(n,R), ∀x, y ∈ g).

From now on, we explain the equivalence relation on inner products, which
corresponds to the equivalence relation on M(p,q)(G) given by Definition 1. Let
us consider the automorphism group of g,

Aut(g) := {ϕ ∈ GL(n,R) | ∀x, y ∈ g, ϕ([x, y]) = [ϕ(x),ϕ(y)]},

and also put R× := R \ {0}. We study the group action by

R×Aut(g) := {cϕ ∈ GL(n,R) | c ∈ R×, ϕ ∈ Aut(g)}.

This is a subgroup of GL(n,R), and thus it naturally acts on M(p,q)(g). We
denote the orbit through 〈, 〉 by R×Aut(g).〈, 〉.

Definition 2. Let 〈, 〉1, 〈, 〉2 ∈M(p,q)(g). Then, (g, 〈, 〉1) and (g, 〈, 〉2) are
said to be equivalent up to scaling and automorphisms if they satisfy

〈, 〉1 ∈ R×Aut(g).〈, 〉2.
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This notion is an equivalence relation on M(p,q)(g). If a given Lie group
G is connected and simply-connected, then one knows Aut(G) ∼= Aut(g), and
therefore the classification of inner products on g by the action of R×Aut(g) is
equivalent to the classification of left-invariant pseudo-Riemannian metrics on
G up to scaling and automorphisms. Hence it is natural to study the following
orbit space:

R×Aut(g)\M(p,q)(g) := {R×Aut(g).〈, 〉 | 〈, 〉 ∈M(p,q)(g)}.

This space can be regarded as the moduli space of left-invariant pseudo-Riemannian
metrics on G of signature (p, q).

Finally in this subsection, we give a remark on a classification of left-
invariant pseudo-Riemannian metrics on G up to scaling and isometry, which
is defined as follows.

Definition 3. Let g1, g2 ∈M(p,q)(G). Then, (G, g1) and (G, g2) are said
to be isometric up to scaling and denoted by g1 ∼G g2 if there exist c > 0 and
a diffeomorphism ϕ : G→ G such that for any a ∈ G and x, y ∈ TaG,

g1(x, y)a = cg2(dϕa(x), dϕa(y))ϕ(a).

One can define an equivalence relation ∼g on M(p,q)(g) corresponding to
∼G, that is, there exists a one-to-one correspondence

M(p,q)(G)/ ∼G
1:1←→ M(p,q)(g)/ ∼g .

By Definition 1, if two left-invariant metrics are equivalent up to scaling and
automorphisms, then they are isometric up to scaling. Thus there exists a sur-
jection

R×Aut(g)\M(p,q)(g) ! M(p,q)(g)/ ∼g .

In this paper, as mentioned above, we focus on the classification of inner products
by the action of R×Aut(g). In order to obtain the classification up to ∼G or ∼g,
we need to distinguish elements in R×Aut(g)\M(p,q)(g), which can be equivalent
in the sense of ∼g.

3. An outline of the proof of the main theorem

In this section, we describe an outline of the proof of Theorem 1, which
can be divided into some parts. In the first subsection, we consider the orbit-
decomposition with respect to the action of an indefinite orthogonal group on
a flag manifold. In the second subsection, we describe possible signatures on
particular vector subspaces. We explain the statements of them without giving
proofs, and we prove Theorem 1 in the last subsection.

Let Ik be the unit matrix of order k, and put

Ip,q :=

(
Ip
−Iq

)
,
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where p, q ∈ Z≥1. We consider the standard inner product 〈, 〉0 such that
sign(Rp+q, 〈, 〉0) = (p, q), that is, it is defined by

〈x, y〉0 := txIp,qy (∀x, y ∈ Rp+q).

3.1. An orbit-decomposition of a flag manifold. In this subsection, we
describe the orbit-decomposition with respect to the action of the indefinite
orthogonal group O(p, q) on the flag manifold

Fk1,k2 := {(Vk1 , Vk2) | Vk1 ⊂ Vk2 ⊂ Rp+q, dimVki = ki (i = 1, 2)},

where k1, k2 ∈ {1, . . . , p+ q} with k1 < k2. Note that O(p, q) acts on Fk1,k2 by

g.(Vk1 , Vk2) := (gVk1 , gVk2).

For flags in Fk1,k2 , an equivalent condition to be contained in the same O(p, q)-
orbit is given in terms of the signatures as follows.

Proposition 1. For any (Vk1 , Vk2), (Wk1 ,Wk2) ∈ Fk1,k2 , the following
conditions are equivalent.

