
Magnetic Structures of Itinerant
Electron Systems on the Extended
Spatially Completely Anisotropic

Triangular Lattice⎧⎪⎪⎩ ⎫⎪⎪⎭

2022 3



1.
Magnetic Structures of Itinerant Electron Systems on the Extended
Spatially Completely Anisotropic Triangular Lattice
( )

2.
(1) On Scaling Relations of Organic Antiferromagnets with Magnetic

Anions
Hiroshi Shimahara and Yuki Kono
Journal of the Physical Society of Japan, 86, 043704-1 - 043704-5
(2017).

(2) Magnetic Structures of Electron Systems on the Extended
Spatially Completely Anisotropic Triangular Lattice near Quan-
tum Critical Points
Yuki Kono and Hiroshi Shimahara
Journal of the Physical Society of Japan, 90, 024708-1 - 124711-8
(2021).





Acknowledgments

I would like to thank Professor Hiroshi Shimahara for his careful guidance
and many advices. I am indebted to Professor Yutaka Nishio for useful
discussions, information, and experimental data. I am indebted to Professors
Sinya Uji, Yugo Oshima, Takaaki Minamidate, Shuhei Fukuoka, and Takuya
Kobayashi for useful discussions.

3



Contents

1 Introduction and Purpose 6
1.1 Extended Spatially Completely Anisotropic Triangular Lattice 6
1.2 Organic Compound λ-(BETS)2FeCl4 . . . . . . . . . . . . . . 11
1.3 Purpose of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 13

2 Scaling Relations in Mixed Crystal Systems 16
2.1 Scaling Relations in Organic Compound . . . . . . . . . . . . 16
2.2 Model Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Analysis Based on the Random Phase Approximation . 20
2.2.2 Analysis Based on the Mean Field Theory . . . . . . . 21

3 Magnetic Structures of Electron Systems on the ESCATL 24
3.1 Energy Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Parameter Sets and Fermi Surface . . . . . . . . . . . . . . . . 26
3.3 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Magnetic Structure of λ-Fe . . . . . . . . . . . . . . . . . . . 33
3.5 Phase Diagram and Effect of Imbalance of Spatial Anisotropy 36
3.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . 36

4 Summary of Thesis and Conclusion 45

A Trapezoidal Formula 47

B Linear Response Theory 52

C Derivation of Eq. (3.50) 56

D Derivation of Eq. (2.15) 65

E Derivation of Eq. (2.19) 68

4



F Derivation of Eqs. (2.28) and (2.29) 74

5



Chapter 1

Introduction and Purpose

1.1 Extended Spatially Completely Anisotropic

Triangular Lattice

Electron systems on triangular lattices have been extensively researched be-
cause they exhibit interesting phenomena, such as quantum spin liquids,
magnetic plateaus, and spiral magnetic structures [1–3]. They originate from
the geometrical frustration of the spin alignment. The frustration is maxi-
mum when the magnitudes of antiferromagnetic exchange interactions on the
bonds are all equal, and the spatial anisotropy of the antiferromagnetic ex-
change interactions reduces the geometrical frustration. However, the effect
of spatial anisotropy can be significant when real compounds are examined.
Some compounds contain spatially anisotropic triangular lattices that con-
sist of two types of triangles of the bonds. These lattices are called extended
spatially completely anisotropic triangular lattice (ESCATL). The localized
spin model on the ESCATL has six kinds of exchange interactions with the
coupling constants Jl and J

′
l as shown in Fig. 1.1, whereas the itinerant elec-

tron model on the ESCATL has six kinds of transfer integrals tl and t′l as
shown in Fig. 1.2, where l=1, 2, and 3.

When we consider special cases, the ESCATL is reduced to some frus-
trated lattices. For example, when Jl = J ′

l for all l and J2 = J3, it reduces
to the spatially anisotropic triangular lattice (SATL) [2,4–9]. The SATL has
been studied as the lattice that is composed of π-electron systems in
β-Me4−nEtnX [Pd(dmit)2]2 (X = P, Cs, N, Sb, and As) and κ-(BEDT-
TTF)2Cu(CN)3, where dimt and BEDT-TTF stand for 1,3-dithiol-2-thione-
4,5-dithiolate and bis(ethylenedithio)tetrathiafulvalene. Hereafter, we abbre-
viate β-Me4−nEtnX [Pd(dmit)2]2 and κ-(BEDT-TTF)2Cu(CN)3 as X-n and
κ-ET, respectively. In κ-ET, it has been suggested from the experimen-
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Figure 1.1: Extended spatially completely anisotropic triangular lattice and
definition of exchange coupling constants.
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Figure 1.2: Definitions of the transfer integrals on the ESCATL.
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tal results of susceptibility and nuclear magnetic resonance (NMR) that the
ground state is quantum spin liquid [10]. The SATL has also been studied
in the spin system of Cs2CuBr4 and Cs2CuCl4. In the compound Cs2CuBr4,
a magnetization plateau was observed in the magnetization process [11, 12].

When Jl = J ′
l for all l, it is reduced to the spatially completely anisotropic

triangular lattice (SCATL) [4]. Hauke examined it for X-n (X= P, Cs, N,
Sb and As) and showed that the ground states of As-2 and Sb-0 are the
Néel-(π, π) states shown in Fig. 1.3(a) [4].

When J ′
3 = 0, the ESCATL reduces to the trellis lattice [13]. The trellis

lattice is contained the compounds SrCu2O3, NaV2O5, and AgxV2O5 [14–16].
When J ′

3 = J1 = J ′
1 = 0, the ESCATL reduces to the honeycomb lat-

tice [17]. The honeycomb lattice is contained the compounds InCu2/3V1/3O3

and Na3T2SbO6 (T = Cu, Ni, and Co) [18]. Compared to these lattices, the
ESCATL has the unique feature of the imbalance of the spatial anisotropies
in two types of triangles.

In this thesis, we introduce the itinerant electron model on the ESCATL
to examine the compound λ-(BETS)2XCl4 (X=Fe, Ga, FexGa1−x ), where
BETS stands for bis(ethylenedithio)tetraselenafulvalene. Hereinafter, we ab-
breviate λ-(BETS)2XCl4 as λ-X. We extend the knowledge of the ESCATL
antiferromagnets and examine the magnetic structure of the λ-X system.
The ESCATL in π-electron system corresponds to each BETS molecule as
shown in Fig. 1.2. The λ-Fe system exhibits an antiferromagnetic long-range
order (AF LRO) [19, 20]. In the λ-Fe system, as the temperature decreases,
the magnetization m of the itinerant π-electrons saturate first, and the 3d-
spins follow a constant exchange field created by the π electrons [21,22]. We
consider a realistic situation in which the spiral state is suppressed [4]. We
assume the Néel and up-up-down-down (uudd) phases defined in Fig. 1.3
and 1.4 as collinear spin structures [28]. In this thesis, we examine the mag-
netic structure of ESCATL antiferromagnets in the ground state within a
mean-field approximation. In particular, we reveal the effect of the imbal-
ance of the spatial anisotropies in two types of triangles. We define the
parameter rimb that represents the imbalance of spatial anisotropies as

rimb ≡ t3/t2 − t′3/t
′
2

t3/t2
(1.1)

because t1 = t′1 is satisfied in the λ-Fe system [23].
The organic compound λ-(BEDT-STF)2XCl4 (X=Fe,Ga) [24,25], where

BEDT-STF stands for bis(ethylenedithio)diselenadithiafulvalene, is a mate-
rial in which Se atoms of BETS molecules are replaced with S atoms. This
replacement is effectively a negative pressure applied to the λ-X system. In

8



B’ B’

B’ B’

B B

BBA A

AA

A’ A’

A’A’

1
2’ 3’

2 3
1’

1

(a)

1
2’ 3’

1’
2 3

1

(b)

B B

B’ B

A’ A’

A’A’A A

AA

B’ B’

B’B’

1
2’ 3’

1’
2 3

1

(c)

Figure 1.3: Magnetic structures which is examined. (a) Néel-(π, π) state, (b)
Néel-(π, 0) state, (c) Néel-(0, π) state.

9



B’ B’

A’ A’

A A

BBA A

BB

A’ A’

B’B’

1
2’ 3’

2 3
1’

1

(a)

A’ A’

B’ B’

A A

BBA A

BB

B’ B’

A’A’

1
2’ 3’

2 3
1’

1

(b)

Figure 1.4: Magnetic structures which are examined. (a) uudd-2 state and
(b) uudd-2′ state.

the λ-(BEDT-STF)2FeCl4 system, the metal-insulator transition accompa-
nied by the paramagnetic-antiferromagnetic transition has been observed at
TN = 16 K [26, 27]. In organic compound λ-D2A, where D and A represent
a doner and an anion, respectively, the dimerized doners form the ESCATL.
We examine wide ranges of parameters so that we can consider compounds
that have not yet been discovered.

For the localized spin model on the ESCATL, the classical phase diagram
includes five different collinear antiferromagnetic phases and spiral phase [28].
It was shown that the imblance of the spatial anisotropies, which are param-
eterized by J3/J2 and J ′

3/J
′
2, stabilizes the uudd phase shown in Fig. 1.4(a)

and (b).
A uudd phase has been studied in several materials [29–34]. It has been

suggested that in the solid 3He the ground state is the uudd state [29].
Roger examined the magnetism of 3He by a two-parameter model based
on three-spin exchange and planar four-spin exchange [30]. In the insu-
lating perovskite HoMnO3, which is a frustrated spin system having ferro-
magnetic nearest-neighbor and antefferomagnetic next-nearest-neighbor in-
teractions within a MnO2, the uudd phase has been experimentally sug-
gested [31, 32]. Kaplan proposed a possible mechanism for this state by the
frustrated classical Heisenberg model in one dimension with nearest-neighbor
biquadratic exchange [33]. Zou et al. found the uudd structure in the spinel
conpound GeCu2O4 by the effective classical spin Hamiltonian containing
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nearest-neighbor biquadratic exchange interaction [34].

1.2 Organic Compound λ-(BETS)2FeCl4

In the compound λ-(BETS)2FeCl4, the BETS layers and FeCl4 anion layers
are stacked alternately, and the BETS layers and FeCl4 anion layers have π
electrons and 3d spins, respectively. The λ-Fe system is highly conductive
in the direction parallel to the ac plane, whereas it has low conductivity in
the b-axis direction because the electron transfer is blocked by the anion
layer. The crystal system is triclinic and the space group in paramagnetic
phase is P1̄ [35]. The cell parameters are a = 16.164 Å, b = 18.538 Å, and
c = 6.593 Å, α = 98.40◦, β = 96.67◦, and γ = 112.52◦.

The λ-Fe system has interesting properties that originate from two kinds
of magnetic degrees of freedom: conduction π-electrons and localized 3d
spins [36]. In this system, the metal−insulator phase transition accompa-
nied by the paramagnetic−antiferromagnetic transition has been observed at
TN � 8.3 K [19,20]. Akiba et al. fitted the specific heat data with the curve
for the six-level Schottky-type specific heat and found that as the tempera-
ture decreases, the magnetization of the π electrons saturates first, and the
3d spins follow a constant exchange field created by the π electrons [21, 22].
However, in the pure two-dimensional π-electron system, which is realized
in the λ-Ga system [37–39], the AF LRO has not been observed. One of
the reason for the behavior is low-dimensionality of the system [40]. This
implies that 3d spins are indispensable for the stabilization of the AF LRO
of π-electrons in the λ-Fe system. Shimahara and Ito revealed that the AF
LRO of π-electrons in the λ-Fe system is stablized by the magnetic anisotropy
and/or three-dimensionality introduced by the 3d spins [41].
The total entropy of the λ-Fe system is obtained from the experimental

result of the specific heat [21]. The total entropy at high temperature above
TN is equal to R ln 6, which is consumed as the temperature decreases.

In the λ-Fe system, the easy magnetization axis is tilted about 30◦ from
the c-axis to the b∗-axis [22,42,43]. When a magnetic field is parallel to the
easy magnetization axis, a spin-flop transition is observed approximately at
1.2 T [42–44].

There are various theoretical studies on the λ-Fe system [45–47]. In the
spin-wave theory, the value of TN and the behavior of the sublattice mag-
netizations of small spin and large spin as functions of the temperature T
are derived [45]. The results agree with the observations in the λ-Fe. From
the free energy function model, the sharp peak of specific heat around TN is
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a phenomenon unique to coupled magnetic systems in which TN � J1 [46].
This condition is not satisfied in conventional antiferromagnets. The above
results give a physical explanation for the intriguing behaviors observed in
the λ-Fe system. Shimahara expanded the scaling theory of critical phenom-
ena to a coupled magnetic system consisting of two subsystems and derived
an extended relation for critical exponents [47]. He applied this theory to the
λ-Fe system and derived the critical exponents, which are α = 3/4, β = 1/8,
γ = 1, δ = 9, ψ = 1/5 and ν = 5/8. The value of α is close to the experi-
mental result α = 0.77.

