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Chapter 1

Introduction

Graphene is two-dimensional layer of carbon atoms arranged in a hexagonal lattice, a
thinnest material at one atom thick, and also incredibly strong. Graphene is a remark-
able material that is getting a lot of attention and rapidly rising on the horizon of ma-
terial science and condensed matter physics due to its unusual properties in a magnetic
field [1–30]. Such a astonishing properties are strong orbital diamagnetism [1–13], un-
conventional oscillation of magnetization [14–16], and half integer quantum Hall effect
[17–27, 30]. Graphene represents a conceptually new class of materials that offers new
inroads into low-dimensional physics which provide a fertile ground for many applications
such as electronic and spintronic devices [28–37].

Few years back, our group has developed the magnetic field containing relativistic tight-
binding approximation (MFRTB) method [38] which allows us to calculate the electronic
structure of materials taking effects of magnetic field, periodic potential and relativistic
effects such as the spin-orbit (SO) interaction into consideration. With MFRTB method,
we can revisit the several phenomenon like dHvA oscillation [39–41], magnetic breakdown
[41] and can also predict additional oscillation peaks of the magnetization [40] which the
conventional LK formula [42] can’t explain. In this method the effect of magnetic field
is taken as the perturbation and the hopping integrals are evaluated using perturbation
theory [38]. The effect of magnetic field is appeared in so-called Peierls phase factor which
multiplies the hopping integral in the absence of a magnetic field giving the approximated
form of magnetic hopping integral [38]. However, there are some rooms to increase the
accuracy of the magnetic hopping integrals. In order to address this discrepancy, our
group also developed the nonperturbative MFRTB method [43], in which the effect of
magnetic field is incorporated by using the nonperturbative method. With this method,
the approximated form of magnetic hopping integrals that goes beyond the approxima-
tion of using the Peierls phase factor [43] are obtained successfully. Thus, this method is
suitable for describing and investigating magnetic properties of graphene.

Among various physical quantities which determine electronic properties, optical proper-
ties, chemical properties and thermal conductivity, the g-factor of graphene is the key-
quantity on determining magnetic properties of materials like spin-related properties such
as the spin relaxation time. Recently, a reduction in the g-factor of graphene has been
reported in the experiments on electron spin resonance (ESR) [28, 29] when graphene is
subjected to an external magnetic field. The observed g-factor is about 3.1 percent smaller
than that of a free electron (g=2.0023). The g-factor is evaluated in these experiments
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by taking effect of an external magnetic field in to account to estimate the gap between
the lowest unoccupied state (LUS) and highest occupied state (HOS), which exists at the
K-point of the Brillouin Zone in case of graphene [44–46]. Usually, the SO interaction,
which is related to the spatially symmetric potential of the honeycomb lattice, causes
this HOS-LUS gap in graphene. In the absence of SO interactions, the energy bands of
graphene are described at low energies by a two-dimensional Dirac equation with linear
dispersion centered on the hexagonal corners of the honeycomb lattice Brillouin zone [47].
Such a SO interaction apparently does not depend on the external magnetic field [48].
Hence, the g-factor is expected to be constant (g=2.0023) regardless of the external mag-
netic field [28, 29]. However, it is clearly shown that the reduction in g-factor is about
3.1 percent in experiments [28, 29] for external magnetic field of 1 T. This is not just of
scientific importance, but knowing the cause of the reduction offers up a new pathway
for graphene’s emerging popularity, such as in spin electronics applications.

This thesis is aimed at theoretically elucidating the mechanism of the reduced g-factor in
graphene. As one of the causes, it is expected that the internal magnetic field induced by
the strong orbital diamagnetism [1–9, 49, 50] might affect on the splitting of the HOS-
LUS gap in graphene. This may cause the reduction of the effective g-factor in graphene.
In the present work, the nonperturbative MFRTB method is used in order to evaluate the
effect of the strong orbital diamagnetism of graphene on the effective g-factor. By means
of nonperturbative method we may revisit the strong orbital diamagnetism of graphene
and we may confirm theoretically that one of the sources for the reduction in g-factor
of graphene is diamagnetism. In addition, the magnetic field dependence of the bulk
SO interaction can be investigated by means of the nonperturbative MFRTB method,
so that we may check whether the bulk SO interaction affects on the HOS-LUS gap or not.

In recent ESR experiments [28, 29], graphene sheet is deposited on the SiC substrate.
Due to the existence of substrate breaking of space inversion symmetry occurs. So, there
exists an asymmetric potential along the direction perpendicular to the graphene sheet.
This causes the effective magnetic field parallel to the plane of graphene sheet. This is
Rashba effect and it has grown tremendous interest in the field of spintronics [51, 52]. In
the nonperturbative MFRTB method, the effect of the substrate is not considered and
hence there is no breaking of space inversion symmetry in the system. This implies that
the Rashba-type SO interaction [50] is ignored in the nonperturbative MFRTB method.

Rashba effect gives rise to the additional Hamiltonian that is so called as the Rashba
Hamiltonian and modifies the energy spectrum of the electrons and introduces a splitting
on the electronic band [53]. Precisely, the work function causes this asymmetric potential.
Near the surface, electrons are controlled by this work function which spatially spread in
the region determine by electron density. Since, the magnetic field is the cross product
between the gradient of the asymmetric potential and the momentum of the electron [51],
this work function causes magnetic field which is in-plane direction of the graphene sheet.
This magnetic field is coupled with the spin magnetic moment, which forms a kind of SO
interaction. The spin magnetic moment may tilt towards the in-plane direction in the
presence of external magnetic field applied perpendicular to the graphene sheet. This
tilting of spin magnetic moment depends on strength of Rashba effect. Hence, Rashba
effect could be another potential source for the reduction of the g-factor in graphene [51].
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In this thesis, initially, nonperturbative MFRTB method is used to investigate the mag-
netic properties of graphene. We found that the sheet magnetization, the magnetic
moment per unit area, shows a characteristic dependence on the magnetic field. Investi-
gation on effect of the orbital diamagnetism and SO interaction in effective g-factor has
been made to quest for the reason why effective g-factor is smaller than that of a free
electron. As will be shown later, this method alone does not fully account for the reduc-
tion of g-factor in graphene. In order to address shortcoming of this method, we discuss
the reduction of effective g-factor by Rashba-type SO interaction by using empty lattice
model. As shown later, it explains satisfactorily that the primary cause for the reduction
of g-factor in graphene is the Rashba effect. As an extended work, we reformulate the
MFRTB method by incorporating Rashba effect in order to include the effects of the
orbital magnetic moment which is ignored in empty lattice model and then to re-evaluate
the diamagnetism of graphene.

This thesis is organized as follows. In chapter 2, nonperturbative MFRTB method is de-
scribed taking overlap integral into account. The shortcoming of Hofstadter and MFRTB
methods are addressed by the application range of nonperturbative MFRTB method from
the low to high magnetic field region by evaluating energy eigenvalue, hopping and overlap
integrals by means of nonperturbative method. In chapter 3, we apply nonperturbative
MFRTB method to graphene immersed in magnetic field. The magnetic properties of
graphene are investigated. Namely, the non-monotonic dependence of sheet magneti-
zation on magnetic field and the effect of orbital diamagnetism and SO interaction on
effective g-factor are discussed. The effect of the Rashba effect on the g-factor is discussed
in chapter 4. An empty lattice model mainly focusing on Rashba effect is utilized for
this purpose. Specifically, a procedure to calculate the reduction of the g-factor due to
Rashba effect is presented in section 4.1. Then an energy splitting at the K-point caused
by the Rashba effect is discussed in section 4.2. This energy splitting directly modifies
the energy band structure of graphene and reflects on the magnitude of the g-factor. The
details of the energy band structure are also described in section 4.3. Calculation of the
reduction of the g-factor carried out in section 4.4 based on a method that is appropriate
for the analysis of the results of the previously mentioned experiments on ESR. In order
to incorporate the Rashba effect into the nonpertubative MFRTB method, we need to
calculate the matrix elements of the Rashba Hamiltonian. In chapter 5, the nonpertur-
bative MFRTB method is reformulated to incorporate the Rashba effect. Finally, the
significance of this work and issues for future work that need to address are discussed in
chapter 6 .
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Chapter 2

Nonperturbative Magnetic Field
Containing Relativistic Tight
Binding (MFRTB) Method

In this chapter, we reformulate the MFRTB method by incorporating overlap integral. For
the approximation of matrix element of Hamiltonian and overlap matrices, the accuracy of
magnetic hopping integrals and overlap integrals has been improved by non-perturbative
method. The variational principle is used to calculate the eigenfunctions and eigenvalues
in the nonperturbative method.

2.1 Nonperturbative Magnetic Field Containing Rel-

ativistic Tight Binding (MFRTB) Method taking

overlap integral into account

When crystalline material is immersed in an uniform magnetic field, the electrons in the
system are influenced by both periodic potential of the crystal and the magnetic field.

The Dirac equation for an electron is given by [54]

HΦk(r) = EkΦk(r). (2.1)

with

H = cα · [p + eA(r)] + βmc2 +
∑
Rn

∑
i

Vai(r−Rn − di), (2.2)

where Vai(r − Rn − di) denotes the scalar potential caused by nucleus of an atom ai
located at Rn + di, Rn is translational vector of lattice, di is position vector of an atom
ai, A(r) is vector potential of uniform magnetic field, and c, e, and m denotes the veloc-
ity of light, elementary charge and rest mass of an electron respectively. The matrices
α = (αx, αy, αz) and β stand for 4×4 matrices.
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For a uniform magnetic field B = (0, 0, B) applied along the z-axis, the Landau gauge
used for A(r) is given by

A(r) = (0, Bx, 0), (2.3)

where B is magnitude of magnetic field. Φk is four component wave function for an elec-
tron in the uniform magnetic field where the subscript ‘k’ is the wave vector that belongs
to the magnetic first Brillouin Zone [38].

In the nonperturbative MFRTB method, Φk is expanded by using relativistic atomic
orbitals ψai,Rn+di

ξ (r) for constituent atoms immersed in the uniform magnetic field. Rel-
ativistic atomic orbitals obey the Dirac equation of an isolated atom located at Rn + di

and immersed in the uniform magnetic field. That is to say,

[cα · {p + eA(r)}+ βmc2 + Vai(r−Rn − di)]ψ
ai,Rn+di

ξ (r) = εai,Rn+di

ξ ψai,Rn+di

ξ (r),

(2.4)

where ψai,Rn+di

ξ and εai,Rn+di

ξ denote the relativistic atomic orbital and atomic spectrum
in the uniform magnetic field. The subscript ’ξ’ is the quantum number in atomic system.

Expanding Φk(r) in terms of relativistic wave function ψai,Rn+di

ξ (r) of atoms immersed
in the uniform magnetic field as a basis function , we have

Φk(r) =
∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)ψ

ai,Rn+di

ξ (r), (2.5)

where Cξ
k(Rn + di) is expansion coefficient which is to be determined. Substituting

Eq.(2.5) in Eq.(2.1), we get∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)Hψ

ai,Rn+di

ξ (r) = Ek

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)ψ

ai,Rn+di

ξ (r). (2.6)

Multiplying by ψ
aj ,Rm+dj
η (r)† on both sides of Eq.(2.6) and integrating with respect to r,

we get,∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)HRmjη,Rniξ = Ek

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)SRmjη,Rniξ, (2.7)

where HRmjη,Rniξ and SRmjη,Rniξ are Hamiltonian and Overlap matrices, respectively,
and they are given by

HRmjη,Rniξ =

∫
ψ
aj ,Rm+dj
η (r)†Hψai,Rn+di

ξ (r)d3r, (2.8)

SRmjη,Rniξ =

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r. (2.9)

Next, we rewrite, HRmjη,Rniξ and SRmjη,Rniξ. For this purpose, let’s rewrite Dirac Hamil-
tonian given by Eq.(2.2) in an uniform magnetic field as
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HRmjη,Rniξ =
1

2
[cα · {p + eAr}+ βm0c

2 + Vaj(r−Rm − dj) +
∑
l 6=j

Val(r−Rm − dl)

+
∑
k 6=m

∑
l

Val(r−Rk −dl)] +
1

2
[cα · {p + eAr}+ βm0c

2 + Vai(r−Rn−di)

+
∑
l 6=i

Val(r−Rn − dl) +
∑
k 6=n

∑
l

Val(r−Rk − dl)] (2.10)

Substituting Eq.(2.10) in Eq.(2.8), we have

HRmjη,Rniξ =
1

2
{εaj ,Rm+dj

η + εai,Rn+di

ξ }SRmjη,Rniξ

+
1

2

∑
l 6=j

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rm − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
l 6=i

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rn − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=n

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r. (2.11)

We consider the matrix element in two cases.

(i) Rm + dj = Rn + di

In this case, Eq.(2.11) becomes

HRmjη,Rniξ = εai,Rn+di

ξ δη,ξ +
∑
l 6=i

∫
ψai,Rn+di
η (r)†Val(r−Rm − dl)ψ

ai,Rn+di

ξ (r)d3r

+
∑
k 6=n

∑
l

∫
ψai,Rn+di
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r. (2.12)

The second and third terms of RHS of above equation represents the energy of
crystal field. So, above equation can be written as

HRmjη,Rniξ = εai,Rn+di

ξ δη,ξ + ∆εai,Rn+di

ξ δη,ξ, (2.13)

where ∆εai,Rn+di

ξ denotes the energy of crystal field and is given by

∆εai,Rn+di

ξ δη,ξ =

∫
ψai,Rn+di
η (r)†


∑
Rk

Rk+dl 6=Rn+di

∑
l

Val(r−Rk − dl)


×ψai,Rn+di

ξ (r)d3r. (2.14)
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(ii) Rm + dj 6= Rn + di

In this case, Eq.(2.11) becomes

HRmjη,Rniξ =
1

2
{εaj ,Rm+dj

η + εai,Rn+di

ξ }SRmjη,Rniξ

+
1

2

∑
l 6=j

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rm − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
l 6=i

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rn − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=n

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

=
1

2
{εaj ,Rm+dj

η + εai,Rn+di

ξ }
∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r

+
1

2

∑
l 6=j

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rm − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
l 6=i

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rn − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=n

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r. (2.15)

The second and third terms corresponds to the integral involving three centers.
Since, these integrals are generally smaller than other integral hence can be ne-
glected.

Now, let us take third integral

1

2

∑
k 6=m

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

=
1

2

∫
ψ
aj ,Rm+dj
η (r)†Vai(r−Rn − di)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m,n

∑
ν 6=i

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dν)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m

∑
l 6=i,ν

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r. (2.16)

Last two integrals of Eq.(2.16) are three center integral and can be neglected com-
pared to first. Then
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1

2

∑
k 6=m

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

≈ 1

2

∫
ψ
aj ,Rm+dj
η (r)†Vai(r−Rn − di)ψ

ai,Rn+di

ξ (r)d3r. (2.17)

Similarly, let us take fourth integral of Eq.(2.15), we have

1

2

∑
k 6=n

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

=
1

2

∫
ψ
aj ,Rm+dj
η (r)†Vai(r−Rm − dj)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m,n

∑
µ 6=i

∫
ψ
aj ,Rm+dj
η (r)†Vaµ(r−Rk − dµ)ψai,Rn+di

ξ (r)d3r

+
1

2

∑
k 6=m

∑
l 6=i,µ

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r. (2.18)

Again, we neglect the three center integrals of Eq.(2.18), then we have

1

2

∑
k 6=n

∑
l

∫
ψ
aj ,Rm+dj
η (r)†Val(r−Rk − dl)ψ

ai,Rn+di

ξ (r)d3r

≈ 1

2

∫
ψ
aj ,Rm+dj
η (r)†Vaj(r−Rm − dj)ψ

ai,Rn+di

ξ (r)d3r. (2.19)

Thus, from Eqs.(2.15), (2.17) and (2.19), we have

HRmjη,Rniξ ≈
1

2
{εaj ,Rm+dj

η + εai,Rn+di

ξ }
∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r

+
1

2

∫
ψ
aj ,Rm+dj
η (r)†Vai(r−Rn − di)ψ

ai,Rn+di

ξ (r)d3r

+
1

2

∫
ψ
aj ,Rm+dj
η (r)†Vaj(r−Rm − dj)ψ

ai,Rn+di

ξ (r)d3r.

Rearranging the above equation, we get

HRmjη,Rniξ ≈
∫
ψ
aj ,Rm+dj
η (r)†

[
V η
aj

(r−Rm − dj) + V ξ
ai

(r−Rn − di)

2

]
×ψai,Rn+di

ξ (r)d3r, (2.20)

where

V η
aj

(r−Rm − dj) = ε
aj ,Rm+dj
η + Vaj(r−Rm − dj), (2.21)

V ξ
ai

(r−Rn − di) = εai,Rn+di

ξ + Vai(r−Rn − di). (2.22)

Finally, summarizing above two cases, Eq.(2.8) becomes

HRmjη,Rniξ ≈ (εai,Rn+di

ξ + ∆εai,Rn+di

ξ )δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

×
∫
ψ
aj ,Rm+dj
η (r)†

[
V η
aj

(r−Rm − dj) + V ξ
ai

(r−Rn − di)

2

]
× ψai,Rn+di

ξ (r)d3r. (2.23)
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Similarly, for same cases, the overlap matrix given by Eq.(2.9) becomes

(i) Rm + dj = Rn + di

SRmjη,Rniξ = δRm,Rnδj,iδη,ξ. (2.24)

(ii) Rm + dj 6= Rn + di

SRmjη,Rniξ =

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r. (2.25)

Summarizing these two cases, we have the overlap matrix as

SRmjη,Rniξ = δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r. (2.26)

From Eq.(2.4), Dirac equation for an atom immersed in uniform magnetic field and
located at origin is given by[

cα · {p + eA(r)}+ βmc2 + Vai(r)
]
ψai,0ξ (r) = εai,0ξ ψai,0ξ (r). (2.27)

Changing variables r to r−Rn − di , we have[
cα · {p + eA(r−Rn − di)}+ βmc2 + Vai(r−Rn − di)

]
ψai,0ξ (r−Rn − di)

= εai,0ξ ψai,0ξ (r−Rn − di).

(2.28)

As A(r−Rn − di) and A(r) yield same magnetic field B, they can be related by a gauge
transformation as

A(r−Rn − di) = A(r) +∇χ(r,Rn + di). (2.29)

From Eqs.(2.3) and (2.29), we have

χ(r,Rn + di) = −B(Rnx + dix)y. (2.30)

Vector potentials at Eqs.(2.4) and (2.28) are different from each other by the choice of
the gauge given by Eq.(2.28). So, eigenfunctions and eigenvalues of each Eqs.(2.4) and
(2.28) are related as

ψai,0ξ (r−Rn − di) = e−i
e
~χ(r,Rn+di)ψai,Rn+di

ξ (r) (2.31)

and

εai,0ξ = εai,Rn+di

ξ . (2.32)

In addition, we have from Eqs.(2.14) and (2.31),

∆εai,diξ = ∆εai,Rn+di

ξ = ∆εai,0ξ . (2.33)
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Using Eqs.(2.31), (2.32) and (2.33), the Hamiltonian matrix is given by Eq.(2.23) becomes

HRmjη,Rniξ = (εai,0ξ + ∆εai,diξ )δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

× e−i
eB
~ (Rnx+dix−Rmx−djx)(Rmy+djy)T̃

aj ,ai
η,ξ (Rn −Rm + di − dj), (2.34)

with

T̃
aj ,ai
η,ξ (Rn−Rm + di−dj) =

∫
ψ
aj ,Rm+dj
η (r)†

(
V η
aj

(r−Rm − dj) + V ξ
ai

(r−Rn − di)

2

)
× ψai,Rn+di

ξ (r)d3r.

(2.35)

Changing the variables r→ r′ −Rm − dj with Rl → Rn −Rm, Eq.(2.35) becomes

T̃
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†

[
V η
aj

(r) + V ξ
ai

(r−Rl − di + dj)

2

]
ψ
ai,Rl+di−dj

ξ (r)d3r.

(2.36)

Using Eqs.(2.21), (2.22) and (2.32), Eq.(2.36) becomes

T̃
aj ,ai
η,ξ (Rl + di − dj) = T

aj ,ai
η,ξ (Rl + di − dj) +

(
ε
aj ,0
η + εai,0ξ

2

)
S
aj ,ai
η,ξ (Rl + di − dj),

(2.37)

with

T
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†

[
Vaj(r) + Vai(r−Rl − di + dj)

2

]
ψ
ai,Rl+di−dj

ξ (r)d3r,

(2.38)

S
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†ψ

ai,Rl+di−dj

ξ (r)d3r. (2.39)

Eqs.(2.38) and (2.39) are the magnetic hopping integral and magnetic overlap integral
respectively. Hence, the Hamiltonian matrix given by Eq.(2.34) becomes

HRmjη,Rniξ = (εai,0ξ + ∆εai,diξ )δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

× e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)T̃

aj ,ai
η,ξ (Rl + di − dj). (2.40)

Similarly, the overlap matrix given by Eq.(2.26) can be written as

SRmjη,Rniξ = δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

× e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)S

aj ,ai
η,ξ (Rl + di − dj). (2.41)
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Substituting Eqs.(2.40) and (2.41) in Eq.(2.7), we get

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(Rm + dj) +
∑
i

∑
Rn

∑
ξ

(1− δRm,Rnδj,i)

× e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)T̃

aj ,ai
η,ξ (Rl + di − dj)C

ξ
k(Rn + di)

= Ek

[
Cη

k(Rm + dj) +
∑
i

∑
Rn

∑
ξ

(1− δRm,Rnδj,i)

×e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)S

aj ,ai
η,ξ (Rl + di − dj)

]
Cξ

k(Rn + di).

(2.42)

For convenience, let T
W

(dj) is the vectors connecting aj atom to ai atom which is in-
dependent of Rm but depends on dj. {W = 1, 2, 3...}. By using this symbol Eq.(2.42)
becomes

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(Rm + dj) +
∑
W

∑
η

e−i
eB
~ T

Wx
(dj)(Rmy+djy)

× T̃ aj ,aiη,ξ {TW
(dj)}Cξ

k{TW
(dj) + Rm + dj}

= Ek

[
Cη

k(Rm + dj) +
∑
W

∑
η

e−i
eB
~ T

Wx
(dj)(Rmy+djy)S

aj ,ai
η,ξ {TW

(dj)}

]
× Cξ

k{TW
(dj) + Rm + dj}.

(2.43)

Solving this simultaneous equation, the energy eigenvalue Ek and the coefficient
CnlJM

k (Rn + di) can be obtained. In order to solve this equation, we need the values of
T
aj ,ai
η,ξ {TW

(dj)} and S
aj ,ai
η,ξ {TW

(dj)}. In the following section, the approximation of these
matrix elements will be discussed.

2.2 Approximation of the matrix elements

Matrix elements of Hamiltonian matrix Eq.(2.40) and Overlap matrix Eq.(2.41) can be
calculated with the estimation of T

aj ,ai
η,ξ (Rl + di − dj), S

aj ,ai
η,ξ (Rl + di − dj) and εai,0ξ and

∆εai,diξ by using nonperturbative method. In order to estimate these parameters, let’s
consider the Dirac equation Eq.(2.4), for an isolated atom that is located at origin and
immersed in uniform magnetic field:[

cα · {p + eA(r)}+ βmc2 + Vai(r)
]
ψai,0ξ (r) = εai,0ξ ψai,0ξ (r). (2.44)

The variational principle is used to evaluate the eigenfunctions and eigenvalues of Eq.(2.44)
in the nonperturbative MFRTB method [43]. In particular, we consider matrix elements
of the Hamiltonian of Eq.(2.44) by using finite number of relativistic atomic orbitals
{φainlJM(r)} as a basis function [43], where {φainlJM(r)} denotes the relativistic atomic or-
bital for the atom ai in the absence of the magnetic field.

The Dirac equation for an isolated atom is given by

H0φ
ai
nlJM(r) = ε̄ainlJφ

ai
nlJM(r), (2.45)
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where

H0 = cα · p + βmc2 + Vai(r). (2.46)

Let us consider the following matrix,

Hn′l′J ′M ′,nlJM =

∫
φain′l′J ′M ′(r)†

[
cα · {p + eAsym(r)}+ βmc2 + Vai(r)

]
φainlJM(r)d3r

=

∫
φain′l′J ′M ′(r)†

[
cα · p + βmc2 + Vai(r)

]
φainlJM(r)d3r

+

∫
φain′l′J ′M ′(r)† {ceα ·Asym(r)}φainlJM(r)d3r

= ε̄ainlJδn′,nδl′,lδJ ′,J +H ′n′l′J ′M ′,nlJM , (2.47)

with

H ′n′l′J ′M ′,nlJM =

∫
φain′l′J ′M ′(r)† {ceα ·Asym(r)}φainlJM(r)d3r, (2.48)

where Asym(r) is the vector potential in the symmetric gauge, and is given by
(
−B

2
y, B

2
x, 0
)

Also we have, Pauli’s spin matrices as:

αx =
(

0 σx
σx 0

)
, αy =

(
0 σy
σy 0

)
and αz =

(
0 σz
σz 0

)
. (2.49)

From Eq.(2.48) and Eq.(2.49),we have

H ′n′l′J ′M ′,nlJM = ce

∫
φaiη (r)†

{
Asym(r) ·

(
0 σ
σ 0

)}
φaiξ (r)d3r. (2.50)

The eigenfunction of H0 is given as the relativistic atomic orbital;

φainlJM =
1

r

(
fainlJM(r)

gainlJM(r)

)
(2.51)

with

fainlJM(r) =
1

r
F ai
nlJM(r)yMl,J(θ, φ), (2.52)

gainlJM(r) =
1

r
Gai
nlJM(r)yMl,J(θ, φ). (2.53)

Eqs.(2.52) and (2.53) are large and small components of unperturbed wave function
ϕainlJM(r). The function yMl,J(θ, φ) denotes the spinor spherical harmonics:

yMl,J(θ, φ) =



√
J +M

2J
Yl,M− 1

2
(θ, φ)√

J −M
2J

Yl,M+ 1
2
(θ, φ)

 for J = l +
1

2

−
√
J + 1−M
2(J + 1)

Yl,M− 1
2
(θ, φ)√

J + 1 +M

2(J + 1)
Yl,M+ 1

2
(θ, φ)

 for J = l − 1

2

(2.54)
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The small component of φainlJM(r) can be approximated by [54]

gainlJM(r) ≈ 1

2mc
(σ · p)fainlJM(r). (2.55)

Under this approximation, Eq.(2.50) reduces to

H ′n′l′J ′M ′,nlJM ≈
e

2m

∫
f
aj
n′l′J ′M ′(r)† {B.(L + 2S)} fainlJM(r)d3r (2.56)

with S = ~
2
σ.

