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ON CLASSIFICATION OF IRREDUCIBLE QUANDLE MODULES OVER A
CONNECTED QUANDLE

KOSUKE UEMATSU

ABSTRACT. We study modules over quandles and classify irreducible quandle modules. The
main result of this paper states that there is a correspondence between irreducible modules over
a quandle @ and irreducible modules over certain groups: more specifically, irreducible modules
over the fundamental group of @ and nontrivial irreducible modules over the associated group
As(Q). As an application, we classify irreducible modules over generalized dihedral quandles, the
quandles obtained from generalized dihedral groups, and connected quandles in SLa(Fq) where
F4 denotes the finite field of ¢ = pf elements.

INTRODUCTION

A quandle is an algebraic system given by an operation > which generalizes the conjugation
operation of groups, and quandles play an important role in knot theory. The notion of a quandle
was first introduced by Joyce and Matveev in 1980s ([Joy], [Mat], see Definition 1.1). Just as
in the cases of other algebraic objects such as groups and rings, it is expected that the quandle
modules are important in studying quandles. The notion of a general quandle module was given by
Andruskiewitsch and Grana [AG] and Jackson [Jac] (Definition 1.12). As an example of application
of modules, homology of quandle modules is defined and some important homological invariants of
quandle modules are found.

As suggested above, every group can be regarded as quandles by the conjugation operation. For
a group G and g, h € G, the operation g>h = ghg~! defines a quandle denoted by Conj(G), which
is called the conjugation quandle of G. In the converse direction, a quandle ) naturally induces a
group As(Q) called the associated group (Definition 1.4). These assignments give rise to functors
Conj : Grp — Qd and As : Qd — Grp where Grp and Qd denote the categories of groups and
quandles respectively, and these functors are adjoint to each other. A module over As(Q) naturally
defines a module over Q. Such a module will be called a module induced from an As(Q@)-module.
However, there also exist quandle modules which are not induced from As(Q)-modules. This makes
the classification of quandle modules more interesting.

In this paper, we study the problem of classifying irreducible modules over connected quandles.
For a quandle @, there is another group Inn(Q) called the inner automorphism group which is
generated by left multiplication actions on Q. A quandle @ is said to be connected if the action of
Inn(Q) on Q is transitive. Given a quandle module M, we first look at the inner automorphism
group Inn(M) of M regarded as a quandle. Then we can construct another quandle module Z(M)
over @ from Inn(M), which is induced from an As(Q)-module, and a homomorphism iy : M —
Z(M) of quandle modules over Q. In particular, if M is an irreducible quandle module, i is
either injective or zero. The main result of this paper is the followings:
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e An irreducible module M such that i, is zero corresponds to an irreducible module over
a group 71 (@, ¢) which is called the fundamental group of @ at ¢ € Q. (Theorem 3.4)
e Otherwise, M corresponds to an irreducible As(Q@)-module in a certain way. (Theorem 3.5)

As applications of the theorems, we classify irreducible modules over two series of finite quandles.
The first one is the generalized dihedral quandle, the quandle of reflections in a generalized dihe-
dral group. It can be also regarded as an Alexander quandle on an Abelian group. We classify
the irreducible modules over dihedral quandles with coefficients in fields of characteristic 0. The
second one is the connected quandle @ in the special linear group SLs(F,) over a finite field F, of
q = p’ elements. We classify the irreducible modules over @ with coefficients in certain fields of
characteristic char(F,) = p, applying Brauer theory on modular representations of finite groups.

This paper is organized as follows. In the first section, we recall the definitions of quandles,
associated groups of quandles, and quandle modules and state some related results. The second
section states some facts on quandle modules and their inner automorphism groups. We see that
the inner automorphism group of a quandle module M has an Abelian normal subgroup T'(M)
with an action of As(Q) in Proposition 2.5. We also define the quandle module Z(M) and the
homomorphism i for a quandle module M in Proposition 2.9.

In the third section, we prove the main theorems on irreducible quandle modules over a connected
quandle Q). Note that Theorems 3.4 and 3.5 correpond to the cases iy = 0 and i # 0 respectively.

In the fourth section, we explain how to list up irreducible modules over As(Q) for connected
quandles Q. When Q is finite, As(Q) is written in the form of the semidirect product N x Z for
some finite group N (Proposition 3.1, Corollary 1.11). We see how an irreducible module over
As(Q) is obtained from an irreducible module over N in Proposition 4.4.

The last section gives explicit descriptions of irreducible modules over generalized dihedral quan-
dles and connected quandles in SLy(Fy).
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1. PRELIMINARIES

1.1. Quandles. In this section, we explain the definitions and some basic facts on quandles and
quandle modules. For recent development in related subjects, see [Nosl] and [AKki].

Definition 1.1. Let @ be a set and > : Q X @ — @ be a binary operator. Then the pair (Q,>) is
called a quandle (of left action) if the following properties are satisfied:

(1) (Idempotency) For any ¢ € Q, g> q = q.

(2) (Left invertibility) For any p € @, the map s, : Q — Q;¢ — p > ¢ is a bijection. Denote by
p >~ q the element s, '(q).

(3) (Left self-distributivity) For any p,q,7 € Q, p> (¢>7r)=(p>q) > (p>71).

Let (Q,r>) and (Q',>') be quandles. Then a map f : Q@ — Q' is called a homomorphism of quandles
if f(pr>q) = f(p) >’ f(q). We denote the category of quandles by Qd.

By (2) and (3) of the definition, the map s, for p € Q) is an automorphism of the quandle Q.

Definition 1.2. Let @ be a quandle.
(1) The group Inn(Q) generated by s, for p € Q is called the inner automorphism group of Q.



ON CLASSIFICATION OF IRREDUCIBLE QUANDLE MODULES OVER A CONNECTED QUANDLE 3

(2) An orbit of ¢ € @ under the action of Inn(Q) is called a connected component of Q. We
denote the set of connected components by C(Q).

(3) A quandle @ is said to be connected (or transitive) if the action of Inn(Q) on @ is transitive.
It is equivalent to saying that 4C(Q) = 1.

Example 1.3. Let G be a group. Defining gi>h = ghg™!, G has a quandle structure. This quandle
is called the conjugation quandle of G and is denoted by Conj(G). A group homomorphism is also
a quandle homomorphism under this operation, hence Conj is a functor from the category Grp
of the groups to Qd. In this case Inn(Conj(G)) is isomorphic to the inner automorphism group
Inn(G) = G/Z(G) of the group G where Z(G) denotes the center of the group G.

A union @ of some conjugacy classes in G forms a subquandle of Conj(G). Let H be the subgroup
of G generated by elements in ). Then an inner automorphism of @ as a quandle is regarded as
an inner action of some h € H as a group. Since ) generates H, h acts trivially on @ if and only
if h € Z(H). Therefore Inn(Q) = H/Z(H) = Inn(H).