(1) There exists g ∈ O(p, q) such that (Vk1 , Vk2) = g.(Wk1 ,Wk2).
(2) All of the following hold.

(i) sign(Vk2 , 〈, 〉0) = sign(Wk2 , 〈, 〉0).
(ii) sign(Vk1 , 〈, 〉0) = sign(Wk1 , 〈, 〉0).
(iii) dim(Vk1 ∩ rad(Vk2 , 〈, 〉0)) = dim(Wk1 ∩ rad(Wk2 , 〈, 〉0)).

We will give the proof of this proposition in Section 4. From this proposition,
each O(p, q)-orbit through (Vk1 , Vk2) ∈ Fk1,k2 is characterized only by the three
data

signVk1 , signVk2 , dim(Vk1 ∩ radVk2).

Remark 1. For a reductive affine symmetric space (G,H,σ) and its asso-
ciated affine symmetric space (G,H ′,σθ), Matsuki ([18, 19]) showed the corre-
spondence between the double cosets, that is, one has

H\G/P
1:1←→ H ′\G/P,

where P is a parabolic subgroup of G. This correspondence is called the Matsuki
duality (correspondence). We consider R×Aut(g) for g := h3⊕Rn−3 with n ≥ 4,
which is given in the form of (2). Therefore in the case of this paper, we put

G := GL(n,R), H := O(p, q), P := R×Aut(g). (3)

Then one has H ′ = GL(p,R) × GL(q,R), and hence we have the setting of the
Matsuki duality.

On the other hand, one can also determine the orbit space of the action of
H ′ on G/P = F1,n−2 in the setting (3). For this purpose, we put

U+ := span{e1, . . . , ep}, U− := span{ep+1, . . . , ep+q},
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where {e1, . . . , ep+q} is the standard basis of Rp+q, and consider the following
data for any (V1, Vn−2) ∈ F1,n−2:

c+ := dim(Vn−2 ∩ U+), c− := dim(Vn−2 ∩ U−), c0 := n− 2− c+ − c−,

d+ := dim(V1 ∩ U+), d− := dim(V1 ∩ U−), d0 := 1− d+ − d−,

d± := dim
(
((Vn−2 ∩ U+)⊕ (Vn−2 ∩ U−)) ∩ V1

)
.

Then every orbit of H ′ on G/P = F1,n−2 is determined by the above seven data.
This fact is essentially the same as Proposition 1 in the case of k1 = 1 and
k2 = n− 2.

3.2. Possible signatures on some subspaces. Recall that the O(p, q)-orbit
through (Vk1 , Vk2) ∈ Fk1,k2 is characterized by the three data. In this subsection,
we here describe all possible three data for the case k1 = 1 and k2 = p+ q − 2.
The next proposition describes all possible signVp+q−2.

Proposition 2. Let A be the set of all possible signatures of codimension-
two subspaces of Rp+q with respect to 〈, 〉0, that is,

A := {sign(V, 〈, 〉0) | V ⊂ Rp+q, dimV = p+ q − 2}.
Then one has

A =

{
(p− 2, q, 0), (p− 1, q − 1, 0), (p, q − 2, 0),
(p− 2, q − 1, 1), (p− 1, q − 2, 1), (p− 2, q − 2, 2)

}
∩ (Z≥0)

3.

The proof will be given in Section 4.
Fix a subspace V of Rp+q with dimV ≥ 2. Take an arbitrary one dimen-

sional subspace W of V . Then one has

signW ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
According to Proposition 1, when signW = (0, 0, 1), we need to know dim(W ∩
radV ). Hence we define the new notion

signV (W, 〈, 〉0) :=
{
sign(W, 〈, 〉0) if W ∩ rad(V, 〈, 〉0) = {0},
(0, 0, 1)null if W ⊂ rad(V, 〈, 〉0).

It is obvious that one has

signV W ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)null}.
The next proposition describes all possible signV W .

Proposition 3. Fix a subspace V of Rp+q with sign(V, 〈, 〉0) = (s, t, u)
and s, t, u ∈ Z≥0. Let B be the set of all possible signatures of one-dimensional
subspaces of V with respect to 〈, 〉0, that is,

B := {signV (W, 〈, 〉0) | W ⊂ V, dimW = 1}.
Then one has

• (1, 0, 0) ∈ B if and only if s ≥ 1,

• (0, 1, 0) ∈ B if and only if t ≥ 1,
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• (0, 0, 1) ∈ B if and only if s, t ≥ 1,

• (0, 0, 1)null ∈ B if and only if u ≥ 1.

Also for this proposition, the proof will be given in Section 4.