In the classical Heisenberg model, the magnetic structure of the λ-Fe
system has been examined at T = 0 [28]. The spiral state has the lowest
energy for the candidate parameter values for the λ-Fe system [23]. However,
the spiral state could be suppressed by quantum fluctuations and anisotropy
introduced by 3d spins, which are not included in the classical Heisenberg
model because the experimental results suggest that the ground state of the
λ-Fe system is a collinear with two sublattices [19, 21, 22, 39, 42, 43, 48–50].
If the spiral state is suppressed, the Néel-(π, π) state has the lowest energy.
The uudd-2 state has the second-lowest energy, which is slightly greater than
that of the Néel-(π, π) state [28]. Because the candidate parameter values are
obtained in a simplified model [23], they contain errors. Hence, the magnetic
structure of the λ-Fe system in the ground state is likely the Néel-(π, π) or
uudd-2 state.

The localized spin model is an effective model for the λ-Fe system in
the insulating phase. However, it does not take into account the itinerant
features of the π-electrons. The λ-Fe system is in the vicinity of the quantum
critical point (U � Uc) [51], and such a situation cannot be reproduced in
the localized spin model, where U and Uc are the on-site Coulomb energy
and the critical value of U between the antiferromagnetic and paramagnetic
phases, respectively. Therefore, we examine the Hubbard model [52] on the
ESCATL and apply it to the π-electron system in the λ-Fe system. The a-
and c-axes of the λ-Fe system correspond to the 1- and 1′- bonds and 2- and
2′- bonds in Fig. 1.5, respectively.

There are several studies of the magnetic structure of the λ-Fe system in
the itinerant electron model [20, 44, 53, 54]. Hotta and Fukuyama examined
the effect of the 3d-spins on the π electron system considering the magnetic
structure inside the dimer and obtained a unified phase diagram within the
mean-field approximation [53]. Brossard et al. examined the magnetic struc-
ture of the 3d-spin system [20], where they assumed the antiferromagnetic
transition induced by an Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion [55–57], which is the interaction between 3d-spins mediated π-electrons.
These studies assume a physical picture in which 3d-spins sustain the AF
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LRO. However, this physical picture is inconsistent with the experimental
result of magnetic specific heat mentioned above [21]. In this thesis, we as-
sumes that π-electrons sustain the AF LRO, the physical picture of which
is appropriated by the recent experimental results [21]. Hence, we ignore
the effect of the 3d-spins system in the FeCl4 anions. In the λ-X system,
the BETS molecules form dimers, which are regarded as lattice sites in this
thesis.

The Fermi surfaces of the λ-Fe system were obtained by an extended
Hückel tight-binding band structure calculations [20]. The Brillouin zone is
folded in half because (t2, t3) �= (t′2, t

′
3). A closed Fermi surface exists, which

is consistent with the experimental results of the Shubnikov-de Haas and
angular-dependent magnetoresistance oscillations [58]. The Fermi surface has
the nesting vector Q � (π/c, 0). The modulation vector (π/c,0) in the half-
Brillouin zone cannot resolve the modulation vectors (π/c,0) and (π/c,π/a)
in the original Brillouin zone, which correspond to the Néel-(π,π) and Néel-
(π,0) states defined as Fig. 1.5(a)-(b). The modulation vector (0,0) in the
half-Brillouin zone cannot resolve the modulation vectors (0,0) and (0,π/a) in
the original Brillouin zone, which correspond to the ferromagnetic and Néel-
(0,π) states defined in Fig. 1.5(c). The uudd phases have the modulation
vector (π/c,π/2a).

1.3 Purpose of the Thesis

In this thesis, we examine the itinerant electron systems on the ESCATL. The
ESCATL have the unique feature of the imbalance of the spatial anisotropies
in two types of triangles. We examine the magnetic structure in the ground
state and reveal the effect of the imbalance of the spatial anisotropies. We
examine the Néel and uudd phases defined in Fig. 1.3 and 1.4 as collinear
spin structures.

Next, we apply the theory to the λ-Fe system. As mentioned in the pre-
vious section, the magnetic structure of the λ-Fe system has been examined
by the localized spin model on ESCATL in previous study [28]. However,
this model does not take into account the fact that the Coulomb energy U
of the λ-Fe system is near the quantum critical point (U � Uc) [51]. Hence,
we consider the itinerant model on the ESCATL and examine the magnetic
structure in the ground state within the mean-field approximation.

In Chapter 2, we review the paper on the scaling relations of the mixed
crystal λ-FexGa1−x . In Chapter 3, we examine the magnetic structure of the
electron system on the ESCATL. We adopt the Hubbard model as the model
of the π-electron system. We calculate the total energies in the mean-field
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Figure 1.5: Schematic diagram of the BETS layers in λ-X and the ESCATL.
The small ellipses and large circles in the figure represent BETS molecules
and dimerized BETSmolecules, respectively. The transfer integrals tA, tB, tC,
ts, tt, tp, tq, and tr are defined from Mori and Kobayashi [53]. The transfer
integrals in this thesis are expressed as t1 = (−tp − tq + tr)/2, t2 = tB/2,
t′2 = tC/2, t3 = ts/2, and t′3 = tt/2. We refer to the lattice constants of
the bonds with the transfer integrals t1, t

′
1, t2, and t

′
2 as a1, a

′
1, a2, and a

′
2,

respectively, and define c =a1 = a′1 and a = (a2+a
′
2)/2. The lattice constant

in the crystal a-axis of the compound corresponds to 2a in the present model.
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approximation and examine the stable magnetic structure. We reveal the
effect of the imbalance of the spatial anisotropies of two type of triangles. In
Chapter 4 is the conclusion.
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Chapter 2

Scaling Relations in Mixed
Crystal Systems

In this chapter, we review the paper on the scaling relations of the λ-FexGa1−x

system [51]. From experiments on specific heat of the λ-FexGa1−x system, it
has been suggested that magnetization m of π electrons and the antiferro-
magnetic transition temperature TN are proportional to x for 0.6 ≤ x ≤ 1.
We examine the scaling relation of TN by the introduction of the interac-
tion between π-electrons mediated 3d spins. Next, we examine the scaling
relation of m in the low temperature region below TN.

2.1 Scaling Relations in Organic Compound

The λ-FexGa1−x system exihibits an interesting x-T phase diagram [59–62].
The itinerant π-electrons in the BETS layers and localized spins in the FeCl4
anion layers are responsible for this phase diagram. For 0.35 < x < 1, the an-
tiferromagnetic insulating phase occurs. For 0 < x < 0.35, superconductivity
occurs. Near x = 0.35, the superconducting phase and the antiferromagnetic
insulating phase competes.

In the λ-FexGa1−x system, the specific heat C(x, T ) and transition tem-
perature TN satisfy the scaling relations

C(xT, x) = xC(T, 1) (2.1)

and

TN(x) = xT (1) (2.2)

for 0.6 ≤ x ≤ 1, respectively [59]. The specific heat data of the λ-FexGa1−x
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system is in good agreement with the curves for the six-level Schottky-type
specific heat below the crossover temperature T0(x) [< TN] [21]. This means
that as the temperature decreases from T0(x), the conduction π electrons sat-
urate first, 3d spins passively follow a constant exchange field h(x) created by
the π electrons. Because h(x) is proportional to the sublattice magnetization
m of π electrons,

m(T, x) = m(0, x) = constant (2.3)

below T0. For example, at x = 1, as T increases from T = 0 to T0 � 6.0 K,
the sublatice magnetization M of 3d spins decreases, while the value of m is
almost constant [50]. Because the magnitude of the specific heat C(x, T ) is
proportional to that of the effective field h(x), we obtain

m(T, x) = xm(T, 1) (2.4)

below T0.
The scaling relation of the antiferromagnetic transition temperature TN

has been examined within a mean-field approximation by Terao and Ohashi [54].
They assumed an antiferromagnetic transition induced by an RKKY inter-
action, which is the interaction between 3d spins mediated by π electrons.
However, in this previous study, some problems remain. The mean-field
approximation is not appropriate for the estimation of TN because this ap-
proximation ignores the spin fluctuations. In addition, the antiferromagnetic
transition induced by an RKKY interaction contradicts the physical picture
that is obtained from the experimental result of the specific heat [21].

In this thesis, we examine the scaling relation (2.1)-(2.4), which is taken
into account the experimental results of the specific heat [21]. The scaling
relation (2.1)-(2.4) has been suggested from experimental results of specific
heat in x = 0.6, 0.7, 1.0. However, in x = 0.4, the experimental results deviate
from the scaling relation because superconductivity occurs. We examine the
scaling relations in the range where superconductivity is suppressed.

We consider an itinerant electron model as a model for the λ-FexGa1−x

system. In this model, we can examine the shrinkage of m, which cannot
be reproduced in the localized spin model. Hence, we examine the scaling
relation in an extended Kondo lattice model [20, 44, 53, 54], which is the
model that is taken into account the itinerant nature of π electrons in the
λ-FexGa1−x system.
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2.2 Model Hamiltonian

The Hamiltonian of an extended Kondo lattice model for the λ-FexGa1−x

system is defined as

H = H1 +H2 +H12 (2.5)

with

H1 =
∑
i,j

tijc
†
iσcjσ, (2.6)

H2 =
∑
(i′,j′)

∑
μ=x,y,z

θi′θj′J
μ
2 S

μ
i′S

μ
j′ , (2.7)

H12 =
1

2

∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12S

μ
i′ σ̂

μ
i , (2.8)

where Sμ
i′ and ciσ are the spin operator with length S = 5/2 on the anion site

i′ and the annihilation operator of the π electron on the BETS site i with σ,
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respectively. Here,

niσ = c†iσciσ, (2.9)

σ̂μ
i =

∑
σ1σ2

c†iσ1
σμ
σ1σ2

ciσ2 , (2.10)

where σμ
i is the Pauli matrix, and θ′i is defined as θi′ = 0 or 1 when i′ is on an

FeCl4 or GaCl4 anion, respectively. We refer to the lattices in the BETS and
FeCl4 layers as L1 and L2, respectively. We refer to the number of nearest
neighbor sites in L2 and that between L1 and L2 as z2 and z12, respectively.
We take z12 = 1. The structure of the system is depicted in Fig. 2.1. The
electron number density of π electrons n is equal to 1 (half-filling). Because
the λ-FexGa1−x system has magnetic anisotropy, Jx

12 = Jy
12 ≤ Jz

12 ≡ J12 and
Jx
2 = Jy

2 ≤ Jz
2 ≡ J2. We ignore J2 because J2 � U, J12 [49].

The particle number operator niσ is written as

niσ =
n̂i

2
+ σim̂i, (2.11)

where m̂i ≡ σ̂z
i . Therefore,

Uni↑ni↓ =U(
n̂i

2
+ m̂i)(

n̂i

2
− m̂i)

=
U

4
n̂2
i − Um̂2

i . (2.12)

In previous studies, the antiferromagnetic transition induced by an RKKY
interaction between localized spins mediated by conduction π-electrons [55–
57] have been assumed. However, in the λ-FexGa1−x system, π-electrons sus-
tain the AF LRO and the role of 3d spins is passive [21,22]. For this reason,
we consider the ’reverse’ RKKY interaction between conduction π-electrons
mediated by localized spins. Regarding the θi distribution as random, we
replace θi with x. Introducing the susceptibility χ2(T ) of the 3d spin system,
Eq. (2.8) becomes

H12 =
U

4
n̂2
i − Um̂2

i −
∑
i

1

2
xJ2

12χ2(T )m̂
2
i . (2.13)

We define Ũ as

Ũ = U +
1

2
xJ2

12χ2(T ). (2.14)
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The susceptibility of the free 3d spins is

χ2(T ) =
S(S + 1)

kBT
. (2.15)

When we substitute Eq. (2.15) into Eq. (2.14), we obtain

Ũ = U +
1

2
xJ2

12

S(S + 1)

kBT
. (2.16)

Let Uc be the lower limit where the AF LRO vanishes in a pure π-electron
system. When Ũ = Uc, T = TN. Therefore,

TN = x
S(S + 1)

6

J2
12

Uc − U
. (2.17)

When Uc depends weakly on T , the transition temperature satisfies Eq. (2.17),
and we obtain

TN ∝ x. (2.18)

For x = 1, when we substitute J12 � 9.3 K and TN � 8.3 K [49] for Eq. (2.18),
we obtain Uc − U � 15.2 K. Because Uc is an order of magnitude of 1
eV = 1× 104 K, we obtain Uc−U � U . This means that the system is near
the quantum critical point.

2.2.1 Analysis Based on the Random Phase Approxi-
mation

In this subsection, we illustrate the theory using the random phase approx-
imation (RPA) although the above argmenent does not depend on this ap-
proximation. We assume that a commensurate nesting vector Q such as
(π/c,π/a) and (π/c,0).