Definition 1.4. Let @ be a quandle. Then the group given by the group presentation

As(Q) = (94 (€ Q) | Gprg = 9p9a9, " (P,q € Q))

is called the associated group of Q). A quandle homomorphism f : @ — @’ induces a group
homomorphism As(f) : As(Q) — As(Q'); g4 = gf(q)- Therefore As is a functor from Qd to Grp.

Proposition 1.5 ([FR, Proposition 2.1]). As: Qd — Grp is a left adjoint of Conj : Grp — Qd.
From the definitions above, we have the following elementary facts.

Proposition & Definition 1.6. Let () be a quandle.

(1) The map mg : As(Q) — Inn(Q); g, — 4 gives a well-defined surjective group homomor-
phism and defines an action of As(Q) on Q. For x € As(Q) and g € Q, denote by x.¢ the
action defined above (i.e. z.¢ = mg(x)(q))-

(2) For x € As(Q) and ¢ € Q, g2~ = guq-

(3) Let Z(Q) be the kernel of mg. Then Z(Q) is a central subgroup of As(Q).

(4) The map deg : As(Q) = @D.cc(q)Zecigq — €|q Where [g] is the connected component
containing ¢ defines a well-defined surjective group homomorphism. Denote by Asy(Q) the
commutator subgroup of As(Q). Then Asy(Q) = ker(deg). In particular the Abelianization
As(Q)*P of As(Q) is isomorphic to Z®HC(Q),

(5) Q is connected if and only if Asy(Q) acts transitively on Q.

Proof. (1)-(4) are proved in [Nos2]. For (5), see [Eis, Remark 2.25]. O
Definition 1.7. Denote by Inng(Q) the image of Aso(Q) by mg and by Zy(Q) the kernel of
TQlaso(@) + Aso(Q) — Inng(Q).

It is clear that Zp(Q) = Aso(Q) N Z(Q).
To summarize, we have the following short exact sequences of groups:

1= 2(Q) = As(Q) —» Inn(Q) — 1, (x1)
1= Zp(Q) = Aso(Q) — Inng(Q) — 1, (¥2)
1 — Aso(Q) — As(Q) — As(Q)*™ — 1. (3)

To calculate Zy(Q), the following formula for group homologies is useful.



4 KOSUKE UEMATSU

Theorem 1.8 (Five term exact sequence of group homology). Let 1 = N — G — H — 1 be an
exact sequence of groups and A a G-module. Then there exists a natural exact sequence

HQ(G,A) — HQ(H,AN) — Hl(N,A)H — Hl(G7A) — Hl(H,AN) — 0.

Here
Ag :Z®Z[G] A%A/<(1—g).a | a€ A, ge G>
where Z is regarded as a G-module by the trivial action.

Definition 1.9. For a group G and the trivial G-module Z, the group Hs(G,Z) is called the Schur
multiplier of G and is denoted by M(G).

In [Kar], the definition of M(G) is given by the second cohomology group H?(G,C*) where G
acts on C* trivially. By [Kar, Theorem 2.7.3], if G is finite, Ho(G,Z) is isomorphic to H?(G,C*).
From five term exact sequence, we have the following result:

Proposition 1.10 ([Nosl, Lemma 3.9]). Let @) be a quandle. Then there is a natural surjective
homomorphism

M(Inn(Q)) = Hz(Inn(Q), Z) = Zo(Q).
In particular if @ is a finite quandle, Z(Q) is a finite Abelian group.

From the exact sequence (%2), we also have the existing result as follows. See also [Eis, Remark
1.13].

Corollary 1.11. If @ is finite, Aso(Q) is also a finite group.

1.2. Quandle modules. Now we recall the notion of quandle modules. We adopt the definition
given by Jackson in [Jac]. Later we also refer to the definition given by Andruskiewitsch and Grana
in [AG] before Jackson.

Definition 1.12. Let @) be a quandle. For each p € @, let an Abelian group A, be given. Let
A= HpeQ A, (the disjoint union as a set). For p,q € Q, let n, 4 : Ay = Aprq be an isomorphism
of groups and 7, 4 : A, — Apr4 a homomorphism of groups. Then A together with {1, ,}, {74} is
called a quandle module over @ (or simply a @Q-module) if the following properties hold:

(1) Np,q>rTlg,r = Tp>g,p>rTlp,r-
(2) Mp,gorTar = Tpoq,perlp.g-
(3) Tp.gor = Mpeap>rTp,r + Tpsa,perTp.g-
(4) Mg,q + Tqq = ida,.
An element a € A, C A will be denoted by (a,p). The group A, is called the fiber of A at p.

Note that if @) is connected, the fibers are isomorphic to each other.
Any quandle module A has a quandle structure.

Proposition 1.13 ([Jac, Proposition 2.1]). For (a,p), (b,q) € A, define (a,p) > (b,q) = (p,qb +
Tp,q@, P > ¢q). Then A is a quandle.

Remark 1.14. There are some other definitions of quandle modules.

One of the definitions is as “Abelian group objects” in the category of quandles over a given
quandle.

Let @ be a quandle and 7 : A — Q, 7’ : A/ — @Q be quandle homomorphisms. Then the fiber
product of A and A’ over @ is the quandle

Axg A" ={(a,d') e Ax A’ (as aset) | w(a) = 7' (a’)}
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with binary operator (a,a’) > (b,b') = (a > b,a’ > V).

It is easy to see that the fiber product of quandles is the category-theoretical fiber product in
Qd. Recall that for a given fx : W — X and fy : W — Y with nx o fx = my o fy, there exists
uniquely f: W — X xz Y such that the following diagram is commutative:

W—,

'fk
X X2YH-Y

lp
X
We denote the map f by fx xqg fy.
Let @ be a quandle and 7 : A — @ a quandle homomorphism. Then A is called a quandle
module over @ if it is endowed with quandle homomorphisms o : A xg A — A, ( : Q — A, and
t: A— A such that the following diagrams are commutative:

fx Dy
X Ty
X

Z

(AxgA) xg A (Cop1)xap2 Axo A
Q Q Q
Axq (AxqA) p1Xq(aops2) Axgo A o A
A = Q XQA (Cop1)xaps AXQ.A
AxoQ P1Xq(Cop2) Axg A A
o AxgA—L2 L Axg A

A x
Ly

Com

KXQL

A XQ A
where the map p; : Axg.A — Ais the i-th projection. These four diagrams correspond respectively
to associativity, existence of identity, existence of inverse, and commutativity. This definition turns
out to be equivalent to Definition 1.12 [Jac, Theorem 2.6].
Another definition is as “modules over the algebra associated with the quandle” defined by An-

druskiewitsch and Grafia [AG]. Let F' be the unital associative Z-algebra generated by 1.4, 7, &, Tp.q
for p,q € Q and I the two-sided ideal generated by the following elements:

NN A
7

A

(1) Np,gerNg,r — Npsq,perip,rs
(2) Mp,gerTar = Tomqpeorpgs

(3) Tpaor = Mpq,perTp,r = Tpoq,porTp.gs
(4) Ng,q + Tgg — 1,
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(5) 77p,q77p_,é -1 n;;np,q - L
We define an algebra Z(Q) = F/I. Then a module over @ is defined as a module A over Z(Q) in
[AG]. If Q is connected, a quandle module can be identified with a module over Z(Q).