3.3. The proof of the main theorem. In this subsection, we prove Theo-
rem 1 by applying Propositions 1, 2, and 3. Let G := H3 × Rn−3 with n ≥ 4
and

g := h3 ⊕ Rn−3 := span{e1, . . . , en | [en−1, en] = e1},
where h3 = span{e1, en−1, en} is the three dimensional Heisenberg Lie algebra.

Proof (of Theorem 1). Let p, q ∈ Z≥1 with p + q ≥ 4. The desired
classification is given by the orbits of the action of R×Aut(g) on M(p,q)(g).
Recall that one has an identification

M(p,q)(g) = GL(n,R)/O(p, q)

as homogeneous spaces, where n = p+ q. Hence, we can identify the orbit space
R×Aut(g)\M(p,q)(g) with the double coset space, that is, one has

R×Aut(g)\M(p,q)(g) = R×Aut(g)\GL(n,R)/O(p, q).

On the other hand, from a general theory, there is a one-to-one correspondence

R×Aut(g)\GL(n,R)/O(p, q)
1:1←→ O(p, q)\GL(n,R)/R×Aut(g).

Moreover the matrix expression of R×Aut(g) with respect to the basis {e1, . . . , en}
of g coincides with the form of (2) (cf. [14]). By this matrix expression, GL(n,R)/R×Aut(g)
can be identified with the flag manifold F1,p+q−2. From the above arguments,
R×Aut(g)\M(p,q)(g) corresponds to O(p, q)\F1,p+q−2. Therefore we have only
to classify flags in F1,p+q−2 by the action of O(p, q). By Proposition 1, one knows
that each O(p, q)-orbit through (V1, Vp+q−2) ∈ F1,p+q−2 is characterized only by

signV1, signVp+q−2, dim(V1 ∩ radVp+q−2).

In the following arguments, we assume p ≥ q. Then the condition p+ q ≥ 4
yields that p ≥ 2. From Proposition 2, one has

signVp+q−2 ∈
{

(p− 2, q, 0), (p− 1, q − 1, 0), (p, q − 2, 0),
(p− 2, q − 1, 1), (p− 1, q − 2, 1), (p− 2, q − 2, 2)

}
∩ (Z≥0)

3.

We complete Table 2 for each signVp+q−2 one by one. Note that

p ≥ 2, q ≥ 1.

First, let us consider the case of signVp+q−2 = (p − 2, q, 0). In this case, by
Proposition 3,

• if p ≥ 3, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1),

• if p = 2, then signVp+q−2
V1 = (0, 1, 0).

We here summarize all possible signVp+q−2
V1 for the other signVp+q−2. In the

case of signVp+q−2 = (p− 1, q − 1, 0),
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• if q ≥ 2, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1),

• if q = 1, then signVp+q−2
V1 = (1, 0, 0).

In the case of signVp+q−2 = (p, q − 2, 0), we have q ≥ 2 and

• if q ≥ 3, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1),

• if q = 2, then signVp+q−2
V1 = (1, 0, 0).

In the case of signVp+q−2 = (p− 2, q − 1, 1),

• if p ≥ 3 and q ≥ 2, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)null,

• if p ≥ 3 and q = 1, then signVp+q−2
V1 = (1, 0, 0), (0, 0, 1)null,

• if p = q = 2, then signVp+q−2
V1 = (0, 1, 0), (0, 0, 1)null.

In the case of signVp+q−2 = (p− 1, q − 2, 1), we have q ≥ 2 and

• if q ≥ 3, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)null,

• if q = 2, then signVp+q−2
V1 = (1, 0, 0), (0, 0, 1)null.

In the case of signVp+q−2 = (p− 2, q − 2, 2), we have q ≥ 2 and

• if p ≥ 3 and q ≥ 3, then signVp+q−2
V1 = (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 1)null,

• if p ≥ 3 and q = 2, then signVp+q−2
V1 = (1, 0, 0), (0, 0, 1)null,

• if p = q = 2, then signVp+q−2
V1 = (0, 0, 1)null.

Hence one can obtain the pairs of signVp+q−2 and signVp+q−2
V1 in Table 2.

Only for the case of p, q ≥ 3, we explicitly describe 21 pairs of the signatures,
and for the other cases we mark each slot in the table with the check mark “"”
if its corresponding equivalence class appears. At the bottom row, we write the
number of equivalence classes. This table proves Theorem 1. #

For p, q ∈ Z≥1 with p+q ≥ 4, every O(p, q)-orbit in F1,p+q−2 is characterized
by sign(Vp+q−2, 〈, 〉0) and signVp+q−2

(V1, 〈, 〉0) as in Table 2. We explain what
this table represents in terms of inner products on g. Here we denote the center
and the derived ideal of g by Z(g) and [g, g], respectively. Then one has

Z(g) = span{e1, . . . , ep+q−2}, [g, g] = span{e1}.