The spin susceptibility χs(T ) is written as

χs(T ) =
χ10(T )

1− Uχ10(T )
. (2.19)

χ10(T ) is the susceptibility of free electrons and written as

χ10(T ) =
1

N

∑
k

f(ξk)− f(ξk+Q)

ξk+Q − ξk
(2.20)
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=
1

N

∑
k

tanh( ξ̄k−δ̄k
2kBT

) + tanh( ξ̄k+δ̄k
2kBT

)

4ξ̄k
, (2.21)

where

ξ̄k =
1

2
(ξk − ξk+Q), (2.22)

δ̄k =
1

2
(ξk + ξk+Q), (2.23)

N denotes the number of the sites, and
∑

k is taken over a Brillouin zone.
When χs(T ) diverges, the system undergoes antiferromagnetic transition.
The Coulomb energy Uc at the quantum critical point satisfies 1 = Ucχ0(T ).
Hence, Uc is

Uc = 1/χ0(T ). (2.24)

When δk �= 0, the system is far from the perfect nesting. In this case,
χ0(T ) is independent of T , Whereas when nesting of the Fermi surface is
perfect, χ0(T ) is proportional to lnT . When the area of the imperfect Fermi
surface is large, TN satisfies TN ∝ x.

2.2.2 Analysis Based on the Mean Field Theory

In this subsection, we adopt the mean-field approximation, which is qualita-
tively applicable at low temperatures to examine the scaling relations for m
below the crossover temperature T0.

The sublattice magnetization m of π electrons is defined as

m ≡ (−1)i
1

2

∑
σ1σ2

〈c†iσ1
σz
σ1σ2

ciσ2〉, (2.25)

where i is the site index in L1. We assign i as even numbers in sublattices
A1 and odd numbers in sublattices B1. The sublattice magnetization M of
the 3d spins is defined as

M ≡ (−1)i+1〈Sz
i′〉 (2.26)

where i is the site index in L2.
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For the distribution of FeCl4 anions, we define

〈θiSz
i 〉 = (−1)i+1xM (2.27)

within the mean-field approximation.
The self-consistent equation for the sublattice magnetization M is

M = SBS(βα2S), (2.28)

where α2 = J12m. The self-consistent equation for the sublattice magnetiza-
tion m is

m = χ0(α1, T )α1, (2.29)

where α1 =
1
2
J12M + Um,

χ10(α1, T ) =
1

N

∑
k

′ tanh(Ek−δk
2kBT

) + tanh(Ek+δk
2kBT

)

2Ek

, (2.30)

Ek =
√
ξ2k + α1

2, and
∑′

k is taken over the half-Brillouin zone in the anti-
ferromagnetic phases. From Eq. (2.29), we obtain

m = x
1

2

J12Mχ10

1− Uχ10

. (2.31)

We divide the momentum space into two types of parts Rp and Ri, where
the nesting of Fermi surfaces are perfect and imperfect, respectively.

χ10 = χP
10 + χi

10 (2.32)

where χP
10 and χi

10 are the contributions from the summation of k ∈ Rp and
k ∈ Ri, respectively. From Eq. (2.29), when m = constant, M and χ10(T )
are independent of T because T dependence of these do not cancel each other
out. In this case, we replaceM and χi

10 with these in the limit T → 0. Taking
T → 0, we obtain M � S and f(Ek) = θ(Ek), where θ(Ek) is Heaviside step
function. Then, we obtain

m(T ) = x
1

2

J12Sχ10

1− Uχ10

. (2.33)

We examine the x dependence of χ10. In k ∈ Rp, θ(Ek − |δk|) = 1 and
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θ(Ek + |δk|) = 1. In k ∈ Ri, θ(Ek + |δk|) = 0. Hence, we obtain

χ10 =
1

N

∑
k∈Rp

′ 1

Ek

+
1

N

∑
k∈Ri

′ θ(Ek − |δk|)
Ek

. (2.34)

The term on the right is written as

1

N

∑
k∈Rp

′ 1

Ek

� ρ̄Flog
W

α̃1x
, (2.35)

where ρF is the average density of states in k ∈ Rp, W is the band width,
and

α̃1 = Um̄+
1

2
J12S. (2.36)

Here, m = xm̄.
The second term of Eq. (2.34) is the order of the average of ln(W/|δk|).

Therefore, χi
10 is expressed as

χi
10 =

∞∑
k=0

ak(
α̃1

2W
x)k, (2.37)

where ak are constants and does not depend on x. When χ10 is independent
of T , ρ̄p is small, because χp

10 ∝ ρ̄p lnT . When we ignore the first term of
Eq. (2.34) depending on ρ̄p, we obtain

m ∝ x, (2.38)

where O(α̃1x/2W ) is ignored. This condition is satisfied when the nesting of
the Fermi surface is far from perfect, i.e. the logarithmic singularity is weak.
Then, Eq. (2.38) is consistent with Eq. (2.4).
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Chapter 3

Magnetic Structures of
Electron Systems on the
ESCATL

In this chapter, we examine magnetic structures of an itinerant electron
model on the ESCATL within the mean-field approximation. In particu-
lar, we examine the effect of the imbalance of spatial anisotropies of two
types of triangles. We consider three types of Néel states and two types of
uudd states. We apply the theory to the λ-Fe system.

3.1 Energy Dispersion

In this section, we derive the electron energy dispersion relation for the ES-
CATL. The Hamiltonian is written as

Ht =
∑
i,j

∑
σ

tijc
†
iσcjσ, (3.1)

where ciσ is the annihilation operator of the π electron on site i with spin σ.
We assume a unit cell as shown in Fig. 3.1 because (t2, t3) �= (t′2, t

′
3). The

length of the lattice constant in the a-direction is same as the original lattice
and that in the c-direction is twice as large as that in the original lattice.
The labels p = 1, 2 denote two sites in the unit cell. We define

ckpσ =

√
2

N

∑
(i,p)

e−ik·Ripcipσ, (3.2)
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Figure 3.1: Definitions of the unit cell on the ESCATL.

where N denotes the number of the sites. Therefore,

cipσ =

√
2

N

∑
k

eik·Ripckpσ, (3.3)

where
∑

k is taken over the Brillouin zone.
It follows from Eq. (3.3), the Hamiltonian is written as

H =
∑
k

(c†k1σc
†
k2σ)Êkσ

(
ck1σ
ck2σ

)
. (3.4)

Here, the matrix Êkσ is

Êkσ =

(
ξ̃11kσ ξ̃12kσ
ξ̃21kσ ξ̃22kσ

)
, (3.5)

where

ξ̃11kσ = ξ̃22kσ = 2t1 cos kx, (3.6)

ξ̃12kσ =(t2 + t′2) cos ky + (t3 + t′3) cos(kx + ky) (3.7)

+ i[(t2 − t′2) sin kx + (t3 − t′3) sin(kx + ky)],
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ξ̃21kσ =(t2 + t′2) cos ky + (t3 + t′3) cos(kx + ky) (3.8)

− i[(t2 + t′2) sin kx + (t2 − t′2) sin(kx + ky)].

We diagonalize the Hamiltonian using the unitary matrix(
ck1σ
ck2σ

)
= Ukσ

(
αkσ

βkσ

)
. (3.9)

Tha Hamiltonian is written as

H =
∑
k

(ε+kσα
†
kσαkσ + ε−kσβ

†
kσβkσ), (3.10)

where

ε±kσ = 2t1 cos kx ± ηk (3.11)

with

ηk = {[(t2 + t′2) cos ky + (t3 + t′3) cos(kx + ky)]
2

+ [(t2 − t′2) sin ky + (t3 − t′3) sin(kx + ky)]
2} 1

2 . (3.12)

The lattice constants a1 = a′1 and (a2+a
′
2)/2 are absorbed into the definitions

of the momentum components kx and ky.

3.2 Parameter Sets and Fermi Surface

We adopt parameter sets shown in table 3.1 obtained by Kobayashi and
Mori [53]. In parameter sets P′

K and P′
M, t3 is variable, and the other transfer

integrals remain unchanged from PK and PM, respectively. We define the
parameter

rimb ≡ t3/t2 − t′3/t
′
2

t3/t2
, (3.13)

which represents the imbalance of spatial anisotropies of two type of triangles.
We vary rimb by varying t3.

Figure 3.2 shows the Fermi surfaces for parameter sets PK and PM [54].
Fermi surfaces are folded in half because (t2, t3) �= (t′2, t

′
3). A closed Fermi sur-

face exists, which is consistent with the experimental results of the Shubnikov-
de Haas and angular-dependent magnetoresistance oscillations [61]. The
Fermi surfaces have the nesting vector Q � (π/c, 0).
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Figure 3.2: Fermi surfaces of the λ-Fe system when parameter sets PK and
PM are assumed.
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Table 3.1: Parameter sets PK and PM are based on values of transfer integrals
tB, tC, tp, tq, tr, ts, and tt obtained by Hükkel method [53]. The transfer
integrals in the table are expressed as t1 = (−tp − tq + tr)/2, t2 = tB/2,
t′2 = tC/2, t3 = ts/2 and t′3 = tt/2. Parameter sets P′

K and P′
M correspond

to PK and PM which t3 is variable and the other transfer integrals remain
unchanged. The values of the transfer integrals are in unit 10−2 eV.

Transfer integrals PK P′
K PM P′

M

t1 4.6325 4.6325 6.295 6.295
t2 5.7555 5.7555 5.29 5.29
t3 2.535 Variable 5.965 Variable
t′2 4.145 4.145 6.205 6.205
t′3 0.1955 0.1955 0.965 0.965

3.3 Mean Field Theory

The Hubbard Hamiltonian is

H = Ht +HU , (3.14)

where

Ht =
∑
i,j

∑
σ

tijc
†
iσcjσ − μ

∑
i

(
∑
σ

c†iσciσ − n), (3.15)

HU = U
∑
i

n̂i↑n̂i↓. (3.16)

Here, ciσ is the annihilation operator of the electron on site i with spin σ, n
is the number of electrons per site, and n̂iσ = c†iσciσ. tij, μ, and U represent
the transfer integral between the sites i and j, the chemical potential, and
the on-site Coulomb energy between electrons, respectivity.

We assume the Néel-(π, π), Néel-(0, π), Néel-(π, 0), uudd-2, and uudd-
2′ states as the collinear states with two sublattices. Figures 1.3(a)-(c)
and 1.4(a)-(b) show the Néel and uudd states, respectively. We define four
kinds of sublattices A, A′, B, and B′ as shown in Fig. 1.3(a)-(c) and 1.4(a)-(b)
because (t2, t3) �= (t′2, t

′
3). However, the resulting states are eventually two

sublattice states because of the spatial inversion symmetry. We define c
(X)
iσ
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for i ∈ X=A, A′, B, and B′. We define the sublattice magnetizations mX as

mX ≡ 〈sXi 〉 =
1

2

∑
σ1σ2

〈c(X)†
iσ1

σz
σ1σ2

c
(X)
iσ2

〉 (3.17)

for i ∈ X and

mA = mA′ = −mB = −mB′ ≡ m, (3.18)

where 〈· · ·〉 is the statistical average.
The Hamiltonian in the mean-field approximation is written as

HU = U
∑
X

∑
i∈X

{〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↓〉 − 〈n̂i↑〉〈n̂i↓〉}. (3.19)

The number of electrons per site n is expressed as

n = 〈n̂i↑〉+ 〈n̂i↓〉 (3.20)

and

〈niσ〉 = n

2
+ sσsXm (3.21)

for i ∈ X, where sA = sA′ = 1, sB = sB′ = −1, s↑ = 1 and s↓ = −1.
We define

c
(X)
kσ =

√
4

N

∑
i∈X

e−ik·Ric
(X)
iσ , (3.22)

where the summation
∑′

k is taken over the first Brillouin zone in antiferro-
magnetic phases.