In this paper we will mainly be concerned with irreducible modules.

Definition 1.15. A nonzero quandle module M is said to be irreducible (or simple) if there is no
non-trivial quandle submodule of M.

Definition 1.16. Let (A, 7., 7ex) and (A", n ., 7, ) be @-modules. Then a family of group
homomorphisms {¢, : A; — A}}.eq is called a homomorphism of Q-modules if the following
diagrams are commutative:

I /
Ag—2rsan A,
’ ’
l’?p,q inp,q lTp-q J/prq
Pp>q Dp>q
’ ’
Ap‘>q — Ap‘>q7 Ap\>q —_— Ap‘>q.

The Q-modules (A, 7 «, Tw«) and (A', 7, ., 7, ) are said to be isomorphic if there exists a homo-
morphism {¢, : A; = A} }4eq of @Q-module such that each ¢, is an isomorphism.

Notation 1.17. Let G be a group. Then denote by Z[G| the group algebra of G. For a commutative
ring R, denote by R[G] the group algebra over R. We sometimes denote them simply by ZG, RG.

The following proposition states that an As(Q)-module induces a Q-module.

Proposition 1.18. Let M be a Z[As(Q)]-module. Then the disjoint union M = []
Q-module by 7, ¢ = 94:Tp.g = 1 — gpq- Denote this Q-module by Mg (M).

quM is a

In terms of modules over rings, this corresponds to the pullback by the ring homomorphism
Z(Q) — Z[As(Q)];Mp.q — 9q>Tp.q = 1 — Gp>q- A homomorphism f : M — N of Z(Q)-modules
naturally induces a homomorphism Mq(M) - Mg(N); My > m — f(m) € Ny where My, N, are
the fibers at ¢.

Definition 1.19. A Q-module M is said to be induced from an As(Q)-module if M is isomorphic
to Mqg(M) for some Z[As(Q)]-module M.

Now we extend the definitions above to modules over a commutative ring R. If the ring R is
obvious from the context, we omit writing R.

Definition 1.20. Let R be a commutative ring.

(1) A @-module M is called an RQ-module if M, is an R-module for ¢ € @ and parameters
M« and Ty 4 are R-homomorphisms.

(2) An RQ-homomorphism of RQ-modules is a family of R-homomorphisms {@,} such that the
diagrams in Definition 1.16 are commutative. Two RQ-modules are said to be R-isomorphic
if they are isomorphic through R-isomorphisms {¢,}4co and M is said to be R-simple if
M is simple as an RQ)-module.

(3) An RQ-module M is said to be induced from an As(Q)-module if M is R-isomorphic to
Mg (M) for some R[As(Q)]-module M. If R is a field and @ is connected, the dimension
dimp M, for ¢ € Q is called the dimension of the module M. (Note that the dimension is
well-defined since fibers are isomorphic.)



ON CLASSIFICATION OF IRREDUCIBLE QUANDLE MODULES OVER A CONNECTED QUANDLE 7

2. As(Q)-MODULES ASSOCIATED TO A QUANDLE MODULE
Definition 2.1. For a Q-module M =[] .o M, let M(M) =D, o My.
Now we show that M (M) has a structure of As(Q)-module.

Proposition 2.2. Let M =[] .o M, be a Q-module.
(1) For p € Q, define a homomorphism f, : M(M) — M (M) as follows:

fo(mg) = np,gmyg € Mprgq (Mg € My).

Then p: As(Q) — Aut(M(M)); g, — fp gives a structure of As(Q)-module on M (M).
(2) If M and M’ are isomorphic, M (M) = M (M) as As(Q)-modules.

Proof. The first statement is immediately due to Definition 1.12 (1). If M and M’ are isomorphic
through {¢, : My — M;}seq, M(M) = M(M') through M(M) D My > my = ¢q(my) € M, C
M(M). O

Definition 2.3. The group TI(M) = {¢ : M — M;my — my + by for some b, € M,} with
composition of maps is called the group of translations.

Clearly TI(M) is Abelian and is isomorphic to [[ o M. It is also an As(Q)-module by

9p-{bgtq = {Up,pbflq pl>*1q}q'

We again denote by T1(M) the As(Q)-module defined as above. Note that this extends the As(Q)-
action on M(M). In particular if @ is finite, we can identify TI(M) with M (M).
Now we look at the structure of the group Inn(M).

Definition 2.4. For (a,q) € M, let t,, = S(ayq)s(fo}q). Let T(M) be the subgroup of Inn(M)

generated by t, 4 for (a,q) € M. Let K(M) be the subgroup generated by s q) for ¢ € Q.

Proposition 2.5. The followings hold:

(1) T(M) is a subgroup of TI(M). The element t,, is represented by {7, ,r-14a}4eq as an
element in T1(M).
(2) T(M) is normal in Inn(M). The inner action of K (M) on T(M) is compatible with the
action of As(Q) on TI(M) through As(Q) — K(M);gq = 8(0,q)-
(3) The map M(M) — T(M); My > a v tq4 is a homomorphism of As(Q)-modules.
(4) Inn(M) is isomorphic to the semidirect product T (M) x K(M).
Proof. (1) Noting that (a,p) >~ (b,q) = (n;;D,lq(b — Tppe-140),p > q), we have
tap(b:0) = S(ap) (1, 1,00 > )
= (np,pb—lqn;]},pflqb + Tpp1q% 9)

= (b+Tpps-14a,9).

1

Therefore to, = {7, p-140}qeq as an element in TI(M).
(2),(3) For (a,p), (b,q) € M,

—1
S(ap)thaSap) =  Sap)>5.0)5(a,p)>(0,q)

= s st
- (Mp,qb+Tp,qa,p>q) (Tp,qa,p>q)"
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We write X =1, ,b+ 7,40 and Y = 7, ;a. Now for (¢,7) € M,
S(X7P‘>‘Z)S(_Y1,p[>q)(c’ r) = S(Xpra) (n;\;q,(pbq)b_lr(c — a1 Y ), (P> Q) >"tr)
-1
(o455 0)> =17 s g (pivg) 17 (€~ Topa, (o)1 Y ) + Topg (pog)-1r X, 7)
(C+Tpl>q (p>q)>—1 (X - Y) T)
= (C+Tpl>q (p>q)>—1r"Tlp, q(b) T)
4

Mp, qbvpl>q(c T)

Therefore

S(a7p)tbqu(_al7p) = tn, bpq € T(M). (E)
This shows the normality of T'(M). The compatibility in (2) holds since for p’ € @ and t,, €
T(M) C TI(M),

gp"ta,p = {np/7p/>71q7'p7p[>71(p/>71q)a}qu
= A{Top@eps—1aT p0teeQ
= tnp',pa,p’bp
Note that the second equality holds from (2) of Definition 1.12, with p7 q, T replaced by p’, p,
p>~1 (p' > q) respectively. Since we also have b, aw'>p = 5(0,p"ta, ps( ) from (E), (3) holds.
(4) We have to show that Inn(M)/T(M) is represented by elements in K(./\/l) and that T(M)N
K(M) = 1. Since s(,p) = tapS(0,p) Which generates Inn(M), Inn(M)/T(M) is represented by
elements in K(M). Let f € T(M) N K(M). The condition f € T(M) implies that f(M,) = M,
for all g. Moreover f € K(M) implies f((b,q)) = (05! 4, =15 4.b,q) for some p;,¢; € Q and
¢; € {£1}, which is an additive action on each M,. Since an additive map is also a translation if
and only if it is the identity map, f must be the identity. |

By (1) of the proposition, the composition of maps in 7'(M) is commutative and corresponds to
the pointwize addition in T1(M). Thus we write the group operation on 7'(M) by +.