In terms of g, Table 2 represents the pairs of signatures of 〈, 〉 ∈ M(p,q)(g)
restricted to Z(g) and [g, g], that is, every R×Aut(g)-orbit in M(p,q)(g) is char-
acterized by

sign(Z(g), 〈, 〉), signZ(g)([g, g], 〈, 〉)

as in Table 2.

Remark 2. For left-invariant Lorentzian metrics on G, the degenerations
of R×Aut(g)-orbits have been studied in [13]. For any distinct orbits O1 and
O2, recall that O1 is said to degenerate to O2 if O2 ⊂ O1 holds, where O1 is the
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Table 2. The number of equivalence classes

p, q ≥ 3 p ≥ 3, q = 2 p ≥ 3, q = 1 p = q = 2
signVp+q−2 signVp+q−2

V1

(1) (p− 2, q, 0) (1, 0, 0) " "
(2) (0, 1, 0) " " "
(3) (0, 0, 1) " "
(4) (p− 1, q − 1, 0) (1, 0, 0) " " "
(5) (0, 1, 0) " "
(6) (0, 0, 1) " "
(7) (p, q − 2, 0) (1, 0, 0) " "
(8) (0, 1, 0)
(9) (0, 0, 1)
(10) (p− 2, q − 1, 1) (1, 0, 0) " "
(11) (0, 1, 0) " "
(12) (0, 0, 1) "
(13) (0, 0, 1)null " " "
(14) (p− 1, q − 2, 1) (1, 0, 0) " "
(15) (0, 1, 0)
(16) (0, 0, 1)
(17) (0, 0, 1)null " "
(18) (p− 2, q − 2, 2) (1, 0, 0) "
(19) (0, 1, 0)
(20) (0, 0, 1)
(21) (0, 0, 1)null " "

21 15 6 10

closure of O1. In the Lorentzian case, there exists only one closed R×Aut(g)-
orbit, which corresponds to (13) in Table 2 and is characterized as the unique
equivalence class of flat metrics up to scaling and automorphisms. Furthermore,
inner products in this closed orbit are degenerate on Z(g) and [g, g] as (13)
in Table 2. The author has verified that similar phenomena occur also in the
non-Lorentzian cases, that is,

• the R×Aut(g)-orbit corresponding to (21) is the unique closed orbit,
• the metric corresponding to (21) is flat,
• inner products in this closed orbit are degenerate on Z(g) and [g, g] as

(21) in Table 2.

Note that a closed orbit always exists. It would be a natural problem to con-
sider whether the above three correspondences hold for any Lie group or not. In
fact, some papers study the relations between the curvature properties and the
signatures of the restrictions to particular ideals ([3, 9]).
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Remark 3. For a fixed signature, we here mention that the left-invariant
pseudo-Riemannian metrics on G corresponding to (13), (17), (20) and (21) in
Table 2 are all isometric to each other. The curvatures of the above metrics
can be calculated directly. According to it, they are all flat. In [8], it is proved
that every left-invariant pseudo-Riemannian metric on a two-step nilpotent Lie
group is geodesically complete. Hence G endowed with one of the above four
flat metrics is a simply-connected space form, where a space form is a complete
and connected pseudo-Riemannian manifold with constant curvature. It is well-
known that simply-connected space forms are isometric if and only if they have
the same dimension, signature and constant curvature (cf. [23]). Therefore, our
claim holds.

Recall that the metrics corresponding to (17), (20) and (21) occur only in
the non-Lorentzian cases. Thus in the non-Lorentzian cases, there exist left-
invariant pseudo-Riemannian metrics on G which are distinct up to automor-
phisms but isometric.

4. The proofs of Propositions 1, 2 and 3

In this section, we prove the propositions which we used for proving the
main theorem in Section 3. Throughout this section, let V be a real vector
space of finite dimension. We denote by 〈, 〉 an inner product on V , which is not
necessarily nondegenerate.

4.1. Auxiliary lemmas and propositions on vector spaces. In this sub-
section, we show some auxiliary lemmas and propositions, which we use in Sub-
sections 4.2 and 4.3.

First of all, we define a particular basis for a given vector space, which is
an analogue to an orthonormal basis in the positive definite case. In order to do
that, we introduce the next notation εi given by

εi :=






1 (i ∈ {1, . . . , p}),
−1 (i ∈ {p+ 1, . . . , p+ q}),
0 (i ∈ {p+ q + 1, . . . , p+ q + r}),

where p, q, r ∈ Z≥0.