It follows from Eq. (3.22), the Hamiltonian is rewritten as

H =
∑
kσ

′
(c

(A)†
kσ , c

(A′)†
kσ , c

(B)†
kσ , c

(B′)†
kσ )Êkσ

⎛
⎜⎜⎜⎝

c
(A)
kσ

c
(A′)
kσ

c
(B)
kσ

c
(B′)
kσ

⎞
⎟⎟⎟⎠ . (3.23)
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The components of the matrix Êkσ are

Êkσ =

⎛
⎜⎜⎜⎝

ξ̃
(AA)
kσ ξ̃

(AA′)
kσ ξ̃

(AB)
kσ ξ̃

(AB′)
kσ

ξ̃
(A′A)
kσ ξ̃

(A′A′)
kσ ξ̃

(A′B)
kσ ξ̃

(A′B′)
kσ

ξ̃
(BA)
kσ ξ̃

(BA′)
kσ ξ̃

(BB)
kσ ξ̃

(BB′)
kσ

ξ̃
(B′A)
kσ ξ̃

(B′A′)
kσ ξ̃

(B′B)
kσ ξ̃

(B′B′)
kσ

⎞
⎟⎟⎟⎠ . (3.24)

The diagonal components of the matrix Êkσ are written as

ξ̃
(XX)
kσ = −sXsσUm− μ. (3.25)

Because the matrix Êkσ is a unitary matrix, the off-diagonal components
satisfy

ξ̃XY
k = (ξ̃Y X

k )∗. (3.26)

For the Néel-(π, π) state,

ξ̃
(AB)
kσ = ξ̃

(A′B′)
kσ = 2t1 cos(kx), (3.27)

ξ̃
(AB′)
kσ = ξ̃

(A′B)
kσ = t2e

−iky + t′2e
iky , (3.28)

ξ̃
(AA′)
kσ = ξ̃

(BB′)
kσ = t3e

−i(kx+ky) + t′3e
i(kx+ky). (3.29)

For the Néel-(π, 0) state,

ξ̃
(AB)
kσ = ξ̃

(A′B′)
kσ = 2t1 cos kx, (3.30)

ξ̃
(AA′)
kσ = ξ̃

(BB′)
kσ = t2e

−iky + t′2e
iky , (3.31)

ξ̃
(AB′)
kσ = ξ̃

(BA′)
kσ = t3e

−i(kx+ky) + t′3e
i(kx+ky). (3.32)

For the Néel-(0, π) state,

ξ̃
(AA′)
kσ = ξ̃

(BB′)
kσ = 2t1 cos kx, (3.33)

ξ̃
(AB′)
kσ = ξ̃

(A′B′)
kσ = t2e

−iky + t′2e
iky , (3.34)
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ξ̃
(AB′)
kσ = ξ̃

(BA′)
kσ = t3e

−i(kx+ky) + t′3e
i(kx+ky). (3.35)

For the uudd-2 state,

ξ̃
(AB)
kσ = ξ̃

(A′B′)
kσ = 2t1 cos kx, (3.36)

ξ̃
(AA′)
kσ = ξ̃

(BB′)
kσ = t2e

−iky + t3e
i(kx+ky), (3.37)

ξ̃
(A′B)
kσ = ξ̃

(B′A)
kσ = t′2e

iky + t′3e
−i(kx+ky). (3.38)

For the uudd-2′ state,

ξ̃
(AB)
kσ = ξ̃

(A′B′)
kσ = 2t1 cos kx, (3.39)

ξ̃
(A′B)
kσ = ξ̃

(B′A)
kσ = t2e

−iky + t′3e
i(kx+ky), (3.40)

ξ̃
(BB′)
kσ = ξ̃

(AA′)
kσ = t′2e

−iky + t3e
i(kx+ky). (3.41)

We diagonalize Eq. (3.23) by the unitary transformation⎛
⎜⎜⎜⎝

c
(A)
kσ

c
(A′)
kσ

c
(B)
kσ

c
(B′)
kσ

⎞
⎟⎟⎟⎠ = Ukσ

⎛
⎜⎜⎜⎝

γ
(1)
kσ

γ
(2)
kσ

γ
(3)
kσ

γ
(4)
kσ

⎞
⎟⎟⎟⎠ . (3.42)

The Hamiltonian (3.14) is rewritten as

H =
∑
k,σ

′
(γ

(1)†
kσ , γ

(2)†
kσ , γ

(3)†
kσ , γ

(4)†
kσ )U †

kσÊkσUkσ

⎛
⎜⎜⎜⎝

γ
(1)
kσ

γ
(2)
kσ

γ
(3)
kσ

γ
(4)
kσ

⎞
⎟⎟⎟⎠

+NU(
n2

4
−m2) +Nmμ

=
∑
ν

∑
k,σ

′
E

(ν)
kσ γ

(ν)†
kσ γ

(ν)
kσ +NU(

n2

4
−m2) +Nmμ, (3.43)
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where

E
(ν)
kσ =

∑
X1,X2

[u
(X1ν)
kσ ]∗ξ̃(X1X2)

kσ u
(X2ν)
kσ , (3.44)

γ
(ν)
kσ =

∑
X

[u
(Xν)
kσ ]∗c(X)

kσ , (3.45)

and

c
(X)
kσ =

∑
ν

u
(Xν)
kσ γ

(ν)
kσ . (3.46)

E
(ν)
kσ are eigenvalues of the matrix Êkσ, where ν=1, 2, 3, and 4. u

(Xν)
kσ are

the matrix elements of the unitary matrix Ukσ. We numerically calculate the
eigenvalues E

(ν)
kσ and components u

(Xν)
kσ of the unitary matrix Ukσ for matrix

Êkσ.
The self-consistent equation for mX is obtained as

mX =
1

2
sX

∑
σ1σ2

〈c(X)†
iσ1

σz
σ1σ2

c
(X)
iσ2

〉

=
1

2
sX

∑
σ

sσ
4

N

∑
k

′
[u

(Xν)
kσ ]∗f(Eν

kσ)u
(Xν)
kσ , (3.47)

where 〈γ(ν)†kσ γ
(ν)
kσ 〉 = f(E

(ν)
kσ ). We solve Eq. (3.47) under the condition of half

filling

n =
2

N

∑
ν

∑
k,σ

′
f(E

(ν)
kσ ) = 1. (3.48)

The total energy E at T = 0 is obtained as

E

N
=

〈H〉
N

=
1

N

∑
ν

∑
k,σ

′
E

(ν)
kσ f(E

(ν)
kσ )− U(

n2

4
−m2) + μn. (3.49)

We define the energy ΔE as ΔE = (E−EPM)/N , where E and EPM are the
energies of the antiferromagnetic and paramegnetic states, respectively.
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The spin susceptibility χ(q) is

χ(q) =
1

N

∑
k

({
f(E

(0)
k1 )− f(E

(0)
k+q1)

4(E
(0)
k+q1 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k+q2)

4(E
(0)
k2 − E

(0)
k+q2)

}
Ak

+

{
f(E

(0)
k1 )− f(E

(0)
k+q2)

4(E
(0)
k+q2 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k+q1)

4(E
(0)
k2 − E

(0)
k+q1)

}
Bk

)
(3.50)

above TN, where E
(0)
k1 = εk1+

√
(ε+k23)

2 + (ε−k23)2, E
(0)
k2 = εk1−

√
(ε+k23)

2 + (ε−k23)2,

Ak = 1 +
ε+k23ε

+
k+q23 + ε−k23ε

−
k+q23√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

, (3.51)

Bk = 1− ε+k23ε
+
k+q23 + ε−k23ε

−
k+q23√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε−k23)2 + (ε+k23)
2]
, (3.52)

εk1 = 2t1 cos kx, ε
+
k23 = (t2 + t3) cos(ky) + (t′2 + t′3) cos(kx + ky), and ε−k23 =

(t2 − t3) sin(ky) + (t′2 − t′3) sin(kx + ky).

3.4 Magnetic Structure of λ-Fe

In this section, we present the results with N=1024× 1024. We examine the
stable magnetic structure near the quantum critical point (U � Uc).

Figures 3.3 and 3.4 show the sublattice magnetization m and the energy
ΔE as functions of U for parameter sets PK and PM, respectively. For param-
eter set PK, the Néel-(π, π) state has the lowest energy, whereas for parameter
set PM, the uudd-2 state has the lowest energy. For parameter set PM, the
energy for the Néel-(π, π) is slightly larger enegy than that of the uudd-2
state. The magnetic structure of the λ-Fe system in the ground state is most
likely the Néel-(π, π) or uudd-2 state because the values of the transfer inte-
grals in parameter sets PK and PK contain errors. The phase transition for
PK is of the second-order, whereas that for PM is of the first-order, where
the value of m jumps from paramagnetic to uudd-2 phases.
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Figure 3.3: The sublattice magnetization m as functions of U at T = 0
for the parameter sets (a) PK and (b) PM. The blue solid, red dashed, and
green short dashed curves are sublattice magnetization m for the Néel-(π, π),
uudd-2, and uudd-2′ states, representivity.
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Figure 3.4: Total energy ΔE as functions of U at T = 0 for the parameter sets
PK and PM. The blue solid, red dashed, green short dashed curves, orange
dot-dashed, and perple 2-dot-dashed are total energies ΔE for the Néel-
(π, π), Néel-(π, 0), Néel-(0, π), uudd-2, and uudd-2′ states, representivity.

35



3.5 Phase Diagram and Effect of Imbalance

of Spatial Anisotropy

In this section, we present the results with N=1024× 1024.
We expand the parameter range to reveal the effect of the imbalance of

spatial anisotropies of two types of triangles. We examine the U dependence
of ΔE. Figure 3.5 shows the energies ΔE as functions of U for parameter set
P′

K and rimb = 0.963. In contrast with PK, , the uudd-2 has the lowest energy,
and the phase transition is of the first-order. Figure 3.6 shows the energies
ΔE as functions of U for parameter set P′

M and rimb = 0.671. In contrast
with PM, the Néel-(π, π) state has the lowest energy, and phase transition is
of the first-order. For both parameter sets P′

K and P′
M, as rimb increases, the

energy of the Néel-(π, π) state increases, whereas that of the uudd-2 state
decreases.

We examine the magnetic structure around Uc, which is determined by
ΔE(Uc) = 0. Figure 3.7 and 3.9 show the rimb dependence of Uc for the Néel-
(π, π), Néel-(0, π), Néel-(π, 0), uudd-2, and uudd-2′ states. For both P′

K and
P′
M, as rimb increases, the Neel-(π, π) state is suppressed, whereas the uudd-2

state is enhanced. The energies of the Néel-(π, 0), Néel-(0, π), and uudd-2′

states are higher than lowest one of the Néel-(π, π) and uudd-2 states.
Figure 3.8 and 3.10 show the phase diagrams in the rimb-U plane for

parameter sets PK and PM. For parameter set PK, the ground state is
the Néel-(π, π) state for rimb < 0.951, whereas it is the uudd-2 state for
rimb > 0.951. For parameter set PM, the ground state is the Néel-(π, π)
state for rimb < 0.826, whereas it is the uudd-2 state for rimb > 0.826. The
phase diagram has a triple point, at which Néel-(π, π), uudd-2, and para-
magnetic states coexist. Near the triple point, the phase transition from
antiferromagnetic phases to the paramagnetic phase are of the first-order.
When the system is far from the triple point, the phase transitions are of the
second-order.

The vertical dotted line represents the value of rimb for the λ-Fe system.
Increasing U does not change the magnetic structure within the parameter
range. In contrast, a slight change in rimb can change the magnetic structure.

3.6 Summary and Discussion

We examined the magnetic structures of the itinerant electron system on
the ESCATL in the ground state. We applied the mean-field approximation
to the Hubbard model. For the parameter range examined in this thesis,
the ground state is likely the Néel-(π,π) or uudd-2 state. In particular,
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Figure 3.5: Total energy ΔE as functions of U at T = 0 for the parameter
sets P′

K. The blue solid, red dashed, green short dashed curves are sublattice
magnetization m for the Néel-(π, π), uudd-2, uudd-2′ states, respectively.
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the uudd-2 state occurs when the imbalance of the spatial anisotropies of
the two types of bond triangles, which is a unique feature of the ESCATL,
is large. This result is consistent with the previous result on the classical
Heisenberg model [28]. The phase transition is of the first order or second
order, depending on the parameter set.

In the application to the λ-Fe system, we used parameter sets PK and PM

obtained by Kobayashi and Mori, respectively [53]. For parameter set PK,
the Néel-(π,π) state has the lowest energy near Uc, and the phase transition
is of the second-order, whereas for parameter PM, uudd-2 state has lowest
energy near Uc, and the phase transition is of the first-order. For PM, the
energy of the Néel-(π,π) state is slightly higher than that of the uudd-2 state.
Hence, the ground state of the λ-Fe system is likely the Néel-(π,π) or uudd-2
state.

The phase diagrams in the rimb-U plane for parameter sets P′
K and P′

M

have a triple point, at which the Néel-(π,π), uudd-2, and paramagnetic states
coexist. Near the triple points, the phase transitions from antiferromagnetic
phases to the paramagnetic phase are of the first-order. When the system
is far from the triple points, the phase transitions are of the second-order.
It should be examined in future whether the existence of the triple point
and the change in the order of the phase transition are universal features in
electron systems on the ESCATL.

The nesting vector Q for the Fermi surface in the λ-Fe system is approx-
imately equal to (π/c,0). This means that the stable magnetic structure is
the Néel-(π/c,0) or Néel-(π/c,π/a) state as explained in the Sect. 1.2. The
present result supports the latter state with (π/c, π/a).