Notation 2.6. For ¢t € T(M) and k € K (M), we denote by (¢; k) the element tk in Inn(M). Then
the product is given by (t1; k1)(ta; k2) = (t1 + k1.t2; ki1ks) where k.t = ktk~! is the conjugation of
¢ by k. Similarly the inverse is given by (t;k) ™' = (—k~'.t;k™1). We write kg = s(0,q) € K(M).

Proposition 2.7. Let M be a Q-module and I}, = {(t;k) | t € T(M)} for k € K(M). Then
Z'(M) = Conj(Inn(M)) = [Tyex(m) Ik is a Conj(K (M))-module. Moreover Z'(M) is a module
induced from an As(Conj(K (M)))-module.

Note that Z’'(M) is a module with fiber T'(M) through T'(M) > t — (t; k) € I;,, where each fiber
is regarded as an additive group by (¢t; k) + (¢'; k) = (t +t'; k).
Proof. For ki, ks € K(M) and ty,ty € T(M),

(t1; k) > (t2; k2) (t1; k1) (t2; k2) (t1 k1) ™!
(t1; k1) (b; k) (—ky Tt ke t)
= (t1 + kito — kikoky ity kikokh)
( t2+(1—k1]€2k1 )tl;kl l>k2).

Therefore the parameters are given by 7k, r, = k1, Tk, k» = 1 — k1kok] . This means that Z'(M) is
a Conj(K (M))-module induced from the As(Conj(K (M)))-module T'(M). O
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In general, for a group G and a G-module M, the semidirect product M x G as a conjuga-
tion quandle is a quandle module over Conj(G) induced from the G-module M through the map
As(Conj(@)) — G derived from the adjunction of identity map.

Definition 2.8. Let f: Q — Q' be a quandle homomorphism and (M’ = Hq ey M/uﬁi )
be a @"-module. Then f*M' =[] oM ( ) is a Q-module by setting 7,4 = nf(p) Fg and Tp g =
f(p),f(q)' This module is called the pullback of M’ by f.

Note that in terms of ring modules, this corresponds to the pullback of modules by the natural
ring homomorphism R(Q) — R(Q").
Proposition 2.9. (1) Let Z(M) be the pullback of Z'(M) by @ — Conj(K(M));q — kg =
S(0,g)- Then Z(M) = [],cq Ig, where I, = I} , is isomorphic to Mq(T(M)). Denote by
(t,q) the element (t;ky) € I = I4. Then (t,q) > (t',¢') = (94-t' + (1 = ggpgq)-t,q > ¢'). In
particular, Z(M) is a @-module induced from the As(Q)-module T'(M).
(2) The quandle homomorphism

M — Conj(Inn(M)); My 3 (a,q) = Sqa,q) € Il/cq

induces a module homomorphism i : M — Z(M) over Q. This implies that every quandle
module has a homomorphism to a quandle module induced from the As(Q)-module T'(M).
Note that

S(a.q) = ta.g5(0,q) = (fa,qi kg)
and hence the map i is defined by (a,q) — (ta,q, q)-

Proof. The first statement follows from the construction. To see (2), let 77*{7* and Ti’* denote the
parameters of Z(M). Then for p,q € Q and a € M,
im(pga,p™>q) = (ty, ,ap>q:P>q)
= (9p-tag:P> )
= (0,p) > inm(a,q)
=l im(aq)
and, noting that the addition on T'(M) is the composition in Aut(M),

ta,q:q) > (0,p)
(1- gqbp) ta,q:q Dp)

qu,piM ((L, q)

t 7qs Oql>p)taq (0 qu) ql>p)

(
(
(
= (S(a.0)5(0) 8<o,q>p)s(o,q>8<alq> (©0.q5p) 4> P)
(8(a.)50.) (a q) (0111>p)’q > p)
(8(ry,pa, ql>p)3(0 gop) 4> D)
(try pasqeps 4 > P)

im(Tqpa,q > D).
Therefore (2) holds. O

The homomorphism ¢, is not necessarily injective. For the extreme case, we make the following
definition:
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Definition 2.10. A @-module M is called a covering module if 7, ;, = 0 for any p,q € Q.

This is equivalent to saying that s(,, ,) = s(0,p) in Inn(M) for all m € M), and that Z(M) is the
zero module.

3. IRREDUCIBLE MODULES OVER CONNECTED QUANDLES

Throughout this section, let @) be a connected quandle. We reduce the classification of irreducible
@-modules to that of irreducible modules over certain groups. We fix a commutative ring R.

Proposition 3.1. For a connected quandle @, As(Q) = Asy(Q) % Z.

Proof. This is obvious from (4) of Proposition 1.6 (note that an extension of Z by a group is a
semidirect product). O

Let G be a group and H be a subgroup of G. For an RG-module A and an RH-module B,
denote by B 14 = RG ®rg B the induced module and by A | the restricted module. Recall that
the induction functor is the left adjoint of the restriction functor.

Definition 3.2. ([Eis, Definition 1.7]) For g € Q, let As,(Q) = {z € As(Q) | z.¢ = ¢}. The group
m1(Q, q) = Asy(Q) N Asp(Q) is called the fundamental group of @ at q.

Proposition 3.3. Let @ be a connected quandle and g € Q.
(1) For a @-module M =[] .o M,, M(M) is isomorphic to the induced R[As(Q)]-module of
the R[As,(Q)]-module M, through

As
M, TASE%)S gm— gm e M(M).