Since magnetic field is along z-axis, we have

B · (L + 2S) = B
(
Lz + ~ 0

0 Lz − ~
)
. (2.57)

Let’s calculate the matrix element of the H ′n′l′J ′M ′,nlJM for following cases:

(i) J ′ = l′ +
1

2
and J = l +

1

2
,

(ii) J ′ = l′ +
1

2
and J = l − 1

2
,

(iii) J ′ = l′ − 1

2
and J = l +

1

2
,

(iv) J ′ = l′ − 1

2
and J = l − 1

2
.

Using Eqs.(2.54), (2.55), (2.56) and (2.57), we calculate the matrix element for above
mentioned cases:

(i) J ′ = l′ +
1

2
and J = l +

1

2
Using Eqs.(2.54), (2.55), (2.56) and (2.57), we have

H ′n′l′J ′M ′,nlJM =
eB~
2m

{√
(J ′ +M ′)(J +M)

4J ′J

(
M +

1

2

)

+

√
(J ′ −M ′)(J −M)

4J ′J

(
M − 1

2

)}
δl′,lδJ ′,JδM ′,M

×
∫ ∞

0

F ai
n′l′J ′(r)

†F ai
nlJ(r)dr. (2.58)

Taking in mind the fact that J ′ = J if l′ = l, the integral in Eq.(2.58) is approxi-
mated as δn′,n due to orthogonality of φainlJM(r)

So, Eq.(2.58) becomes,

H ′n′l′J ′M ′,nlJM =
eB~
2m0

(
2J + 1

2J

)
Mδn′,nδl′,lδJ ′,JδM ′,M . (2.59)

From Eqs.(2.47) and (2.59), we finally have the matrix element of the total Hamil-
tonian as

Hn′l′J ′M ′,nlJM = ε̄ainlJδn′,nδl′,lδJ ′,J +
eB~
2m

(
2J + 1

2J

)
Mδn′,nδl′,lδJ ′,JδM ′,M . (2.60)
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(ii) J ′ = l′ +
1

2
and J = l − 1

2

In a way similar to case (i), we have

H ′n′l′J ′M ′,nlJM =
eB~
2m

{
−

√
(J ′ +M ′)(J + 1−M)

4J ′(J + 1)

(
M +

1

2

)

+

√
(J ′ −M ′)(J + 1 +M)

4J ′(J + 1)

(
M − 1

2

)}
δl′,lδM ′,M

×
∫ ∞

0

F ai
n′l′J ′(r)

†F ai
nlJ(r)dr. (2.61)

In the case where l′ = l, we have J ′ = J + 1. So, Eq.(2.61) becomes

H ′n′l′J ′M ′,nlJM =
eB~
2m

{
1

2(J + 1)

[
−
√

(J + 1 +M ′)(J + 1−M)

(
M +

1

2

)
+
√

(J + 1−M ′)(J + 1 +M)

(
M − 1

2

)]}
× δl′,lδJ ′,J+1δM ′,MSnlJ , (2.62)

where

SnlJ =

∫ ∞
0

F ai
nlJ+1(r)†F ai

nlJ(r)dr. (2.63)

From Eqs.(2.47), (2.62) and (2.63), we have the matrix element of the total Hamil-
tonian as

Hn′l′J ′M ′,nlJM = ε̄ainlJδn′,nδl′,lδJ ′,J−
eB~
2m

{
1

2(J + 1)

[√
(J + 1 +M ′)(J + 1−M)

]}
× δl′,lδJ ′+1,JδM ′,MSnlJ . (2.64)

(iii) J ′ = l′ − 1

2
and J = l +

1

2

In a way similar to the case (i), we have

H ′n′l′J ′M ′,nlJM =
eB~
2m

{
−

√
(J +M)(J ′ + 1−M ′)

4J(J ′ + 1)

(
M +

1

2

)

+

√
(J −M)(J ′ + 1 +M ′)

4J(J ′ + 1)

(
M − 1

2

)}
δl′,lδM ′,M

×
∫ ∞

0

F ai
n′l′J ′(r)

†F ai
nlJ(r)dr. (2.65)
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In the case where l′ = l, we have J ′ = J − 1 So, Eq.(2.65) becomes

H ′n′l′J ′M ′,nlJM =
eB~
2m

{
1

2J

[
−
√

(J +M)(J −M ′)

(
M +

1

2

)
+
√

(J −M)(J +M ′)

(
M − 1

2

)]}
δl′,lδJ ′,J−1δM ′,MS

∗
nlJ . (2.66)

From Eqs.(2.47) and (2.66), we have the matrix element of the total Hamiltonian
as

Hn′l′J ′M ′,nlJM = ε̄ainlJδn′,nδl′,lδJ ′,J −
eB~
2m

{
1

2J

[√
(J +M)(J −M ′)

]}
× δl′,lδJ ′,J−1δM ′,MS

∗
nlJ . (2.67)

(iv) J ′ = l′ − 1

2
and J = l − 1

2

In a way similar to the case (i), we have

H ′n′l′J ′M ′,nlJM =
eB~
2m

{√
(J ′ + 1−M ′)(J + 1−M)

4(J ′ + 1)(J + 1)

(
M +

1

2

)

+

√
(J ′ + 1 +M ′)(J + 1 +M)

4(J ′ + 1)(J + 1)

(
M − 1

2

)}
δl′,lδM ′,M

×
∫ ∞

0

F ai
n′l′J ′(r)

†F ai
nlJ(r)dr. (2.68)

If l′ = l, then we have J ′ = J . So, Eq.(2.68) becomes,

H ′n′l′J ′M ′,nlJM =
eB~
2m

{
(2J + 1)

2(J + 1)

}
Mδn′,nδl′,lδJ ′,JδM ′,M . (2.69)

From Eqs.(2.47 and 2.69), we have the matrix element of the total Hamiltonian as

Hn′l′J ′M ′,nlJM = ε̄ainlJδn′,nδl′,lδJ ′,J +
eB~
2m

{
(2J + 1)

2(J + 1)

}
Mδn′,nδl′,lδJ ′,JδM ′,M . (2.70)

Now, to derive the matrix elements of Hamiltonian HnlJM ′,nlJM , only the outermost
atomic orbitals are taken into consideration. First, let’s obtain the matrix elements
corresponding to the following unperturbed atomic states:
(a) (n, l, J,M) with J = l + 1

2
, M = ±J for all l,

(b) (n, l, J − 1,M) and (n, l, J,M) with J = l + 1
2
, M 6= ±J for l 6= 0.

(a) Matrix elements of Hamiltonian HnlJM ′,nlJM corresponding to unperturbed atomic
states (n, l, J,M) with J = l + 1

2
, M = ±J for all l.

For this case, Matrix elements of Hamiltonian HnlJM ′,nlJM can be obtained by con-
sidering the interaction between (n′, l′, J ′,M ′) and (n, l, J,M) atomic states and by
using Eq.(2.60).
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Since J ′ = J and M ′ = M , Eq.(2.60) can be written as

Hn′l′J ′M ′,nlJM = ε̄ainlJ +
eB~
2m

(
2J + 1

2J

)
M

= ε̄ainlJ ±
eB~
4m

(2J + 1) . (2.71)

(b) Matrix elements of Hamiltonian HnlJM ′,nlJM corresponding to (n, l, J − 1,M) and
(n, l, J,M) with J = l + 1

2
; M 6= ±J for l 6= 0.

We may have following interactions in general: (n′, l′, J ′− 1,M ′) and (n, l, J − 1,M),
(n′, l′, J ′−1,M ′) and (n, l, J,M), (n′, l′, J ′,M ′) and (n, l, J−1,M) and (n′, l′, J ′,M ′)
and (n, l, J,M). The matrix elements from the interactions between these unper-
turbed atomic states are shown in the Table 2.1. In the table, we use following
symbol:

Z =
eB~
2m

(2.72)

Table 2.1: Matrix element of Hamiltonian corresponding to (n, l, J−1,M) and (n, l, J,M)
with J = l + 1

2
; M 6= ±J for l 6= 0.

(n, l, J − 1,M) (n, l, J,M)

(n′, l′, J ′ − 1,M ′) ε̄ainlJ + Z
(2J − 1)

2J
M −Z

√
J2 −M2

2J
SnlJ

(n′, l′, J ′,M ′) −Z
√
J2 −M2

2J
S∗nlJ ε̄ainlJ + Z

(2J + 1)

2J
M

Finally, diagonalizing the resultant matrix Hn′l′J ′M ′,nlJM , we obtained eigenvalues and
eigenfunctions corresponding to above mentioned unperturbed atomic states.

The eigenvalues corresponding to (n, l, J,M) with J = l + 1
2
; M = ±J for l 6= 0 can

be obtained from Eq.(2.71) and is given by

εai,0ξ = ε̄ainlJ ±
eB~
4m

(2J + 1) , (2.73)

and corresponding eigenfunctions are given by

ψai,0ξ (r) = φainlJ±J(r). (2.74)

The eigenvalues corresponding to unperturbed atomic states (n, l, J−1,M) and (n, l, J,M)
with J = l + 1

2
; M 6= ±J for l 6= 0 can be obtained as follows:

|Hn′l′J ′M ′,nlJM − λI| = 0
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or ∣∣∣∣∣∣∣∣∣
ε̄ainlJ−1 + Z

(2J − 1)

2J
M − λ −Z

√
J2 −M2

2J
SnlJ

−Z
√
J2 −M2

2J
S∗nlJ ε̄ainlJ + Z

(2J + 1)

2J
M − λ

∣∣∣∣∣∣∣∣∣ = 0.

Therefore, we have

λ2 − λ
(
ε̄ainlJ + ε̄ainlJ−1 + 2ZM

)
+

{
ε̄ainlJ ε̄

ai
nlJ−1 +

ZM

2J
[(2J − 1)ε̄ainlJ

+(2J + 1)ε̄ainlJ−1

]
+

Z2

4J2

[
(4J2 − 1)M2 − (J2 −M2)|SnlJ |2

]}
= 0.

(2.75)

Solving this quadratic equation, we get the value of λ as an eigenvalues corresponding to
the unperturbed atomic states (n, l, J − 1,M) and (n, l, J,M). So, we have,

λ =
ε̄ainlJ + ε̄ainlJ−1

2
+
eB~
2m

M ±
ε̄ainlJ − ε̄

ai
nlJ−1

2

√
1 + 2

M

J
xnl +

(J2 −M2)|SnlJ |2 +M2

J2
x2
nl,

(2.76)

with

xnl =
eB~/2m

ε̄ainlJ − ε̄
ai
nlJ−1

. (2.77)

Hence, the eigenvalues are:

εai,0ξ =
ε̄ainlJ + ε̄ainlJ−1

2
+
eB~
2m

M±
ε̄ainlJ − ε̄

ai
nlJ−1

2

√
1 + 2

M

J
xnl +

(J2 −M2)|SnlJ |2 +M2

J2
x2
nl.

(2.78)

The plus and minus sign in Eq.(2.78) corresponds to unperturbed atomic states (n, l, J,M)
and (n, l, J − 1,M) respectively.

Let the eigenvectors corresponding to Hn′l′J ′M ′,nlJM be
(
a
b

)
. Then we have

(Hn′l′J ′M ′,nlJM − λI)
(
a
b

)
= 0.

Then, we obtain the following equations:{
εainlJ−1 + Z

(2J − 1)

2J
M

}
a−

{
Z

√
J2 −M2

2J
SnlJ

}
b = λa, (2.79)

{
−Z
√
J2 −M2

2J
SnlJ

}
a+

{
εainlJ + Z

(2J + 1)

2J
M

}
b = λb. (2.80)
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First, let us consider the plus sign in Eq.(2.76). Taking Eqs.(2.76 and 2.80), we have

a

b
=

2J

ZSnlJ
√
J2 −M2

{
ε̄ainlJ + Z

(2J + 1)

2J
M − ε̄ainlJ

2
−
ε̄ainlJ−1

2
− ZM

−
(ε̄ainlJ − ε̄

ai
nlJ−1)

2

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

=
2J

ZSnlJ
√
J2 −M2

{
ε̄ainlJ − ε̄

ai
nlJ−1

2
+
ZM

2J
−
ε̄ainlJ − ε̄

ai
nlJ−1

2

×
√

1 + 2
M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

=
J

SnlJ
√
J2 −M2

(ε̄ainlJ − ε̄
ai
nlJ−1)

Z

{
1 +

M

J

Z

(ε̄ainlJ − ε̄
ai
nlJ−1)

−
√

1 + 2
M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

=
J

SnlJ
√
J2 −M2xnl

{
1 +

M

J
xnl −

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}
.

(2.81)

Here, we introduce the symbol ηainlJM defined by

ηainlJM =
J

SnlJ
√
J2 −M2xnl

{
1 +

M

J
xnl −

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}
(2.82)

which hereafter is referred to the mixing coefficient.

From Eqs.(2.81) and (2.82), we have

a = ηainlJMb. (2.83)

Hence, the normalized eigenvectors are given by(
a
b

)
=

1√
1 + (ηainlJM)2

(
ηainlJM

1

)
. (2.84)

Hence, the corresponding eigenfunction is linear combination of eigenvectors. i.e.

ψai,0ξ (r) =
φainlJM(r) + ηainlJMφ

ai
nlJ−1M(r)√

1 + (ηainlJM)2
. (2.85)
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Now, let us consider the minus sign in Eq.(2.76). From Eqs.(2.76) and (2.79), we have

b

a
=

2J

ZSnlJ
√
J2 −M2

{
ε̄ainlJ−1 + Z

(2J − 1)

2J
M − ε̄ainlJ

2
−
ε̄ainlJ−1

2
− ZM

+
(ε̄ainlJ − ε̄

ai
nlJ−1)

2

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

=
2J

ZSnlJ
√
J2 −M2

{−(ε̄ainlJ − ε̄
ai
nlJ−1)

2
+ ZM

(
2J − 1

2J
− 1

)
+
ε̄ainlJ − ε̄

ai
nlJ−1

2

×
√

1 + 2
M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

= − J

SnlJ
√
J2 −M2

(ε̄ainlJ − ε̄
ai
nlJ−1)

Z

{
1 +

M

J

Z

(ε̄ainlJ − ε̄
ai
nlJ−1)

−
√

1 + 2
M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}

= − J

SnlJ
√
J2 −M2xnl

{
1 +

M

J
xnl −

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}
.

(2.86)

Here we introduce the symbol ηainlJ−1M that is defined as

ηainlJ−1M = − J

SnlJ
√
J2 −M2xnl

{
1 +

M

J
xnl −

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}
.

(2.87)

This implies that

ηainlJM = −ηainlJ−1M (2.88)

=
J

SnlJ
√
J2 −M2xnl

{
1 +

M

J
xnl −

√
1 + 2

M

J
xnl +

(J2 −M2)S2
nlJ +M2

J2
x2
nl

}
.

(2.89)

From Eqs.(2.86) and (2.87), we have

b = ηainlJ−1Ma. (2.90)

Hence, the normalized eigenvectors are given by(
a
b

)
=

1√
1 + (ηainlJ−1M)2

(
1

ηainlJ−1M

)
. (2.91)

Hence, the corresponding eigenfunction is linear combination of eigenvectors. i.e.

ψai,0ξ (r) =
φainlJ−1M(r) + ηainlJ−1Mφ

ai
nlJM(r)√

1 + (ηainlJ−1M)2
. (2.92)
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In summary, the eigenfunction is given by

ψai,0ξ (r) =



φainlJM(r) + ηainlJMφ
ai
nlJ−1M(r)√

1 + (ηainlJM)2
for (n, l, J,M),M 6= J

φainlJ−1M(r) + ηainlJ−1Mφ
ai
nlJM(r)√

1 + (ηainlJ−1M)2
for (n, l, J − 1,M).

(2.93)

Evidently, in low magnetic field, i.e. xnl � 1, Eqs.(2.73), (2.74), (2.78), (2.89) and (2.93)
produce the same results of perturbation theory. Substituting Eqs.(2.74) and (2.93) in
to Eqs.(2.38) and (2.39), approximated form of magnetic hopping and overlap integral
can be obtained. Both T

ajai
η,ξ (Rl + di − dj) and S

ajai
η,ξ (Rl + di − dj) can be expressed as

a linear combination of relativistic hopping integrals and overlap integrals in the absence
of magnetic field. The approximated form of T

ajai
η,ξ (Rl + di − dj) for l = 0 and 1 are

summarized in Table I of Ref. [43]. The derivation of some of hopping integrals are
presented in Appendix:A. Similarly, the approximated form of S

ajai
η,ξ (Rl + di − dj) can

easily be obtained by replacing hopping integrals by overlap integrals in Table I of Ref.
[43].

Moreover, for xnl � 1 (high magnetic field), Eq.(2.78) can be approximated as

εai,0ξ ≈
(ε̄ainlJ − ε̄

ai
nlJ−1)

2
+
e~B
2m

(
M ± 1

2

)
. (2.94)

The second terms of Eq.(2.73) and Eq.(2.94) corresponds to the energy shift due to
Paschen-Back effect [55]. Therefore, Eqs.(2.73) and (2.78) and magnetic hopping inte-
grals listed in the Table I of Ref. [43] are treated as the corrected expressions which
include both Zeeman effect and Paschen-Back effect. Thus, the nonperturbative MFRTB
method enables us to calculate electronic structure of the material not only in low mag-
netic field (Zeeman effect) but also in high magnetic field case (Paschen-Back effect).

Hence, under the approximation that neglecting atomic orbitals other than the outer-
most ones, we obtained energy eigenvalue εai,0ξ and eigenfunction ψai,0ξ (r) as given by
Eqs.(2.78) and (2.93). Furthermore, their approximated form for s(l = 0) and p(l = 1)
orbitals [see, Appendix B] are given by

εai,0ξ =



ε̄ai
n0 1

2

± e~B
2m0

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
+
e~B
4m

+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
+
e~B
4m
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
− e~B

4m
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
− e~B

4m
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

± e~B
m

(2.95)
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and

ψai,0ξ =



φai
n0 1

2
± 1

2

(r)

φai
n1 3

2
1
2

(r) + ηai+φ
ai
n1 1

2
1
2

(r)√
1 + ηai

2

+

−ηai+φ
ai
n1 3

2
1
2

(r) + φai
n1 1

2
1
2

(r)√
1 + ηai

2

+

φai
n1 3

2
− 1

2

(r) + ηai−φ
ai
n1 1

2
− 1

2

(r)√
1 + ηai

2

−

−ηai−φain1 3
2
− 1

2

(r) + φai
n1 1

2
− 1

2

(r)√
1 + ηai

2

−

φai
n1 3

2
± 1

2

(r),

(2.96)

with

ηai± =
3

2
√

2Snlxnl

{
1± xnl

3
−
√

1± 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
(2.97)

and

xnl =
e~B/2m
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

, (2.98)

where ε̄ainlJ and Snl denote the atomic spectrum in the absence of magnetic field and inner
product between φai

n1 3
2
M

(r) and φai
n1 1

2
M

(r) respectively. Here, note that Eqs.(2.95, 2.96,

2.97, and 2.98) are reduced to results of the perturbation theory in the low magnetic field
so that magnetic hopping integral calculated via Eqs.(2.96, 2.97, and 2.98) are regarded
as an improved version of magnetic hopping integrals calculated by Peierls Phase [43].

Hopping integrals and overlap integrals in the absence of magnetic field can be expressed
in terms of several relativistic tight-binding (TB) parameters, which is summarized in
the relativistic version of the Slater-Koster table [38]. Specific values of relativistic TB
parameters for graphene are given in Sec.3.4.
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Chapter 3

Application of Nonperturbative
Magnetic Field Containing
Relativistic Tight Binding (MFRTB)
Method to graphene

In this chapter, we apply the nonperturbative MFRTB method to graphene immersed in
uniform magnetic field to investigate its magnetic property. First we reduce the simulta-
neous Eq.(2.43) via magnetic Bloch theorem to obtain the concrete equation with finite
number of expansion coefficients. As an application of nonperturbative MFRTB mehod,
we calculate the diamagnetic property of graphene using this method and find out the
cause of the reduction in g-factor of graphene.

3.1 Magnetic Bloch theorem for graphene

Let us take two-dimensional honeycomb lattice of graphene with lattice constant a as
shown in Fig. 3.1. The lattice vector is given by

Rn = n1a1 + n2a2, (3.1)

where n1 and n2 are integers.

 

B 

A 

a2 a1 

Figure 3.1: Honeycomb lattice of graphene
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The vectors a1 and a2 are the primitive vectors of honeycomb lattice that are defined as

a1 =
a

2
ex +

√
3a

2
ey, (3.2)

a2 = −a
2
ex +

√
3a

2
ey. (3.3)

The unit cell of graphene has two atoms, say at A and B positions. So, the vectors di

(i=A or B) are given by

dA = (0,
a√
3

) =
a√
3
ey, (3.4)

dB = (0,
2a√

3
) =

2a√
3
ey. (3.5)

Let us consider the set of magnetic translation operators that commute with each other.
The magnetic translation operator U(Rn) is defined by [38]

U(Rn) = ei
e
~χ(r,Rn)T (Rn), (3.6)

where T (Rn) denotes the usual translation operator which is given by [56]

T (Rn) = e−iRn·p~ . (3.7)

and χ(r,Rn) is the gauge transformation function, which is given by

A(r−Rn) = A(r) +∇χ(r,Rn). (3.8)

Referring to the Eq.(2.3), in case of landau gauge, χ(r,Rn) can be written as

χ(r,Rn) = −BRnxy. (3.9)

It is evident that U(Rn) commutes with the Hamiltonian Eq.(2.2) [38]. Which means

[U(Rn), H] = 0. (3.10)

Using Eqs.(2.30) and (3.6), multiplication of two magnetic translation operators U(Rn)
and U(Rm) yields

U(Rn)U(Rm) = ei
e
~ [χ(r,Rn)+χ(r−Rn,Rm)−χ(r,Rn+Rm)]U(Rn + Rm). (3.11)

Using Eq.(3.9), Eq.(3.11) leads to

U(Rn)U(Rm) = ei
e
~BRmxRnyU(Rn + Rm), (3.12)

U(Rm)U(Rn) = ei
e
~BRnxRmyU(Rm + Rn). (3.13)

From Eqs.(3.12) and (3.13), we have

U(Rn)U(Rm) = ei
e
~B(RmxRny−RnxRmy)U(Rm)U(Rn). (3.14)
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In order to form a set of an Abelian group of magnetic translation operators, the magni-
tude of magnetic field is supposed to be expressed by

B =
8π~√
3ea2

p

q
, (3.15)

Where p and q are relatively prime integers [57–59].

Substituting the value of B in Eq.(3.14), we have

U(Rn)U(Rm) = e2πi p
q

[(m1−m2)(n1+n2)−(n1−n2)(m1+m2)]U(Rm)U(Rn). (3.16)

Let us consider the set of magnetic translation operators such as,

{U(tn)|tn = n1a1
M + n2a2

M}, (3.17)

with a1
M = aex and a2

M = qa2, then it is shown that from Eq.(3.16), this set forms an
abelian group with a maximal order [38]. The vectors a1

M and a2
M are primitive vectors

of magnetic unit cell. Therefore, the area of the magnetic unit cell is q times as large as
that of the unit cell.

Consequently, we have

U(tn)U(tm) = U(tm)U(tn). (3.18)

In general the eigenfunctions of the Hamiltonian, Φk(r), which belongs to a degenerate
level, form basis functions of the irreducible representation (IRs) of the symmetric group
of Hamiltonian [60]. This symmetric group of Hamiltonian contains an operator that
commutes with the Hamiltonian. So, eigenfunction of Hamiltonian can be the basis
functions of IRs of the Abelian group Eq.(3.17) [38]. we have

U(tn)Φk(r) = C(tn)Φk(r), (3.19)

where C(tn) is the IR of Abelian group.

Since it is clear that H,U(tn), U(t′n), U(t′′n)....... all commutes with each other , they
must have simultaneous eigenfunction, Φk(r). Then we have from Eq.(2.1)

HΦk(r) = EΦk(r). (3.20)

Operating by U(tn) on both sides of Eq.(3.20), we have

U(tn)HΦk(r) = E{U(tn)Φk(r)}. (3.21)

As we know [H,U(tn)] = 0, above Eq.(3.21) can be written as

H{U(tn)Φk(r)} = E{U(tn)Φk(r)}. (3.22)

This shows that U(tn)Φk(r) is also an eigenfunction of Hamiltonian H. So, Φk(r) and
U(tn)Φk(r) are related to each other by gauge transformation.

Normalization of Eq.(3.19) yields

C(tn) = e−2πiki , (3.23)
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where ki is a real number. So, Eq.(3.19) becomes

U(tn)Φk(r) = e−2πikiΦk(r). (3.24)

The magnetic first Brillouin zone is defined as the Wigner-Seitz cell in the reciprocal
lattice spanned by magnetic reciprocal lattice vectors, say b1

M and b2
M . Then, the wave

vector k is defined by

k = k1b1
M + k2b2

M , (3.25)

with

b1
M =

2π

a

(
ex +

1√
3
ey

)
, (3.26)

b2
M =

4π√
3aq

ey. (3.27)

The schematic view of magnetic first Brillouin zone spanned by magnetic reciprocal lat-
tice vectors b1

M and b2
Mof graphene immersed in magnetic field is shown in Fig. 3.2.
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Figure 3.2: Schematic view of magnetic first Brillouin zone of graphene [61].