Definition 4. A set {v1, . . . , vp+q+r} of linearly independent vectors of V
is called a (p, q, r)-system with respect to 〈, 〉 if it satisfies

〈vi, vj〉 = εiδij (∀i, j ∈ {1, . . . , p+ q + r}),
where δij is the Kronecker’s delta. In addition, if {v1, . . . , vp+q+r} is a basis of
V , then it is called a (p, q, r)-basis of V .

A vector space of finite dimension with a positive definite inner product has
an orthonormal basis. A similar statement holds for the nondegenerate cases
(cf. [7]). More generally, there exists a (p, q, r)-basis of V if signV = (p, q, r).

Proposition 4. Let (p, q, r) := sign(V, 〈, 〉). Then V has a (p, q, r)-basis
with respect to 〈, 〉.
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Proof. We identify V ∼= Rp+q+r as vector spaces. Let {e1, . . . , ep+q+r}
be the standard basis of V , and we put

Ip,q,r :=




Ip
−Iq

Or



 ,

where Or is the zero matrix of order r. Let A be the Gram matrix of 〈, 〉
with respect to {e1, . . . , ep+q+r}. Then by Sylvester’s law of inertia, there exists
g ∈ GL(p+ q + r,R) such that tgAg = Ip,q,r. Here we put

vi := gei (i ∈ {1, . . . , p+ q + r}).

One obtains a (p, q, r)-basis {v1, . . . , vp+q+r} of V with respect to 〈, 〉. #
Next we consider the decomposition of a light-like vector v /∈ radV into

space-like and time-like vectors. Recall that a vector v ∈ V is called

• space-like if 〈v, v〉 > 0 or v = 0,
• time-like if 〈v, v〉 < 0,
• light-like if 〈v, v〉 = 0 and v /= 0.

Let U be a nondegenerate subspace of V with respect to 〈, 〉, and define the
light-cone of U by

C0(U, 〈, 〉) := {u ∈ U | 〈u, u〉 = 0} \ {0}.

Moreover we put

O(U, 〈, 〉) := {f : U → U | f is a linear isometry with respect to 〈, 〉}.

Then it is well-known that C0(U, 〈, 〉) is an O(U, 〈, 〉)-homogeneous space.

Lemma 1. Let v be a light-like vector in V with v /∈ radV . Then there
exists a (1, 1, 0)-system {v+, v−} of V such that v = v+ + v−.

Proof. Since v /∈ radV , there exists a subspace U of V such that

V = U ⊕ radV, v ∈ U.

Then there exist p, q ∈ Z≥1 such that signU = (p, q) with respect to 〈, 〉, since
v ∈ U is light-like. Hence U contains e+ and e− such that

〈e+, e+〉 = 1, 〈e−, e−〉 = −1, 〈e+, e−〉 = 0.

Thus one has e++e− ∈ C0(U, 〈, 〉). Since C0(U, 〈, 〉) is an O(U, 〈, 〉)-homogeneous
space, there exists f ∈ O(U, 〈, 〉) such that

v = f(e+ + e−) = f(e+) + f(e−).

By putting v+ := f(e+) and v− := f(e−), we complete the proof. #
Next we consider an expansion of a given (0, 0, k)-system. Note that, for a

subspace W of V , one has V = W ⊕W⊥ if 〈, 〉 is nondegenerate on W . Moreover
if signV = (p, q, r) and signW = (s, t, 0), then we have signW⊥ = (p−s, q− t, r).
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Proposition 5. Let (p, q, 0) := sign(V, 〈, 〉), and {w1, . . . , wk} be its (0, 0, k)-
system with k ∈ Z≥1. Then there exists a (p, q, 0)-basis {x1, . . . , xp, y1, . . . , yq}
of V such that

wi = xi + yi (i ∈ {1, . . . , k}).

Proof. We put

W1 := span{w2, . . . , wk}⊥.

First of all we prove

w1 /∈ radW1. (4)

Since V is nondegenerate, we have

span{w2, . . . , wk} = (span{w2, . . . , wk}⊥)⊥ = W1
⊥.

If w1 ∈ radW1, then

w1 ∈W1
⊥ = span{w2, . . . , wk}.

However, this is a contradiction since w1, . . . , wk are linearly independent. Hence
w1 /∈ radW1.

Note that w1 is a light-like vector and w1 ∈ W1. According to (4) and
Lemma 1, there exists a (1, 1, 0)-system {x1, y1} of V such that

{x1, y1} ⊂W1, w1 = x1 + y1.