In a previus study, the magnetic structure of the λ-Fe system in the
ground state was examined within a similar mean-field approximation [53].
However, their model differs from the present model in many ways, resulting
in discrepancies in the results. One of the significant differences between the
two models lies in the lattice structures. In the previous study, each BETS
molecule is the lattice site, whereas in the present study, each dimer of BETS
molecules is the lattice site. Hence, the physical meaning of the on-site U is
different. In the previous study, U only works between two electrons on the
same BETS molecule, whereas in the present study, U works between the two
electrons on a dimerized BETS molecule, and such interaction is not included
in the previous studies. Therefore, the effect of U differs between the two
models. For example, in the previous model, when U increases, the system
undergoes successive transitions, which were not found in the present study.
The difference in the lattice structure results in the difference in the band
filling. In the present model, the relevant band is half-filled, which favors the
insulating phase as observed in the λ-Fe system at low temperatures, whereas
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it is quarter-filled in the previous model. The number of sublattices differs
between the two theories. Another difference is the contribution of the 3d
spins. In this thesis, we consider a pure π-electron system on the basis of
the current knowledge that the π-electron system is the principal component
and the d-spins are passive in the exchange field created by the π-electrons,
whereas in previous study, the effect of the 3d-spins has been candidated.

In the parameter region examined in this thesis, the Néel-(0,π) and Néel-
(π,0) states do not occur in the phase diagram. These states should occur
in the presnt systems when the parameter range is expanded because they
occurs in localized spin systems studies previously [28] when the parameter
range is expanded.

In the λ-Fe system, the AF LRO is considered to be stabilized by the
factors that originate from the 3d spins of the FeCl4 anions, such as the
anisotropy in the spin space and/or the enhanced three dimensionality. As
mentioned in Sect. 1.2, the present mean-field approximation implicitly as-
sumes such factors. In future studies, improved theories beyond the mean-
field approximation must explicitly incorporate them so that the stable AF LRO
in the λ-Fe system is reproduced.

It can be expected that the above results concerning the energies of the
antiferromagnetic states are hardly affected by the 3d spins, which are not
incorporated in the present model, because the interactions in the π-electron
system are much stronger than the other interactions (those in the 3d spin
system and those between the π-electrons and 3d spins).
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Chapter 4

Summary of Thesis and
Conclusion

In Chapter 2, we reviewed the paper on the scaling relations of the mixed
crystal λ-FexGa1−x [51]. We introduced the ’reverse’ RKKY interaction be-
tween the π electrons via the localized 3d spins on the FeCl4 anions and
explained the fact that the Coulomb energy U of the λ-Fe system is near the
quantum critical point (U � Uc). The scaling law for the sublattice magneti-
zation m below TN but excluding temperatures in the vicinity of TN suggests
that the nesting of the Fermi surface is far from perfect, at least as regards
parts of the Fermi surface. This result is consistent with the argument for
TN.

In Chapter 3, we examined the itinerant electron systems on the ESCATL
within the mean-field approximation. The ESCATL has a unique feature of
the imbalance of the spatial anisotropies. We examined the ground state
and revealed the effect of the imbalance. We examined the Néel and uudd
phases defined in Fig. 1.3 as collinear spin structures. When the imbalance of
the spatial anisotropy is large, the uudd-2 states occur. The phase diagram
in the rimb-U plane has a triple point, at which the Néel-(π, π), uudd-2, and
paramagnetic states coexist. Near the triple point, the phase transitions from
antiferromagnetic phases to the paramagnetic phase are of the first-order.
Far from the triple point, these transitions are of the second-order. The
study of magnetic structures at finite temperatures and these in magnetic
field remains as a future work. Next, we applied the theory to the λ-Fe
system. The magnetic structure of the λ-Fe system has been examined by the
localized spin model on the ESCATL in the previous study [28]. However,
the situation that the Coulomb energy U in the λ-Fe system is near the
quantum critical point (U � Uc) cannot be reproduced in the localized spin
model. Hence, we adopted the itinerant model. We revealed that the ground
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state of the λ-(BETS)2FeCl4 system is likely the Néel-(π, π) or uudd-2 state.
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Appendix A

Trapezoidal Formula

We use the trapezoidal formula to calculate Eqs. (3.47) and (3.49). In this
appendix, we evaluate the integral error in the trapezoidal formula. Here,
we consider a one-dimensional integral. The function g(kx) is defined

S1 =

∫ π

0

g(kx)dkx. (A.1)

We divide the integral interval into n equal parts and define the points kx0,
kx1, kx2, · · ·, and kxn. We define S2 as

S2 =
2

N

∑
kx

g(kx)

= {1
2
δkx

n−1∑
l=0

[g(kxl) + g(kxl+1)]} (A.2)

where δkx = π
n
and kxl =

lπ
n
. We define s1 and s2 as

s1 =

∫ kx1

kx0

dkxg(kx) =

∫ kx0+δkx

kx0

dkxg(kx) (A.3)

and

s2 =
1

2
δkx(g(kx0) + g(kx1)). (A.4)

The integral error is written as n|s1 − s2|. The Taylor expansion of
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Eq. (A.3) is

s1 =

∫ kx0+δkx

kx0

dkxg(kx) =

∫ δkx

0

dξg(kx0 + ξ)

=

∫ δkx

0

dξ[g(kx0) + g′(kx0)ξ +
g′′(kx0)

2!
(ξ)2 +

g′′′(kx0)
3!

(ξ)3 · ··]

= [g(kx0)ξ +
g′(kx0)

2
(ξ)2 +

g′′(kx0)
3!

(ξ)3 +
g′′′(kx0)

4!
(ξ)4 · ··]δkx0

= [g(kx0)δkx +
g′(kx0)

2
(δkx)

2 +
g′′(kx0)

3!
(δkx)

3 +
g′′′(kx0)

4!
(δkx)

4 · ··]. (A.5)

We expand Eqs. (A.4) and (A.3) around kx0. The Taylor expansion of
Eq. (A.4) is

s2 =
1

2
δkx(g(kx0) + g(kx1))

=
1

2
δkx[g(kx0) + g(kx0 + δkx)]

=
1

2
δkx[g(kx0) + g(kx0) + g′(kx0)δkx +

g′′(kx0)
2!

(δkx)
2 +

g′′′(kx0)
3!

(δkx)
3]

(A.6)

The integral error n|s1 − s2| is

n|s1 − s2| = n
g′′(kx0)

3
(δkx0)

3 − n
g′′(kx0)

4
(δkx0)

3 +O((δkx0)
4)

� n
g′′(kx0)

12
(δkx0)

3 = n
g′′(kx0)

12
(
π

n
)3

=
g′′(kx0)

12

π3

n2
. (A.7)

Hence, in one-dimensional systems, the integral error is proportional to the
number of divisions n−2.

Next, we consider two-dimensional systems. We consider the integral

S1 =

∫ π

0

∫ π

0

g(kx, ky)dkxdky (A.8)

for an arbitrary function g(kx, ky). We define S2 as

S2 =

(
2

N

)2∑
kx,ky

g(kx, ky)
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=
1

4
δkxδky

n−1∑
l=0

m−1∑
l′=0

(g(kxl, kyl′) + g(kxl+1, kyl′)

+ g(kxl, kyl′+1) + g(kxl+1, kyl′+1)), (A.9)

where δky =
π
n
. We define s1 and s2 as

s1 =

∫ kx1

kx0

∫ ky1

ky0

dkxdkyg(kx, ky) (A.10)

and

s2 =
1

4
δkxδky[g(kx0, ky0) + g(kx0 + δkx, ky0)

+ g(kx0, ky0 + δky) + g(kx0 + δkx, ky + δky)], (A.11)

respectively. s1 is

s1 =

∫ kx0+δkx

kx0

∫ ky0+δky

ky0

dkxdkyg(kx, ky) =

∫ δkx

0

∫ δky

0

dξdηg(kx0 + ξ, ky0 + η)

=

∫ δkx

0

∫ δky

0

dξdη(g(kx0, ky0) + g′(kx0, ky0)ξ + g′(kx0, ky0 + · · ·)η

+
g′′(kx0, ky0)

2!
(η)2 +

g′′(kx0, ky0)
2!

(ξ)2 +
g′′(kx0, ky0)

2!
ξη)

=[[g(kx0, ky0)ξη + g′(kx0, ky0)
ξ2

2
η + g′(kx0, ky0)

η2

2
ξ

+
g′′(kx0, ky0)

2!

η3

3
ξ +

g′′(kx0, ky)
2!

ξ3

3
η +

g′′(kx, ky)
2!

ξ2

2

η2

2
+ · · ·]δkx0 ]

δky
0

=g(kx0, ky0)δkxδky + g′(kx0, ky0)
δk2x
2
δky + g′(kx0, ky0)

δk2x
2
δky

+
g′′(kx0, ky0)

2!

δk3x
3
δky +

g′′(kx0, ky0)
2!

δk3y
3
δkx +

g′′(kx0, ky0)
2!

δk2x
2

δk2y
2

+ · · ·.
(A.12)

s2 is

s2 =
1

4
δkxδky(g(kx0, ky0) + g(kx0 + δkx, ky0)

+ g(kx0, ky0 + δky) + g(kx0 + δkx, ky + δky))

=
1

4
δkxδky[g(kx0, ky0) + g(kx0, ky0)
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+ g′(kx0, ky0)δkx + (δkx)
2 g

′′(kx0, ky0)
2!

+ · · ·
+ g(kx0, ky0) + g′(kx0, ky0)δky

+ (δky)
2 g

′′(kx0, ky0)
2!

+ · · ·
+ g(kx0, ky0) + g′(kx0, ky0)δkx

+ g′(kx0, ky0)δky +
g′′(kx0, ky0)

2!
δkxδky + · · ·]. (A.13)

The integral error n2|s1 − s2| is

n2|s1 − s2| ∝ n2g′′(kx0, ky0)(
π3

n3
) (A.14)

= g′′(kx0, ky0)(
π3

n
).

Hence, in two-dimensional systems, the integral error is proportional to the
number of divisions n−1.

Figure A.1 shows the total energy ΔE as a function of U for Néel-(π,π)
state. The values of ΔE for number of divisions 1024×1024 are nearly equal
to those for divisions 2048× 2048.

50



0 5 10

−1

0

ΔE
/t 1

U/t1

PK
Neel−(π,π) 1024x1024
Neel−(π,π) 2048x2048

0 5 10

−1

0

ΔE
/t 1

U/t1

PM Neel−(π,π) 2048x2048
Neel−(π,π) 1024x1024

Figure A.1: ΔE as a function of U at T = 0 for the parameter sets PK and
PM. The blue solid and dotted curves are total energies of the Néel-(π, π)
state for 1024× 1024 and 2048× 2048, respectively.
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Appendix B

Linear Response Theory

In this appendix, we derive the susceptibility of free electrons by the linear
response theory [63]. We assume the case where a time-independent external
field is applied in the z-direction. The Hamiltonian for zeeman energy is
written as

Hext = −M · h = −Mh. (B.1)

The statistical average of M is written as

〈M〉 =
∑
n

exp(−βEn)Mnn/
∑
n

exp(−βEn) = Tr(ρM), (B.2)

and En is an energy eigenvalue of the Hamiltonian H, Here, ρ is

ρ = exp(−βH)/Tr exp(−βH) = exp(−βH)/Z, (B.3)

where Z is the partition function.
We calculate the statistical average 〈M〉ext in the system in the external

field h. When Htot = H +Hext,

exp(−βHtot) = exp(−βH)u(β). (B.4)

Differentiating both sides of Eq.(B.4) with regard to β, we obtain

−Htot exp(−βHtot) = −H exp(−βH)u(β) + exp(−βH)
d

dβ
u(β). (B.5)
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Hence, we obtain

d

dβ
u(β) = − exp(βH)Hext exp(−βH)u(β) ≡ −HM

extu(β), (B.6)

where HM
ext is in the Heisenberg representation for imaginary time. We inte-

grate both sides of Eq. (B.6) with reagard to β. We obtain

u(β) = C −
∫ β

0

dτHM
extu(β)

= C −
∫ β

0

dτHM
ext −

∫ β

0

dτ1

∫ β

0

dτHM
extH

M
extu(β)

= C −
∫ β

0

dτHM
ext +O(H2

ext). (B.7)

Because u(β) = 1 when Hext = 0, we obtain

u(β) = 1−
∫ β

0

dτHM
ext(τ) + O(H2

ext). (B.8)

From Eq. (B.8), we obtain

〈M〉ext =Tr[exp(−βH)u(β)M ]/Tr[exp(−βH)u(β)]

=Tr[exp(−βH){1−
∫ β

0

dτHM
ext(τ) + O(H2

ext)}M ]/

Tr[exp(−βH){1−
∫ β

0

dτHM
ext(τ) + O(H2

ext)}]

=−
∫ β

0

dτ〈HM
ext(τ)M〉+O(H2

ext)

=χB +O(H2
ext) (B.9)

χ is written as

χ =

∫ β

0

dτ〈MM(τ)M〉 =
∫ β

0

dτ〈eτHMe−τHM〉. (B.10)

We derive the Kubo formula. We assume an external field that depends
on time. We write the wave function |ψ(t)〉 in the ground state as

|ψ(t)〉 = exp(− iHt
�

)U(t)|ψ(∞)〉, (B.11)
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where U(t) is a unitary matrix and ψ(∞)〉 is the wave function in the ground
state for Hh = 0. Hence, from the Schrödinger equation

i�
d

dt
|ψ(t)〉 = H|ψ(t)〉, (B.12)

we obtain

i�
d

dt
U(t) = exp(

iHt

�
)Hext(t) exp(− iHt

�
)U(t) ≡ HH

ext(t)U(t). (B.13)

By the itiberant approximation, U(t) becomes

U(t) = 1− i

�

∫ t

∞
dt′HH

ext(t
′) +O(H2

ext). (B.14)

The statistical average of any operator A is written as

〈ψ(t)|A|ψ(t)〉 = 〈ψ(t)|u†(t)AH(t)u(t)|ψ(t)〉 (B.15)

= 〈ψ(t)|AH(t)|ψ(t)〉 − i

�
〈ψ(t)|[AH(t), HH

ext(t
′)]|ψ(t)〉+O(H2

ext).