Let us take translation vectors tn = n1a1
M +n2a2

M as given by Eq.(3.17) , then Eq.(3.24)
becomes

U(a1
M)Φk(r) = e−2πik1Φk(r), (3.28)

U(a2
M)Φk(r) = e−2πik2Φk(r), (3.29)

where k1 and k2 are real numbers. Hence, we have

U(tn)Φk(r) = e−2πi(n1k1+n2k2)Φk(r). (3.30)

Also, we may write

k · tn = 2π(n1k1 + n2k2). (3.31)

From Eqs.(3.30) and (3.31), we get

U(tn)Φk(r) = e−ik ·tnΦk(r). (3.32)
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Furthermore, we have from Eq.(3.6)

U(tn)Φk(r) = ei
e
~χ(r,tn)T (tn)Φk(r)

= ei
e
~χ(r,tn)Φk(r− tn). (3.33)

From Eqs.(3.32) and (3.33), we have

Φk(r− tn) = e−ik·tne−i
e
~χ(r,tn)Φk(r). (3.34)

Using Eq.(3.9), Eq.(3.34) becomes

Φk(r− tn) = e−ik·tnei
e
~BtnxyΦk(r). (3.35)

Eq.(3.35) represents the magnetic Bloch theorem which is an extension of the Bloch
theorem for an electron that moves in an uniform magnetic field under the influence of
a periodic potential of the crystal. It is evident that form Eq.(3.35), in the absence of
magnetic field (i.e. B=0), it reduces to conventional Bloch theorem.

3.2 Reduction of simultaneous equations using Mag-

netic Bloch theorem

Now, we can express all the lattice vectors Rn in terms of translation vector tn as

Rn = tn + I ′a2, (3.36)

where I ′ = 0, 1, 2, ....., q − 1.

Using Eq.(3.36), Eq.(2.5) can be written as

Φk(r) =
∑
tn

∑
i

∑
ξ

q−1∑
I=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r). (3.37)

In the similar manner, we have

Φk(r− tm) =
∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r− tm). (3.38)

Substituting Eqs.(3.37) and (3.38) in to Eq.(3.34), we get

∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r− tm)

= e−ik·tme−i
e
~χ(r,tm)

∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r). (3.39)

Now at first, let us establish the relation between ψai,tn+I′a2+di

ξ (r− tm) and ψai,tn+I′a2+di

ξ (r).

For this, let us assume that ψai,tn+I′a2+di

ξ (r) obeys the following Dirac equation:[
cα · {p + eA(r)}+ βm0c

2 + Vai(r− tn − I ′a2 − di)
]
ψai,tn+I′a2+di

ξ (r)

= Etn+I′a2+di
ξ ψai,tn+I′a2+di

ξ (r). (3.40)
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Let us change the variables r to r′ − tm, we have[
cα · {p′ + eA(r′ − tm)}+ βm0c

2 + Vai(r
′ − tm − tn − I ′a2 − di)

]
× ψai,tn+I′a2+di

ξ (r′ − tm) = Etn+I′a2+di
ξ ψai,tn+I′a2+di

ξ (r′ − tm). (3.41)

According to gauge transformation, A(r′) and A(r′ − tm) are related as

A(r′ − tm) = A(r′) +∇χ(r′, tm) (3.42)

Using Eq.(3.42), we have[
cα · {p + eA(r) + e∇χ(r, tm)}+ βm0c

2 + Vai(r− tm − tn − I ′a2 − di)
]

× ψai,tn+I′a2+di

ξ (r− tm) = Etn+I′a2+di
ξ ψai,tn+I′a2+di

ξ (r− tm). (3.43)

Here we have changed primed variable to unprimed variable. It is clear that, ψai,tn+tm+I′a2+di

ξ (r)
also obeys the following Dirac equation:[

cα · {p + eA(r)}+ βm0c
2 + Vai(r− tm − tn − I ′a2 − di)

]
× ψai,tn+tm+I′a2+di

ξ (r) = Etn+tm+I′a2+di
ξ ψai,tn+tm+I′a2+di

ξ (r). (3.44)

Comparison of Eqs.(3.43) and (3.44) leads us to the fact that the gauge transformation of

the wave functions ψai,tn+I′a2+di

ξ (r− tm) and ψai,tn+tm+I′a2+di

ξ (r) relates both the wave
functions of respective equations as

ψai,tn+I′a2+di

ξ (r− tm) = e−i
e
~χ(r,tm)ψai,tn+tm+I′a2+di

ξ (r). (3.45)

Substituting Eq.(3.45) in to Eq.(3.39), we get

∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)e

−i e~χ(r,tm)ψai,tn+tm+I′a2+di

ξ (r)

= e−ik·tme−i
e
~χ(r,tm)

∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r). (3.46)

Change of variables tn + tm to tl in LHS of Eq.(3.46) yields

∑
tl

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tl − tm + I ′a2 + di)ψ

ai,tl+I
′a2+di

ξ (r)

= e−ik·tm
∑
tn

∑
i

∑
ξ

q−1∑
I′=0

Cξ
k(tn + I ′a2 + di)ψ

ai,tn+I′a2+di

ξ (r). (3.47)

Again, changing the variables tl to tn in LHS of Eq.(3.47), we have

∑
tn

∑
i

∑
ξ

q−1∑
I=0

{
Cξ

k(tn − tm + I ′a2 + di)− e−ik·tmCξ
k(tn + I ′a2 + di)

}
× ψai,tn+I′a2+di

ξ (r) = 0. (3.48)
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Multiplying both sides of Eq.(3.48) by ψ
aj ,tn′+I′a2+dj

ξ (r)† and integrating , we get

∑
tn

∑
i

∑
ξ

q−1∑
I′=0

{
Cξ

k(tn − tm + I ′a2 + di)− e−ik·tmCξ
k(tn + I ′a2 + di)

}
×
∫
ψ
aj ,tn′+I′a2+dj

ξ (r)†ψai,tn+I′a2+di

ξ (r) = 0. (3.49)

Using orthogonality of basis function, the relation between coefficients is obtained as

Cξ
k(tn − tm + I ′a2 + di) = e−ik·tmCξ

k(tn + I ′a2 + di). (3.50)

Putting tl back instead of tn − tm, we get

Cξ
k(tl + I ′a2 + di) = e−ik·(tn−tl)Cξ

k(tn + I ′a2 + di). (3.51)

If tl = 0, then we get

Cξ
k(tn + I ′a2 + di) = eik·tnCξ

k(I ′a2 + di). (3.52)

This is an alternative expression of magnetic Bloch theorem. The Eq.(3.52) means that all
coefficients Cξ

k(tn + I ′a2 +di) can be obtained by using Eq.(3.52) if we get 2q-coefficients

{Cξ
k(I ′a2 + di)|I ′ = 0, 1, 2, ....., q − 1; i = A,B; ξ = nlJM}.

Using Eq.(3.52) to the simultaneous Eq.(2.43), we get

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(I′a2 + dj) +
∑
W

∑
ξ

e−i
eB
~ T

Wx
(dj)(Rmy+djy)

× T̃η,ξ{TW
(dj)}Cξ

k{TW
(dj) + I′a2 + dj}

= Ek

[
Cξ

k(I′a2 + dj) +
∑
W

∑
ξ

e−i
eB
~ T

Wx
(dj)(Rmy+djy)Sη,ξ{TW

(dj)}

]
× Cξ

k{TW
(dj) + I′a2 + dj}.

(3.53)

Since all the lattice points are occupied by carbon atoms, we remove the superscripts
of the magnetic hopping and magnetic overlap integrals. We know that the vectors
T

W
(dj) + I′a2 + dj in Eq.(3.53) denote the positions of C-atom. So, using Eq.(3.52),

these vectors can be rewritten in the form of t′n + I′′a2 + d′j as

CnlJM
k {T

W
(dj) + I′a2 + dj} = t′n + I′′a2 + d′j

= eik·t
′
nCnlJM

k (I′′a2 + d′j). (3.54)

The phase factor e−i
eB
~ T

W
(dj)tmy that appeared in Eq.(3.53) would be approximated to

unity for the magnetic field of magnitude given by Eq.(3.15). This leads us to the solutions
of Eq.(3.53) which are consistent with the Magnetic Bloch Theorem. Taking this fact in
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to consideration, the Eq.(3.53) can be rewritten as

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(I′a2 + dj) +
∑
W

∑
ξ

e−i
eB
~ T

Wx
(dj)(Rmy+djy)

× T̃η,ξ{TW
(dj)}Cξ

k{TW
(dj) + I′a2 + dj}

= Ek

[
Cη

k(I′a2 + dj) +
∑
W

∑
ξ

e−i
eB
~ T

Wx
(dj)(Rmy+djy)Sη,ξ{TW

(dj)}

]
× Cξ

k{TW
(dj) + I′a2 + dj}.

(3.55)

This is the simultaneous equation with finite number of coefficients {Cξ
k(I′a2 + dj)|I ′ =

0, 1, 2, .....q − 1; i = A or B; ξ = nlJM}.

3.3 Concrete expression of the simultaneous equa-

tion

Let us look at the concrete formulation for the simultaneous equation that we employ for
our calculations. To examine the electronic states near the Fermi level, we consider only
outermost s(l = 0) and p(l = 1) orbitals of C atom. Under these assumption, magnetic
hopping and magnetic overlap integrals are calculated. Specifically, we chose magnetic
hopping and magnetic overlap integrals between following eight shells:

(n, l, J,M) =

(
2, 0,

1

2
,±1

2

)
,

(
2, 1,

1

2
,±1

2

)
,

(
2, 1,

3

2
,±1

2

)
,

(
2, 1,

3

2
,±3

2

)
. (3.56)

We only chose the electron hopping between the first nearest neighbor atoms. Namely,
three vectors T

W
(dj)|W=1,2,3 are taken in to consideration.

The phase factors e−i
eB
~ T

W
(dj)(Rmy+djy) and the coefficients CnlJM

k {T
W

(dj) + I′a2 + dj}

of Eq.(3.55) for the atoms located at d(j=A) =

(
0,

a√
3

)
and d(j=B) =

(
0,

2a√
3

)
are listed

in Tables 3.1 and 3.2 respectively.

Table 3.1: The phase factors e−i
eB
~ T

W
(dj)(Rmy+djy) and the coefficients CnlJM

k {T
W

(dj) +
I′a2 + dA}.

W T
W

(dj) e−i
eB
~ T

W
(dj)(Rmy+djy) Cξ

k{TW
(dj) + I′a2 + dA}

1

(
0,

a√
3

)
1 Cξ

k(I′a2 + dB)

2

(
a

2
,− a

2
√

3

)
e−2πi p

q (I′+
2
3) Cξ

k{(I′ − 1)a2 + dB}

3

(
−a

2
,− a√

3

)
e2πi p

q (I′+
2
3) e−ikxaCξ

k{(I′ − 1)a2 + dB}

Using the values of phase factors and coefficients from Tables 3.1 and 3.2, we have the
following two sets of concrete equations:
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Table 3.2: The phase factors e−i
eB
~ T

W
(dj)(Rmy+djy) and the coefficients CnlJM

k {T
W

(dj) +
I′a2 + dB}

W T
W

(dj) e−i
eB
~ T

W
(dj)(Rmy+djy) Cξ

k{TW
(dj) + I′a2 + dB}

1

(
0,− a√

3

)
1 Cξ

k(I′a2 + dA)

2

(
−a

2
,
a

2
√

3

)
e2πi p

q (I′+
4
3) Cξ

k{(I′ − 1)a2 + dA}

3

(
a

2
,
a√
3

)
e−2πi p

q (I′+
4
3) eikxaCξ

k{(I′ − 1)a2 + dA}

(i) For dj = dA,

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(I′a2 + dA) +
∑
ξ

T̃η,ξ{T1(dA)}Cξ
k{I
′a2 + dB}

+
∑
ξ

(
e−2πi p

q (I′+
2
3)T̃η,ξ{T2(dA)}+ e2πi p

q (I′+
2
3)e−ikxaT̃η,ξ{T3(dA)}

)
× Cξ

k{(I
′ − 1)a2 + dB}

= Ek

[
Cη

k(I′a2 + dA) +
∑
ξ

Sη,ξ{T1(dA)}Cξ
k{I
′a2 + dB}

+
∑
ξ

(
e−2πi p

q (I′+
2
3)Sη,ξ{T2(dA)}+ e2πi p

q (I′+
2
3)e−ikxaSη,ξ{T3(dA)}

)]
× Cξ

k{(I
′ − 1)a2 + dB},

(3.57)

with

Cξ
k{(I

′ − 1)a2 + dB} =

{
eik.qa2C2lJM

k {(I′ − 1)a2 + dB} for I ′ = 0,

C2lJM
k {(I′ − 1)a2 + dB} for I ′ 6= 0.

(3.58)

(ii) For dj = dB,

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(I′a2 + dB) +
∑
ξ

T̃η,ξ{T1(dB)}Cξ
k{I
′a2 + dA}

+
∑
ξ

(
e2πi p

q (I′+
4
3)T̃η,ξ{T2(dB)}+ e−2πi p

q (I′+
4
3)eikxaT̃η,ξ{T3(dB)}

)
× Cξ

k{(I
′ + 1)a2 + dA}

= Ek

[
Cη

k(I′a2 + dB) +
∑
ξ

Sη,ξ{T1(dB)}Cξ
k{I
′a2 + dA}

+
∑
ξ

(
e2πi p

q (I′+
4
3)Sη,ξ{T2(dB)}+ e−2πi p

q (I′+
4
3)eikxaSη,ξ{T3(dB)}

)]
× Cξ

k{(I
′ + 1)a2 + dA},

(3.59)
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with

Cξ
k{(I

′ + 1)a2 + dA} =

{
e−ik.qa2C2lJM

k {dA} for I ′ = q − 1,

C2lJM
k {(I′ + 1)a2 + dA} for I ′ 6= q − 1.

(3.60)

The summation on l, J and M in Eqs.(3.57 and 3.59) are taken over eight states described
in Eq.(3.56). Hence, Eqs.(3.57-3.59) are the simultaneous equations with 16q-coefficients.

3.4 Relativistic TB parameters for graphene

The energy-band structure estimated using the relativistic TB approximation approach
for the case of B = 0 must coincide with that of the reference data to determine relativistic
TB parameters. We make use of the energy-band structure calculated by Win2K code
[62] as the reference data which use the linear augmented plane wave technique together
with SO interaction. We ignore ∆εC,di

nlJM and the atomic spectrum, which is calculated
using the density functional theory with the local density approximation, because the
energy of the crystal field is assumed to be considerably less than the atomic spectrum.

Table 3.3 shows the numerical values of ε
aj ,0
η +∆ε

aj ,dj
η and relativistic TB parameters that

were calculated under above mentioned assumption. The resultant energy band structure
for the case of B = 0 is given in Fig. 3.3. The Fermi energy is about 5.53 (meV). The
magnified view around K point is shown in the inset. A minor gap approximately 24
(µeV) emerges at the K point due to SO interaction, which is consistent with earlier
results [23, 46]. In the next section, we use the nonperturbative MFRTB method with
the parameters specified in Table 3.3 to calculate the energy-band structure and magnetic
properties of graphene immersed in a magnetic field. The magnitude of the magnetic field
in this calculation ranges from 1.57 to 200 (T).

3.5 Results and Discussion

3.5.1 Relation between energy-bands obtained from nonpertur-
bative MFRTB method and the so-called Landau levels

Fig. 3.4 illustrates the energy-band structure of graphene immersed in a magnetic field
of about B = 195 (T) (p = 1, q = 809). The horizontal axis denotes special k points
of the magnetic first Brillouin zone that is drawn in Fig. 3.2. It is found that E − k
curves depends little on k. This is similar to the case of the two-dimensional square
lattice immersed in a magnetic field [38]. These nearly flat energy-bands relate to the
quantization of electron orbital motion in a magnetic field [38]. We will describe the rela-
tionship between the nearly flat energy-band and the so-called Landau level in detail for
the convenience in the following discussion. The eigenvalues of a nearly flat energy-band
are approximately degenerate, as shown in Fig. 3.4. In other words, a nearly flat energy-
band approximately corresponds to a degenerate energy level. The degree degeneracy
is equal to the total number of k points contained in the magnetic first Brillouin zone.
According to the theorem given in ref. [38], the total number of k points contained in
a magnetic first Brillouin zone coincides with that of the magnetic unit cells contained
in the system. The area of the magnetic unit cell is q times as large as that of the unit
cell as mentioned in Sec.3.1. If we denote the number of the unit cell contained in the

31



Table 3.3: Relativistic TB parameters between the nearest neighboring atoms for
graphene. K1(n′l′J ′, nlJ)|M | and S1(n′l′J ′, nlJ)|M | denote relativistic TB parameters for
hopping integrals and overlap integrals respectively[61].

(n, l, J,M) Numerical values (eV)

ε̄C
20 1

2

+ ∆ε̄C,di

20 1
2
M

-8.370

ε̄C
21 1

2

+ ∆ε̄C,di

21 1
2
M

0.000

ε̄C
21 3

2

+ ∆ε̄C,di

21 3
2
M

8.305×10−3

K1(201
2
, 201

2
) 1
2

-5.727

K1(201
2
, 211

2
) 1
2

-3.226

K1(201
2
, 213

2
) 1
2

4.587

K1(211
2
, 211

2
) 1
2

-1.810×10−2

K1(211
2
, 213

2
) 1
2

-4.298

K1(213
2
, 213

2
) 1
2

3.010

K1(213
2
, 213

2
) 3
2

-3.064

S1(201
2
, 201

2
) 1
2

1.012×10−1

S1(201
2
, 211

2
) 1
2

9.739×10−2

S1(201
2
, 213

2
) 1
2

-1.392×10−1

S1(211
2
, 211

2
) 1
2

-7.904×10−2

S1(211
2
, 213

2
) 1
2

2.081×10−1

S1(213
2
, 213

2
) 1
2

-2.289×10−1

S1(213
2
, 213

2
) 3
2

6.802×10−2

system as N0, then that of the magnetic primitive unit cell is N0

q
. Therefore, we can say

that a nearly flat energy-band approximately represents N0

q
-fold degenerate energy level.

Note that N0 is given by 2S√
3a2

in case of graphene, where S denotes the area of the system.

Next, we consider two cases where the magnetic field is nearly equal to each other.
Specifically, the ratio p

q
in Eq.(3.15) is nearly equal to 1

q′
, i.e., p

q
∼ 1

q′
. Because of q ∼ pq′,

the period of tn along the a2-direction in the case of p
q

is p times longer than that in case

of 1
q′

. Therefore, p energy gaps may be induced at the boundaries of the magnetic first

Brillouin zone due to the folding of the magnetic first Brillouin zone [38]. Namely, an en-
ergy band in the case of 1

q′
is divided into p energy bands in the case of p

q
. In the previous

work [38–41], we refer to the set of p energy bands as a cluster. The energy width of the
cluster is nearly equal to that of the energy band of the case of 1

q′
[38]. As shown in Fig.

3.4, the energy band of the case of 1
q′

is nearly flat, so the p energy-bands approximately
overlap to each other. Since, each energy band is nearly flat and approximately regarded
as a N0

q
-fold degenerate energy level, we can say that the cluster is approximately re-

garded as a N0
p
q
-fold degenerate energy level. The approximately degenerate factor N0

p
q

is proportional to the magnetic field. Thus, the cluster corresponds to the so-called the
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Figure 3.4: Energy band structure of
graphene immersed in a uniform mag-
netic field about 195 (T ). Values of p
and q are 1 and 809 respectively [61].

Landau level, the degree of degeneracy of which is proportional to the magnetic field.
The number of energy bands obtained by the nonperturbative MFRTB method is equal
to 16q as mentioned in Sec 3.1. Therefore, the number of clusters is approximately given
by 16 q

p
(≈ 16q′). That means that the number of clusters, which is corresponds to the

number of the so-called Landau levels, decreases with increasing B. Since the energy level
of the cluster is approximately N0

p
q
-fold (≈ N0

q′
-fold) degenerate as mentioned above, we

obtain 16N0 energy states total. For simplicity, we consider the case of p = 1 in the
following discussion because the clusters in the case of 1

q′
approximately corresponds to

those in the case of p
q

from the viewpoint of the number of clusters and their degeneracy.

3.5.2 Energy spectrum

Fig. 3.5 shows overview and Figs. 3.6, 3.7 and 3.8 show magnified views of the magnetic
field dependence of the energy spectrum, respectively. It is reported by previous works
[1, 2] that the energy spectrum near the Fermi energy is approximately proportional to
±
√
nB (n = 0, 1, 2, ....) for graphene immersed in a magnetic field. As shown in Figs. 3.5

and 3.6, the square-root dependence of the energy spectrum on B is revisited by the non-
perturbative MFRTB method. In addition, each energy level splits in to two levels due
to Zeeman effect. Especially, energy levels corresponding to Landau levels with (n = 0)
increases or decreases with magnetic field, so that the energy gap appears and increases
with the magnetic field. The splitting of energy levels near the Fermi energy is observed
experimentally [20].

It is found from Fig. 3.7 that the energy spacing strongly depends on energy. Namely,
the energy spacing becomes narrow gradually with the decrease of the energy down to
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about −2.8 (eV), as is expected from the square-root dependence. The energy spacing
becomes narrow rapidly in the energy around −2.85 (eV). This can be explained on the
basis of the energy band structure for the case of B = 0 (Fig. 3.3). The cross-sectional
area of the constant energy plane increases rapidly around −2.85 (eV) as is expected from
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the flat E − k curves between K ′ and M points of Fig. 3.3, so that the cyclotron mass
becomes large around −2.85 (eV). Therefore, the energy spacing becomes narrow around
−2.85 (eV). In addition, it is expected from Fig.(3.3) that hole orbits centering around
Γ point appear below about −3.0 (eV). Corresponding to the hole orbits, a lot of energy
levels that decreases with B appear below about −3.0 (eV) as shown in Fig. 3.7.
Fig. 3.8 shows that magnetic field dependence of the energy spectrum in the other energy
range. As indicated by lines in Fig. 3.8, two sets of energy levels that increase with B are
found in energy range around −7.6 and −8.2 (eV). According to the energy band shown
in Fig. 3.3, two sets of electron orbits are expected to appear around Γ point [−7.6
(eV)] and around K (K’) point [−8.2 (eV)]. These electron orbits corresponds to energy
levels found in Fig 3.8. In addition, there are many energy levels that come from electron
orbits. Thus, the present method can predict the complicated but realistic energy levels
of graphene immersed in magnetic field.

3.5.3 Diamagnetism
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Figure 3.9: Magnetic field dependence of sheet magnetization [61].

The sheet magnetization is calculated by the derivative of the total energy with respect
to the magnetic field. Fig. 3.9 shows the magnetic field dependence of the sheet mag-
netization. The sheet magnetization rapidly decreases with B in the low magnetic-field
region [B < 12 (T)], which leads to the high magnetic susceptibility. This means that the
orbital diamagnetism is stronger than the Pauli paramagnetism in graphene. Thus, the
nonperturbative MFRTB method can revisit the strong orbital diamagnetism of graphene
[1]-[13]. The sheet magnetization shows a characteristic dependence on B on other mag-
netic field regions. Namely, the sheet magnetization upturns at about 12 (T) and turns
down again at about 50 (T) as shown in Fig. 3.9.

In order to consider the magnetic-field dependence of the sheet magnetization (Fig. 3.9),
we shall consider the magnetic field dependence of the total energy. As mentioned in
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subsec. 3.5.1, we obtain 16N0 energy states in total by means of the nonperturbative
MFRTB method. There are 8N0 electrons in the system because tow carbon atoms are
contained in the unit cell. Since each cluster is approximately N0

q′
-fold degenerate, the

lower half of clusters (8q′ clusters) are occupied by electrons. The 8q′-th cluster from the
bottom corresponds to the so-called Landau level with n = 0 that lies immediately below
the Fermi energy in Fig. 3.6.

Since the number of clusters decreases with B as mentioned in subsec. 3.5.1, some
clusters disappear with increasing B. On the other hand, the degree of degeneracy of the
remaining clusters increases with B as mentioned in subsec. 3.5.1. Therefore, electrons
that occupy the disappeared clusters are redistributed to remaining clusters. In this
case, the energy of the redistributed electron sometimes increases (diamagnetic effect) or
decreases (paramagnetic effect). In addition, the energy level of the remaining cluster
increases (diamagnetic effect) or decreases (paramagnetic effect) with B as shown in Fig.
3.5-3.8, depending on whether the cluster corresponds to the Landau level originating
from electron orbitals or from hole orbitals. In other words, the cluster corresponding to
electron orbitals (hole orbitals) contributes to the diamagnetism (paramagnetism).

Thus, the magnetic-field dependences of the total energy and also of the magnetization
are complexly determined by the above mentioned factors, so that we can describe the
magnetic field dependence only by the energy band calculation for graphene immersed in
a magnetic field.

It is found in Fig. 3.9, that the sheet magnetization is diamagnetic for the whole re-
gion of the magnetic field. This means that the above mentioned diamagnetic effects are
superior to the paramagnetic ones in the whole region of the magnetic field. The balance
of these competitive effects changes with B, which leads to the characteristics magnetic
field dependence of the diamagnetism. For instance, the derivative of the magnetic field
dependence of the total energy is positive but the second derivative is negative in the
region ranging from 12 to 15 (T).

In the low magnetic field region [< 12 (T)], the strong orbital diamagnetism of graphene
can be revisited as shown in Fig. 3.9. On the other hand, it is shown in previous works
[1]-[13] that the massless Dirac electrons causes a strong orbital susceptibility. This im-
plies that the above mentioned diamagnetic effects caused by electrons, which occupy
the energy states near the Fermi energy and are like a massless Dirac electron, would be
dominant in the low magnetic field region.

In the high magnetic field [> 50 (T)], the sheet magnetization turns down again at about
50 (T). In this region, the sheet magnetization decreases in proportion to about B2. This
dependence is different from the magnetic field dependence found in low magnetic field
[< 12 (T)] of Fig. 3.9. Therefore, we can say the the dominant diamagnetic effects in the
high magnetic field region would be different from those in the low magnetic field regions.