Similarly to the above argument, we put

W2 := span{x1, y1, w3, . . . , wk}⊥.

Note that w2 ∈ W2. Then one can show w2 /∈ radW2 since V is nondegenerate
again. Thus by Lemma 1, there exists a (1, 1, 0)-system {x2, y2} of V such that

{x2, y2} ⊂W2, w2 = x2 + y2.

Therefore {x1, x2, y1, y2} is a (2, 2, 0)-system of V . Repeating this process, we
obtain a (k, k, 0)-system {x1, . . . , xk, y1, . . . , yk} of V . Therefore we put

W̃ := span{x1, . . . , xk, y1, . . . , yk},

and one has V = W̃ ⊕ W̃⊥. Since V and W̃ are nondegenerate, so is W̃⊥, and
its signature is given by

signW̃⊥ = (p− k, q − k, 0).

Thus by Proposition 4, there exists a (p− k, q − k, 0)-basis

{xk+1, . . . , xp, yk+1, . . . , yq}

of W̃⊥. Hence V has the desired (p, q, 0)-basis, which completes the proof. #
By Proposition 5, one can construct a (p, q, r)-basis of V from a given

(s, t, u)-basis of its subspace.
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Proposition 6. Let (p, q, r) := sign(V, 〈, 〉) and W be a subspace of V such
that

sign(W, 〈, 〉) = (s, t, u), dim(W ∩ rad(V, 〈, 〉)) = k.

Fix an (s, t, u)-basis

{x1, . . . , xs, y1, . . . , yt, z1, . . . , zu} (zu−k+1, . . . , zu ∈ radV )

of W . Then V has a (p, q, r)-basis

{α1, . . . ,αp,β1, . . . ,βq, γ1, . . . , γr}

such that

xi = αi (i ∈ {1, . . . , s}),
yi = βi (i ∈ {1, . . . , t}),
zi = αs+i + βt+i (i ∈ {1, . . . , u− k}),
zu−k+i = γi (i ∈ {1, . . . , k}).

Proof. First of all, we put

W± := span{x1, . . . , xs, y1, . . . , yt},
W0 := span{z1, . . . , zu−k},
Wnull := span{zu−k+1, . . . , zu}.

By the assumption, it satisfies (W±⊕W0)∩ radV = {0}. Therefore there exists
a subspace U of V such that

V = U ⊕ radV, W± ⊕W0 ⊂ U.

Note that U is nondegenerate. Here we define

(W±)⊥U := {u ∈ U | ∀w ∈W±, 〈u,w〉 = 0}.

Since W± is a nondegenerate subspace of U , one has U = W±⊕ (W±)⊥U . Hence
we have

V = U ⊕ radV = W± ⊕ (W±)⊥U ⊕ radV.

Remember that W0 ⊂ (W±)⊥U and Wnull ⊂ radV . We will construct bases of
W±, (W±)⊥U , and radV , respectively.

Regarding the basis {x1, . . . , xs, y1, . . . , yt} of W±, we put

αi := xi (i ∈ {1, . . . , s}), βi := yi (i ∈ {1, . . . , t}). (5)

Next we construct a (p− s, q− t, 0)-basis of (W±)⊥U . Recall that U and W±

are nondegenerate. Hence (W±)⊥U is nondegenerate, and its signature is given
by

sign(W±)⊥U = (p− s, q − t, 0).
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Since {z1, . . . , zu−k} is a (0, 0, u−k)-system of W0, by Proposition 5, there exists
a (p− s, q − t, 0)-basis {αs+1, . . . ,αp,βt+1, . . . ,βq} of (W±)⊥U such that

zi = αs+i + βt+i (i ∈ {1, . . . , u− k}). (6)

Finally we construct a (0, 0, r)-basis of radV . Since {zu−k+1, . . . , zu} is a
basis of Wnull and Wnull ⊂ radV , there exists a basis {γ1, . . . , γr} of radV such
that

γi = zu−k+i (i ∈ {1, . . . , k}). (7)

From (5), (6) and (7), one obtains the desired (p, q, r)-basis of V , which completes
the proof. #
4.2. The proof of Proposition 1. In this subsection, we prove Proposi-
tion 1. First of all, we show that one can extend a given linear isometry between
subspaces to the entire nondegenerate space.

Proposition 7. Let V be a nondegenerate space, and W1 and W2 be sub-
spaces of V with sign(W1, 〈, 〉) = sign(W2, 〈, 〉). Then for any linear isometry

f : W1 →W2, there exists a linear isometry f̃ : V → V such that f̃ |W1= f .