The statistical average of A at time t is written as

Tr[Aρtot(t)] =
∑
n

ρn〈n(t)|A|n(t)〉. (B.16)

The deviation δ〈AH(t)〉 from the average 〈AH(t)〉 in the thermal equilibrium
is

δ〈AH(t)〉 = − i

�

∫ t

−∞
dt′〈[AH(t), HH

ext(t
′)]〉+O(H2

ext) (B.17)

We assume the alternating magnetic field h exp(−iωt′). An external field
HH

ext is written as

HH
ext = −MH(t′)h exp(iω(t− t′)) (B.18)

Substituting M for A in Eq. (B.17), Eq. (B.17) becomes

δ〈MH(t)〉 = χ(ω) exp(−iωt)h, (B.19)
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where χ(ω) is the dynamical magnetic susceptibility, which written as

χ(ω) = i

∫ t

−∞
d′t〈[MH(t),MH(t′)]〉 exp(iω(t− t′)). (B.20)

We derive the free electron susceptibility. We substitute

Mq =
∑
kσ

σc†kσck+qσ (B.21)

in the Kubo formula

χ0(q, ω) = i

∫ ∞

0

dt〈[MH
q (t),M

H
−q(0)] exp(iωt). (B.22)

Because

[c†kσ(t)ck+qσ(t), c
†
k+qσckσ] = exp[i

(εk − εk+q)

�
t][c†kσck+qσ, c

†
k+qσckσ],

c†kσ(t) = c†kσe
i
ε1
�
t, and

[c†kσck+qσ, c
†
k+qckσ] = c†kσckσ − c†k+qσck+qσ,

we obtain

χ0(q, ω) = i

∫ ∞

0

dt exp[i(εk+q − εk + �ω)t](f(εk)− f(εk+q))

=
f(k)− f(k + q)

�ω − εk+q + εk
, (B.23)

where 〈c†kσckσ〉 ≡ f(εk) and 〈c†k+qσck+qσ〉 ≡ f(εk+q).
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Appendix C

Derivation of Eq. (3.50)

In this appendix, we derive Eq. (3.50) for the magnetic susceptibility. We
consider a π-electron system in a weak magnetic field hz in the z-axis direc-
tion.

The Hubbard Hamiltonian is written as

H = Ht +HU +Hh (C.1)

with

Ht =
∑
i,j

∑
σ

tijc
†
iσcjσ − μ

∑
i

∑
σ

c†iσciσ, (C.2)

HU = U
∑
i

ni↑ni↓, (C.3)

Hh =hz
∑
i,q

eiq·risziσ. (C.4)

We define sziσ as

sziσ =
1

2

∑
σ1,σ2

c†iσσ
z
σ1σ2

ciσ. (C.5)

We assume a unit cell shown in Fig. 2.1 because (t2, t3) �= (t′2, t
′
3). The

the lattice constant in c-direction is same as the original lattice. That in
a-direction is twice as large as the original lattice. The label p = 1, 2 denote
two sites in the unit cell.
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We define

ckpσ =

√
2

N

∑
i

e−ik·ripcipσ, (C.6)

where N is the number of the dimerized pairs of BETS molecules, which
denotes

c†ipσ =

√
2

N

∑
k

eik·ripc†kpσ, (C.7)

where the summation
∑

k is taken over a first Brillouin zone. The Hamilto-
nian Eq. (C.1) is rewritten as

Ht +HU =
∑

k,σ,pp′
εkpp′c

†
kpσckpσ +

1

2
hz

∑
k,q,p

∑
σ1σ2

c†kpσ1
σz
σ1σ2

ck+qpσ2

=
∑

k,σ,p,p′

′
εkpp′c

†
kpσckp′σ +

1

2
hz

∑
k,q,p

′ ∑
σ1σ2

c†kpσ1
σz
σ1σ2

ck+qpσ2

+
∑

k,σ,p,p′

′
εk+qpp′c

†
k+qpσck+qp′σ +

1

2
hz

∑
k,q,p

′ ∑
σ1σ2

c†k+qpσ1
σz
σ1σ2

ckpσ2

=
∑
k,σ

′
(c†k1σ c

†
k2σ c

†
k+q1σ c

†
k+q2σ)Êkσ

⎛
⎜⎜⎝

ck1σ
ck2σ
ck+q1σ

ck+q2σ

⎞
⎟⎟⎠ , (C.8)

where

Êkσ =

⎛
⎜⎜⎝

εk1 ε+k23 − iε−k23 hzσ/2 0
ε+k23 + iε−k23 εk1 0 hzσ/2
hzσ/2 0 εk+q1 ε+k+q23 − iε−k+q23

0 hzσ/2 ε+k+q23 + iε−k+q23 εk+q23

⎞
⎟⎟⎠
(C.9)

and the summation
∑′

k is taken over a Brillouin zone in an antiferromagnetic
phase. Here, εk1 = 2t1 cos kx, ε

+
k23 = (t2 + t′2) cos(ky) + (t3 + t′3) cos(kx + ky),

ε−k23 = (t2 − t′2) sin(ky) + (t3 − t′3) sin(kx + ky).
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The Hamiltonian (C.8) is diagonalized by the unitary transformation⎛
⎜⎜⎝

ck1σ
ck2σ

ck+q1σ

ck+q2σ

⎞
⎟⎟⎠ = Ukσ

⎛
⎜⎜⎝

αkσ

βkσ
γkσ
δkσ

⎞
⎟⎟⎠ , (C.10)

where Ukσ is a unitary matrix.
We derive the eigenvalues and eigenvectors for the matrix Êkσ by the

perturbation theory. The eigenvalues for the zeroth and first order terms
of the magnetic field hz are defined as E

(0)
ki and E

(1)
ki (i=1, 2, 3, and 4),

respectively. We refer to the eigenvectors for the zeroth and first order terms
of the magnetic field hz are defined as xki and δxki, respectively.

We divide the matrix Êkσ into

Êk0σ =

⎛
⎜⎜⎝

εk1 ε+k23 − iε−k23 0 0
ε+k23 + iε−k23 εk1 0 0

0 0 εk+q1 ε+k+q23 − iε−k+q23

0 0 ε+k+q23 + iε−k+q23 εk+q1

⎞
⎟⎟⎠

(C.11)

and

Ek1σ =

⎛
⎜⎜⎝

0 0 hzσ/2 0
0 0 0 hzσ/2

hzσ/2 0 0 0
0 hzσ/2 0 0

⎞
⎟⎟⎠ . (C.12)

We solve the equations

(Êk0σ + Êk1σ)(xki + δxki) = (E
(0)
ki + E

(1)
ki )(xki + δxki) (C.13)

and

Êk0σxki = E
(0)
ki xki. (C.14)

From Eq. (C.14), we obtain

E
(0)
k1 =εk1 +

√
(ε+k23)

2 + (ε−k23)2, (C.15)

E
(0)
k2 =εk1 −

√
(ε+k23)

2 + (ε−k23)2, (C.16)
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E
(0)
k3 =E

(0)
k+q1, (C.17)

E
(0)
k4 =E

(0)
k+q2. (C.18)

From Eq. (C.14), we obtain eigenvectors

xk1 =
1√
2

⎛
⎜⎜⎜⎝

−
√

(ε+k23)
2+(ε−k23)2

ε+k23+iε−k23
1
0
0

⎞
⎟⎟⎟⎠ , (C.19)

xk2 =
1√
2

⎛
⎜⎜⎜⎝

√
(ε+k23)

2+(ε−k23)2

ε+k23+iε−k23
1
0
0

⎞
⎟⎟⎟⎠ , (C.20)

xk3 =
1√
2

⎛
⎜⎜⎜⎜⎝

0
0

−
√

(ε+k+q23)
2+(ε−k+q23)

2

ε+k+q23+iε−k+q23

1

⎞
⎟⎟⎟⎟⎠ , (C.21)

xk4 =
1√
2

⎛
⎜⎜⎜⎜⎝

0
0√

(ε+k+q23)
2+(ε−k+q23)

2

ε+k+q23+iε−k+q23

1

⎞
⎟⎟⎟⎟⎠ . (C.22)

We express the eigenvector δxki for the first order terms of the magnetic
field hz as a linear combination of the eigenvectors for the zeroth order terms
of the magnetic field hz. δxki is written as

δxki =
N∑
j=1

cjxkj = cixki +
N∑

j=1,i 	=j

cjxkj. (C.23)
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Using Eq. (C.23) in Eq. (C.13), we obtain

(Êk0σ + Êk1σ)(xki + δxki) =(Êk0σ + Êk1σ)((1 + ci)xki +
N∑

j=1,j 	=i

cjxkj)

=(E
(0)
ki + E

(1)
ki )((1 + ci)xki +

N∑
j=1,j 	=i

cjxkj).

(C.24)

Therefore, we obtain

(Êk0σ + Êk1σ)(xki +
N∑

j=1,j 	=i

cj
1 + ci

xkj) = (E
(0)
ki + E

(1)
ki )(xki +

N∑
j=1,j 	=i

cj
1 + ci

xkj).

(C.25)

Expanding both sides of Eq. (C.25), we obtain

Êk0σxki +
N∑

j=1,j 	=i

cj
1 + ci

Êk0σxkj + Êk1σxki +
N∑

j=1,j 	=i

cj
1 + ci

Êk1σxkj

= E
(0)
ki xki + E

(1)
ki xki +

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
ki xkj +

N∑
j=1,j 	=i

cj
1 + ci

Êk1σxkj. (C.26)

When we can ignore the second-order term of hz, we obtain

Êk0σxki +
N∑

j=1,j 	=i

cj
1 + ci

Êk0σxkj + Êk1σxki

= E
(0)
ki xki + E

(1)
ki xki +

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
ki xkj. (C.27)

Using Eq. (C.14) in Eq. (C.27), we obtain

Êk1σxi = E
(1)
i xi +

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
ki xj −

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
kj xj. (C.28)

In the case of i = l,

(xki, Êk1σxki) = E
(1)
ki . (C.29)
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In the case of i �= l,

(xkl, Êk1σxki) =(xkl, E
(1)
ki xki +

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
ki xkj −

N∑
j=1,j 	=i

cj
1 + ci

E
(0)
kj xkj)

=
ck

1 + ci
E

(0)
ki − ck

1 + ci
E

(0)
kl

=
ck

1 + ci
(E

(0)
ki − E

(0)
kl ). (C.30)

It follows from Eq. (C.30) that

ck
1 + ci

=
(xkl, Êk1σxki)

E
(0)
ki − E

(0)
kl

. (C.31)

From Eqs. (C.23) and (C.31), the eigenvector for the first order term of the
magnetic field hz is

δxki =
N∑

j=1,j 	=i

ck
1 + ci

xkj =
N∑

j=1,j 	=i

(xkl, Êk1σxki)

E
(0)
ki − E

(0)
kl

xkj. (C.32)

Using Eqs. (C.9), (C.15)−(C.22) in Eq. (C.32), we obtain

δxk1 =− 1

2

hzσ

E
(0)
1 − E

(0)
3

{√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 − iε−k+q23)(ε
+
k23 + iε−k23)

+ 1

}
x3

− 1

2

hzσ

E
(0)
1 − E

(0)
4

{
−
√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

(ε+k+q23 − iε−k+q23)(ε
+
k23 + iε−k23)

+ 1

}
x4,

(C.33)

δxk2 =− 1

2

hzσ

E
(0)
2 − E

(0)
3

{√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 − iε−k+q23)(ε
+
k23 + iε−k23)

+ 1

}
x3

− 1

2

hzσ

E
(0)
2 − E

(0)
4

{
−
√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

(ε+k+q23 − iε−k+q23)(ε
+
k23 + iε−k23)

+ 1

}
x4,

(C.34)
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δxk3 =− 1

2

hzσ

E
(0)
3 − E

(0)
1

{√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 + iε−k+q23)(ε
+
k23 − iε−k23)

+ 1

}
x1

− 1

2

hzσ

E
(0)
3 − E

(0)
2

{
−
√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

(ε+k+q23 + iε−k+q23)(ε
+
k23 − iε−k23)

+ 1

}
x2,

(C.35)

δxk4 =− 1

2

hzσ

E
(0)
4 − E

(0)
1

{√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 + iε−k+q23)(ε
+
k23 − iε−k23)

+ 1

}
x1

− 1

2

hzσ

E
(0)
4 − E

(0)
2

{
−
√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

(ε+k+q23 + iε−k+q23)(ε
+
k23 − iε−k23)

+ 1

}
x2.