Thus, the complicated but realistic energy levels of graphene immersed in a magnetic
field [Figs. 3.5-3.8] cause a characteristic magnetic field dependence of the diamagnetism.
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3.5.4 Effective g-factor
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of the splitting between the highest oc-
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levels [61].
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As observed in experiments of the electron spin resonance [28, 29], the effective g-factor of
the electron in graphene is lower than that of the free electron. It is pointed out by Yafet
that the Zeeman splitting of the energy level is affected by the effective magnetic field
caused by the SO interaction [63]. Since, we do not consider the effect of the substrate in
the present calculations, the space inversion symmetry is not broken in the system. This
means that the Rashba-type SO interaction [51], which causes the effective magnetic field
parallel to the plane of the graphene, is not taken into account in the present calculations.
Therefore, it is reasonable to suppose that the effective magnetic field is perpendicular
to the plane of the graphene. If the effective magnetic field is denoted as BSO, then the
Zeeman splitting between the highest occupied state and the lowest unoccupied one (∆E)
is given by ∆E = g e~

2m0
(B + BSO), where g denotes the g-factor and is given by g ' 2.0.

Thus, the effective magnetic field caused by the SO interaction changes the Zeeman split-
ting. In the experiments of Ref. [28] and [29], the magnetic field dependence of ∆E is
measured, and the effective g-factor is estimated from the slop of ∆E−B curve. Similar
to the estimation method of the experiments, we calculate the magnetic field dependence
of ∆E that is shown in Fig. 3.10. If BSO is independent of B, then the slop of ∆E − B
curve is g e~

2m0
. If BSO dependents on B, then slop of ∆E − B curve deviates from g e~

2m0
.

It is found from Fig. 3.10 that the slope of ∆E − B curve is nearly equal to g e~
2m0

. This
means that BSO is independent of B, i.e., the SO interaction is independent of B. The
value of BSO can be obtained from the intersection point of the horizontal axis. It is
found from Fig. 3.10 that the intersection point of the horizontal axis is about 0.2 (T).
Fig. 3.12 is the magnified view of magnetic field dependence of the energy spectrum in
a low magnetic field region. It is found from Fig. 3.12 that the highest occupied energy
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level and lowest unoccupied energy level intersect at about 0.2 (T). This also suggests
that the value of BSO is about 0.2 (T). Therefore, we can say that BSO is antiparallel
to the applied magnetic field and its magnitude is about 0.2 (T). Therefore, we can say
that BSO is anti parallel to the applied magnetic field and its magnitude is about 0.2
(T). Thus, the experimentally observed small g-factor is not due to the SO interaction
because the slop of the linear dependence is 2.0 as shown in Fig. 3.10.

 
 
 
 
 
 
 
 
 
 
 
 

                            

LUS 

HOS 

Figure 3.12: Magnified view of Magnetic field dependence of the splitting between the
highest occupied and lowest unoccupied energy levels within the range between 5.3 to
5.75 (meV).

In order to clarify the origin of the small g-factor, we investigated the magnetic field
induced by the diamagnetism of graphene. The induced magnetic field is estimated as
follows. The magnetic moment per one carbon atom can be calculated as the product
of the sheet magnetization and the area covered by one carbon atom. Note that the
area is regarded as that of the equilateral triangle with sides a. Since the magnitude of
the magnetic moment is equivalent to the product of the loop current and the area of
the loop, we can obtain the current flowing along the edge of the equilateral triangle.
The current generates the magnetic field that can be calculated by Biot-Savart law. The
induced magnetic field is estimated as the magnetic field at the position of the carbon
atom. The induced magnetic fields thus obtained are shown in Fig. 3.11. The actual
magnetic field is smaller than the applied magnetic field due to the induced magnetic
field. Therefore, the effective g-factor is reduced due to the reduction of the magnetic
field as shown in Fig. 3.11. It is found that the estimated g-factor strongly depends
on the applied magnetic field. Due to induced magnetic field, Zeeman splitting between

HOS and LUS is given by ∆E = g
e~
2m

(Bext + Bind). The effective g-factor is calculated
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from the slope of ∆E−Bext and it is given by geff = g

(
1 +

dBind

dBext

)
. The calculated value

of
dBind

dBext

is −6.548057 × 10−3 when Bext = 1 (T). The estimated value of the effective

g-factor is about 1.986 at Bext = 1 (T). Following the same calculation, the value of
effective g-factor at Bext = 2 (T) is found to be 1.993. Thus the magnetic field induced
by the strong diamagnetism is one of the cause why the effective g-factor of the electron
in graphene is lower than that of the free electron.

It should be noted that the experimental value of the effective g-factor is about 1.94
[28, 29] at the magnetic field of about 1 (T), while theoretically estimated value is 1.986
as mentioned above. This implies that there exist other mechanisms that reduce the
value of effective g-factor. The Rashba-type SO interaction is considered as a possibility
of reducing the value of effective g-factor. Namely, since there exist the substrate, space
inversion symmetry is broken in the real system [28, 29]. Therefore, in the graphene,
the gradient of the scalar potential has a component that is perpendicular to the two di-
mensional plane. The perpendicular component would cause the effective magnetic field
that is parallel to the two dimensional plane. This is known as Rashba effect [51, 52]
and is not incorporated in present calculations. Due to Rashba effect, the orientation of
the spin would be tiled from the z-axis in graphene. The tilting of the spin orientation
leads to the reduction of the Zeeman splitting. Suppose that the average of the angle
between z-axis and the spin is given by θ, the Zeeman splitting would be reduced by the
factor cosθ. If the discrepancy between experimentally observed value of the effective
g-factor (g = 1.94) and the theoretical one (g = 1.986) comes from the tilting of the
spin orientation, then the angle θ is estimated to be 12.3π

180
(rad) at the magnetic field of 1

(T). Although the tilting of spin orientation due to the Rashba effect is not taken into
consideration in the present calculations, it would be one of the cause for small value of
the effective g-factor that is observed experimentally [28, 29]
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Chapter 4

Reduction of g-factor due to Rashba
effect in graphene

In chapter 3, we demonstrated that the diamagnetism is the one of sources for the reduc-
tion in g-factor of graphene. However, the cause of the reduction in g-factor observed in
the experiments is not completely explained by diamagnetic property of graphene alone.
Therefore, in this chapter, we focused on the Rashba effect which is caused by work func-
tion existing in the vicinity of graphene surface to account remaining reduction in g-factor
of graphene. In this chapter, we use empty lattice model by incorporating Rashba effect.

4.1 Calculation scheme

A. Calculation procedure

In graphene, the energy band exists at K point. Let us assume that this band gap
(HOS-LUS) still exits at K point when Rashba effect is considered and external mag-
netic field is applied. This means only small modification occurs in the electronic
structure of graphene. This is reasonable assumption because the magnitude of ex-
ternal magnetic field is at most 1 (T) and magnetic field due caused by Rashba effect
is much smaller than the external magnetic field.

For intrinsic case (Zero magnetic field), the energy bands of usual graphene pos-
sess double degeneracy at any wave number k = (kx, ky) due to the presence of time
reversal and space inversion symmetry. The energy degeneracy consists of two bands
mixed up by up-spin and down-spin states and is resolved by the Rashba effect and/or
the external magnetic field. This energy splitting results in the modification of the
HOS-LUS gap.

The calculation scheme is as follows:

(i) First the energy splitting is calculated in a model system that has a free-electron
Hamiltonian with the Rashba term, spin Zeeman term and an asymmetric po-
tential caused by the work function are added. The energy splitting, whose
explicit form is described in coming section, is dependent on the wavenumber
k = (kx, ky). It is hereafter denoted as ∆kxky , and its value at K-point is specif-
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ically denoted as ∆k. Note that we employ a free-electron Hamiltonian only for
the calculation of the energy splitting.

(ii) Next, the obtained energy splitting ∆kxky is added to energy bands of the usual
graphene [46]. Consequently, the original two bands, which are degenerate with
each other [34], shifted by +∆kxky and −∆kxky respectively. In particular, the
HOS and LUS are modified by ∆K . The resultant energy levels of the HOS and
LUS are, respectively given by

εLUS = εK + ESO −∆K , (4.1)

εHOS = εK −∆K . (4.2)

where εK is the energy level of the HOS and ESO is the SO interaction en-
ergy caused by the spatially symmetric potential of the hexagonal lattice of the
graphene sheet. The HOS-LUS gap is given by

∆ε|atK = εLUS − εHOS
= ESO − 2∆K . (4.3)

Since the reduction to the g-factor in graphene has experimentally observed
[28, 29], this reduction must be calculated by a method that can suitably enable
the analysis of those ESR experimental results. To achieve this, we perform the
following calculations.

(iii) From the dependence of the HOS-LUS gap on the external magnetic field, the
g-factor is observed as if it were reduced [28, 29]. Let the reduced g-factor be
called effective g-factor. To facilitate the analysis of the experimental value
observed in ESR experiment [28, 29], the effective g-factor geff is defined as

geff =
1

µB

∣∣∣∣ d

dBext

∆ε|atK
∣∣∣∣ , (4.4)

where µB is the Bohr magneton and Bext is the external magnetic field. The
details are described in Section 4.4.

As mentioned above, we first calculate the energy splitting caused by the Rashba
and spin Zeeman effects at the K point by treating graphene lattice as an empty
one. Next, we add the thus-obtained energy splitting estimated at the K point of the
Brillouin zone of graphene. This idea of calculating the Rashba effect of graphene in
our scheme is similar to that of treating the exchange-correlation (xc) effects in the
local density approximation (LDA) of the density functional theory (DFT) [58, 64–
70]. In LDA, the xc effects are considered on the basis of the model of a homogeneous
electron liquid, referred to as the jellium model, and the results are applied to the
inhomogeneous electron system such as atoms, molecules, and solid [64]. In general
terms, the idea of LDA is that xc effects are considered on the basis of a simplified
model, and the result are extensively applied to more general cases. This idea is also
used in developing the kinetic energy functional of the pair-density functional theory
[71–87]. There are other good examples such as BCS theory, Pauli paramagnetism,
Landau diamagnetism, and so on. Similarly, in our present scheme, the Rashba effect
is treated in a model system, and the results are applied to actual graphene. Thus,
the idea of this scheme is analogous to that of the LDA-DFT.
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As a final note in this section, we comment briefly on the second of the two kinds
of magnetic moments (the first being the spin magnetic moment) that electrons in
metals primarily possess, the orbital magnetic moment [88–91]. The orbital magnetic
moment generally appears when an external magnetic field is applied to metals. In
our study with graphene, the magnitude of the orbital magnetic moment for the state
of K point would be small, since the orbital motion on the constant energy surface
of the k space is point like at the K point [44–46]. Consequently,when solving the
eigenvalue problem at the K point, we can neglect the effect of the orbital magnetic
moment, and consider only the effects of the spin magnetic moment.

B. Model of an asymmetric potential

In this subsection, we shall explain the model for an asymmetric potential used. Let
us consider the case where graphene is placed in vacuum. In this case, the electron at
the K point is confined to the graphene sheet due to the work function that spatially
spreads in the region determined by electron density. Hereafter, we refer to the po-
tential caused by the work function as the surface potential. When graphene is placed
in vacuum, the surface potential is symmetric in the direction perpendicular to the
graphene sheet. Contributions to the energy splitting by the surface potential formed
on both sides of the graphene sheet are canceled out each other [92]. Therefore, the
energy splitting does not occur in this case.

Next, let us consider the case of the graphene sheet deposited on the substrate. We
assume that the distance between the graphene and the substrate is close enough to
affect the surface potential. In this case, the surface potential is asymmetric in the
direction perpendicular to the graphene sheet. This is because the surface potential
formed on the substrate side is different from that on the vacuum side. The former
and later surface potentials are denoted as Vsub and Vvac, respectively. Since contri-
butions of Vvac and Vsub to the energy splitting are not canceled out each other, the
energy splitting occurs in this case.

It is known that the height of Vsub is equal to that of Vvac minus electron affinity of the
substrate material, i.e. Vsub = Vvac − χ, where χ is the electron affinity. Namely, Vsub
is smaller than Vvac due to electron affinity. In addition to this fact, it is shown by
the experiment that the reduction of the g-factor does not largely depend on the type
of substrate [29]. This experimental results seems to indicate that Vsub is so small
that it makes little contribution to the energy splitting. In this work, we assume that
the contribution of Vsub to the energy splitting is negligibly small in comparison with
that of Vvac. Under this assumption, the contribution of Vvac to the energy splitting is
hardly canceled out by that of Vsub and, therefore energy splitting due to Vvac almost
remains. In section 4.2, we employ Vvac as a model of the asymmetric potential and
calculate the energy splitting ∆kxky .

We shall give a brief comment on this model. It is well known that the large en-
ergy splitting due to Rashba effect is observed on the Au(111) surface [93]. The
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experimentally-observed energy splitting is five orders of magnitude larger than the en-
ergy splitting expected from the electron gas model with the surface potential caused
by the work function [93]. According to the first-principle calculation [94], the wave
function becomes asymmetric along the vertical direction to the surface due to sur-
face potential. The electron near the surface feels strong potential gradient caused
by the nucleus rather than that of the surface potential. This is the reason why the
large energy splitting is observed on the Au(111) surface [94]. It is well known that
this enhancement of the Rashba effect becomes more pronounced for heavy atoms.
Indeed, the Rashba effect is usually regarded as a small effect in the graphene system
[95].

The present model is based on the electron gas model with the surface potential
caused by the work function. That is to say, we assume that the above-mentioned
enhancement of the Rashba effect is not pronounced for the graphene sheet deposited
on the substrate. This assumption may underestimate the Rashba effect. However,
the Rashba effect calculated under this assumption can explain the experimentally
observed reduction of the g-factor as shown in Sections. 4.2-4.4.

4.2 Energy splitting ∆kxky

In this study, we deal with the graphene sheet deposited on the substrate. Suppose that
the direction perpendicular to the hexagonal lattice of graphene sheet is the z-axis and
that the vacuum side is the positive direction.

Now lets calculate the energy splitting ∆kxky in model system, the Hamiltonian of this
model system has the Rashba term HRashba, spin Zeeman term HZeeman, and Asymmetric
potential Vasymm(z) that is caused by the work function. The Hamiltonian of the model
system is given by

H =
p2

2m
+ V (r) +HRashba +HZeeman, (4.5)

where p is momentum of an electron and V (r) is crystal potential which can be taken
as the sum of symmetric potential Vsymm(x, y) along in-plane direction and asymmetric
potential Vasymm(z) caused by the work function which exits in the vicinity of surface and
is asymmetric w.r.t. z-axis due to existence of substrate. The potential Vasymm(z) also
yields the Rashba effect, which is kind of SO interaction and expressed as the following
[51, 52]:

HRashba = −µS ·Basymm
SO (r), (4.6)

where µS is spin magnetic moment of an electron given by

µS = −gµB
S

~
, (4.7)

g is conventional electron g-factor given by g = 2.0023, µB is Bohr Magneton, S is spin
angular momentum, ~ is reduced Planck’s constant (h/2π), and Basymm

SO (r) is magnetic
field caused by asymmetric potential Vasymm(z) which is given by

Basymm
SO (r) =

2

gµB

~
4m2c2

∇Vasymm(z)× p, (4.8)
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where m and c are rest mass of an electron, and speed of light in vacuum, respectively.
This is sometimes called the Rashba magnetic field.

From Eqs.(4.6) and (4.7), we have

HRashba = gµB
S

~
·Basymm

SO (r), (4.9)

Since S =
~
2
σ, where σ is Pauli’s spin matrices, Eq.(4.9) is given by

HRashba = gµB
~
2~
σ ·Basymm

SO (r)

=
g

2
µBσ ·Basymm

SO (r). (4.10)

From Eq.(4.8), Eq.(4.10) can be written as

HRashba =
g

2
µBσ ·

2

gµB

~
4m2c2

∇Vasymm(z)× p

=
~

4m2c2
σ · ∇Vasymm(z)× p. (4.11)

If the Rashba parameter is defined as

αasymm(r) =
~

4m2c2
∇Vasymm(z), (4.12)

then, Eq.(4.11) becomes

HRashba = σ · {αasymm(z)× p} . (4.13)

Suppose, the external magnetic field Bext is applied in the z-direction i.e. Bext =
(0, 0, Bext). The spin Zeeman effect with respect to this field is given by

HZeeman = −µS ·Bext

= gµB
S

~
·Bext

= gµB
σ

2
·Bext. (4.14)

Along z-axis,

HZeeman =
g

2
µBσzBext. (4.15)

In order to diagonalized the Hamiltonian Eq.(4.5), let us chose the eigenfunctions of
subsystem of Eq.(4.5) as a basis function, say ϕkn(r). Let us consider the Hamiltonian
excluding third and forth terms of Eq.(4.5) as a subsystem and denote it by H0. The
Hamiltonian of subsystem H0 is given by

H0 = − ~2

2m
∇2 + Vsymm(x, y) + Vasymm(z)

= − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ Vsymm(x, y) + Vasymm(z). (4.16)
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If ϕkn(r) and εkn, respectively, are eigenfunction and eigenvalue for H0. Then system
obeys the following equation:

H0ϕkn(r) = εknϕkn(r). (4.17)

The basis function ϕkn(r) can be expressed as

ϕkn(r) = fkxkyn(x, y)un(z). (4.18)

We now require the eigenfunctions to be periodic in x, y, z with period L.

ϕ(x+ L, y, z) = ϕ(x, y, z), (4.19)

ϕ(x, y + L, z) = ϕ(x, y, z), (4.20)

ϕ(x, y, z + L) = ϕ(x, y, z). (4.21)

Eigenfunctions satisfying the free particle Schrödinger wave equation and the periodicity
condition are of the form of a traveling plane. Since the motion of an electron is restricted
along xy-plane, the wave function fkxkyn(x, y) can be expressed as

fkxkyn(x, y) =
1√
N
ei(K·r)

=
1√
N
ei(kxx+kyy), (4.22)

where N is normalization constant. From Eqs.(4.18 and 4.22), we have

ϕkxkyn(r) =
1√
N
ei(kxx+kyy)un(z). (4.23)

Taking the boundary conditions given by Eqs.(4.19), (4.20), and (4.21), We have the
normalized wave function as

ϕkxkyn(r) =
1√
L2
ei(kxx+kyy)un(z). (4.24)

From Eqs. (4.16), (4.17), and (4.24), we have{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ Vsymm(x, y)

}
ei(kxx+kyy)un(z)

+

{
− ~2

2m

∂2

∂z2
+ Vasymm(z)

}
ei(kxx+kyy)un(z) = εkxkyne

i(kxx+kyy)un(z). (4.25)

For empty lattice model, Vsymm(x, y) = 0, so, Eq.(4.25) becomes{
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)}
ei(kxx+kyy)un(z) +

{
− ~2

2m

∂2

∂z2
+ Vasymm(z)

}
ei(kxx+kyy)un(z)

= εkxkyne
i(kxx+kyy)un(z)

or

~2

2m
(k2
x + k2

y)un(z) + ξnun(z) = εkxkynun(z), (4.26)
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where

ξn = − ~2

2m
(k2
x + k2

y)
∂2

∂z2
+ Vasymm(z). (4.27)

Hence, the eigenvalue of Eq.(4.17) is given by

εkxkyn =
~2

2m
(k2
x + k2

y) + ξn, (4.28)

where un(z) and ξn satisfy following equation:{
− ~2

2m

∂2

∂z2
+ Vasymm(z)

}
un(z) = ξnun(z). (4.29)

Here, we employ an approximation such that the Rashba parameter Eq.(4.12) is spatially
constant. Specifically, αasymm(r) is approximated in to α̃zêz, where êz is a unit vector
along z axis. This approximation implies that the electric field in the z direction, i.e.,
∇Vasymm(z), is assumed to be constant [96]. The approximation corresponds to the
assumption that ∇Vasymm(z) is linearly proportional to z in the vicinity of the surface,
which is reasonable [96]. Furthermore, this approximation does not disturb the original
symmetry of the system given by Eq.(4.5) in which spatial inversion symmetry does not
exit. Since the second and third terms of Eq.(4.5) are spin dependent, we utilize the set of
eigenfunction ϕkxkyn(r, σ) as the basis function to diagonalized the Hamiltonian Eq.(4.5).

ϕkxkyn(r, σ) = ϕkxkyn(r)χσ, (4.30)

where χσ is spin function. From Eqs. (4.24) and (4.30), we have

ϕkxkyn(r, σ) =
1√
L
ei(kx+kyy)un(z)χσ. (4.31)

If eigenvalue and eigenfunction of the Hamiltonian H of Eq.(4.5) are denoted by Ekxkyn
and ϕkxkyn(r, σ), respectively, then the system of HamiltonianH obeys following equation:

Hϕkxkyn(r, σ) = Ekxkynϕkxkyn(r, σ). (4.32)

Applying Eq.(4.30) and multiplying with ϕk′xk′yn′(r)χ′σ on both sides of Eq.(4.32), we have

〈ϕk′xk′yn′(r)χ′σ|H|ϕkxkyn(r)χσ〉 = Ekxkyn〈ϕ|k′xk′yn′(r)χ′σ|ϕkxkyn(r)χσ〉. (4.33)

Using Eqs.(4.5), (4.30), and (4.33), we have

〈ϕk′xk′yn′(r)χ′σ|H0 +HRashba +HZeeman|ϕkxkyn(r)χσ〉
= Ekxkyn〈ϕk′xk′yn′(r)|ϕkxkyn(r)〉〈χ′σ|χσ〉. (4.34)

From Eqs.(4.31) and (4.34), we have

〈e−i(k′xx′+k′yy′)un′(z)χσ′|H0|ei(kxx+kyy)un(z)χσ〉
+ 〈e−i(k′xx′+k′yy′)un′(z)χσ′|HRashba|ei(kxx+kyy)un(z)χσ〉

+ 〈e−i(k′xx′+k′yy′)un′(z)χσ′ |HZeeman|ei(kxx+kyy)un(z)χσ〉
= Ekxkyn〈ϕk′xk′yn′(r)|ϕkxkyn(r)〉〈χσ′ |χσ〉. (4.35)
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Using Eq.(4.28) and Eq.(4.35), we have

e−i(k
′
xx

′+k′yy
′)ei(kxx+kyy)

{
~2

2m
(k2
x + k2

y) + ξn

}
〈un′(z)|un(z)〉〈χσ′|χσ〉

+ e−i(k
′
xx

′+k′yy
′)ei(kxx+kyy)〈un′(z)|un(z)〉〈χσ′|HRashba|χσ〉

+ e−i(k
′
xx

′+k′yy
′)ei(kxx+kyy)〈un′(z)|un(z)〉〈χσ′ |HZeeman|χσ〉

= Ekxkyn〈ϕk′xk′yn′(r)|ϕkxkyn(r)〉〈χσ′ |χσ〉

or{
~2

2m
(k2
x + k2

y) + ξn

}
δkx′kxδky′kyδn′n

+ 〈χσ′ |α̃z~(−kyσx + kxσy)|χσ〉δkx′kxδky′kyδn′n

+ 〈χσ′ |g
2
µBBextσz|χσ〉δkx′kxδky′kyδn′n

= Ekxkynδkx′kxδky′kyδn′nδσ′σ. (4.36)

Hence, we have matrix elements of Eq.(4.36) as

Hk′xk
′
yn

′σ′,kxkynσ =

{
~2

2m
(k2
x + k2

y) + ξn

}
δkx′kxδky′kyδn′n

+ {−α̃z~ky〈χσ′ |σx|χσ〉+ α̃z~kx〈χσ′ |σy|χσ〉} δkx′kxδky′kyδn′n

+
g

2
µBBext〈χσ′ |σz|χσ〉δkx′kxδky′kyδn′n, (4.37)

with

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
. (4.38)

The diagonalization can be performed in each block matrix with the same (kx, ky) and
n. The block matrix is a 2× 2 matrix and is given by

h(kx, ky, n) =

 ~2

2m
(k2
x + k2

y) + ξn +
g

2
µBBext −α̃z~(kx + iky)

−α̃z~(kx − iky)
~2

2m
(k2
x + k2

y) + ξn −
g

2
µBBext

 . (4.39)

Diagonalizing Eq.(4.39), we get

|h(kx, ky, n)− λI| = 0

or ∣∣∣∣∣∣∣
εkxkyn +

g

2
µBBext − λ −α̃z~(kx + iky)

−α̃z~(kx − iky) εkxkyn −
g

2
µBBext − λ

∣∣∣∣∣∣∣ = 0.

Therefore, we have

λ = εkxkyn ±
√(g

2
µBBext

)2

+ (α̃z~)2(k2
x + k2

y). (4.40)
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Hence, the energy eigenvalue of the block matrix h(kx, ky, n) is

E±(kx, ky, n) = εkxkyn ±
√(g

2
µBBext

)2

+ (α̃z~)2(k2
x + k2

y)

or

E±(kx, ky, n) = εkxkyn ±∆kxky , (4.41)

where

∆kxky = ±
√(g

2
µBBext

)2

+ (α̃z~)2(k2
x + k2

y)

or

∆kxky = ±
√
δ (Bext)

2 + (α̃z~)2(k2
x + k2

y), (4.42)

where,

δ(Bext) =
g

2
µBBext. (4.43)

From Eq.(4.41), it is clear that ∆kxky , the energy splitting consists of both Zeeman effect
δ(Bext) and energy splitting due to Rashba effect, i.e., α̃2

z(k
2
x + k2

y). It is also shown from
Eq.(4.42) that ∆kxky shows the dependency on wavenumber K = (kx, ky).

Eq.(4.42) can be rewritten as

∆kxky = ±
[
δ (Bext)

2 + (α̃z~)2(k2
x + k2

y)
] 1

2 . (4.44)

If the magnitude of Bext is greater than magnitude magnetic field due to Rashba effect,
Eq.(4.44) can be approximated as

∆kxky ≈ |δ(Bext)|+
(α̃z~)2(k2

x + k2
y)

2|δ(Bext)|
. (4.45)

The assumption that Eq.(4.45) is valid for the case of graphene because the magnitude
of the Rashba magnetic field given by Eq.(4.8) is about one-fourth of that of the external
magnetic field if the later is 1 (T).