Proof. Let (s, t, u) := signW1 = signW2. Take an arbitrary linear isome-
try f : W1 →W2. Here we fix an (s, t, u)-basis

{x1, . . . , xs, y1, . . . , yt, z1, . . . , zu}
of W1. Since f : W1 →W2 is a linear isometry,

{f(x1), . . . , f(xs), f(y1), . . . , f(yt), f(z1), . . . , f(zu)}
is an (s, t, u)-basis of W2. Note that

dim(W1 ∩ radV ) = dim(W2 ∩ radV ) = 0,

since V is nondegenerate. Then from Proposition 6, there exist two (p, q, 0)-bases

{α1, . . . ,αp,β1, . . . ,βq}, {α′
1, . . . ,α

′
p,β

′
1, . . . ,β

′
q}

of V such that

xi = αi, f(xi) = α′
i (i ∈ {1, . . . , s}), (8)

yi = βi, f(yi) = β′
i (i ∈ {1, . . . , t}), (9)

zi = αs+i + βt+i, f(zi) = α′
s+i + β′

t+i (i ∈ {1, . . . , u}). (10)

Here we define f̃ : V → V by mapping the former basis to the latter, that is,

f̃(αi) := α′
i (i ∈ {1, . . . , p}), f̃(βi) := β′

i (i ∈ {1, . . . , q}).

One can easily check that f̃ : V → V is a linear isometry such that f̃ |W1= f
from (8), (9) and (10). #

The next lemma follows from basic linear algebra.

Lemma 2. Let W be a subspace of V , and f : V → V be a linear isometry
with respect to 〈, 〉. Then one has f(rad(W, 〈, 〉)) = rad(f(W ), 〈, 〉).
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Next we show an equivalent condition for the classification of subspaces by
linear isometries.

Proposition 8. For any two subspaces U and W of V , the following two
conditions are equivalent.

(1) There exists a linear isometry f : V → V with respect to 〈, 〉 such that
U = f(W ).

(2) Both of the following hold.
(i) sign(U, 〈, 〉) = sign(W, 〈, 〉).
(ii) dim(U ∩ rad(V, 〈, 〉)) = dim(W ∩ rad(V, 〈, 〉)).

Proof. First we assume (1), and show (2). Let (s, t, u) := signW with
respect to 〈, 〉. Then by Proposition 4, there exists an (s, t, u)-basis

{x1, . . . , xs, y1, . . . , yt, z1, . . . , zu}
of W . Since f |W : W → U is a linear isometry,

{f(x1), . . . , f(xs), f(y1), . . . , f(yt), f(z1), . . . , f(zu)}
is an (s, t, u)-basis of U . Hence one has signU = signW , which proves (i).
Regarding the assertion (ii), by Lemma 2 we have

radV = radf(V ) = f(radV ),

thus one has

U ∩ radV = f(W ) ∩ f(radV ) = f(W ∩ radV ).

This completes the proof of (ii).
Next let us assume (2), and we show (1). Put

(p, q, r) := signV, (s, t, u) := signU = signW.

We fix (s, t, u)-bases of W and U which satisfy the assumption of Proposition 6.
Then they can be extended to (p, q, r)-bases

{α1, . . . ,αp,β1, . . . ,βq, γ1, . . . , γr},
{α′

1, . . . ,α
′
p,β

′
1, . . . ,β

′
q, γ

′
1, . . . , γ

′
r}

of V in the way of Proposition 6. Let f : V → V be the linear isometry which
maps the former basis to the latter. Then we have U = f(W ), which completes
the proof. #

Finally we prove Proposition 1 by using Propositions 7 and 8.

Proof (of Proposition 1). Take arbitrary (Vk1 , Vk2), (Wk1 ,Wk2) ∈ Fk1,k2 .
First of all, we assume (1). Then there exists g ∈ O(p, q) such that

(Vk1 , Vk2) = g.(Wk1 ,Wk2) = (gWk1 , gWk2).

Under this assumption, we show (2), that is, we prove the following:

(i) sign(Vk2 , 〈, 〉0) = sign(Wk2 , 〈, 〉0).
(ii) sign(Vk1 , 〈, 〉0) = sign(Wk1 , 〈, 〉0).
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(iii) dim(Vk1 ∩ rad(Vk2 , 〈, 〉0)) = dim(Wk1 ∩ rad(Wk2 , 〈, 〉0)).
The assertions (i) and (ii) follow from Proposition 8, and (iii) holds from Lemma 2.

Next we assume (2) and show (1). Since signVk2 = signWk2 and radRp+q =
{0}, from Proposition 8, there exists a linear isometry f : Rp+q → Rp+q such
that

Vk2 = f(Wk2).