(Note that this map is the adjunction of the As,(Q)-homomorphism M, — M (M).)
(2) Asg(Q) = mi(Q.q) x (gq)-

Proof. For p € Q, fix z, € As(Q) such that z,.¢ = p. Then {z,},cq is a complete system
of representatives for the set As(Q)/As,(Q) of the left cosets and x,.M, = M, in M(M). This
implies that R[As(Q)]®rjas, Q) Mq = M(M). The second statement holds since 71(Q, g) is normal
in As,(Q) and g, centralizes m1(Q, q) by Proposition 1.6 (2). O

Theorem 3.4. Let @) be a connected quandle. Fix ¢ € Q and z,, € As(Q) such that z,.¢ = p and
let X = {zp}peg- Then x;;p,gpxp/ € Asy(Q). For an R[m(Q,q)]-module M, we regard M as a
module over Asq(Q) = m1(Q,q) % (gq) With g4 acting trivially. We write MCq x (M) = [[,cq M

and define an operation > by
(m,p) > (m',p') = ((z,2, gppy )., p 1> p').
Then the followings hold:
(1) MCy x (M) is a covering RQ-module. For another representative Y = {y,},eq such that
Yp.g =p, MCq x (M) and MCyy (M) are naturally isomorphic.
(2) The assignments resy; M — M, for a covering RQ-module M and MCy x : M — MCq x (M)
give a one-to-one correspondence between isomorphism classes of covering RQ-modules and
R[m1(Q, ¢)]-modules.

(3) A covering RQ-module M is irreducible if and only if M, is irreducible as an R[m1(Q, q)]-
module.
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Proof. First,

(T2 GpTp)q = (;ép/gp) /

= p>p (p>p )
= q
shows that :c;;p/gpmp/ € Asq(Q).

(1) Let M be an R[m(Q, ¢)]-module and regard it as an R[As,(Q)] module. Let p : As,(Q) —
Aut(M) be the group homomorphism of the action on M. The above definition of > corresponds
to setting 1, = p(x;;p,gpxp/) and 7, ,» = 0. Clearly the conditions (2) and (3) of Definition 1.12
hold since 7, . = 0. Since 1, = p(x, 'gpzp) = p(g) and g, acts trivially on M, (4) also holds. For
p,p,p" €Q,

-1
Mpep pop Mo = P((T, p|>(p >p)Ip>p’ prp”)(xppp”gpxp”»
= plz, pD(p >p)Ipe>p’ IpTp” 1)
(z,,

= (T2 (ropr)Ip I Tp)

p(x p>(pq>p~)9p$p’Dp”I;Lpﬂgp’Ip”)

Mp.p'>p' lp’ ,p"" -

Therefore (1) holds and we see that MC, x (M) is a covering module. Let Y = {y,} be another
representative. For p € Q, let a, = x;lyp. It is clear that a, € Asy(Q). Then

-1 o -1 -1
Ypop IpYp = prp"Tpr’ Lpsp GpTp' Ty Yp!
-1

= Gy pl>p/gp

Zp/ ap

Therefore MCy x (M) and MC,y (M) are isomorphic through {p(ap)}peq-
(2) Let M = [],cq M, be a covering @-module. Then let ¢ : MCy x(My) — M;(m,p) —
xp.(m,q) € M, C M. It is clear that ¢ is bijective and additive. For (m,p), (m’,p’) € MCy x(M,),

e((m,p)) > o((m’,p)) = (2p.(m,q)) > (zp.(m', q))
= (0,p) > ((zp)-(m, q))
= (gpxp’)-(m/a q)
= (prpwg;;p/gpmp’)(m/v q)
= Tppyp/ -((I;;p’gpxp/)-m/a q)
= ¢((m,p) > (m',p")).
Note that the second equality holds since M is a covering module. Therefore ¢ is an isomorphism

of (Q-modules.
Conversely, let M be an R[mi(Q,q)]-module. Regarding M as an As,(Q)-module, we have

M(MC, x(M)) =M 45(@ " Therefore the fiber M’ = (MCy,x(M))4 is isomorphic to M.

Asq(Q)°
(3) Since these mappings are equivalence of categories between the category of covering RQ-
modules and the category of R[m(Q, q)]-module, the assertion holds. ]

The word “covering” comes from quandle coverings in [Eis]. A quandle Q' is called a quandle
covering of @ if there exists a surjective quandle homomorphism 7 : @' — @ such that 7(p) = 7(q)
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implies s, = s, € Inn(Q’) for p, ¢ € Q’. Eisermann showed that there is a one-to-one correspondence
between the set of connected quandle coverings of @ and the set of subgroups of m1(Q, q).

Next we classify irreducible modules which are not coverings.

Theorem 3.5. Let QQ be a connected quandle.

(1) Let M be an irreducible RQ-module which is not a covering. Then T'(M) is an irreducible
R[As(Q)]-module with nontrivial action. In particular, M is a submodule of a module
induced from an irreducible As(Q)-module.

(2) Let M be an irreducible R[As(Q)]-module with nontrivial action. For ¢ € Q, let M, =
(1—gg)M. Then MQ(M) =[], M, is an irreducible RQ-module which is not a covering.

(3) Let Irrpc(RQ) denote the set of isomorphism classes of irreducible RQ-modules which are
not a covering module and Irry, (R[As(Q)]) be the set of isomorphism classes of non-trivial
irreducible R[As(Q)]-modules. Then the assignments M +— T (M) for an irreducible RQ-
module M which is not a covering, and M +— MQ(M) for a nontrivial irreducible R[As(Q)]-
module, give a one-to-one correspondence between Irr,. (RQ) and Irry (R[As(Q)]) which are
inverse to each other.

Note that the dimension of the module is not neccesarily preserved under the correspondence.
For an irreducible module M, the dimension is preserved if and only if M is induced from As(Q)-
module.

To show the theorem, we give some lemmas.

Lemma 3.6. Let M be an R[As(Q)]-module and {M,}4c0 a family of R-submodules of M. Then
M = [1,eq My forms an RQ-submodule of Mg (M) if and only if g,. My = M4 and (1—g4).M), C
M, for any p,q € Q.

Proof. Straightforward from the conditions 7, ,(M,) = Mysq and 7, 4(M,) C Mpyr,. The second
one is applied with ¢ replaced by p>~1g. O

Lemma 3.7. Let M = [[ .o M, be an RQ-module and 7" an R[As(Q)]-submodule of T'(M).
Then M" = [],c0 (M, Ny (1)) is a submodule of M. (Recall that Z(M) = Mq(T(M)) by
Proposition 2.9. Therefore M’ is regarded as the inverse image of Mq(T") C Mg(T(M)) by iam.)

Proof. This is easy to see since the inverse image of a submodule by a module homomorphism is
a submodule. 0

Definition 3.8. Let M be an RQ-module. Then a quandle automorphism ¢ : M — M is called a
central translation if ¢ € TI(M) and ¢ centralizes Inn(M) (i.e. for all ¢ € Inn(M), po1p = o p).

Lemma 3.9. If M has a non-trivial central translation, M has a nonzero submodule which is a
covering module.

Proof. Let ©((a,q)) = (a+bg, q) be a central translation. Then (s(0,p)((a,q))) = s(0,p) (¢((a,q)))-
The left hand side equals to ¢(1p,qa, P> q) = (1p,q@ + bpq, P> ¢) and the right hand side equals to
(0,p) > (a+bg,q) = (Npgla+bdy),p>q) = (1Mp,q@ +Mpgbg, P> q). This implies that bprq = 1y qbg for
all p,g € Q and N' =] Rby is closed under 7, 4. On the other hand, (by,q) = ¢((0,¢)) implies
that s q) = gos(o’q)@_l = S(b,.,q)» 16 Tpq = 0 for all p,q € Q. Therefore N is a submodule of M
which is a covering module. O

Now we prove Theorem 3.5.
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Proof. (1) First note that T'(M) # 0 since T (M) = 0 implies that M is a covering module. Given
M, we have the module homomorphism ixg : M — Z(M). Since M is irreducible, i is injective
or zero. Since ipq = 0 implies that M is a covering module, i, is injective. For ¢ € @, let T;; be the
image of My by i Then Ty, = M, and when regarded as subgroups of T(M), > o Ty = T(M)
by definition (see Proposition 2.9 (2)).