4.3 Energy band structure

In the Hamiltonian Eq.(4.5), the spatial inversion symmetry is lost to an asymmetric
potential and/or Rashba term. In addition, the time reversal symmetry is lost due to
spin Zeeman term. However, the rotational symmetry with respect to any angle around
z-axis is preserve in Eq.(4.5). As a result, the energy splitting ∆kxky is invariant under
a transformation that does not change the magnitude of k = (kx, ky). In other words,
the energy splitting ∆kxky is symmetric with respect to the origin of k. This is easily
confirmed in Eq.(4.45).
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In our present scheme, as mentioned in Sec. 4.1, the energy splitting ±∆kxky are sim-
ply added to the original energy band of usual graphene [46]. As a result, the original
degenerate bands, which correspond to two bands mixed up by up-spin and down-spin
bands, shift by +∆kxky and −∆kxky , respectively. The schematic diagram of energy bands
around the K point is illustrated in Fig. 4.1. Fig. 4.1 reveals that the HOS, LUS, and
HOS-LUS gap are given by Eqs.(4.1), (4.2), and (4.3) respectively. Then, with reference
to Fig. (4.1), we can write

!"

�#$" kxky

#kxky

SOE
 K%

�  LUS%

 HOS%

& k

!"

�#$" kxky

#kxky

Figure 4.1: schematic diagram of energy bands around K point. Solid lines indicate
degenerated bands mixed by up-spin and down-spin states. Red lines indicate the bands
shifted by the Rashba effect and external magnetic field. Dashed lines indicate the energy
bands in the case neglecting SO interaction [97].

εLUS = εK + ESO −∆kxky , (4.46)

εHOS = εK + ∆kxky . (4.47)

where εK is energy level of highest occupied state (HOS) and ESO is SO interaction en-
ergy caused by spatially symmetric potential.

From Eqs. (4.46) and (4.47), the resultant HOS-LUS gap is given by

∆ε|at K = εLUS − εHOS
∆ε|at K = εK + ESO −∆kxky − εK −∆kxky

∆ε|at K = ESO − 2∆kxky (4.48)
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From Eqs.(4.45) and (4.48), the resultant HOS-LUS gap is rewritten as

∆ε|at K = ESO −
{

2|δ(Bext)|+
(α̃z~)2(k2

x + k2
y)

|δ(Bext)|

∣∣∣∣
at K

}
. (4.49)

The second term of the RHS of Eq.(4.49) plays a vital role for the modification of HOS-
LUS gap. Since this second term depends on external magnetic field, it directly affects
the reduction of g-factor.

4.4 Effective g-factor

A. Estimation of the effective g-factor

In the previous experiments on ESR [28, 29], the effective g-factor is derived by using
the dependence of the HOS-LUS gap on the external magnetic field. Specially, in this
experiments, ∆ε|at K is regarded as the spin Zeeman energy and the proportional co-
efficient to the external magnetic field is derived by differentiating ∆ε|atK with respect
to the external magnetic field. This method of derivation is different from the one
that has been previously used in the literature, in which the SO interaction energy
ESO explicitly changes the value of the effective g-factor [63], while in this method
ESO does not affect the effective g-factor [28, 29]. It is, therefore, possible to exclude
the effect of ESO from the effective g-factor in this derivation. Thus, as given by
Eq.(4.4), the effective g-factor can be define as

geff =
1

µB

∣∣∣∣ d

dBext

∆ε|at K
∣∣∣∣ . (4.50)

Now, from Eqs.(4.49) and (4.50), we have

geff =
1

µB

∣∣∣∣ d

dBext

[
ESO − 2|δBext|+

α̃z~)2(k2
x + k2

y)

δ(Bext)

]∣∣∣∣
at K

∣∣∣∣ .
Since SO interaction energy ESO is independent of external magnetic field Bext, we
get an expression for effective g-factor as

geff = g

{
1− 2

(
α̃z~

gµBBext

)2

(k2
x + k2

y)
∣∣
at K

}
. (4.51)

The expression Eq.(4.51) can also be derived in a more intuitive manner. In order
to estimate the tilting angle of the spin magnetic moment from the z-axis to the x-y
plane, it is sufficient to calculate the ratio of the Rashba field Basymm

SO to the external
field Bext. From Eqs. (4.8) and (4.12), we have

Basymm
SO (r) =

2

gµB
{αasymm(r)× p} . (4.52)

Since from the approximation

αasymm(r) ≈ α̃z êz (4.53)

50



!

z

Bext

 asymm
soB!

spin magnetic 
moment

Figure 4.2: Schematic view of the Rashba magnetic field, external magnetic field and spin
magnetic moment. The tilting angle θ of the spin magnetic moment is given by equation
4.59 [97].

and

p = ~k. (4.54)

Eq.(4.52) becomes

Basymm
SO (r) =

2

gµB
α̃z~ (êz × p)

or

Basymm
SO (r) =

2

gµB
α̃z~ (kxêy − kyêx) . (4.55)

Hence, the magnitude of the Rashba field Basymm
SO (r) is given by

|Basymm
SO (r)| = 2~

gµB
|α̃z|
√
k2
x + k2

y. (4.56)

The schematic view of the Rashba magnetic field Basymm
SO (r), external magnetic field

Bext and spin magnetic moment is given in Fig. 4.2. If the angle is denoted as θ, we
have

tanθ =
|Basymm

SO (r)|
|Bext|

. (4.57)
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Using Eq.(4.56), the tilting angle is rewritten as

tanθ =
2~

gµBBext

|α̃z|
√
k2
x + k2

y. (4.58)

Now, the spin magnetic moment is substantially reduced by factor cosθ. If the tilting
angle is small such that the Rashba effect is smaller than the spin Zeeman effect, then
cosθ is given by

cosθ = 1− 2

(
α̃z~

gµBBext

)2

(k2
x + k2

y). (4.59)

We thus obtain the tilting angle of the spin magnetic moment. Comparing Eq.(4.59)
to Eq.(4.51), we can see that the reduction of the g-factor is also explained using the
ratio of Rashba field to external magnetic field. Alternatively, we can also confirm
Eq.(4.59) by calculating the expectation value of the spin magnetic moment with
respect to eigenfunctions of Eq.(4.39). This shows that the spin magnetic moment
of the HOS tilts by θ at the K point, while that of LUS tilts by (π−θ) at the K point.

In order to estimate the effective g-factor quantitatively, the value of Rashba pa-
rameter α̃z is needed as shown in Eq.(4.51). We calculate α̃z in the following three
steps and using this, we determine effective g-factor.

Step 1 :
In order to calculate the Rashba parameter α̃z, we need the electric field ∇Vasymm(z),
as can be seen in Eq.(4.12). An asymmetric potential Vasymm(z) is caused by the
work function. The work function generally consists of the surface term and the bulk
term [96]. The surface term originates from the electrical double layer existing near
the surface. Electrons seep into the vacuum side from the surface due to the tunnel
effect, due to which the electrical double layer forms in the vicinity of the surface.
The electrons cannot easily escape from the surface, which is the origin of the work
function [96]. The bulk term corresponds to the difference between the total energy of
isolated atoms and that of the jellium model of electron liquid. This term, therefore,
coincides with the cohesive energy times the factor -1 [96]. In our study, we use the
experimental value W=4.3 (eV), obtained from, [98] for the work function.

Step 2 :
The work function spatially spreads over some region near the surface. Correspond-
ingly, electron density may decrease in that region because the work function acts as a
potential barrier for the electrons. Therefore, the decay length of the electron density
can be regarded as the spread length of the work function. In this step, we evaluate
the decay length of the electron density in the vicinity of the surface of graphene using
the Jellium model of electron liquid [96]. Let this decay length be referred to as d.

In the paper by Lang-Kohn [96], the spatial profile of the electron density is de-
rived for various rs parameters. In Appendix, we calculate the rs parameter of the
graphene sheet, using effective thickness of the graphene sheet. This results in a
value of rs = 1.93548 for the graphene sheet. Accordingly, we borrow a result from
prior work for the spatial profile of electron density of rs = 2 [96]. In such a profile
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Figure 4.3: Variation of electron density between 0.95n̄p to 0.05n̄p near surface for rs = 2.
Blue line is the best fitted line.

[96], assume that a length decreasing the electron density from 0.95n̄p to 0.05n̄p is
regarded as the decay length of the electron density as shown in Fig. 4.3, where
n̄p is the uniform positive charge density of the jellium model. The resulting d is
1.7604 × 10−10(m). As mentioned above, this value of d corresponds to the spread
length of the work function.

The electric field caused by work function is supposed to be constant in our present
scheme as mentioned in Sec. 4.2. Using the work function W and its spread length
d, the asymmetric potential is written as

Vasymm(z) =
W

d
z. (4.60)

Using Eqs.(4.12) and (4.60), the Rashba parameter α̃z is given by

|α̃z| =
~

4m2c2

W

d
, (4.61)

where W = 4.3 (eV) and d = 1.7604× 10−10m as shown in step 1 and step 2 respec-
tively.
As a reference, the corresponding value of Rashba magnetic field B̃asymm

SO is calculated
to be 0.268 (T), which is much smaller than the magnitude of the external magnetic
field Bext = 1 (T). This implies that the premise of Eq.(4.45) is correct. The relation
between the Rashba magnetic field, external magnetic field, and spin magnetic mo-
ment is illustrated in Fig. 4.2.
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Let us compare the magnitude of the Rashba effect with previous estimations [18,
46, 47]. The magnitude of Rashba effect is usually evaluated by the energy split-
ting of the Dirac cones in the case where the electric field of 1 (V/nm) is applied
perpendicularly to the graphene sheet. This energy splitting is usually denoted as
2λR. Estimated previous and present value of 2λR are summarized in Table 4.1. The
value of 2λR for graphene was first estimated by Kane and Mele as 0.516(µeVnm/V)
[18]. Min et al. estimated it as 133.2(µeVnm/V) by the tight binding approximation
method [47]. The estimation of 2λR through the first-principle calculation is done by
Gmitra et al., and they estimated it as 9.9(µeVnm/V) [46]. In order to compare these
estimations with our estimation, we consider the energy splitting due to the Rashba
effect in the case of Bext = 0. The energy splitting for the case of Bext = 0 is cal-
culated by Eqs.(4.42 and 4.61). The estimated value of 2λR is 1.27(µeVnm/V). This
value is about 2.5 times larger than Kane and Mele’s estimation, and is about 1/8
and 1/105 of the estimations by Min et al. and Gmitra et al., respectively. Although
previous numerical estimations for 2λR are rather controversial, our value is about in
the middle of them. As described in the next step (step 3), the present estimation of
energy splitting can successfully explain the experimental results of g-factor.

Table 4.1: Estimated values of 2λR. Here, 2λR denotes the energy splitting of the Dirac
cones due to the Rashba effect in the case where the electric field of 1 (V/nm) is applied
perpendicularly to the graphene sheet [97].

2λR(µeVnm/V)

Kane and Mele [18] 0.516

Min et al. [47] 133.2

Gmitra et al. [46] 9.9

Present work 1.27

Step 3 :
Finally, in order to evaluate the effective g-factor, we need the magnitude of k at the
K point. The K point and its magnitude are given by k|at K = (2π/a)(1/3, 1/

√
3),

and k|at K = 1.70276 × 1010(m−1), respectively. Substituting the results obtained in
these three steps in to Eq.(4.51) with an external magnetic field of 1 (T), we get
geff = 1.931 (see Table 4.2). This is the effective g-factor predicted by our scheme at
Bext =1 (T).

This reveals that the reduction of g-factor is actually caused by the Rashba effect.
The g-factor is reduced by about 3.6 percent in our scheme, while its experimentally
observed value is a reduction by about 3.1 percent [28] or 2.5 percent [29] when ex-
ternal magnetic field is 1 (T) (Table 4.2). This establishes the fact that the Rashba
effect is the primary cause for the reduction of the g-factor in graphene. As already
explained, the diamagnetism of graphene is another source for the reduction of its g-
factor by about 0.7 percent [48]. Additionally accounting for this factor suggests that
our scheme slightly overestimates the influence of the Rashba effect on the g-factor of
graphene. In section 4.4 B, we comment on the possibility of other influencing factors
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that might be causing this overestimation in our scheme.

At the end of this section, we give a brief comment on the case where the external
magnetic field is applied parallel to the graphene sheet. The effective magnetic field
Basymm
SO (r) caused by Rashba effect is parallel to the graphene sheet as shown in Fig.

4.2, irrespective to the direction of the external magnetic field. Namely, Basymm
SO (r)

is parallel to the external magnetic field in this case. Although the HOS-LUS gap
changes with the external magnetic field, the differential of the HOS-LUS gap with
respect to the external magnetic field would not change. Therefore, the g-factor is
expected to be close to that of a free electron, which is consistent with the earlier
experimental works of graphite [99, 100].

Table 4.2: Effective g-factor at Bext = 1 (T) [97].

Effective g-factor

Mani et al. [28] (experiment) 1.94± 0.024

Lyon et al.[29] (experiment) 1.952± 0.002

Present work 1.931

B. Gate voltage dependence of the effective g-factor

It is shown by the experiment on ESR [28] that the effective g-factor does not depend
on the gate voltage, where the externally applied electric field (Eext

z ) perpendicular
to the graphene sheet is controlled by the gate voltage. We consider the inherently-
existing electric field (Ein

z ) that comes from the work function as mentioned in section
4.1-4.3. When we consider the gate voltage dependence of the energy splitting due to
Rashba effect, we should take both Eext

z and Ein
z into consideration. The magnitude

of Ein
z is estimated as Ein

z = 24.4(V/nm) using Eq.(4.60), W = 4.3 (eV) and d =
1.7604×10−10(m). On the other hand, (Eext

z ) ∼ 50V/300nm is often used in estimating
Rashba effect caused by the external applied electric field [18, 46, 47]. This value is
more than two orders of magnitude smaller than Ein

z . It is expected that Eext
z is

much smaller than Ein
z even if teh gate voltage changes form -30 to 20 (V) like in

the experiment on ESR [28]. Therefore, the Rashba effect in the graphene sheet
deposited on the substrate is mainly caused by Ein

z . It is expected from the present
scheme that the energy splitting as well as the effective g-factor is almost independent
of the gate voltage. Thus, the present scheme can describe the experimental fact that
the effective g-factor is almost independent of the gate voltage.
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Chapter 5

Magnetic Field Containing
Relativistic Tight Binding (MFRTB)
Approximation incorporating
Rashba effect

Even though Rashba effect is incorporated in empty lattice model while estimating ef-
fective g-factor, the orbital magnetic moment is totally ignored. This is because the
magnitude of the orbital magnetic moment for the state of K point is likely to be small
in graphene. The accuracy of previous calculation methods could be increased by exam-
ine the actual magnitude of effect of orbital magnetic moment on g-factor. The MFRTB
method [38, 43, 48] can be used for the theoretical treatment of the effect of orbital
magnetic moment. The relativistic effects like SO interaction are also incorporated by
MFRTB method. Hence, in this chapter we extend the MFRTB method in order to
incorporate the Rashba effect in order to apply it on graphene.

5.1 Magnetic Field Containing Relativistic Tight Bind-

ing (MFRTB) Approximation with Rashba effect

At any cystal interface or surface inversion asymmetry cause the asymmetric potential
along the direction perpendicular to the graphene sheet. This causes the effective mag-
netic field parallel to the plane of graphene sheet. This is known as Rashba effect. Let
Vasymm(r) be the asymmetric potential which is added to the Hamiltonian of Eq.(2.1).

Hence, Eq.(2.1) can be rewritten as

[H + Vasymm(r)] Φk(r) = EkΦk(r), (5.1)

where

H = cα · [p + eA(r)] + βmc2 +
∑
Rn

∑
i

Vai(r−Rn − di), (5.2)

is the Dirac Hamiltonian. The symbols have their usual meaning.
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In the MFRTB method, Φk is expanded by using relativistic atomic orbitals ψai,Rn+di

ξ (r)
for constituent atoms immersed in the uniform magnetic field. Relativistic atomic or-
bitals obey the Dirac equation of an isolated atom located at Rn + di and immersed in
the uniform magnetic field. That is to say

[cα · {p + eA(r)}+ βmc2 + Vai(r−Rn − di)]ψ
ai,Rn+di

ξ (r) = εai,Rn+di

ξ ψai,Rn+di

ξ (r),

(5.3)

where ψai,Rn+di

ξ and εai,Rn+di

ξ denote the relativistic atomic orbital and atomic spectrum
in the uniform magnetic field. The subscript ξ = (nlJM) is the quantum number in
atomic system.

Expanding Φk(r) in terms of relativistic wave function ψai,Rn+di

ξ (r) of atoms immersed
in the uniform magnetic field as a basis function using Eq.(2.5). Then, Eq.(5.1) can be
written as∑

Rn

∑
i

∑
ξ

Cξ
k(Rn + di)Hψ

ai,Rn+di

ξ (r)

+
∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)Vasymm(r)ψai,Rn+di

ξ (r)

= Ek

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)ψ

ai,Rn+di

ξ (r). (5.4)

Multiplying by ψ
aj ,Rm+dj
η (r)† on both sides of Eq.(5.4) and integrating with respect to r,

we get,∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)

∫
ψ
aj ,Rm+dj
η (r)†Hψai,Rn+di

ξ (r)d3r

+
∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)

∫
ψ
aj ,Rm+dj
η (r)†Vasymm(r)ψai,Rn+di

ξ (r)d3r

= Ek

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r

or∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)HRmjη,Rniξ +

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)Hasymm

Rmjη,Rniξ

= Ek

∑
Rn

∑
i

∑
ξ

Cξ
k(Rn + di)SRmjη,Rniξ, (5.5)

where HRmjη,Rniξ, H
asymm
Rmjη,Rniξ

, and SRmjη,Rniξ denotes the Dirac Hamiltonian, Rashba
Hamiltonian and overlap matrices, respectively, and they are given by

HRmjη,Rniξ =

∫
ψ
aj ,Rm+dj
η (r)†Hψai,Rn+di

ξ (r)d3r, (5.6)

Hasymm
Rmjη,Rniξ

=

∫
ψ
aj ,Rm+dj
η (r)†Vasymm(r)ψai,Rn+di

ξ (r)d3r, (5.7)

SRmjη,Rniξ =

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r. (5.8)
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For simplicity, we use the expression for Dirac Hamiltonian matrix given by Eq.(2.23) as

HRmjη,Rniξ ≈ (εai,Rn+di

ξ + ∆εai,Rn+di

ξ )δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

×
∫
ψ
aj ,Rm+dj
η (r)†

[
V η
aj

(r−Rm − dj) + V ξ
ai

(r−Rn − di)

2

]
× ψai,Rn+di

ξ (r)d3r, (5.9)

where εai,Rn+di

ξ is the atomic spectrum in an uniform magnetic field and ∆εai,Rn+di

ξ de-
notes the energy of crystal field and is given by

∆εai,Rn+di

ξ δη,ξ =

∫
ψai,Rn+di
η (r)†


∑
Rk

Rk+dl 6=Rn+di

∑
l

Val(r−Rk − dl)


×ψai,Rn+di

ξ (r)d3r (5.10)

and overlap matrix given by Eq.(2.26) as

SRmjη,Rniξ = δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

∫
ψ
aj ,Rm+dj
η (r)†ψai,Rn+di

ξ (r)d3r. (5.11)

which are already derived in chapter 2.

From Eq.(5.3), Dirac equation for an atom immersed in uniform magnetic field and
located at origin is given by[

cα · {p + eA(r)}+ βmc2 + Vai(r)
]
ψai,0ξ (r) = εai,0ξ ψai,0ξ (r). (5.12)

Changing variables r to r−Rn − di , we have[
cα · {p + eA(r−Rn − di)}+ βmc2 + Vai(r−Rn − di)

]
ψai,0ξ (r−Rn − di)

= εai,0ξ ψai,0ξ (r−Rn − di).

(5.13)

As A(r−Rn − di) and A(r) cause the same magnetic field B = (0, 0, B), they can be
related by a gauge transformation as

A(r−Rn − di) = A(r) +∇χ(r,Rn + di). (5.14)

We have the Landau gauge employed for A(r) is

A(r) = (0, Bx, 0) (5.15)

From Eqs. (5.14) and (5.15), we have

χ(r,Rn + di) = −B(Rnx + dix)y. (5.16)

Vector potentials at Eqs.(5.3) and (5.13) are different from each other by the choice of
the gauge given by Eq.(5.13). So, eigenfunctions and eigenvalues of each Eqs.(5.3) and
(5.13) are related as

ψai,0ξ (r−Rn − di) = e−i
e
~χ(r,Rn+di)ψai,Rn+di

ξ (r), (5.17)

ψai,0ξ (r−Rm − dj) = e−i
e
~χ(r,Rm+dj)ψ

ai,Rm+dj

ξ (r) (5.18)
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and

εai,0ξ = εai,Rn+di

ξ . (5.19)

In addition, we have from Eqs.(5.10) and (5.17),

∆εai,diξ = ∆εai,Rn+di

ξ = ∆εai,0ξ . (5.20)

Using Eqs. (5.16), (5.17), (5.19) and (5.20), the Hamiltonian matrix Eq.(5.9) is rewritten
as

HRmjη,Rniξ = (εai,0ξ + ∆εai,diξ )δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

× e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)T̃

aj ,ai
η,ξ (Rl + di − dj), (5.21)

Where

T̃
aj ,ai
η,ξ (Rl + di − dj) = T

aj ,ai
η,ξ (Rl + di − dj) +

(
ε
aj ,0
η + εai,0ξ

2

)
S
aj ,ai
η,ξ (Rl + di − dj),

(5.22)

with

T
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†

[
Vaj(r) + Vai(r−Rl − di + dj)

2

]
ψ
ai,Rl+di−dj

ξ (r)d3r,

(5.23)

S
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†ψ

ai,Rl+di−dj

ξ (r)d3r. (5.24)

are the magnetic hopping and magnetic overlap integrals.

Similarly, Using Eqs. (5.16) and (5.17), the overlap matrix Eq.(5.11) is rewritten as

SRmjη,Rniξ = δRm,Rnδj,iδη,ξ + (1− δRm,Rnδj,i)

× e−i
eB
~ (Rlx+dix−djx)(Rmy+djy)S

aj ,ai
η,ξ (Rl + di − dj). (5.25)

Now, lets substitute Eqs.(5.17) and (5.18) into Eq.(5.7). Then, the Rashba Hamiltonian
matrix given by Eq.(5.7) becomes

Hasymm
Rmjη,Rniξ

=

∫
e−i

e
~χ(r,Rm+dj)e−i

e
~χ(r,Rn+di)

× ψaj ,0η (r−Rm − dj)
†Vasymm(r)ψai,0ξ (r−Rn − di)d

3r. (5.26)

Using Eqs.(5.16), Eq.(5.26) becomes

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
~ [Rnx+dix−Rmx−djx]y

× ψaj ,0η (r−Rm − dj)
†Vasymm(r)ψai,0ξ (r−Rn − di)d

3r. (5.27)

Changing variables, r′ to r−Rm − dj, Eq.(5.17) becomes

ψai,0ξ (r′ −Rl − di + dj) = e−i
e
~χ(r′,Rl+di−dj)ψ

ai,Rl+di−dj

ξ (r′), (5.28)
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where Rl = Rn −Rm.

From Eqs.(5.17) and (5.27), the Rashba Hamiltonian matrix is given by

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
~ (Rlx+dix−djx)(Rmy+djy)

× ψaj ,0η (r′)†Vasymm(r′ + Rm + dj)ψ
ai,Rl+di−dj

ξ (r′)d3r′. (5.29)

In MFRTB method [38], ψ
ai,Rl+di−dj

ξ (r) is approximated as

ψ
ai,Rl+di−dj

ξ (r) = e−i
eB
2~ (Rly+diy−djy)(Rlx+dix−djx)φainlJM(r−Rl − di + dj). (5.30)

In the vicinity of origin, it would be reasonable to approximate

ψaj ,0η (r) ≈ φ
aj
n′l′J ′M ′(r), (5.31)

where φainlJM(r) is relativistic atomic orbital in the absence of magnetic field which obeys
following Dirac equation;

[cα · p + βmc2 + Vai(r)]φainlJM = ε̄ainlJφ
ai
nlJM(r), (5.32)

where n, l, J,M are the principal, azimuthal, total angular momentum and magnetic
quantum numbers respectively and ε̄ainlJ denotes the atomic spectrum for the zero mag-
netic field case.

From Eqs.(5.29), (5.30), and (5.31), finally, Rashba Hamiltonian matrix is given by

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

× φajn′l′J ′M ′(r)†Vasymm(r + Rm + dj)φ
ai
nlJM(r−Rl − di + dj)d

3r. (5.33)

In the following section, the approximation of matrix elements of Rashba Hamiltonian
matrix will be discussed.

5.2 Approximation of matrix element of Rashaba Hamil-

tonian matrix

The relativistic atomic orbital φainlJM(r) can be expressed as

φainlJM =
1

r

(
fainlJM(r)

gainlJM(r)

)
, (5.34)

where fainlJM(r) and gainlJM(r) are large and small components of φainlJM , respectively, and
they are expressed as

fainlJM(r) =
1

r
F ai
nlJM(r)yMl,J(θ, φ), (5.35)

gainlJM(r) =
1

r
Gai
nlJM(r)yMl,J(θ, φ). (5.36)
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From Eq.(5.34), Eq.(5.33) can be written as

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

× {fajn′l′J ′M ′(r)g
aj
n′l′J ′M ′(r)}†Vasymm(r + Rm + dj)

{
fainlJM(r−R)
gainlJM(r−R)

}
d3r

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

× {fajn′l′J ′M ′(r)†Vasymm(r + Rm + dj)f
ai
nlJM(r−R)

+ g
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)g

ai
nlJM(r−R)}d3r, (5.37)

where R = Rl − di + dj.