We then find a linear isometry mapping f(Wk1) to Vk1 . From the assumption
(ii), one has

signVk1 = signWk1 = signf(Wk1). (11)

Moreover by Vk2 = f(Wk2), we have

f(Wk1) ∩ f(radWk2) = f(Wk1) ∩ radf(Wk2) = f(Wk1) ∩ radVk2 .

Hence by the assumption (iii), we obtain

dim(Vk1 ∩ radVk2) = dim(Wk1 ∩ radWk2) = dim(f(Wk1) ∩ radVk2). (12)

Therefore by (11), (12) and Proposition 8, there exists a linear isometry h :
Vk2 → Vk2 such that

Vk1 = h(f(Wk1)).

From Proposition 7, there exists a linear isometry h̃ : Rp+q → Rp+q such that

h̃ |Vk2
= h.

Hence from the above argument, we have

Vk1 = (h̃ ◦ f)(Wk1), Vk2 = (h̃ ◦ f)(Wk2).

Since h̃◦f : Rp+q → Rp+q is a linear isometry with respect to 〈, 〉0, this completes
the proof. #
4.3. The proofs of Propositions 2 and 3. In this subsection, we prove
Propositions 2 and 3. First, we prove Proposition 2. Recall that A is the set of
all possible signatures sign(V, 〈, 〉0) of codimension-two subspaces V of Rp+q.

Proof (of Proposition 2). First of all, we show that

A ⊂
{

(p− 2, q, 0), (p− 1, q − 1, 0), (p, q − 2, 0),
(p− 2, q − 1, 1), (p− 1, q − 2, 1), (p− 2, q − 2, 2)

}
∩ (Z≥0)

3. (13)

Take an arbitrary subspace V of Rp+q with dimV = p + q − 2, and we put
signV = (s, t, u), where s, t, u ∈ Z≥0. Then we have

s+ t+ u = p+ q − 2. (14)

Since 〈, 〉0 is nondegenerate on Rp+q, one has by Proposition 6 that

s+ u ≤ p, t+ u ≤ q. (15)
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By (14) and (15), we obtain

0 ≤ u ≤ 2. (16)

In order to calculate signV , we have only to enumerate all possible integers
s, t, u ∈ Z≥0 satisfying the conditions (14), (15) and (16).

Let us fix u = 0. By (14) and (15), we have

s+ t = p+ q − 2, 0 ≤ s ≤ p, 0 ≤ t ≤ q.

According to these conditions, we have

(s, t) ∈ {(p− 2, q), (p− 1, q − 1), (p, q − 2)} ∩ (Z≥0)
2.

For other two cases of u, one can summarize as follows:

• if u = 1, then (s, t) ∈ {(p− 2, q − 1), (p− 1, q − 2)} ∩ (Z≥0)2,

• if u = 2, then (s, t) ∈ {(p− 2, q − 2)} ∩ (Z≥0)2.

Therefore by the above arguments, we obtain (13).
One can prove the converse inclusion by constructing subspaces V with the

prescribed signatures. In fact, by Proposition 4, there exists a (p, q, 0)-basis
{x1, . . . , xp, y1, . . . , yq} of Rp+q with respect to 〈, 〉0. Hence, a subspace

V := span{x1, . . . , xp−2, y1, . . . , yq−2, xp−1 + yq−1, xp + yq}

satisfies signV = (p − 2, q − 2, 2). We can similarly construct subspaces V for
the other five triplets, which completes the proof. #

Finally, we prove Proposition 3. Recall that B is the set of all possible
signatures signV (W, 〈, 〉0) of one-dimensional subspaces W of V .

Proof (of Proposition 3). Since signV = (s, t, u), by Proposition 4,
there exists an (s, t, u)-basis

{x1, . . . , xs, y1, . . . , yt, z1, . . . , zu}

of V . Take an arbitrary v ∈ V . In terms of this basis, it can be expressed as

v =
s∑

i=1

aixi +
t∑

j=1

bjyj +
u∑

k=1

ckzk, (17)

where a1, . . . , as, b1, . . . , bt, c1, . . . , cu ∈ R. Then one has

〈v, v〉0 =
s∑

i=1

ai
2 −

t∑

j=1

bj
2. (18)

Therefore it is easy to verify the first assertion, that is, (1, 0, 0) ∈ B if and only
if V has a non-zero space-like vector, which is equivalent to s ≥ 1 by (17) and
(18). We can similarly show the second and the fourth assertions. Regarding
the third assertion, (0, 0, 1) ∈ B if and only if V has a light-like vector v /∈ radV ,
which is equivalent to s, t ≥ 1 by (18). This completes the proof. #
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