(C.36)

The unitary matrix Ukσ is written as

Ukσ = (xk1 + δxk1 xk2 + δxk2 xk3 + δxk3 xk4 + δxk4). (C.37)

Hence, the components of the unitary matrix

Êk1σ =

⎛
⎜⎜⎝

uk11 uk12 uk13 uk14
uk21 uk22 uk32 uk42
uk13 uk23 uk33 uk43
uk14 uk24 uk34 uk44

⎞
⎟⎟⎠ (C.38)

are written as

uk11 =− 1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23
, (C.39)

uk31 =
1

2

hzσ

E
(0)
1 − E

(0)
3

(Bk + 1)
1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23

+
1

2

hzσ

E
(0)
1 − E

(0)
4

(−Bk + 1)
1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23
, (C.40)

uk12 =
1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23
, (C.41)
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uk32 =
1

2

hzσ

E
(0)
2 − E

(0)
3

(Bk + 1)
1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23

+
1

2

hzσ

E
(0)
2 − E

(0)
4

(−Bk + 1)
1√
2

√
(ε+k23)

2 + (ε−k23)2

ε+k23 + iε−k23
, (C.42)

uk33 = − 1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

, (C.43)

,

uk13 =
1

2

hzσ

E
(0)
2 − E

(0)
3

(Ak + 1)
1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

+
1

2

hσ

E
(0)
2 − E

(0)
4

(−Ak + 1)
1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

, (C.44)

uk34 =
1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

, (C.45)

uk14 =
1

2

hzσ

E
(0)
2 − E

(0)
3

(Ak + 1)
1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

+
1

2

hzσ

E
(0)
2 − E

(0)
4

(−Ak + 1)
1√
2

√
(ε+k+q23)

2 + (ε−k+q23)
2

ε+k+q23 + iε−k+q23

, (C.46)

where

Ak =

√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 − iε−k+q23)(ε
+
k23 + iε−k23)

, (C.47)

Bk =

√
[(ε+k+q23)

2 + (ε−k+q23)
2][(ε+k23)

2 + (ε−k23)2]

(ε+k+q23 + iε−k+q23)(ε
+
k23 − iε−k23)

. (C.48)
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We define the sublattice magnetization m as

m(q) ≡〈sjp〉eiq·rjp

=
∑
σ1,σ2

1

2
〈(c†ipσσz

σ1σ2
cipσ2)e

iq·rip〉. (C.49)

When we substitute Eq. (C.10) into Eq. (C.49), we obtain

m(q) =

(
1

N

)∑
k,σ

′
〈(c†k1σck+q1σ + c†k+q1σck1σ)〉σ

=

(
1

N

)∑
k,σ

′
{(u∗11σu31σ + u∗31σu11σ)〈α†

kσαkσ〉+ (u∗12σu32σ + u∗32σu12σ)〈β†
kσβkσ〉

+ (u∗13σu33σ + u∗33σu13σ)〈γ†kσγkσ〉+ (u∗14σu34σ + u∗34σu14σ)〈δ†kσδkσ〉}σ

=
h

N

∑
k

{
f(E

(0)
k1 )− f(E

(0)
k3 )

4(E
(0)
k3 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k4 )

4(E
(0)
k2 − E

(0)
k4 )

}
Ck

+

{
f(E

(0)
k1 )− f(E

(0)
k4 )

4(E
(0)
k4 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k3 )

4(E
(0)
k2 − E

(0)
k3 )

}
Dk, (C.50)

where

Ck = 1 +
ε+k23ε

+
k+q23 + ε+k23ε

−
k+q23√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε+k23)
2 + (ε−k23)2]

, (C.51)

Dk = 1− ε+k23ε
+
k+q23 + ε−k23ε

−
k+q23√

[(ε+k+q23)
2 + (ε−k+q23)

2][(ε−k23)2 + ε+k23)
2]
. (C.52)

From χ(q) ≡ limhz→0m(q)/hz, the spin susceptibility χ(q) is

χ(q) =
1

N

∑
k

{
f(E

(0)
k1 )− f(E

(0)
k3 )

4(E
(0)
k3 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k4 )

4(E
(0)
k2 − E

(0)
k4 )

}
Ck

+

{
f(E

(0)
k1 )− f(E

(0)
k4 )

4(E
(0)
k4 − E

(0)
k1 )

+
f(E

(0)
k2 )− f(E

(0)
k3 )

4(E
(0)
k2 − E

(0)
k3 )

}
Dk (C.53)
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Appendix D

Derivation of Eq. (2.15)

In this appendix, we derive Eq. (2.15) for the susceptibility of the free 3d
spins. We consider the localized 3d spin system under a small magnetic field
h. The Hamiltonian has the term H =

∑
i hSi where Si the spin operator

with length S = 5/2 on the anion site i. We define the magnetization M as

M ≡ 〈Si〉. (D.1)

Before we derive M , we calculate

S∑
Si=−S

exp(−hβSi) =
exp(−hβS)(1− exp(hβ(2S + 1)))

1− exp(−hβS)

=
sinh(

β(S+ 1
2
)h

2
)

sinh(βh
2
)

(D.2)

and

d

dh

S∑
Si=−S

exp(−hβSi) =
d

dh

sinh(h(S + 1
2
)β)

sinh(hβ
2
)

=
1

sinh2(hβ
2
)

[(
S +

1

2

)
cosh

(
h
(
S +

1

2

)
β
)
sinh

(hβ
2

)

− h

2
sinh

(
h
(
S +

1

2

)
β
)
cosh

(hβ
2

)]
. (D.3)

The magnetization M is

M ≡ 〈Si〉
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=

∑S
Si=−S Si exp(−hβSi)∑S
Si=−S exp(−hβSi)

(D.4)

=
− d

dh

∑S
Si=−S exp(−hβSi)∑S

Si=−S exp(−hβSi)

=
1

sinh(hβ
2
) sinh(h(S + 1

2
)β)

[(
S +

1

2

)
cosh

(
h
(
S +

1

2

)
β
)
sinh

(hβ
2

)

− 1

2
sinh

(
h
(
S +

1

2

)
β
)
cosh

(hβ
2

)]
=
(
S +

1

2

)
coth

(
h
(
S +

1

2

)
β
)
−1

2
coth

(hβ
2

)
=S

(2S + 1

2S

)
coth

(
h
(
S +

1

2

)
β
)
−S 1

2S
coth

(hβ
2

)
=SBS(βhS), (D.5)

where

BS(x) =
(2S + 1

2S

)
coth

(
β
(2S + 1

2S

)
x
)
− 1

2S
coth

(
β
x

2S

)
(D.6)

is the Brillouin function.
When h is small, x is small. When x is sufficiently small,

coth(x) =
exp(x) + exp(−x)
exp(x)− exp(−x) (D.7)

=
1 + x+ x2

2
+ x3

6
+ x4

24
+ 1− x+ x2

2
+ −x3

6
+ x4

24

1 + x+ x2

2
+ x3

6
+ x4

24
− 1 + x− x2

2
− −x3

6
− x4

24

=
2 + x2 + x4

12

2x+ x3

3

=
1

x
+
x

3
−

x4
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x+ x3

6

=
1

x
+
x

3

and

BS(x) =
(2S + 1

2S

)( 1

β(2S+1
2S

)x

)
+
(
β
(2S + 1

6S

)
x
)− 1

2S

( 1

β x
2S

+ β
x

6S

)
=

1

βx
+
β

3

(2S + 1

2S

)2
x− 1

βx
− x

12S2
=

(4S2 + 4S)x

12S2
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=
(S + 1)x

3S
. (D.8)

From Eqs. (D.4) and (D.8), we obtain

M =
(S + 1)Shβ

3
. (D.9)

From χ2(T ) = limh→0
M
h
, the susceptibility of the free 3d spin χ2(T ) is

χ2(T ) =
(S + 1)S

3T
. (D.10)

67



Appendix E

Derivation of Eq. (2.19)

In this appendix, we apply the random phase approximation (RPA) to the
Hubbard model and derive the spin susceptibility of pure π-electron sys-
tem [64,65].

We derive the unitary matrix to derive the spin susceptibility. We consider
the Schrödinger equation

i�
dψ

dτ
= Hψ (E.1)

for the wave function of the system ψ(τ). Introducing ψ(τ0) for the wave
function at time τ0, we obtain

ψ(τ) = e
iH(τ−τ0)

� ψ(τ0) (E.2)

as the relational equation between ψ(τ) and ψ(τ0). Here, we introduce the
variable function

UH(τ, τ0) = e−iH(τ−τ0)/�. (E.3)

The variable function U(τ, τ0) is a unitary matrix. Differentiating both sides
of Eq. (E.3) by τ , we obtain

dUH(τ, τ0)

dτ
= − iH

�
e−H(τ−τ0)/�

=
−iH
�

UH(τ, τ0) (E.4)

68



Integrating both sides of Eq. (E.4) with τ1, we obtain

UH(τ, τ0) = C +

(
− i

�

)∫ τ

τ0

dτ1UH(τ1, τ0)H, (E.5)

where C is an integration constant. From U(τ0, τ0) = 1, we obtain C = 1.
Hence,

UH(τ, τ0) = 1 +

(
− i

�

)∫ t

τ0

dτ1UH(τ1, τ0)H. (E.6)

We apply the itinerant approximation to Eq. (E.6), which leads to

UH(τ, τ0) =1 +

(
− i

�

)∫ τ

τ0

dτ1H(τ1)

+

(
− i

�

)2∫ τ

τ0

dτ1

∫ τ

τ0

dτ2H(τ1)H(τ2)

+ · · ·+
(
− i

�

)n∫ τ

τ0

dτ1 · · ·
∫ τ

τ0

dτnH(τ1)H(τ2) · · ·H(τn) + · · ·.
(E.7)

We write Eq. (E.7) in a symmetrical form. We define the ordering operator

T[A(τ)B(τ ′)] = A(τ)B(τ ′)θ(τ − τ ′)± B(τ ′)B(τ)θ(τ ′ − τ), (E.8)

where θ(x) is Heaviside step function. Here, ± is taken as + and − when A
and B are Bose operators and Fermi operators, respectively. Equation (E.7)
is written as

UH(τ, τ0) = 1 +
∞∑
n=1

1

n!

(
− i

�

)n∫ τ

τ0

· · ·dτnT[H1(τ1) · · ·H1(τn)]. (E.9)

We define the spin susceptibility χzz
s (q, iωm) and spin operator Sz

q(τ) as

χzz
s (q, iωm) =

1

N

∫ β

0

eiωmτ 〈Sz
q(τ)S

z
−q〉dτ. (E.10)

and

Sz
q =

1

2

∑
k

(c†k↑ck+q↑ − c†k↓ck+q↓), (E.11)
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representivity. Using Eq. (E.11) in Eq. (E.10), we obtain

χzz
s (q, iωm) =

1

N

∫ β

0

eiωmτ
∑
k,k′

〈Sz
q(τ)S

z
−q〉dτ

=
1

4N

∫ β

0

eiωmτ 〈(c†k↑(τ)ck+q↑(τ)− c†k↓(τ)ck+q↓(τ))(c
†
k↑ck−q↑ − c†k↓ck−q↓)〉dτ.

(E.12)

We define spin susceptibility χσσ′
(q, iωm) as

χσσ′
(q, iωm) =

1

N

∫ β

0

eiωmτ
∑
k1,k2

〈c†k1σ
ck1+qσc

†
k2σ′ck2−qσ′〉. (E.13)

From Eqs. (E.12) and (E.13), we obtain

χzz
s (q, iωm) =

1

4
(χ↑↑(q, iωm) + χ↓↓(q, iωm) + χ↓↑(q, iωm) + χ↑↓(q, iωm)).