Introducing following approximation [54]

gainlJM(r) ≈ 1

2mc
(σ · p)fainlJM(r), (5.38)

Eq.(5.37) becomes

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

+
(σ · p)

2mc
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)

(σ · p)

2mc
fainlJM(r−R)

}
d3r

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†(σ · p)Vasymm(r + Rm + dj)

×(σ · p)fainlJM(r−R)
}
d3r

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†(σ · −i~∇)Vasymm(r + Rm + dj)

×(σ · p)fainlJM(r−R)
}
d3r

(5.39)
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=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

− i~
4m2c2

f
aj
n′l′J ′M ′(r)†[σ · ∇Vasymm(r + Rm + dj)](σ · p)fainlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†[∇Vasymm(r + Rm + dj)(σ · p)(σ · p)]

×fainlJM(r−R)
}
d3r.

(5.40)

Using the property

(σ ·C)(σ ·D) = C.D + iσ.(C×D), (5.41)

Eq.(5.40) is written as

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

− i~
4m2c2

f
aj
n′l′J ′M ′(r)†[∇Vasymm(r + Rm + dj) · p]fainlJM(r−R)

− i~
4m2c2

f
aj
n′l′J ′M ′(r)†[iσ · {∇Vasymm(r + Rm + dj)× p}]fainlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†[Vasymm(r + Rm + dj)p

2]fainlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†[iVasymm(r + Rm + dj){σ · (p× p)}]

×fainlJM(r−R)
}
d3r

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

+
i~

4m2c2
f
aj
n′l′J ′M ′(r)†[−∇Vasymm(r + Rm + dj) · p]fainlJM(r−R)

+f
aj
n′l′J ′M ′(r)†

[
~

4m2c2
σ · {∇Vasymm(r + Rm + dj)× p}

]
fainlJM(r−R)

+f
aj
n′l′J ′M ′(r)†

[
Vasymm(r + Rm + dj)

p2

4m2c2

]
fainlJM(r−R)

+
1

4m2c2
f
aj
n′l′J ′M ′(r)†[iVasymm(r + Rm + dj){σ · (p× p)}]

×fainlJM(r−R)
}
d3r.

(5.42)

Eq.(5.42) shows that the Rashba Hamiltonian matrix consists of following five terms:
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(i) First term consists of integral∫
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)d3r

which corresponds to the hopping integral.

(ii) Second term consists of integral∫
i~

4m2c2
f
aj
n′l′J ′M ′(r)†[−∇Vasymm(r + Rm + dj) · p]fainlJM(r−R)d3r,

which vanishes as electric field −∇Vasymm(r + Rm + dj) due to asymmetric poten-
tial is perpendicular to the surface and to the direction of electron momentum p

(iii) Third term consists of integral∫
f
aj
n′l′J ′M ′(r)†

[
~

4m2c2
σ · {∇Vasymm(r + Rm + dj)× p}

]
fainlJM(r−R)d3r,

which is related to the Rashba Hamiltonian, say ‘HR’ and is expressed as

HR =
~

4m2c2
σ · {∇Vasymm(r + Rm + dj)× p}

= σ ·
{

~
4m2c2

∇Vasymm(r + Rm + dj)× p

}
= σ · {αasymm(r + Rm + dj)× p} , (5.43)

where αasymm(r + Rm + dj) is known as Rashba parameter and it is given by

αasymm(r + Rm + dj) =
~

4m2c2
∇Vasymm(r + Rm + dj). (5.44)

(iv) Fourth term consists of integral∫
f
aj
n′l′J ′M ′(r)†

[
Vasymm(r + Rm + dj)

p2

4m2c2

]
fainlJM(r−R)d3r,

which can be neglected because the ratio
p2/2m

2mc2
is very small.

(v) Fifth term consists of integral

1

4m2
0c

2
f
aj
n′l′J ′M ′(r)†[iVasymm(r + Rm + dj){σ · (p× p)}]fainlJM(r−R)}d3r,

which vanishes due to the property (p× p) = 0.

Hence, the Rashba Hamiltonian matrix given by Eq.(5.42) becomes

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
f
aj
n′l′J ′M ′(r)†Vasymm(r + Rm + dj)f

ai
nlJM(r−R)

+f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)

}
d3r. (5.45)
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Let us assume that the Rashba parameter given by Eq.(5.44) is constant along z-direction.
i.e. αasymm(r + Rm + dj) ≈ α̃z(|r + Rm + dj|êz) ≈ |α̃z|êz, where êz is a unit vector along
z-axis. This implies that the electric field, i.e. ∇Vasymm(z) assumed to be constant along
z-direction. Hence, this assumption leads us to the fact that Vasymm(z) is varies linearly
with z in the vicinity of the surface.

The magnitude of asymmetric potential in terms of work function W and its spread
length d is given by Eq.(4.60). This equation is rewritten as

Vasymm{|(r + Rm + dj)êz|} =
W

d
z. (5.46)

From Eqs.(5.43), (5.45), and (5.46), Rashba Hamiltonian matrix is given by

Hasymm
Rmjη,Rniξ

=

∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

×
{
W

d
f
aj
n′l′J ′M ′(r)†zfainlJM(r−R)

+|α̃z|f
aj
n′l′J ′M ′(r)† [σ.(êz × p)] fainlJM(r−R)

}
d3r. (5.47)

Eq.(5.47) shows that only second term is spin dependence. Since, energy splitting is
mainly caused by spin dependence term, we may consider only the second term in or-
der to incorporate Rashba effect in MFRTB approximation. Hence, Eq.(5.47) can be
approximated as

Hasymm
Rmjη,Rniξ

≈
∫
e−i

eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

× |α̃z|f
aj
n′l′J ′M ′(r)† [σ.(êz × p)] fainlJM(r−R)d3r

≈ e−i
eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)

∫
f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)d3r.

(5.48)

From Eq.(5.35), the integral part of of Eq.(5.48) can be written as∫
f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)d3r

= |α̃z|
∫

1

rr
R

F
aj∗
n′l′J ′(r)yM

′∗
l′,J ′ (θ, φ) [σ.(êz × p)]F ai

nlJ(r
R

)yMl,J(θR, φR)d3r,

(5.49)

where yMl,J(θ, φ) is the spin angular function and is given by

yMl,J(θ, φ) =



√
J +M

2J
Yl,M− 1

2
(θ, φ)√

J −M
2J

Yl,M+ 1
2
(θ, φ)

 for J = l +
1

2

−
√
J + 1−M
2(J + 1)

Yl,M− 1
2
(θ, φ)√

J + 1 +M

2(J + 1)
Yl,M+ 1

2
(θ, φ)

 for J = l − 1

2

, (5.50)
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with Yl,M(θ, φ) being a Spherical harmonic function. Here, we also have

σ.(êz × p) =

(
0 −ipx − py

ipx − py 0

)
. (5.51)

Substituting Eq.(5.51) into Eq.(5.49), we get∫
f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)d3r

= |α̃z|
∫

1

rr
R

F
aj∗
n′l′J ′(r)yM

′∗
l′,J ′ (θ, φ)

(
0 −ipx − py

ipx − py 0

)
×F ai

nlJ(r
R

)yMl,J(θR, φR)d3r.

(5.52)

Let us compute the integral given by Eq.(5.52) for the following cases:

(a) J ′ = l′ + 1
2

and J = l + 1
2
,

(b) J ′ = l′ + 1
2

and J = l − 1
2
,

(c) J ′ = l′ − 1
2

and J = l + 1
2
,

(d) J ′ = l′ − 1
2

and J = l − 1
2
.

(a) For J ′ = l′ + 1
2

and J = l + 1
2

From Eq.(5.50) for spin angular function and Eq.(5.52), we have∫
f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)d3r

= |α̃z|
∫

1

rr
R

F
aj
n′l′J ′(r)∗

{√
J ′ +M ′

2J ′
Yl′,M ′− 1

2
(θ, φ)∗

√
J ′ −M ′

2J ′
Y ∗
l′,M ′+ 1

2
(θ, φ)

}

×

(
0 −ipx − py

ipx − py 0

)
F ai
nlJ(r

R
)


√
J +M

2J
Yl,M− 1

2
(θR, φR)√

J −M
2J

Yl,M+ 1
2
(θR, φR)

 d3r

= |α̃z|

[√
J ′ +M ′

2J ′

√
J −M

2J

∫
1

rr
R

F
aj
n′l′J ′(r)∗Yl′,M ′− 1

2
(θ, φ)∗{−ipx − py}

×F ai
nlJ(r

R
)Yl,M+ 1

2
(θR, φR)d3r

+

√
J +M

2J

√
J ′ −M ′

2J ′

∫
1

rr
R

F
aj
n′l′J ′(r)∗Yl′,M ′+ 1

2
(θ, φ)∗{ipx − py}

×F ai
nlJ(r

R
)Yl,M− 1

2
(θR, φR)d3r

]
.

(5.53)
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In non-relativistic case, we have

φainlJM(r) ≈ 1

r
F ai
nlJ(r)Yl,M(θ, φ). (5.54)

Substituting Eq. (5.54) into Eq.(5.53), we get∫
f
aj
n′l′J ′M ′(r)†HRf

ai
nlJM(r−R)d3r

= |α̃z|

[√
J ′ +M ′

2J ′

√
J −M

2J

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ipx − py}φainlJM+ 1
2

(r−R)d3r

+

√
J +M

2J

√
J ′ −M ′

2J ′

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ipx − py}φainlJM− 1
2

(r−R)d3r

]
. (5.55)

The non-relativistic wave function φainlJM(r) obeys the following Schrödinger wave equa-
tion

H0
atomφ

ai
nlJM(r) = εnlφ

ai
nlJM(r), (5.56)

with

H0
atom =

p2

2m
+ Vai(r), (5.57)

where Vai is potential of an atom ai located at origin.

From Eq(5.55), it is evident that the integral part in Rashba Hamiltonian can be re-
garded as momentum matrix. Hence, to calculate matrix element of Rashba Hamiltonian
matrix, we have to compute the momentum matrices of Eq.(5.55).

In Heisenberg picture, for an operator Â, we have

dÂ

dt
=

1

i~
[Â,H]. (5.58)

Applying this relation to the x-co-ordinate, we obtain

dx

dt
=

1

i~
[
x,H0

atom

]
. (5.59)

Using Eq.(5.57), Eq.(5.59) becomes

px =
m

i~
[
x,H0

atom

]
. (5.60)

Similarly, for y-coordinate, we get

py =
m

i~
[
y,H0

atom

]
. (5.61)

With the help of Eqs.(5.60) and (5.61), we evaluate the momentum matrices of Eq.(5.55).
At first, let us take the following momentum matix:
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∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗pxφ
ai
nlJM± 1

2

(r−R)d3r

=

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗
m

i~
(
xH0

atom −H0
atomx

)
φai
nlJM± 1

2

(r−R)d3r

=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xH0
atomφ

ai
nlMJ± 1

2

(r−R)d3r

−
∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗H0
atomxφ

ai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗x{HR
atom + Vatom(r)− Vatom(r−R)}φai

nlJM± 1
2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xHR
atomφ

ai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′JM ′∓ 1
2

(r)∗x{Vatom(r)− Vatom(r−R)}φai
nlJM± 1

2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{
εnl

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗x{Vatom(r)− Vatom(r−R)}φai
nlJM± 1

2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xVatom(r)φai
nlJM± 1

2

(r−R)d3r

−
∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xVatom(r−R)φai
nlJM± 1

2

(r−R)d3r

}
.

(5.62)

In order to estimate first term of Eq.(5.62), let us express s and p orbitals for n = 2 in
terms of radial and spherical harmonic functions. Then, we have the following atomic
orbitals:

φ20JM 1
2
(r) = R20(r)Y0,0(θ, φ)

= 2

(
z

2a0

) 3
2
(

1− zr

2a0

)
e−zr/2a0Y0,0(θ, φ)

=
1√
2

(
z

a0

) 3
2
(

1− zr

2a0

)
e−zr/2a0Y0,0(θ, φ), (5.63)
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φ21JM 1
2
(r) = R21(r)Y1,M 1

2
(θ, φ)

=
1√
3

(
z

2a0

) 3
2
(
zr

a0

)
e−zr/2a0Y1,M 1

2
(θ, φ)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e−zr/2a0Y1,M 1

2
(θ, φ), (5.64)

φ20JM 1
2
(r−R) = R20(r−R)Y0,0(θR, φR)

= 2

(
z

2a0

) 3
2
(

1− z

2a0

|r−R|
)
e
− z

2a0
|r−R|

Y0,0(θR, φR)

=
1√
2

(
z

a0

) 3
2
(

1− z

2a0

|r−R|
)
e
− z

2a0
|r−R|

Y0,0(θR, φR), (5.65)

φ21JM 1
2
(r−R) = R21(r−R)Y1,M 1

2
(θR, φR)

=
1√
3

(
z

2a0

) 3
2
(
z

a0

|r−R|
)
e−

z
2ao
|r−R|Y1,M 1

2
(θR, φR)

=
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e−

z
2ao
|r−R|Y1,M 1

2
(θR, φR). (5.66)

The Spherical harmonic functions Yl,M(θ, φ) along ξ-axis as shown in Fig. 5.1 are given
by

Y0,0(θ, φ) =
1√
4π
, (5.67)

Y0,0(θR, φR) =
1√
4π
, (5.68)

Y1,0(θ, φ) = 0, (5.69)

Y1,0(θR, φR) = 0, (5.70)

Y1,1(θ, φ) = −
√

3

8π
eiα, (5.71)

Y1,1(θR, φR) = −
√

3

8π
e−iα, (5.72)

Y1,−1(θ, φ) =

√
3

8π
e−iα, (5.73)

Y1,−1(θR, φR) =

√
3

8π
eiα. (5.74)

Fig. 5.1 shows that the spherical co-ordinate representation for two wave functions
φ2l′J ′M ′(r) and φ21JM(r−R) at origin and position R. The product of these two wave
functions, i.e., φ2l′J ′M ′(r)∗φ21JM(r−R) becomes large as we approach near R from origin.

Fig. 5.2 shows the cylindrical region of radius
2a0

z
in the vicinity of R where the product

of two wave functions has large value and vanishes outside of this region. Fig. 5.3 shows
the representation of coordinate system in terms of ξ-coordinate.
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Figure 5.1: Spherical polar coordinate
representation when r1 approaches to R
along ξ-axis.

Figure 5.2: Cylindrical region in the vicinity
of R where the product of two wave function
becomes large.

Figure 5.3: Representation of the coordinates along ξ-axis in ξ-coordinate in xy-plane.

Under these assumptions, let us calculate the product of two wave functions for following
orbital interactions:

(i) φ20J ′0(r)∗φ20J0(r−R)

From Eqs.(5.63) and (5.65), we have

φ20J ′0(r)∗φ20J0(r−R)

=
1√
2

(
z

a0

) 3
2
(

1− zr

2a0

)
e
− zr

2a0
1√
2

(
z

a0

) 3
2
(

1− z

2a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗0,0(θ, φ)Y0,0(θR, φR).

(5.75)

Using Eq.(5.67), Eq.(5.68), and Eq.(5.75) reduces to
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φ20J ′0(r)∗φ20J0(r−R)

=
1

2

(
z

a0

)3(
1− zr

2a0

)(
1− z

2a0

|r−R|
)
e
− zr

2a0 e
− z

2a0
|R−r|

(
1

4π

)

=



1

8π

(
z

a0

)3(
1− z

2a0

ξ

){
1− z

2a0

(R− ξ)
}
e
− z

2a0
R

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.76)

(ii) φ20J ′0(r)∗φ21J0(r−R)

From Eqs.(5.63), (5.66), (5.67) and (5.70), we have

φ20J ′0(r)∗φ21J0(r−R) = 0. (5.77)

(iii) φ20J ′0(r)∗φ21J1(r−R)

From Eqs.(5.63) and (5.66), we have

φ20J ′0(r)∗φ21J1(r−R)

=
1√
2

(
z

a0

) 3
2
(

1− zr

2a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗0,0(θ, φ)Y1,1(θR, φR).

(5.78)

Using Eqs.(5.67) and (5.72), Eq.(5.78) reduces to

φ20J ′0(r)∗φ21J1(r−R)

=
1

2
√

12

(
z

a0

)3(
1− zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×
(

1√
4π

)(
−
√

3

8π
e−iα

)

=


− 1

16π
√

2

(
z

a0

)4(
1− z

2a0

ξ

)
(R− ξ)e−

z
2a0

R
e−iα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.79)
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(iv) φ20J ′0(r)∗φ21J−1(r−R)

From Eqs.(5.63) and (5.66), we have

φ20J ′0(r)∗φ21J−1(r−R)

=
1√
2

(
z

a0

) 3
2
(

1− zr

2a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗0,0(θ, φ)Y1,−1(θR, φR).

(5.80)

Using Eqs.(5.67) and (5.74), Eq.(5.80) becomes

φ20J ′0(r)∗φ21J−1(r−R)

=
1

2
√

12

(
z

a0

)3(
1− zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×
(

1√
4π

)(√
3

8π
eiα

)

=



1

16π
√

2

(
z

a0

)4(
1− z

2a0

ξ

)
(R− ξ)e−

z
2a0

R
eiα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.81)

(v) φ21J ′0(r)∗φ20J0(r−R) orbits.

From Eqs.(5.64), (5.65), (5.68) and (5.69), we have

φ21J ′0(r)∗φ20J0(r−R) = 0. (5.82)

(vi) φ21J ′0(r)∗φ21J0(r−R)

From Eqs.(5.64), (5.66), and (5.70), we have

φ21J ′0(r)∗φ21J0(r−R) = 0. (5.83)

(vii) φ21J ′0(r)∗φ21J1(r−R)

From Eqs.(5.64), (5.66), (5.69), and (5.72), we have

φ21J ′0(r)∗φ21J1(r−R) = 0. (5.84)

(viii) φ21J ′0(r)∗φ21J−1(r−R)

From Eqs.(5.64), (5.66), (5.67) and (5.74), we have

φ21J ′0(r)∗φ21J−1(r−R) = 0. (5.85)
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(ix) φ21J ′1(r)∗φ20J0(r−R)

From Eqs.(5.64) and (5.65), we have

φ21J ′1(r)∗φ20J0(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1√
2

(
z

a0

) 3
2
(

1− z

2a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,1(θ, φ)Y0,0(θR, φR).

(5.86)

Using Eqs.(5.68) and (5.71), Eq.(5.86) becomes

φ21J ′1(r)∗φ20J0(r−R)

=
1

2
√

12

(
z

a0

)3(
zr

a0

)(
1− z

2a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(
−
√

3

8π
e−iα

)(
1√
4π

)

=


− 1

16π
√

2

(
z

a0

)4

ξ

{
1− z

2a0

(R− ξ)
}
e
− z

2a0
R
e−iα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.87)

(x) φ21J ′1(r)∗φ21J0(r−R)

From Eqs.(5.64), (5.66), (5.70) and (5.71 ), we have

φ21J ′1(r)∗φ21J0(r−R) = 0. (5.88)

(xi) φ21J ′1(r)∗φ21J1(r−R)

From Eqs.(5.64) and (5.66), we have

φ21J ′1(r)∗φ21J1(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,1(θ, φ)Y1,1(θR, φR).

(5.89)

Using Eqs.(5.71) and (5.72), Eq.(5.89) becomes
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φ21J ′1(r)∗φ21J1(r−R)

=
1

24

(
z

a0

)3(
zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(
−
√

3

8π
e−iα

)(
−
√

3

8π
e−iα

)

=



1

64π

(
z

a0

)5

ξ(R− ξ)e−
z

2a0
R
e−2iα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.90)

(xii) φ21J ′1(r)∗φ21J−1(r−R)

From Eqs.(5.64) and (5.66), we have

φ21J ′1(r)∗φ21J−1(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,1(θ, φ)Y1,−1(θR, φR).

(5.91)

Using Eqs.(5.71) and (5.74), Eq.(5.91) becomes

φ21J ′1(r)∗φ21J−1(r−R)

=
1

24

(
z

a0

)3(
zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(
−
√

3

8π
e−iα

)(√
3

8π
eiα

)

=


− 1

64π

(
z

a0

)5

ξ(R− ξ)e−
z

2a0
R

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.92)

(xiii) φ21J ′−1(r)∗φ20J0(r−R)

From Eqs.(5.64) and (5.65), we get
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φ21J ′−1(r)∗φ20J0(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1√
2

(
z

a0

) 3
2
(

1− z

2a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,−1(θ, φ)Y0,0(θR, φR).

(5.93)

Using Eqs.(5.68) and (5.73), Eq.(5.93) becomes

φ21J ′−1(r)∗φ20J0(r−R)

=
1

2
√

12

(
z

a0

)3(
zr

a0

)(
1− z

2a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(√
3

8π
eiα

)(√
1

4π

)

=



1

16π
√

2

(
z

a0

)4

ξ

{
1− z

2a0

(R− ξ)
}
e
− z

2a0
R
eiα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.94)

(xiv) φ21J ′−1(r)∗φ21J0(r−R) orbits.

From Eqs.(5.64), (5.66), (5.70), and (5.73), we have

φ21J ′−1(r)∗φ21J0(r−R) = 0. (5.95)

(xv) φ21J ′−1(r)∗φ21J1(r−R) orbits.

From Eqs.(5.64) and (5.66), we have

φ21J ′−1(r)∗φ21J1(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,−1(θ, φ)Y1,1(θR, φR).

(5.96)

Using Eqs.(5.72) and (5.73), Eq.(5.96) becomes

φ21J ′−1(r)∗φ21J1(r−R)

=
1

24

(
z

a0

)3(
zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(√
3

8π
eiα

)(
−
√

3

8π
e−iα

)
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=


− 1

64π

(
z

a0

)5

ξ(R− ξ)e−
z

2a0
R

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.97)

(xvi) φ21J ′−1(r)∗φ21J−1(r−R)

From Eqs.(5.64) and (5.66), we get

φ21J ′−1(r)∗φ21J−1(r−R)

=
1

2
√

6

(
z

a0

) 3
2
(
zr

a0

)
e
− zr

2a0
1

2
√

6

(
z

a0

) 3
2
(
z

a0

|r−R|
)
e
− z

2a0
|r−R|

× Y ∗1,−1(θ, φ)Y1,−1(θR, φR).

(5.98)

Using Eqs.(5.73) and (5.74), Eq.(5.98) becomes

φ21J ′−1(r)∗φ21J−1(r−R)

=
1

24

(
z

a0

)3(
zr

2a0

)(
z

a0

|R− r|
)
e
− zr

2a0 e
− z

2a0
|R−r|

×

(√
3

8π
eiα

)(√
3

8π
eiα

)

=



1

64π

(
z

a0

)5

ξ(R− ξ)e−
z

2a0
R
e2iα

(near cylinder of radius 2a0
z

and length R along ξ axis)

0 (otherwise).

(5.99)

With these orbital product, we approximate the first term of Eq.(5.62) for the respective
cases as follows:

(i) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (20J0)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε20)

∫
φ
aj
20J ′0(r)∗xφai20J0(r−R)d3r

= 0. (5.100)

(ii) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (21J0).

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε21)

∫
φ
aj
20J ′0(r)∗xφai21J0(r−R)d3r.
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From Eq.(5.74), we have

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

= 0. (5.101)

(iii) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗xφai21J1(r−R)d3r. (5.102)

with x = ξcosα and volume of cylinder(d3r) =

(
2a0

z

)2

πdξ.From Eqs.(5.79) and

(5.102), we have

m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗xφai21J1(r−R)d3r

=
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(ε20 − ε21)

∫ R
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√
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=
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√
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z
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}

×
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)
dξ

=
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√
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=
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=
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√
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e
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R.
. (5.103)

(iv) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (21J−1).

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε21)

∫
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φ
aj
20J ′0(r)∗xφai21J−1(r−R)d3r. (5.104)
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We have, x = ξcosα and d3r =

(
2a0

z

)2

πdξ. From Eqs.(5.81) and (5.104), we get
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R
eiαcosα

}
R3

6

(
1− z

2a0

R

)
=
m

i~
(ε20 − ε21)

1

24
√

2

(
z

a0

)2(
1− z

2a0

R

)
e
− z

2a0
R
eiαR3cosα

=
m

i~
(ε20 − ε21)

1

24
√

2

(
z

a0

)2(
1− z

4a0

R

)
e
− z

2a0
R
R(Rx + iRy)Rx

=
mR

i~
(R2

x + iRxRy)(ε20 − ε21)
1

24
√

2

(
z

a0

)2(
1− z

4a0

R

)
e
− z

2a0
R
. (5.105)

(v) For (n′l′J ′M ′) = (21J ′1), (nlJM) = (20J0).

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε20)

∫
cylinder

φ
aj
21J ′1(r)∗xφai20J0(r−R)d3r. (5.106)

From Eqs.(5.87) and (5.106), we have

m

i~
(ε21 − ε20)

∫
cylinder

φ
aj
21J ′1(r)∗xφai20J0(r−R)d3r

=
m

i~
(ε21 − ε20)

∫ R

0

− 1

16π
√

2

(
z

a0

)4

ξ

{
1− z

2a0

(R− ξ)
}
e
− z

2a0
R
e−iα

× ξcosα
(

2a0

z

)2

πdξ

=
m

i~
(ε20 − ε21)

1

4
√

2

(
z

a0

)2

e
− z

2a0
R
e−iαcosα

∫ R

0

ξ2

{
1− z

2a0

(R− ξ)
}
dξ

=
m

i~
(ε20 − ε21)

1

4
√

2

(
z

a0

)2

e
− z

2a0
R
e−iαcosα

R3

3

(
1− z

8a0

R

)
=
mR

i~
(R2

x − iRxRy)(ε20 − ε21)
1

12
√

2

(
z

a0

)2(
1− z

8a0

R

)
e
− z

2a0
R
. (5.107)
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(vi) For (n′l′J ′M ′) = (21J ′1), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj
21J ′1(r)∗xφai21J1(r−R)d3r

= 0. (5.108)

(vii) For(n′l′J ′M ′) = (20J ′0), (nlJM) = (21J−1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj
21J ′1(r)∗xφai

21J−1
(r−R)d3r

= 0. (5.109)

(viii) For (n′l′J ′M ′) = (21J ′−1), (nlJM) = (20J0).