Let T" be a proper R[As(Q)]-submodule of T'(M). Then M =[] ., M,Niy (T") is a submodule
of M by Lemma 3.7. Since M is irreducible, M, Ny (T") = T, NT" is either M, for all ¢ € Q
or zero for all ¢ € Q. Moreover, since M, = T, generates T(M) as an R[As(Q)]-module, we must
have T, NT" = 0 for all .

Now for ¢ € @, by Lemma 3.6, (1—g,).7" C T'NT, = 0, which means that (1—g,).t' = 0 for any
q € Q. Therefore T” is an R[As(Q)]-submodule of T'(M) with trivial action. Recall that As(Q) acts
on T(M) via conjugation by K(M). This means that an element ¢’ in 7" is a central translation.
By Lemma 3.9, if 77 # 0, M has a covering submodule, which contradicts the assumption that M
is a non-covering irreducible RQ-module. Therefore 77 = 0.

(2) By Lemma 3.6, it is straightforward to show that MQ(M) is an RQ)-submodule of Mq(M).
Let M" = [[,cq M, be an RQ-submodule of MQ(M). Then M’ = 3 o M, is an R[As(Q)]-
submodule of M. Since M is irreducible, M’ is either M or 0. If M’ = M, by Lemma 3.6,
MiD 3> col—g) My, = (1—gq).M" = (1—g4).M = M. Therefore My = M, for all ¢, and hence
M = MQO(M).

Next we show that MQ(M) is not a covering module. For (m, q), (n,p) € MQ(M), t, 4(n,p) =
(n 4+ 74 g5-1p(m),p) = (n+ (1 — gp)m,p). Therefore T(MQ(M)) is the set of translations {(1 —
gp)Mm}peq for m € M. Since M is irreducible and nontrivial, the mapping m — {(1 — gp)m}pcq is
injective. Moreover, for g € Q,

{1 =9gp)(ggm)}tp = {(94(1 — gg-1p))-m}p
= gg{(1 —gp)m}y

implies that this mapping is a homomorphism of As(Q)-modules. Therefore T(MQ(M)) = M # 0.
Therefore MQ(M) is not a covering module.

(3) Let M be an irreducible RQ-module which is not a covering. Then in the notation of (1)
as we saw above, (1 — g,)T(M) C T, for all ¢ € Q. Therefore MQ(T'(M)) is a submodule of
11 qeq Ly However since M2T] e Ly which is irreducible, they must be equal. This implies that
M= MO(T(M)).

The converse direction is also true since we have already shown that T(MQ(M)) = M for a
nontrivial irreducible R[As(Q)]-module M in proof of (2). O

4. As(Q)-MODULES

Throughout this section, let @ be a connected quandle. Let F be a field and F its algebraic
closure. For a group G, denote by Rep(G) the set of isomorphism classes of finite dimensional
F-representations and by Irr(G) the set of isomorphism classes of finite dimensional irreducible
F-representations. An extension F of F is called a decomposition field of G if any irreducible
representation of G is realized over E. Then the arguments in this section are valid over any
decomposition field E.

Recall that As(Q) = Asy(Q) x Z by Proposition 3.1.

Definition 4.1. Let N be a group and ¢ € Aut(N).
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(1) For (V,p : N — Aut(V)) € Rep(N), the representation (V,¢*p) defined by ¢*p(n) =
p(p(n)) is called the pullback of p. We sometimes denote (V,¢*p) by ¢*V. We write
©*"p = (¢*)"p and ©*(=™p = ((p=1)*)"p for a positive integer n.

(2) Let (V,p), (U,0) € Rep(N). Then a linear map f : V — U is called a @p-morphism if the
following diagram is commutative:

v p(n) v

V
ﬂ(so(n))

This is equivalent to saying that f is an N —homomorphism from V to ¢*U.

(3) (V,p), (U,o) € Rep(N) are said to be ¢-equivalent if there exists an integer n such that
(V,¢*"p) = (U, 0).

(4) Let (V, p) € Rep(N). Denote by ord,(p) (or ord,(V)) the minimum positive integer n such
that (V, p) and (V, ¢"p) are isomorphic if such an n exists, otherwise co. This is called the
order of p with respect to ¢. Note that if ¢ is of order n in Aut(NNV), ord,(p) divides n.

Clearly the following properties hold:

Proposition 4.2. Let N be a group and (V, p) € Rep(V). Then the followings hold:

(1) Hy ={p € Aut(N) | V =2 ¢*V'} is a subgroup of Aut(N).

(2) For ¢ € Aut(N), let M, = {f :V — V| fis a p-morphism}. Then M, is a subspace of
Endz (V) and M, My, C Mgy, for p,v € Aut(N). The set Miq is the endomorphism ring of
(p,V).

(3) For ¢ € Hy, let M C M, be the set of invertible (i.e. bijective) p-morphisms (note that
Mg # () by the definition of Hy ). Then for a fixed f € Mg, there is a bijection between
respectively Miq and M, M,] and Mg through a < fa for a € Miq.

(4) If V is irreducible, every nonzero ¢-morphism for ¢ € Hy is a linear automorphism. In
particular, for ¢ € Hy, M, = fF for some ¢-isomorphism f.

Definition 4.3. Let N be a group and ¢ € Aut(N). Let G = N x (f) where (f) = Z and

fnf=t=¢(n) for n € N. For (V,p) € Rep(N) such that ord,(p) is finite and o € M orde () let
ord, (V)—1
viee= BV
=0

where V; = ©*'V for each i and
p 1P (n) : VPO VAPV, 5 00 9™ p(n) (v:) € Vi,
v; € Viq (Z 7é O)
P VAP VPNV o0 - j
p 12 (f) T T v { a(vo) € Vora,(p-1 (1 =0)

Then p 19 (flp 19 (n)p 19« (f71) = p 19 (p(n)) = p 19 (fnf~!) and this implies
that (V 199 p 19%) € Rep(G). The representation (V 19 p 199) is called the p-induced
representation of (V, p) by «.

Proposition 4.4. Let N be a finite group, ¢ € Aut(N), and G = N x, Z. Let (V,p) € Irr(N)
and o € M* om0 Then (V 192, p 192) is an irreducible G-representation. Conversely, a finite
d1mens1onal irreducible G-representation is obtained in this way.
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Lemma 4.5. Let G be a group and (W, o) € Trr(G). Then for a positive integer n, End(;_, W)
is isomorphic to the matrix algebra M, (F).