(E.14)

We derive the spin susceptibility. We consider the grand partition func-
tion

Ξ = Tr[e−β(H−μN)]. (E.15)

The expectation value for an arbitrary operator A is written as

〈A〉 = Tr[e−βHA]

Tr[e−βH ]

=
Tr[e−β(Ht+HU )A]

Tr[e−β(Ht+HU )]

=
Tr[UHt(β)UHU

(β)A]

Tr[UHt(β)UHU
(β)]

. (E.16)

The grand canonical partition function Ξ is written as

Ξ = Tr[e−β(Ht+HU )] = Tr[UHt(β)UHU
(β)]. (E.17)

For a noninteraction system, the expectation value of A is written as

〈A〉0 = Tr[e−βHA]

Tr[e−βH ]
=

Tr[e−βHtA]

Tr[e−βHt ]
=

Tr[UHt(β)A]

Tr[UHt(β)]
. (E.18)
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The partition function Z is written as

Z = Tr[e−βHt ] = Tr[UHt(β)]. (E.19)

Expressing the grand partition function Ξ in terms of the expectation value
of UHU

(β), we obtain

Ξ = Tr[UHt(β)UHU
(β)]

= Tr[UHt(β)]
Tr[UHt(β)UHU

(β)]

Tr[UHt(β)]

= Tr[UHt(β)]
Tr[UHt(β)UHU

(β)]

Tr[UHt(β)]

= Tr[UHt(β)]〈UHU
(β)〉0. (E.20)

The Green functions G(k, τ) and G(k, iωn) for interacting systems are

G(k, τ) = −〈Tτ [ckσ(τ)c†kσ]〉 = T
∑
n

e−ωnτG(k, iωn), (E.21)

G(k, iωn) =

∫ β

0

dτeiωnτG(k, τ). (E.22)

The Green functions G0(k, τ) and G0(k, iωn) for noninteracting systems are

G0(k, τ) = −〈Tτ [ckσ(τ)c†kσ]〉0 = T
∑
n

e−ωnτG0(k, iωn), (E.23)

G0(k, iωn) =

∫ β

0

dτeiωnτG0(k, τ). (E.24)

The free electron susceptibility χ0(q, iνm) is defined as

χ0(q, iνm) ≡
∫ β

0

dτeiνmτ
∑
k,k′

〈c†kσck+qσc
†
k′+qσ′ck′σ′〉0

= − T

N

∑
k,ωn

G0(k, iωn)G0(k + q, iωn + iνm). (E.25)
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A perturbation expansion of Eq. (E.13) is

χσσ′
s (q, iνn) =

1

N

∫ β

0

eiωmτ
∑
k1,k2

〈c†k1σ
ck1+qσc

†
k2σ′ck2−qσ′〉

=
1

N

∫ β

0

eiωmτ
∑
k1,k2

〈UHU
(β)c†k1σ

ck1+qσc
†
k2σ′ck2−qσ′〉0

〈UHU
(β)〉0 . (E.26)

We substitute Eq. (E.7) into Eq. (E.26). We consider Bloch-de Dominics
theorem. We define

Ai(τi)Aj(τj) ≡ 〈Tτ [Aj(τi)Aj(τj)]〉0 (E.27)

as a contraction. Using Eq. (E.27), we obtain

〈Tτ [A1(τ1) · · · An(τn)]〉0 =
∑
P

(−1)ξpAi1Ai2Ai3Ai4 · · · Ain−1Ain · · · . (E.28)

Here, (−1)ξp is equal to 0 and 1 when the substitution is an even substitution
and when it is an odd substitution, respectively. The zeroth-order term is

1

N

∫ β

0

eiωmτ
∑
k,k′

〈c†k1σ
c†k2σ′ck1+qσck2+qσ′〉0 ≡ χ0(q, iνn). (E.29)

The first-order term is

1

N

∫ β

0

τeiωmτ
∑
k,k′

(
− i

�

)∫ β

0

dτ1〈HU(β)c
†
k1σ
ck1+qσc

†
k2+qσ′ck2σ′〉0

=
1

N

∫ β

0

dτeiωmτ
∑
k,k′

(
− i

�

)∫ β

0

dτ1〈
∑
k,k′

∑
k1,k2

Uc†k1σ
ck1+qσc

†
k2+qσ′ck2σ′c†kσck+qσc

†
k′+qσ′ck′σ′〉0

=
1

N

∫ β

0

dτeiωmτ
∑
k,k′

(
− i

�

)∫ β

0

dτ1
∑
k,k′

∑
k1,k2

U〈ck1σc
†
k1σ

〉0〈ck1+qσ′c†k1+qσ′〉0,

〈ck2σc
†
k2σ

〉0〈ck2+qσ′c†k2+qσ′〉0
=

1

N

∫ β

0

dτeiωmτ
∑
k,k′

(
− i

�

)∫ β

0

dτ1
∑
k,k′

∑
k1,k2

UG0(k1 + q, τ)G0(k1, τ)

G0(k2, τ)G0(k2 + q, τ)

=Uχ0(q, iνn)χ0(q, iνn). (E.30)
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Figure E.1: Diagrams of χσσ and χσ−σ by RPA.

Therefore, the free spin susceptibility χ(q, iνn) is

χ(q, iνn) = χ0(q, iνn) + Uχ0(q, iνn)χ0(q, iνn)

+ U2χ0(q, iνn)χ0(q, iνn)χ0(q, iνn)χ0(q, iνn) · · · ·
= χ0(q, iνn)(1 + Uχ0(q, iνn) · ··)
= χ0(q, iνn)(1 + Uχ(q, iνn)). (E.31)

From Eq. (E.31), we obtain

χ(q, iνn) =
χ0(q, iνn)

1− Uχ0(q, iνn)
. (E.32)

The critical value Uc of the Coulomb energy satisfies

1 = Ucχ0(q, iνn = 0). (E.33)

From Eq. (E.15), we obtain

Uc =
1

χ0(q, iνn = 0)
. (E.34)

73



Appendix F

Derivation of Eqs. (2.28)
and (2.29)

In this appendix, we derive the sublattice magnetizations of π-electrons and
3d spins in the mean-field approximation.

The model Hamiltonian is written as

H = Ht +HU +HJ (F.1)

with

Ht =
∑
i,j

∑
σ

tijc
†
iσciσ − μ

∑
i

∑
σ

c†iσciσ, (F.2)

HU = U
∑
i

ni↑ni↓, (F.3)

HJ =
∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12S

μ
i′s

μ
i . (F.4)

The Hamiltonian in the mean-field approximation is

HU = U
∑
i

(〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↑〉), (F.5)

HJ =
∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12(〈Sμ

i′〉sμi + Sμ
i′〈sμi 〉 − 〈Sμ

i′〉〈sμi 〉). (F.6)
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We define the sublattice magnetizations M and m of the π electrons and 3d
spins as

M ≡ 〈Sz
i′〉, (F.7)

and

m ≡ 1

2

∑
σ1σ2

〈c†iσ1
σz
σ1σ2

ciσ2〉 =
1

2
〈(ni↑ − ni↓)〉, (F.8)

respectively. Because

M =

∑S
Sz
i′=−SS

z
i′e

−J12mSz
i′β∑S

Sz
i′=−Se

−J12mSz
i′β

=

d
dβ

∑S
Sz
i′=−S

−1
J12m

e−J12mSz
i′β∑S

Sz
i′=−Se

−J12mSz
i′β

(F.9)

and

S∑
Sz
i′=−S

e−J12mSz
i′β =

eJ12mSβ(1− e−J12m(2S+1)β)

1− e−J12mβ

=
(eJ12m(S+ 1

2
)β − e−J12m(S+ 1

2
)β)

e
J12mβ

2 − e−
J12mβ

2

=
sinh(J12m(S + 1

2
)β)

sinh(J12mβ
2

)
,

(F.10)

d

dβ

S∑
Sz
i′=−S

e−J12mSz
i′β =

d

dβ

sinh(J12m(S + 1
2
)β)

sinh(J12mβ
2

)

=
1

sinh2(J12mβ
2

)

[
J12m

(
S +

1

2

)
cosh

(
J12m

(
S +

1

2

)
β
)
sinh

(J12mβ
2

)

− J12m

2
sinh

(
J12m

(
S +

1

2

)
β
)
cosh

(J12mβ
2

)]
, (F.11)

we obtain

M =
1

sinh(J12mβ
2

) sinh(J12m(S + 1
2
)β)

[(
S +

1

2

)
cosh

(
J12m

(
S +

1

2

)
β
)
sinh

(J12mβ
2

)

− 1

2
sinh

(
J12m

(
S +

1

2

)
β
)
cosh

(J12mβ
2

)]
=(S +

1

2
) coth

[
J12m(S +

1

2
)β

]
−1

2
coth

(J12mβ
2

)
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=SBS(J12mS). (F.12)

We derive the sublattice magnetization m. Because n = 〈ni↑〉+ 〈ni↓〉,

〈ni↑〉 = n

2
+m (F.13)

and

〈ni↓〉 = n

2
−m. (F.14)

Using Eqs. (F.13) and (F.14) in Eqs. (F.5) and (F.6), we obtain

HU = U
∑
i

(〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↑〉)

= U
∑
i

[
n

2
(ni↓ + ni↑) +m(ni↓ − ni↑) + (

n2

4
−m2)] (F.15)

and

HJ =
∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12(〈Sμ

i′〉sμi + Sμ
i′〈sμi 〉 − 〈Sμ

i′〉〈sμi 〉)

=
∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12(Msμi + Sμ

i′m−Mm). (F.16)

Equation (F.16) is rewritten as

Ht =
∑
kσ

(ξk + δk)c
†
kσckσ, (F.17)

HU = U
∑
i

n

2
(ni↓ + ni↑) +m(ni↓ − ni↑) + (

n2

4
−m2)

= U
∑
k

∑
σ

(
n

2
−mσ)c†kσck+qσ + (

n2

4
−m2), (F.18)

HJ =
∑
(i,i′)

∑
μ=x,y,z

θi′J
μ
12(−Msμi − Sμ

i′m+Mm)

=
∑
k

(−1

2
J12Mc†kσck+qσ −

∑
i′
J12mS

z
i′ +NJ12Mm). (F.19)
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In the antiferromagnetic phase, the Hamiltonian is written as

Ht =
∑
kσ

′
(ξkc

†
kσckσ + ξk+qc

†
k+qσck+qσ), (F.20)

HU = U
∑
k

∑
σ

(n
2
−mσ

)
c†kσck+qσ +

(n2

4
−m2

)

= U
∑
k

′ ∑
σ

(
n

2
−mσ)(c†kσck+qσ + c†k+qσckσ) +

(n2

4
−m2

)
, (F.21)

HJ = −
∑
k,σ

1

2
J12Mc†kσck+qσ −

∑
i′
J12mS

z
i′ + J12Mm

=
∑
k,σ

′
J12M(c†kσck+qσ + c†k+qσckσ) +

∑
i′
J12mS

z
i′ + J12Mm. (F.22)

From Eqs. (F.20), (F.21) and (F.22), the Hamiltonian is written as

H =
∑
kσ

′
(c†kσc

†
k+qσ)Êkσ

(
ckσ

ck+qσ

)
, (F.23)

where

Êkσ =

(
ξk −α2σ

−α2σ ξk+q

)
. (F.24)

The Hamiltonian Eq. (F.23) is diagonalized by the unitary transformation(
ckσ

ck+qσ

)
= Ukσ

(
αkσ

βkσ,

)
as

H =
∑
kσ

′
(E+

k α
†
kσαkσ + E−

k β
†
kσβkσ), (F.25)

where

E±
k =

ξk + ξk+q

2
±

√(
ξk − ξk+q

2

)2

+α2
2. (F.26)
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The unitary matrix is expressed as the rotation matrix

Ukσ =

(
cos(θk) −σ sin(θk)
σ sin(θk) cos(θk)

)
, (F.27)

where

cos(2θk) = − ξkσ − ξk+qσ√
(ξkσ − ξk+qσ)2 + α2

2

, (F.28)

sin(2θk) = − α2√
(ξkσ − ξk+qσ)2 + α2

2

, (F.29)

α2 =
1

2
J12M + Um. (F.30)

Hence, we obtain

m =
1

2N

∑
k

′ ∑
σ

sin(2θk)(〈β†
kσβ

†
kσ〉 − 〈α†

kσα
†
kσ〉). (F.31)

Using Eq. (F.29) in Eq. (F.31), we obtain

m =
1

N

∑
k

′ α2√
(ξkσ − ξk+qσ)2 + α2

2

(f(E−
k )− f(E+

k )), (F.32)

where 〈α†
kσα

†
kσ〉 = f(E+

k ) and 〈β†
kσβ

†
kσ〉 = f(E−

k ), ξ̄k ≡ ξk+ξk+q

2
, δk ≡ ξk−ξk+q

2
,

and Ek ≡
√
ξ̄2k + α2

2.
From Eq. (F.32), we obtain

m =
1

N

∑′

k

α2

Ek

(f(E−
k )− f(E+

k ))

=
1

N

∑
k

′ α2

Ek

(e(Ek−δk)/2kBT − e−(Ek−δk)/2kBT

e(Ek−δk)/2kBT + e−(Ek−δk)/2kBT

− e(Ek+δk)/2kBT − e−(Ek−δk)/2kBT

e(Ek+δk)/2kBT + e−(Ek+δk)/2kBT

)
=

1

N

∑
k

′ α2

Ek

(
tanh

(Ek − δk
2kBT

) + tanh(
Ek + δk
2kBT

))
. (F.33)
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