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε20)

∫
cylinder

φ
aj

21J ′−1
(r)∗xφai20J0(r−R)d3r. (5.110)

From Eqs.(5.94) and (5.110), we have

m

i~
(ε21 − ε20)

∫
cylinder

φ
aj

21J ′−1
(r)∗xφai20J0(r−R)d3r

=
m

i~
(ε21 − ε20)

∫ R

0

1

16π
√

2

(
z

a0

)4

ξ

{
1− z

2a0

(R− ξ)
}
e
− z

2a0
R
eiα

× ξcosα
(

2a0

z

)
πdξ

=
m

i~
(ε21 − ε20)

1

4
√

2

(
z

a0

)2

e
− z

2a0
R
eiαcosα

∫ R

0

ξ2

{
1− z

2a0

(R− ξ)
}
dξ

=
m

i~
(ε21 − ε20)

1

4
√

2

(
z

a0

)2

e
− z

2a0
R
eiαcosα

R3

3

(
1− z

8a0

R

)
=
mR

i~
(R2

x + iRxRy)(ε21 − ε20)
1

12
√

2

(
z

a0

)2(
1− z

8a0

R

)
e
− z

2a0
R
. (5.111)

(ix) For (n′l′J ′M ′) = (21J ′−1), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj

21J ′−1
(r)∗xφai21J1(r−R)d3r

= 0. (5.112)
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(x) For (n′l′J ′M ′) = (21J ′−1), (nlJM) = (21J−1).

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj

21J ′−1
(r)∗xφai21J−1(r−R)d3r

= 0. (5.113)

The second term of the Eq.(5.62) is estimated as

m

i~

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xVatom(r)φai
nlJM± 1

2

(r−R)d3r

=
m

i~

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗ξcosα
ze2

4πε0ξ
φai
nlJM± 1

2

(r−R)d3r

=
m

i~
ze2

4πε0
cosα

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗φai
nlJM± 1

2

(r−R)d3r

=
m

i~
ze2

4πε0R
Rx s

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R),

(5.114)

where s
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R) is the non-relativistic overlap integral, which is given by

s
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R) =

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗φai
nlJM± 1

2

(r−R)d3r. (5.115)

Here, we have used Rx = Rcosα (from Fig. 5.3).

The third term of the Eq.(5.62) is estimated as

m

i~

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xVatom(r−R)φai
nlJM± 1

2

(r−R)d3r

=
m

i~

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗(x−Rx)Vatom(r−R)φai
nlJM± 1

2

(r−R)d3r

+
m

i~
Rx

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗Vatom(r−R)φai
nlJM± 1

2

(r−R)d3r

=
m

i~

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗(ξ −R)cosα
ze2

4πε0(R− ξ)
φai
nlJM± 1

2

(r−R)d3r

+
m

i~
Rx

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗Vatom(r−R)φai
nlJM± 1

2

(r−R)d3r

= −m
i~

ze2

4πε0R
Rx

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗φai
nlJM± 1

2

(r−R)d3r

+
m

i~
Rx

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗Vatom(r−R)φai
nlJM± 1

2

(r−R)d3r
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= −m
i~

ze2

4πε0R
Rx s

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R)+
m

i~
Rx t

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R),

(5.116)

where t
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R) is non-relativistic hopping integral and is given by

t
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R) =

∫
cylinder

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗Vatom(r−R)φai
nlJM± 1

2

(r−R)d3r. (5.117)

Hence, From the Eqs.(5.114) and (5.116), the momentum matrix of Eq.(5.62) can be
written as∫

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗pxφ
ai
nlJM± 1

2

(r−R)d3r

=
m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗xφai
nlJM± 1

2

(r−R)d3r

+
m

i~
Rx

{
2
ze2

4πε0R
s
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R)− taj ,ai
n′l′J ′M ′∓ 1

2
,nlJM± 1

2

(R)

}
. (5.118)

Following the similar calculation steps, the momentum matrix
∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗pyφ
ai
nlJM± 1

2

(r−R)d3r

can be calculated. Then, we have∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗pyφ
ai
nlJM± 1

2

(r−R)d3r

=

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗
m

i~
(
yH0

atom −H0
atomy

)
φai
nlJM± 1

2

(r−R)d3r

=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yH0
atomφ

ai
nlJM± 1

2

(r−R)d3r

−
∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗H0
atomyφ

ai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗y{HR
atom + Vatom(r)− Vatom(r−R)}φai

nlJM± 1
2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yHR
atomφ

ai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗y{Vatom(r)− Vatom(r−R)}φai
nlJM± 1

2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

}
=
m

i~

{
εnl

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗y{Vatom(r)− Vatom(r−R)}φai
nlJM± 1

2

(r−R)d3r

−εn′l′

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

}
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=
m

i~

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r) ∗ yφai
nlJM± 1

2

(r−R)d3r

+

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yVatom(r)φai
nlJM± 1

2

(r−R)d3r

−
∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yVatom(r−R)φai
nlJM± 1

2

(r−R)d3r

}
.

(5.119)

First term of Eq.(5.119) can be evaluated following similar calculation method which is
carried out with first term of Eq.(5.62). For the respective orbital products, the first term
of Eq.(5.119) is given as follows:

(i) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (20J0)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε20)

∫
cylinder

φ
aj
20J ′0(r)∗yφai20J0(r−R)d3r

= 0. (5.120)

(ii) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗yφai21J1(r−R)d3r.

Form Eq.(5.79), we have

m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗yφai21J1(r−R)d3r

=
mR

i~
(R2

y − iRxRy)(ε21 − ε20)
1

24
√

2

(
z

a0

)2(
1− z

4a0

R

)
e
− z

2a0
R
. (5.121)

Here, we employed y = ξsinα and Ry = Rsinα (from Fig. 5.3).

(iii) For (n′l′J ′M ′) = (20J ′0), (nlJM) = (21J−1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗yφai

21J−1
(r−R)d3r.

From Eq.(5.81), we have

m

i~
(ε20 − ε21)

∫
cylinder

φ
aj
20J ′0(r)∗yφai

21J−1
(r−R)d3r

=
mR

i~
(R2

y + iRxRy)(ε20 − ε21)
1

24
√

2

(
z

a0

)2(
1− z

4a0

R

)
e
− z

2a0
R
. (5.122)
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(iv) (n′l′J ′M ′) = (21J ′1), (nlJM) = (20J0)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε20)

∫
cylinder

φ
aj
21J ′1(r)∗yφai20J0(r−R)d3r.

From Eq.(5.81), we have

m

i~
(ε21 − ε20)

∫
cylinder

φ
aj
21J ′1(r)∗yφai20J0(r−R)d3r

=
mR

i~
(R2

y − iRxRy)(ε20 − ε21)
1

12
√

2

(
z

a0

)2(
1− z

8a0

R

)
e
− z

2a0
R
. (5.123)

(v) For (n′l′J ′M ′) = (21J ′1), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj
21J ′1(r)∗yφai21J1(r−R)d3r

= 0. (5.124)

(vi) For (n′l′J ′M ′) = (21J ′1), (nlJM) = (21J−1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj
21J ′1(r)∗yφai

21J−1
(r−R)d3r

= 0. (5.125)

(vii) (n′l′J ′M ′) = (21J ′−1), (nlJM) = (2J0)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε20)

∫
cylinder

φ
aj

21J ′−1
(r)∗yφai20J0(r−R)d3r

From Eq.(5.81), we have

m

i~
(ε21 − ε20)

∫
cylinder

φ
aj

21J ′−1
(r)∗yφai20J0(r−R)d3r

=
mR

i~
(R2

y + iRxRy)(ε21 − ε20)
1

12
√

2

(
z

a0

)2(
1− z

8a0

R

)
e
− z

2a0
R
. (5.126)
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(viii) For (n′l′J ′M ′) = (21J ′−1), (nlJM) = (21J1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj

21J ′−1
(r)∗yφai21J1(r−R)d3r

= 0. . (5.127)

(ix) For (n′l′J ′M ′) = (21J ′−1), (nlJM) = (21J−1)

m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

=
m

i~
(ε21 − ε21)

∫
cylinder

φ
aj

21J ′−1
(r)∗yφai

21J−1
(r−R)d3r

= 0. (5.128)

Similarly, the second and third terms of Eq.(5.119) are given by∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yVatom(r)φai
nlJM± 1

2

(r−R)d3r =
m

i~
ze2

4πε0R
Ry s

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R)

(5.129)

and∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yVatom(r−R)φai
nlJM± 1

2

(r−R)d3r

= −m
i~

ze2

4πε0R
Ry s

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R) +
m

i~
Ry t

aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R). (5.130)

Hence, from Eqs. (5.129) and (5.130), the momentum matrix of Eq.(5.119) can be written
as∫

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗pyφ
ai
nlJM± 1

2

(r−R)d3r

=
m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗yφai
nlJM± 1

2

(r−R)d3r

+
m

i~
Ry

{
2
ze2

4πε0R
s
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R)− taj ,ai
n′l′J ′M ′∓ 1

2
,nlJM± 1

2

(R)

}
. (5.131)

From Eqs.(5.118 and 5.131), we have momentum matrices in each terms from Eq.(5.55)
as∫

φ
aj

n′l′J ′M ′∓ 1
2

(r)∗{∓ipx − py}φainlJM± 1
2

(r−R)d3r

=
m

i~
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′∓ 1
2

(r)∗(∓ix− y)φai
nlJM± 1

2

(r−R)d3r

+
m

i~
(∓iRx−Ry)

{
2
ze2

4πε0R
s
aj ,ai

n′l′J ′M ′∓ 1
2
,nlJM± 1

2

(R)− taj ,ai
n′l′J ′M ′∓ 1

2
,nlJM± 1

2

(R)

}
.

(5.132)
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Finally, from Eqs.(5.48), (5.55), and (5.132), Rashba Hamiltonian matrix for J ′ = l′ + 1
2

and J = l + 1
2

is given by

Hasymm
Rmjη,Rniξ

≈ e−i
eB
2~ (Rlx+dix−djx)(Rny+diy+Rmy+djy)|α̃z|

(
m
i~

)
×

[√
J ′ +M ′

2J ′

√
J −M

2J

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ix− y}φai
nlJM+ 1

2

(r−R)d3r

+(−iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′− 1
2
,nlJM+ 1

2

(R)− taj ,ai
n′l′J ′M ′− 1

2
,nlJM+ 1

2

(R)

)}
+

√
J +M

2J

√
J ′ −M ′

2J ′

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ix− y}φai
nlJM− 1

2

(r−R)d3r

+(+iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R)− taj ,ai
n′l′J ′M ′+ 1

2
,nlJM− 1

2

(R)

)}]
.

(5.133)

Let T
W

(dj) is the vectors connecting aj atom to ai atom which is independent of Rm but
depends on dj. {W = 1, 2, 3...}. Then, Eq.(5.133) becomes

Hasymm
Rmjη,Rniξ

≈ e−i
eB
2~ T

Wx [TWy
(dj)+2Rmy+2djy] (m

i~ |α̃z|
)

×

[√
J ′ +M ′

2J ′

√
J −M

2J

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ix− y}φai
nlJM+ 1

2

(r−R)d3r

−(iRx +Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′− 1
2
,nlJM+ 1

2

(R)− taj ,ai
n′l′J ′M ′− 1

2
,nlJM+ 1

2

(R)

)}
+

√
J +M

2J

√
J ′ −M ′

2J ′

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ix− y}φai
nlJM− 1

2

(r−R)d3r

+(iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R)− taj ,ai
n′l′J ′M ′+ 1

2
,nlJM− 1

2

(R)

)}]
.

(5.134)

Hence, Rashba Hamiltonian matrix for remaining three cases are as follows:
(b) For J ′ = l′ + 1

2
and J = l − 1

2

Hasymm
Rmjη,Rniξ

≈ e−i
eB
2~ T

Wx [TWy
(dj)+2Rmy+2djy] (m

i~ |α̃z|
)

×

[√
J ′ +M ′

2J ′

√
J + 1 +M

2(J + 1)

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ix− y}φai
nlJM+ 1

2

(r−R)d3r

−(iRx +Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′− 1
2
,nlJM+ 1

2

(R)− taj ,ai
n′l′J ′M ′− 1

2
,nlJM+ 1

2

(R)

)}
−
√
J + 1−M
2(J + 1)

√
J ′ −M ′

2J ′

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ix− y}φai
nlJM− 1

2

(r−R)d3r

+(iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R)− taj ,ai
n′l′J ′M ′+ 1

2
,nlJM− 1

2

(R)

)}]
.

(5.135)
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(c) For J ′ = l′ − 1
2

and J = l + 1
2

Hasymm
Rmjη,Rniξ

≈ e−i
eB
2~ T

Wx [TWy
(dj)+2Rmy+2djy]

(m
i~
|α̃z|
)

×

[
−

√
J ′ + 1−M ′

2(J ′ + 1)

√
J −M
2(J)

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ix− y}φai
nlJM+ 1

2

(r−R)d3r

−(iRx +Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′− 1
2
,nlJM+ 1

2

(R)− taj ,ai
n′l′J ′M ′− 1

2
,nlJM+ 1

2

(R)

)}
+

√
J ′ + 1 +M ′

2(J ′ + 1)

√
J +M

2J

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ix− y}φai
nlJM− 1

2

(r−R)d3r

+(iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R)− taj ,ai
n′l′J ′M ′+ 1

2
,nlJM− 1

2

(R)

)}]
.

(5.136)

(d) For J ′ = l′ − 1
2

and J = l − 1
2

Hasymm
Rmjη,Rniξ

≈ e−i
eB
2~ T

Wx [TWy
(dj)+2Rmy+2djy]

(m
i~
|α̃z|
)

×

[
−

√
J ′+1−M ′

2(J ′+1)

√
J+1+M

2(J+1)

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′− 1
2

(r)∗{−ix− y}φai
nlJM+ 1

2

(r−R)d3r

−(iRx +Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′M ′− 1
2
,nlJM+ 1

2

(R)− taj ,ai
n′l′J ′M ′− 1

2
,nlJM+ 1

2

(R)

)}
−

√
J ′+1+M ′

2(J ′+1)

√
J+1−M
2(J+1)

{
(εnl − εn′l′)

∫
φ
aj

n′l′J ′M ′+ 1
2

(r)∗{ix− y}φai
nlJM− 1

2

(r−R)d3r

+(iRx −Ry)

(
ze2

2πε0R
s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R)− taj ,ai
n′l′J ′M ′+ 1

2
,nlJM− 1

2

(R)

)}]
.

(5.137)

It is evident that Eqs.(5.134), (5.135), (5.136), and (5.137) are the matrix elements of
Rashba Hamiltonian matrix. Hasymm

Rmjη,Rniξ
Hence, according to Eq.(5.5), these matrix el-

ements of Rashba Hamiltonian matrix Hasymm
Rmjη,Rniξ

for respective cases contribute to the
diagonal block matrix of the total Hamiltonian matrix of the system. Hence, with the
reference of Eq.(2.43), the resultant simultaneous equation including Rashba Hamiltonian
matrix is given by

(εaj ,0η + ∆ε
aj ,dj
η )Cη

k(Rm + dj) +
∑
W

∑
η

e−i
eB
~ TWx(dj)(Rmy+djy)

× T̃ aj ,aiη,ξ {TW (dj)}Cξ
k{TW (dj) + Rm + dj}+Hasymm

Rmjη,Rniξ
Cξ

k{TW (dj) + Rm + dj}

= ER
k

[
Cη

k(Rm + dj) +
∑
W

∑
η

e−i
eB
~ TWx(dj)(Rmy+djy)S

aj ,ai
η,ξ {TW (dj)}

]
× Cξ

k{TW (dj) + Rm + dj}.
(5.138)
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In order to get the complete solution of this resultant simultaneous equation, we need to

estimate (ε
aj ,0
η +∆ε

aj ,dj
η ), magnetic hopping integral T̃

aj ,ai
η,ξ {TW (dj)} and magnetic overlap

integral S
aj ,ai
η,ξ {TW (dj)}. The term (ε

aj ,0
η + ∆ε

aj ,dj
η ) can be estimate either by using per-

turbative MFRTB method [38] or nonperturbative MFRTB method [43]. The magnetic
hopping integral T̃

aj ,ai
η,ξ {TW (dj)} and magnetic overlap integral S

aj ,ai
η,ξ {TW (dj)} which can

be expressed as linear combination of hopping and overlap integrals in the absence of mag-
netic field are obtained from Table II of Ref. [43]. The non-relativistic hopping integral
t
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R) and non-relativistic overlap integral s
aj ,ai

n′l′J ′M ′+ 1
2
,nlJM− 1

2

(R) involved

in Rashba Hamiltonian can be expressed in terms of several TB parameters and can be
obtained by using “Slater-Koster table” [101].
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Chapter 6

Conclusion

The nonperturbative MFRTB method is applied to graphene immersed in a magnetic
field in order to elucidate the mechanism of the reduced g-factor in graphene that has
recently been observed in the ESR experiments [28, 29]. It is found that there is no
dependence of the bulk SO interaction on the external magnetic field. This implies that
the bulk SO interaction does not effect on the effective g-factor. It is also shown that the
magnetic field induced by strong orbital diamagnetism is one of the reasons for reduction
of the effective g-factor. Specifically, the estimated g-factor of graphene is 1.986 when the
external magnetic field is 1 T, which is a reduction of about 0.7 percent. This, however,
does not fully account for the magnitude of the reduction in the g-factor of graphene
observed in previous experiments [28, 29].

In the calculations by the nonperturbative MFRTB method, the existence of the sub-
strate, which causes the Rashba effect due to the breaking of the space inversion symme-
try, is ignored. So, we carried out our calculation on g-factor using empty lattice model
in order to investigate the effect of Rashba effect on the reduction in effective g-factor.
We derive an expression for the HOS-LUS gap and then energy splitting to evaluate the
effective g-factor. The calculation from our model system shows that the reduction in
effective g-factor is 3.6 percent. This means that the Rashba effect is the primary cause
for the reduction in the g-factor. Due to Rashba effect, the spin magnetic moment tilts
towards the in-plane direction of the graphene sheet. As a result, the external magnetic
field appreciably decreases the energy splitting. This leads to a reduction in the observed
g-factor in the graphene sheet. Furthermore, we have reformulated the MFRTB method
so as to incorporate the Rashba effect. We just accomplished the formulation part which
is presented in Chap. 5. Numerical calculations are our future work. It is expected that
we may estimate the reduction in g-factor of graphene more correctly. This could be a
gateway to enhance the calculation scheme to re-evaluate the diamagnetism of graphene
and to get near numerical agreement with the experimentally recorded value of the g-
factor of graphene.

We shall give a brief comment on the Rashba effect in graphene. It is well-known that the
potential gradient of the nucleus of a heavy atom enhances the Rashba effect. Therefore,
the Rashba effect in the materials composed by light atoms (such as carbon) is expected
to be weak [95]. Despite of small effect, the experimental results of the g-factor is well
explained by Rashba effect. Therefore, we may say that ESR could be a worthwhile
method for the estimation of small Rashba effect to measure the g-factor.
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In Chap. 4, it is assumed that the surface potential on the substrate side (Vsub) is
negligibly small compared to potential on the vacuum side (Vvac). Hence, even though
the calculation from our scheme is in agreement with the experimental ones, there exist
some room to amend the quantitative errors in obtaining effective g-factor. Particularly,
for the overestimation of the reduction of the g-factor that is by 0.5 percent from our
scheme in comparison with experimental value [28, 29]. It could be the future work to
include the effect of Vsub for the improvement of Rashba effect. Apart from Rashba effect,
there might be other effects which are likely to alter the effective g-factor.

Next we shall give a brief comment on the effect of electron-electron interaction on
the effective g-factor. While discussing effect of diamagnetism in effective g-factor of
graphene by means of nonperturbative method and empty lattice model, effects of the
electron-electron interaction is not considered. It is reported that the cyclotron resonance
frequency is independent of the interaction for two-dimensional electron gas [102]. There-
fore, it is appropriate to compare the calculation results from diamagnetism of graphene
with experimental results [28, 29]. But, in the experiments of the Shubnikov-de Haas
(SdH) oscillations, the g-factor is affected by the electron-electron interaction [103–105].
So, we can not neglect electron-electron interaction in SdH oscillations experiments while
discussing effective g-factor. The density functional theory [58, 64] and its extensions
[88–90, 106–113] also incorporate effects of the electron-electron interaction.

Finally, we shall give a comment on the significance of this work. Since the g-factor
determines the spin relaxation time [28, 29], it has been a major topic of interest in the
field of spintronics. As a result, our findings can be used as a guideline when design-
ing spintronics devices. In addition, the Rashba effect may produce g-factor reduction
in various atomic layer materials. For instance, the opening of the energy band gap
in bilayer graphene makes it appealing for application areas [114]. The work function
of bilayer graphene, according to the experiment [115], is roughly 4.4-4.5 [eV], which is
somewhat higher than that of monolayer graphene. Because the difference is minimal,
the Rashba effect induced by the surface potential in bilayer graphene may be similar
to that in monolayer graphene. Therefore, the results of this research can be used as a
general reference when looking into the g-factor of atomic layer materials.
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Appendix A

Estimation of T
aj,ai
η,ξ (Rl + di − dj) and

S
aj,ai
η,ξ (Rl + di − dj)

From Eqs.(2.38) and (2.39), we have

T
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†

(
Vaj(r) + Vai(r−Rl − di + dj)

2

)
ψ
ai,Rl+di−dj

ξ (r)d3r,

(A.1)

S
aj ,ai
η,ξ (Rl + di − dj) =

∫
ψaj ,0η (r)†ψ

ai,Rl+di−dj

ξ (r)d3r. (A.2)

Since, ψ
aj ,0
η (r) and ψ

ai,Rl+di−dj

ξ (r) are wave functions of Landau gauge, they can be esti-
mated using the symmetric gauge through following transformations:

ψaj ,0η (r) = e−i
eB
2~ xyψaj ,0η (r)sym, (A.3)

ψ
aj ,Rl+di−dj

ξ (r) = e−i
eB
2~ xyψ

aj ,Rl+di−dj

ξ (r)sym, (A.4)

where
Bxy

2
denotes the gauge transformation from symmetric gauge to Landau gauge.

Since, ψ
aj ,0
η (r)sym is localized around origin, the phase factor e−i

eB
2~ xy of Eq.(A.3) would

be approximated to unity, i.e.,

ψaj ,0η (r) = ψaj ,0η (r)sym. (A.5)

In the vicinity of origin, the relativistic atomic orbital, ψ
aj ,0
η (r)sym in the uniform magnetic

field can be approximated as the unperturbed wave function φ
aj
η (r) [38]. Thus,

ψaj ,0η (r)sym = φajη (r). (A.6)

This implies that,

ψaj ,0η (r) = ψaj ,0η (r)sym = φajη (r). (A.7)

Similar to Eq.(2.31), symmetric gauge ψ
aj ,Rl+di−dj
η (r)sym is related with

ψ
aj ,0
η (Rl + di − dj)sym by

ψai,0ξ (r−Rl − di + dj)sym = e−
ieB
2~ {(Rly+diy−djy)x−(Rlx+dix−djx)y}ψai,Rl−di+dj

ξ (r)sym, (A.8)
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where, we have used the relation

χ(r,Rl − di + dj) =
B

2
{(Rly + diy − djy)x− (Rlx + dix − djx)y} . (A.9)

From Eq.(A.4) and (A.8), we have

ψ
ai,Rl+di−dj

ξ (r) = e−i
eB
2~ {(Rlx+dix−djx)y−(Rly+diy−djy)x+xy}ψai,0ξ (r−Rl − di + dj)sym.

(A.10)

The phase factor in Eq.(A.10) can be approximated by the phase factor at r = Rl + di − dj

because wavefuction ψai,0ξ (r−Rl − di + dj)sym is localized around r = Rl + di − dj. Then,
Eq.(A.10) is given by

ψ
ai,Rl+di−dj

ξ (r) = e−i
eB
2~ (Rlx+dix−djx)(Rly+diy−djy)ψai,0ξ (r−Rl − di + dj)sym. (A.11)

Using Eq.(A.7), we rewrite Eq.(A.10) either as

ψ
ai,Rl+di−dj

ξ (r) = e−i
eB
2~ (Rlx+dix−djx)(Rly+diy−djy)ψai,0ξ (r−Rl − di + dj) (A.12)

or as

ψ
ai,Rl+di−dj

ξ (r) = e−i
eB
2~ (Rlx+dix−djx)(Rly+diy−djy)φaiξ (r−Rl − di + dj). (A.13)

From Eqs.(A.7) and (A.13), magnetic hopping and overlap integrals given by Eqs.(A.1)
and (A.2) are expressed as

T
aj ,ai
n′l′J ′M ′,nlJM(R) = e−i

eB
2~ RXRY

∫
ψaj ,0η (r)†

(
Vaj(r) + Vai(r−R)

2

)
ψai,0ξ (r−R)d3r,

(A.14)

S
aj ,ai
n′l′J ′M ′,nlJM(R) = e−i

eB
2~ RXRY

∫
ψaj ,0η (r)†ψai,0ξ (r−R)(r)d3r, (A.15)

where RX = Rlx + dix − djx and RY = Rly + diy − djy are x and y-components of
R = Rl + di − dj, respectively.

Now we take Eq.(2.93) and rewrite the expression of wave function in an uniform mag-
netic field which is given by

ψai,0ξ (r) =



φainlJM(r) + ηainlJMφ
ai
nlJ−1M(r)√

1 + (ηainlJM)2
for (n, l, J,M),M 6= J

φainlJ−1M(r) + ηainlJ−1Mφ
ai
nlJM(r)√

1 + (ηainlJ−1M)2
for (n, l, J − 1,M).