Proof. Straightforward from the Schur’s lemma. ]
Now we prove Proposition 4.4.

Proof. As an N-representation, (V 1%, p 19%) i% is the direct sum of mutually non-isomorphic
irreducible representations. Hence any irreducible N-subrepresentation of (V' 1#¢ p 1¥:%) i% is
equal to one of the summands V; in the definition above. By the definition of the action of f, V;
generates (V 199, p 19%) as a G-representaion. Therefore (V 19%, p 19%) is irreducible.

On the other hand, let (W, o) € Irr(G). Then there exists an irreducible N-subrepresentation
U of (W,0) 1§. Let Wo = > paprcw W (W’ runs through all N-submodules isomorphic to U).
Since W is finite dimensional, W is isomorphic to U" for some integer r as an N-representation.
Moreover, for an irreducible submodule W’/ c Wy, o(for%())(W') is isomorphic to U, thus
o(fordeW)(W’) ¢ Wy. Therefore o(f*%(V)) is an automorphism of the N-representation Wj.
By Lemma 4.5, this is represented by some matrix A € M,(F). Note that a subspace of M, (F)-
module F" corresponds to a subrepresentation of Wy. Let w be an eigenvector of A and let W’
be the subrepresentation of Wy corresponding to the eigenspace Fw. Then W' is irreducible and

isomorphic to U, o(frd@))(W') = W' and @?:B“’(W/)_l ©*W' is a nonzero submodule of W.
Since W is irreducible, » = 1 and the statement holds. 0

5. EXAMPLES

In this section, we will describe irreducible modules over some connected quandles. Later C,
denotes the cyclic group of order n.

5.1. Dihedral quandle.

Definition 5.1. Let A be an Abelian group. Then the generalized dihedral group of A is the group
D4 = A x Cy where Cy is generated by 7, with action 7a7~! = a~! for a € A (we write the group
operation on A by multiplication as the subgroup of D4).

Proposition 5.2. Let A be an Abelian group of odd order. Then {ra | a € A} forms a connected
subquandle of Conj(Dy).

Proof. For a,b € A, (ta) > (1b) = (1a)(7b)(ta)™! = rarba='77! = rab~ta = 7b~'a?. Since A is
of odd order, the map a — a? is an automorphism of A. O

Definition 5.3. Let A be an Abelian group of odd order. Denote by Q4 the quandle obtained as
in Proposition 5.2.

More generally, for an Abelian group A with group operation +, the quandle A with the operator
a>b = a+t(b—a) for some t € Aut(A) is called an Alezander quandle on A. The dihedral quandles
are special cases of Alexander quandles (the map ¢ is the inversion map a — —a).

Since Q4 generates D 4 and the center of D 4 is trivial, the inner automorphism group Inn(Q ) is
isomorphic to D4 by Example 1.3 and it is easy to see that Inng(Q4) = A. As particular examples,
we look at the case A = C), and C,, x C,, for an odd number n. To find irreducible modules, we have
to study the structure of As(Q). By Proposition 1.10, there is a natural surjective homomorphism
M(Inn(Q4a)) = Ho(Inn(Qa),Z) — Zp(Qa). Recall the exact sequence (x2) : 1 — Zp(Qa) —
ASO(QA) — IHHO(QA) — 1.



16 KOSUKE UEMATSU

Now we study the structure of As(Q4). The structure of the associated group of an Alexander
quandle is given in [Cla].

Theorem 5.4 ([Cla, Theorem 1]). Let M be an Abelian group and T be an automorphism of M.
Denote by A(M,T) the Alexander quandle on M with the automorphism 7. Suppose that the
quandle A(M,T) is connected. Let 7: M @M - M@ M;z @y — (Ty) ® x and S(M,T) the
cokernel of 1 — 7. Then the associated group As(A(M,T)) is isomorphic to the group F(M,T) =
Z x M x S(M,T) (as a set) with the operation

(k,z, ) (m,y,B) = (k+m,T"z +y,a+ f+ [Tz @ y])

where [y] in the third component denotes the element v mod (1 — 7)(M ® M). Moreover, the
isomorphism is given by As(A(M,T)) = F(M,T); g — (1,x,0).

In particular, if T is the inversion map of M, the subgroup S(M, T) is the exterior square M A M.
Clauwens also gives a description of the fundamental group of Alexander quandles.

Remark 5.5 ([Cla]). Let M and T be as above and let the quandle A(M,T') be connected. Then
m1(A(M,T),0) is isomorphic to S(M,T) through the isomorphism As(A(M,T)) = F(M,T) given
in Proposition 5.4.

Definition 5.6. Let n be a positive integer. Then the group
He, = <S, T, U | s, Ut [Tv S]Uila [Ua S]a [UaTD
is called the Heisenberg group of order n3.

In general, for a commutative ring R, the subgroup of GL3(R) of the form

1 a b
01 ¢ )l|abceR
0 0 1

is called the Heisenberg group over R. The definition above is the case where R = Z/nZ.
Applying the results above, we have the following facts:

Proposition 5.7. Let n be an odd number.

(1) Let A = C,, and ¢ € Aut(A) be the inversion. Then S(A,¢) = 0 and As(Q4) X AXZ
with 1 € Z acting by inversion. The fundamental group 71(Q 4, q) is trivial for any g € Q.

(2) Let A =C,, x C, and ¢ € Aut(A) be the inversion. Then S(A,p) = C, and As(Qa) =
He,, x Z where 1 € Z acts on He,, by S§ — S~1, T — T~' U — U in the representation
above. The fundamental group m1(Qa4,q) is S(A,p) = C, for g € Q

Proof. (1) As stated above, S(4,¢) = C, A C,, = 0 since n is odd. Moreover, let u = (1,0,0) €
F(A, ). Then u=! = (-1,0,0) and
U(O, ]-a O)uil = (]-a Oa 0)(07 ]-7 0)(713 07 O) = (]-a 13 0)(717 07 0) = (07 7]-3 0)

Therefore As(Q4) = A x Z with 1 € Z acting by inversion. By Remark 5.5, m1(Q 4, ¢) is trivial.