(A.16)

Now, let us calculate the magnetic hopping integral T
aj ,ai
n′l′J ′M ′,nlJM(R) taking the following

cases into consideration:
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(i) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) and (n, l, J,M)
with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫ φ
aj
n′l′J ′M ′(r) + η

aj
n′l′J ′M ′φ

aj
n′l′J ′−1M ′(r)√

1 + (η
aj
n′l′J ′M ′)2


†(

Vaj(r) + Vai(r−R)

2

)

×

{
φainlJM(r−R) + ηainlJMφ

ai
nlJ−1M(r−R)√

1 + (ηainlJM)2

}
d3r

=
e−i

eB
2~ RXRY√

(1 + η
aj2

n′l′J ′M ′)(1 + ηai
2

nlJM)

∫ {
φ
aj
n′l′J ′M ′(r) + η

aj
n′l′J ′M ′φ

aj
n′l′J ′−1M ′(r)

}†
×
(
Vaj(r) + Vai(r−R)

2

){
φainlJM(r−R) + ηainlJMφ

ai
nlJ−1M(r−R)

}
=

e−i
eB
2~ RXRY√

(1 + η
aj2

n′l′J ′M ′)(1 + ηai
2

nlJM)

×
∫ {

φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJM(r−R)

+ηainlJM

[
φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJ−1M(r−R)

]
+η

aj
n′l′J ′M ′

[
φ
aj
n′l′J ′−1M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJM(r−R)

]
+η

aj
n′l′J ′M ′η

ai
nlJM

[
φ
aj
n′l′J ′−1M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJ−1M(r−R)

]}
d3r

=
e−i

eB
2~ RXRY√

(1 + η
aj2

n′l′J ′M ′)(1 + ηai
2

nlJM)

{
t
aj ,ai
n′l′J ′M ′,nlJM(R) + ηainlJM t

aj ,ai
n′l′J ′M ′,nlJ−1M(R)

+η
aj
n′l′J ′M ′t

aj ,ai
n′l′J ′−1M ′,nlJM(R) + η

aj
n′l′J ′M ′η

ai
nlJM t

aj ,ai
n′l′J ′−1M ′,nlJ−1M(R)

}
. (A.17)

(ii) For the combination of unperturbed atomic states (n′, l′, J ′ − 1,M ′) and (n, l, J −
1,M) with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫ φ
aj
n′l′J ′−1M ′(r) + η

aj
n′l′J ′−1M ′φ

aj
n′l′J ′M ′(r)√

1 + (η
aj
n′l′J ′−1M ′)2


†(
Vaj(r) + Vai(r−R)

2

)

×

{
φainlJ−1M(r−R) + ηainlJ−1Mφ

ai
nlJM(r−R)√

1 + (ηainlJ−1M)2

}
d3r
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=
e−i

eB
2~ RXRY√

(1 + η
aj2

n′l′J ′−1M ′)(1 + ηai
2

nlJ−1M)

∫ {
φ
aj
n′l′J ′−1M ′(r) + η

aj
n′l′J ′−1M ′φ

aj
n′l′J ′M ′(r)

}†

×
(
Vaj(r) + Vai(r−R)

2

){
φainlJ−1M(r−R) + ηainlJ−1Mφ

ai
nlJM(r−R)

}
=

e−i
eB
2~ RXRY√

(1 + η
aj2

n′l′J ′−1M ′)(1 + ηai
2

nlJ−1M)

×
∫ {

φ
aj
n′l′J ′−1M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJ−1M(r−R)

+ηainlJ−1M

[
φ
aj
n′l′J ′−1M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJM(r−R)

]
+η

aj
n′l′J ′−1M ′

[
φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJ−1M(r−R)

]
+η

aj
n′l′J ′−1M ′η

ai
nlJ−1M

[
φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)

2

)
φainlJM(r−R)

]}
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}
. (A.18)

(iii) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) and (n, l, J−1,M)
with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY
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2
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}
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=
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2

nlJ−1M)∫ {
φ
aj
n′l′J ′M ′(r)†
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(A.19)

(iv) For the combination of unperturbed atomic states (n′, l′, J ′− 1,M ′) and (n, l, J,M)
with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY
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aj
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}†
×
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2

){
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ai
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}
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2
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×
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+ηainlJM
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]
+η
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φ
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n′l′J ′M ′(r)†

(
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=
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2~ RXRY√

(1 + η
aj2

n′l′J ′−1M ′)(1 + ηai
2

nlJM)

{
t
aj ,ai
n′l′J ′−1M ′,nlJM(R) + ηainlJM t

aj ,ai
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n′l′J ′M ′,nlJ−1M(R)

}
. (A.20)

(v) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) and (n, l, J,M)
with M = ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫
φn′l′J ′±J ′(r)†

(
Vaj(r) + Vai(r−R)

2
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n′l′J ′±J ′,nlJ±J(R)
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2~ RXRY t

aj ,ai
n′l′J ′M ′,nlJM(R).

(A.21)

(vi) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) with M ′ = ±J ′ and
(n, l, J,M) with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫
φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)

2
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}
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2

nlJM

∫
φ
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(
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2
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×
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}
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φ
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t
aj ,ai
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}
.

(A.22)
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(vii) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) with M ′ 6= ±J ′ and
(n, l, J,M) with M = ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫ φ
aj
n′l′J ′M ′(r) + η

aj
n′l′J ′M ′φ

aj
n′l′J ′−1M ′(r)√

1 + (η
aj
n′l′J ′M ′)2


†

×
(
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2

)
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φ
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φ
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2
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]}
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1 + η
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{
t
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n′l′J ′−1M ′,nlJM(R)

}
.

(A.23)

(viii) For the combination of unperturbed atomic states (n′, l′, J ′,M ′) with M ′ = ±J ′ and
(n, l, J − 1,M) with M 6= ±J .

From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY

∫
φ
aj
n′l′J ′M ′(r)†

(
Vaj(r) + Vai(r−R)
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)
×
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}
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2
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}
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t
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aj ,ai
n′l′J ′M ′,nlJM(R)

}
.

(A.24)

(ix) For the combination of unperturbed atomic states (n′, l′, J ′− 1,M ′) with M ′ 6= ±J ′
and (n, l, J,M) with M = ±J .
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From, Eqs.(A.14) and (A.16), we have

T
aj ,ai
n′l′J ′M ′,nlJM(R)

= e−i
eB
2~ RXRY
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†

×
(
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φ
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(A.25)

The corresponding magnetic overlap integrals are obtained in the same way and by
replacing relativistic hopping integral t

aj ,ai
n′l′J ′M ′,nlJM(R) by relativistic overlap integral

s
aj ,ai
n′l′J ′M ′,nlJM(R).

Now let’s calculate the magnetic hopping and overlap integral in the case of l = 0 and
1. Following eight unperturbed atomic orbitals should be taken in to consideration to
calculate the magnetic hopping integrals and magnetic overlap integrals.

(n, l, J,M) =

(
n, 0,

1

2
,±1

2

)
,

(
n, 1,

1

2
,±1

2

)
,

(
n, 1,

3

2
,±1

2

)
,

(
n, 1,

3

2
,±3

2

)
. (A.26)

From Eq.(3.1), we have,

ηα = ηn1 3
2

1
2

= −ηn1 1
2

1
2

and ηβ = ηn1 3
2
− 1

2
= −ηn1 1

2
− 1

2
. (A.27)

Now, we can calculate the magnetic Hopping and overlap integrals using Eqs.(A.17)-
(A.25). Only few of them are calculated to illustrate the derivation techniques. They are
calculated as follows:

(i) Combination of (n, 0,
1

2
,
1

2
) and (n, 1,

1

2
,
1

2
).

This is the case defined by Eq.(A.24). Hence, magnetic hopping integral is given by

T
aj ,ai

n0 1
2

1
2
,n1 1

2
1
2

(R) =
e−i

eB
2~ RXRY√

1 + ηai
2

n1 1
2

1
2

{
t
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2

1
2
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2
1
2
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2
1
2

t
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1
2
,n1 3

2
1
2

(R)
}

=
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2

1
2
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2
1
2
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1
2
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2
1
2

(R)
}
. (A.28)
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(ii) Combination of (n, 1,
1

2
,
1

2
) and (n, 1,

1

2
,
1

2
).

This is the case defined by Eq.(A.18). Hence, magnetic hopping integral is given by
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(A.29)

(iii) Combination of (n, 1,
1

2
,
1

2
) and (n, 1,

3

2
,−1

2
).

This is the case defined by Eq.(A.20). Hence, magnetic hopping integral is given by
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(A.30)

(iv) Combination of (n, 1,
1

2
,−1

2
) and (n, 1,

3

2
,−1

2
).

This is the case defined by Eq.(A.20). Hence, magnetic hopping integral is given by
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=
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(A.31)

(v) Combination of (n, 1,
3

2
,
1

2
) and (n, 1,

3

2
,
1

2
).

This is the case defined by Eq.(A.17). Hence, magnetic hopping integral is given by
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eB
2~ RXRY√

(1 + η2
α)(1 + η2

α)

{
t
aj ,ai

n1 3
2

1
2
,n1 3

2
1
2

(R) + ηαt
aj ,ai

n1 3
2

1
2
,n1 1

2
1
2

(R)

+ηαt
aj ,ai

n1 1
2

1
2
,n1 3

2
1
2

(R) + η2
αt
aj ,ai

n1 1
2

1
2
,n1 1

2
1
2

(R)
}
.

(A.32)

In the similar way, the rest of the magnetic hopping integrals can be calculated. The
list of the magnetic hopping integrals which are used in our calculation is depicted in
Table I of Ref. [43]. The magnetic overlap integrals are obtained simply by replacing
t
ai,aj
n′l′J ′M ′,nlJM(R) with s

ai,aj
n′l′J ′M ′,nlJM(R) in each equations.
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Appendix B

Estimation of ε
ai,0
ξ and ψ

ai,0
ξ (r) using

nonperturbative MFRTB method

Under the approximation of neglecting orbitals other than outermost one, following eight
unperturbed atomic orbitals for s(l = 0) and p(l = 1) are taken in to consideration for
our calculation.

(n, l, J,M) =

(
n, 0,

1

2
,±1

2

)
,

(
n, 1,

1

2
,±1

2

)
,

(
n, 1,

3

2
,±1

2

)
,

(
n, 1,

3

2
,±3

2

)
. (B.1)

Considering all possible interaction of these eight unperturbed atomic orbitals, the matrix
elements of Hamiltonian matrix Hn′l′J ′M ′,nlJM(R) are calculated by using Eqs.(2.60),
(2.64), (2.67) and (2.70). The 8× 8 Hamiltonian matrix Hn′l′J ′M ′,nlJM(R) is obtained as
shown in Table (B.1). where

Table B.1: Matrix elements of Hamiltonian matrix Hn′l′J ′M ′,nlJM(R)

(201
2

1
2
) (201

2
−1

2
) (211

2
1
2
) (213

2
1
2
) (211

2
−1

2
) (213

2
−1

2
) (213

2
3
2
) (213

2
−3

2
)

(201
2

1
2
) ε̄ai

n0 1
2

+Z 0 0 0 0 0 0 0

(201
2
−1

2
) 0 ε̄ai

n0 1
2

−Z 0 0 0 0 0 0

(211
2

1
2
) 0 0 ε̄ai

n1 1
2

+
1
3
Z −

√
2

3
Sn1Z 0 0 0 0

(213
2

1
2
) 0 0 −

√
2

3
S∗n1Z ε̄ai

n1 3
2

+
2
3
Z 0 0 0 0

(211
2
−1

2
) 0 0 0 0 ε̄ai

n1 1
2

−1
3
Z −

√
2

3
Sn1Z 0 0

(213
2
−1

2
) 0 0 0 0 −

√
2

3
S∗n1Z ε̄ai

n1 3
2

−2
3
Z 0 0

(213
2

3
2
) 0 0 0 0 0 0 ε̄ai

n1 3
2

+2Z 0

(213
2
−3

2
) 0 0 0 0 0 0 0 ε̄ai

n1 3
2

−2Z
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Z =
e~B
2m

, (B.2)

Sn1 =

∫
F ai
n1 1

2

(r)†F ai
n1 3

2

(r)d3r, (B.3)

S∗n1 =

∫
F ai
n1 3

2

(r)†F ai
n1 1

2

(r)d3r. (B.4)

The diagonalization can be performed in each diagonal block matrix. Each diagonal block
matrix is 2× 2 matrix and therefore are given by

Hα =


ε̄ai
n1 1

2

+
1

3
Z −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

+
2

3
Z

 (B.5)

and

Hβ =


ε̄ai
n1 1

2

− 1

3
Z −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

− 2

3
Z

 . (B.6)

Now, let us calculate the eigenvalues and eigenfunctions corresponding to both Hα and
Hβ, respectively.

(a) Eigenvalues and eigenfunctions corresponding to Hα.

Diagonalizing Hα, we have

|Hα − λI| = 0

or ∣∣∣∣∣∣∣∣∣
ε̄ai
n1 1

2

+
1

3
Z −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

+
2

3
Z

∣∣∣∣∣∣∣∣∣ = 0.

Then, we obtain

λ2 − λ
(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

+ Z
)

+ ε̄ai
n1 1

2

ε̄ai
n1 3

2

+
Z

3

(
ε̄ai
n1 3

2

+ 2ε̄ai
n1 1

2

)
+

2

9
Z2
(
1− |Snl|2

)
= 0.

(B.7)

The solutions of Eq.(B.7) are given by

λ =

(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

+ Z
)

2
± 1

2

√(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

+ Z
)2

− 4ε̄ai
n1 1

2

ε̄ai
n1 3

2

−4

3

(
ε̄ai
n1 3

2

+ 2ε̄ai
n1 1

2

)
−8

9
Z2(1− |Snl|2)
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=

(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

+ Z
)

2
±1

2

√(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)2

+
2

3
Z
(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)
+

1

9
Z2(1 + 8|Snl|2)

=
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
+
Z

2
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√√√√1 +
2

3

(
Z

ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)

+
1

9
(1 + 8|Snl|2)

(
Z

ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)2

=
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
+
Z

2
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1

9
(1 + 8S2

nl)x
2
nl.

Hence, the eigenvalues corresponding to Hα are given by

λ =
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
+
e~B
4m
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1

9
(1 + 8S2

nl)x
2
nl, (B.8)

with

xnl =
e~B/2m
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

. (B.9)

Let,
(
a
b

)
is the eigenvectors of Hα, then the characteristics equation is given by

ε̄ai
n1 1

2

+
1

3
Z − λ −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

+
2

3
Z − λ


(
a

b

)
= 0.

Then, we obtain (
ε̄ai
n1 1

2

+
1

3
Z

)
a−
√

2

3
Sn1Z b = λa (B.10)

and

−
√

2

3
S∗n1Z a+

(
ε̄ai
n1 3

2

+
2

3
Z

)
b = λb. (B.11)

Let us consider plus sign in Eq.(B.8), then Eq.(B.11) becomes

a

b
=

3√
2SnlZ

(
ε̄ai
n1 3

2

+
2

3
Z − λ

)
. (B.12)
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From Eqs.(B.8) and (B.12), we have

a

b
=

3√
2SnlZ

{
ε̄ai
n1 3

2

+
2

3
Z −

ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
− Z

2
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3√

2SnlZ

{
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2
+
Z

6
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3√

2SnlZ

(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

){
1 +

xnl
3
−
√

1 +
2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3

2
√

2Snlxnl

{
1 +

xnl
3
−
√

1 +
2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
.

(B.13)

Here, we introduce the symbol ηai+ which is given by

ηai+ =
3

2
√

2Snlxnl

{
1 +

xnl
3
−
√

1 +
2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
. (B.14)

Then, from Eqs.(B.13) and (B.14), we get

a = ηai+ b. (B.15)

Hence, the standardized eigenvectors which are obtained as(
a

b

)
=

1√
1 + η

a2i
+

(
ηai+

1

)
. (B.16)

Finally, we obtain the eigenfunctions corresponding to Hα considering plus sign in
Eq.(B.8) as

ψai,0ξ (r) =
1√

1 + ηai
2

+

[
φai
n1 3

2
1
2

(r) + ηai+ φ
ai
n1 1

2
1
2

(r)
]
. (B.17)

Now, let us consider minus sign in Eq.(B.8). Then Eqs. (B.10) becomes

b

a
=

3√
2SnlZ

(
ε̄ai
n1 3

2

+
2

3
Z − λ

)
. (B.18)

From Eqs.(B.8) and (B.18), we have

b

a
=

3√
2SnlZ

{
ε̄ai
n1 1

2

+
Z

3
−
ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
− Z

2
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3√

2SnlZ

{
ε̄ai
n1 1

2

− ε̄ai
n1 3

2

2
− Z

6
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
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= − 3√
2SnlZ

(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

){
1 +

xnl
3
−
√

1 +
2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

= − 3

2
√

2Snlxnl

{
1 +

xnl
3
−
√

1 +
2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
= −ηai+ . (B.19)

b = −ηai+ a. (B.20)

Hence, the standardized eigenvectors which are obtained as(
a

b

)
=

1√
1 + η

a2i
+

(
1

−ηai+

)
. (B.21)

Hence, the corresponding eigenfunction of Hα considering minus sign in Eq.(B.8) is
given by

ψai,0ξ (r) =
1√

1 + ηai
2

+

[
−ηai+ φ

ai
n1 3

2
1
2

(r) + φai
n1 1

2
1
2

(r)
]
. (B.22)

(b) Eigenvalues and eigenfunctions corresponding to Hβ.

Diagonalizing Hβ, we have

|Hβ − λI| = 0

or ∣∣∣∣∣∣∣∣∣
ε̄ai
n1 1

2

− 1

3
Z − λ −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

− 2

3
Z − λ

∣∣∣∣∣∣∣∣∣ = 0.

Thus, we obtain

λ2 − λ
(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

− Z
)

+ ε̄ai
n1 1

2

ε̄ai
n1 3

2

− Z

3

(
ε̄ai
n1 3

2

+ 2ε̄ai
n1 1

2

)
+

2

9
Z2
(
1− S2

nl

)
= 0.

(B.23)

We have the solutions of Eq.(B.23) as

λ =

(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

− Z
)

2
± 1

2

√(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

− Z
)2

− 4ε̄ai
n1 1

2

ε̄ai
n1 3

2

+
4

3

(
ε̄ai
n1 3

2

+ 2ε̄ai
n1 1

2

)
−8

9
Z2(1− S2

nl)

103



=

(
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

− Z
)

2
±1

2

√(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)2

+
2

3
Z
(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)
+

1

9
Z2(1 + 8|Snl|2)

=
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
− Z

2
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√√√√1− 2

3

(
Z

ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)

+
(1 + 8S2

nl)

9

(
Z

ε̄ai
n1 3

2

− ε̄ai
n1 1

2

)2

=
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
− Z

2
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

(1 + 8S2
nl)

9
x2
nl.

(B.24)

Hence, the eigenvalues corresponding to Hβ are given by

λ =
ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
− e~B

4m
±
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

(1 + 8S2
nl)

9
x2
nl. (B.25)

Again, let us take
(
a
b

)
is the eigenvectors of Hβ, then the characteristics equation is

given by 
ε̄ai
n1 1

2

− 1

3
Z − λ −

√
2

3
Sn1Z

−
√

2

3
S∗n1Z ε̄ai

n1 3
2

− 2

3
Z − λ


(
a

b

)
= 0.

Then, we have following sets of equation:(
ε̄ai
n1 1

2

− 1

3
Z

)
a−
√

2

3
Sn1Z b = λa (B.26)

and

−
√

2

3
S∗n1Z a+

(
ε̄ai
n1 3

2

− 2

3
Z

)
b = λb. (B.27)

Let’s consider a plus sign in Eq.(B.25), then from Eq.(B.27) we have

a

b
=

3√
2SnlZ

(
ε̄ai
n1 3

2

− 2

3
Z − λ

)
. (B.28)

From Eqs.(B.25) and (B.28), we have

a

b
=

3√
2SnlZ

{
ε̄ai
n1 3

2

− 2

3
Z −

ε̄ai
n1 1

2

+ ε̄ai
n1 3

2

2
+
Z

2
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
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=
3√

2SnlZ

{
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2
− Z

6
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3√

2SnlZ

(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

){
1− xnl

3
−
√

1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3

2
√

2Snlxnl

{
1− xnl

3
−
√

1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
.

(B.29)

Again, we introduce the symbol ηai− which is given by

ηai− =
3

2
√

2Snlxnl

{
1− xnl

3
−
√

1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
. (B.30)

Then, from Eq.(B.29) and (B.30), we have

a = ηai− b. (B.31)

Hence, the standardized eigenvectors corresponding to Hβ are obtained as(
a

b

)
=

1√
1 + η

a2i
−

(
ηai−
1

)
. (B.32)

Hence, the corresponding eigenfunction of Hβ considering plus sign in Eq.(B.26)is
given by

ψai,0ξ =
1√

1 + ηai
2

−

[
φai
n1 3

2
− 1
2

(r) + ηai− φ
ai
n1 1

2
− 1
2

(r)
]
. (B.33)

Let’s consider a minus sign in Eq.(B.25). Then, from Eqs.(B.26), we have

b

a
=

3√
2SnlZ

(
ε̄ai
n1 1

2

− 1

3
Z − λ

)
. (B.34)

From Eqs.(B.25) and (B.34), we have

b

a
=

3√
2SnlZ

{
ε̄ai
n1 1

2

− Z

3
−
ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
+
Z

2
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

=
3√

2SnlZ

{
ε̄ai
n1 1

2

− ε̄ai
n1 3

2

2
+
Z

6
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

= − 3√
2SnlZ

(
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

){
1− xnl

3
−
√

1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}

= − 3

2
√

2Snlxnl

{
1− xnl

3
−
√

1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
= −ηai− . (B.35)
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This implies that

b = −ηai− a. (B.36)

Hence, the standardized eigenvectors corresponding to Hβ are obtained as(
a

b

)
=

1√
1 + η

a2i
−

(
1

−ηai−

)
. (B.37)

Hence, we obtain the eigenfunction corresponding to Hβ considering minus sign in
Eq.(B.26) is given by

ψai,0ξ =
1√

1 + ηai
2

−

[
−ηai− φ

ai
n1 3

2
− 1
2

(r) + φai
n1 1

2
− 1
2

(r)
]
. (B.38)

Finally, summarizing the results, the eigenvalues of Hamiltonian matrix Hn′l′J ′M ′,nlJM are
given by

ε̄ai,0ξ =



ε̄ai
n0 1

2

± e~B
2m

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
+
e~B
4m

+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
+
e~B
4m
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1 +

2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
− e~B

4m
+
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

+ ε̄ai
n1 1

2

2
− e~B

4m
−
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

2

√
1− 2

3
xnl +

1 + 8S2
nl

9
x2
nl

ε̄ai
n1 3

2

± e~B
m

, (B.39)

and corresponding eigenfunctions are given by

ψai,0ξ =



φai
n0 1

2
± 1

2

(r)

φai
n1 3

2
1
2

(r) + ηai+φ
ai
n1 1

2
1
2

(r)√
1 + ηai

2

+

−ηai+φ
ai
n1 3

2
1
2

(r) + φai
n1 1

2
1
2

(r)√
1 + ηai

2

+

φai
n1 3

2
− 1

2

(r) + ηai−φ
ai
n1 1

2
− 1

2

(r)√
1 + ηai

2

−

−ηai−φain1 3
2
− 1

2

(r) + φai
n1 1

2
− 1

2
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−
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with

ηai± =
3

2
√

2Snlxnl

{
1± xnl

3
−
√

1± 2

3
xnl +

1 + 8S2
nl

9
x2
nl

}
(B.41)

and

xnl =
e~B/2m
ε̄ai
n1 3

2

− ε̄ai
n1 1

2

. (B.42)
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Appendix C

Effective thickness and rs parameter
of graphene

In this appendix, We present the effective thickness of graphene by taking graphene mag-
netization into consideration. We also use it to determine the rs parameter of graphene,
i.e., the electron density of graphene.

First, we derive the effective thickness of graphene which is referred to as l. In our
previous work, the sheet magnetization, which corresponds to the magnetization per unit
ares, is defined as

Msheet = −dEtotal
dBext

, (C.1)

where Etotal is the total energy of graphene per unit area. If the magnetic dipole moment
per one carbon atom in graphene is denoted as mcarbon, it is given by

mcarbon = µ0ScarbonMsheet, (C.2)

where Scarbon is the area occupied by one carbon atom in graphene which is given by

Scarbon =

√
3

4
a2, (C.3)

with a being lattice constant of graphene.

Since the magnetic dipole moment of current carrying loop is also current times area
enclosed by the loop, then mcarbon can also be defined as

mcarbon = µ0IcarbonScarbon, (C.4)

where Icarbon is the electrical current flowing along the edge of the triangular cell which
contains one carbon atom.

Comparing Eqs.(C.2) and (C.4), we get the relation

Msheet = Icarbon. (C.5)

Since electric current Icarbon is flowing along triangular loop, it induces the magnetic field
Bind at the center of the loop. That is given by

Bind =
9µ0Icarbon

2πa
, (C.6)

108



Considering the fact that Bind originates from Msheet, we may write

Bind = µ0
Msheet

l
. (C.7)

From Eqs. (C.5), (C.6) and (C.7), we have

µ0Icarbon
l

=
9µ0Icarbon

2πa
.

Hence, the effective thickness of graphene is given by

l =
2πa

9
. (C.8)

Using the effective thickness of the graphene, we can calculate the electron density. In
graphene, one conduction electron (sometimes referred as π-electron) is supplied per
carbon atom. The volume occupied by one carbon atom is given by Ωcarbon = Scarbonl.
The electron density of graphene is give by n = 1/Ωcarbon. Substituting values of Scarbon
and l from Eqs.(C.3) and (C.8) into this equation, we get

n =
6
√

3

πa3
. (C.9)

The rs parameter (Wigner-Seitz radius for an electron) is defined as

rs =
1

aB

(
3

4πn

) 1
3

, (C.10)

where aB is the Bohr radius. Substituting eq.(C.9) into eq.(C.10), and using lattice
constant of graphene: a = 2.46 × 10−10m, we finally get the rs parameter of graphene:
rs = 1.93548
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