(2) Let A =C,, x Cp, = (x1) X (x3). Then S(A, ) = (C,, x Cp) A (C, x Cp,) = C), generated by
[z1 ® z2]. Now let s = (0,21,0),t = (0,22,0),u = (0,0, [—2z1 ® x3]) € F(A, ). Then for i =1,2,

(0,24,0)(0, —2;,0) = (0,0, [z; ® (—z;)])
(0,0,0)
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since z; ® ; = 0 mod (1 — 7)(A ® A). Therefore s=! = (0, —x1,0), t~! = (0, —12,0). It is clear
that su = us, tu = ut. Moreover
tst™ls™t = (0, 2,0)(0,x1,0)(0, —x2,0)(0, —21,0)
= (0,21 + 22, [12 ® 21])(0, —z2,0)(0, —21,0)
= (0,21, [r2 @ 1 — (21 + x2) ® 22])(0, —x1,0)
= (0,0,[—2z1 ® x2)])
u

since 1 @ 9 = —xo®x1 mod (1 —7)(A® A). Therefore the group generated by s, ¢, u is isomorphic
to He,,. Moreover, let v = (1,0,0) € F(A, ). Then v=! = (-1,0,0) and

vsv~t = (1,0,0)(0,21,0)(—1,0,0) = (1,21,0)(—1,0,0) = (0, —21,0) = s,
vtv™' = (1,0,0)(0,22,0)(—1,0,0) = (1,29,0)(—1,0,0) = (0, —x,0) =t

and

VU = UV.
Therefore As(Qa) = He, x Z where 1 € Z acts as in the statement. Remark 5.5 implies that
m1(Qa,q) = Cp = S(A,p). O

Next we classify FQ4-modules. Let F be an algebraically closed field of characteric 0 and consider
irreducible F[As(Q4)]-modules. If A = C,,, As(Qa) = C,, x Z where 1 € Z acts on C,, through

the inversion automorphism ¢ € Aut(C),). Let Asg(Qa) = C,, = (o) and for i € {0, ..., n— 1},
let xi;0 — ¢! where ¢, € F is a fixed primitive n-th root of unity. Then Irr(C,) = {x; |
i €40, ..., n—1}}. The p-equivalence classes are {xo}, {X1, Xn-1}s -+ {XnT—l, XnT-I—l}. By

Proposition 4.4, Irr(As(Q4)) = {x 1%°| x € Irr(C,,), a € F*}.

Fix 7 € Q4. Since m1(Q4,7) = 1 by Proposition 5.7, there exists only one irreducible covering
Q a-module by Theorem 3.4. Let p = x 19*€ Irr(As(Qa4)) for x € Irr(C,), o € F* and V be
the representation space. If x = xo, V' is 1-dimensional. If & = 1, p is the trivial As(@)-module.
Otherwise, MQ(V) is isomorphic to Mg(V) and is induced from the As(Q)-module defined by
As(Q) = F*; g, —

Let x = x; for i € {1, ..., %52}, Then p(g,) can be identified with the matrix < 2 (1) L If
a # 1, the matrix has no eigenvector with respect to eigenvalue 1. Therefore MQ(V) = Mg(V)
which is induced from an As(Q)-modules. If o = 1, the eigenvalues of the matrix are 1 and —1,
each with multiplicity 1. Therefore MQ(V) is a 1-dimensional @-module which is not induced from
As(Q)-modules.

Now we give a more concrete description of MQ(V) for p = x1 1¥'1. For an element 70 € Q4 C
D, where A = (o) = C,,, the representation p is given as follows:

_( 01 G0 NY_ [0 &
p(gTUi)_(l 0)(0 <n2>_(<$z 0 )

Then (1 — g,,:)V is a 1-dimensional subspace with basis v; = ( 7141- ) With this basis,

0 ¢t 1 —¢gt j—i
9roi-Vj = ( C’;LL CB ) ( _CTJL ) = ( gz ) = _ng Uk,
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_—(2i—j) —(i—7) L
(1= gro2ivs)vi = ( _C%i—j Cnl ) ( 71% ) - ( iggﬁé ¢ ) =(1+G ok

where k = 2i — j mod n,0 < k < n. These imply that 7,,i ;oi = =27, Trpirei = 1+ 170
Next let A = C}, x C, where p is an odd prime. For the group He,, the following holds:

Proposition 5.8. There are p> + p — 1 irreducible representations of He,. Among them, p? are
1-dimensional and the others are p-dimensional.

Proof. Let X;; = S'T7 for i,j € {0, ..., p—1}. Recall that T7ST~! = SU and STS™! =
TU'. Therefore SX; ;S = X; ;U7 and TX, ;T~' = X, ;U’. Hence the conjugacy classes are
represented by X; ; fori,j € {0, ..., p—1} except for i = j = 0, and U* for k € {0, ..., p—1} and

there are p? + p — 1 conjugacy classes. Since the number of 1-dimensional representations is equal
to the order of the abelianization, there are p?. Moreover since the dimension of an irreducible
representation divides the order of the group by [NT, Chapter 3, Theorem 2.4] and p* > p?, the
others must be p-dimensional. Then 1-p? +p?- (p — 1) = p>. O

Specifically, every 1-dimensional irreducible representation is constructed by lifting an irreducible
representation of Cg = Hezb. Denote by p§12 the irreducible representation defined by S — (5,

T C;t;- Every p-dimensional representation is of the following form for s € {1, ..., p—1}:
1
1
S . ,
1
1
S
2s
T P ,
(o
S
U~
Cp

We denote by pgp ) the irreducible representation above. Then its character is given as follows:

X, (X;;)=0if ¢ £0or j #0, ngp)(Uk) _ pC;k-

Since two representations of a finite group are isomorphic if and only if their characters coincide,
the following holds:

Proposition 5.9. Let ¢ be the automorphism of He, defined by S+ S™', T +— T7! U — U.
Then a g-equivalence class is one of the followings:

(1) {eyo}
(2) {pélt), p](glf)&pft} for s,t € {0, ..., p— 1} except for s =t =0,
3) {pP} for s {1, ..., p—1}.
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Let o € Irr(Hep), p = o 1* and V be the representation space of p. The case dimo =1 is
similar to the case A = C),. For 0 = p&()) and a # 1, MQ(V) is a module induced from an As(Q)-

module and for o = pilt) and o = 1, MQ(V) is a module which is not induced from As(Q)-modules.
If o is p-dimensional, ord, (o) = 1 and a @-automorphism « is of the form

1
P,=a

1

for a € F*. The matrix P, has eigenvalues a of multiplicity p—;l and —a of multiplicity %.

Therefore if a = 1, MQ(V) is 25 -dimensional and if a = —1, MQ(V) is Z*-dimensional. Oth-
erwise, MQ(V) is a module induced from an As(@)-module. In particular, if p = 3, there is a
1-dimensional module which is not induced from As(Q@)-modules.

On the other hand, by Proposition 5.7 m1(Q,q) = (U) = Cp, which implies that there are p

irreducible covering modules.

5.2. Connected quandles in Conj(SLy(F,)). We consider the special linear group SLo(F,) where
F, denotes the field of ¢ = p/ elements for a prime p. First we state some basic facts on SLy(Fy).
A proof for odd p is in [Bon, Chapter 1] and the case p = 2 is similar.

Proposition 5.10. (1) The order of SLs(F,) is q(¢®> — 1).

(2) If ¢ > 4, SLy(F,) is a perfect group, i.e. its commutator subgroup is the whole group.

(3) Let PSLy(Fy) = SLo(Fy)/Z(SL2(F,)) denote the projective special linear group where
Z(G) denotes the center of the group G. If p # 2, Z(SLy(F,)) = {£I>} where I is the
identity matrix. If p = 2, Z(SL2(F,)) is trivial.

(4) PSLy(F,) is a simple group if ¢ > 4. PSLy(F3) is the alternating group 204 and SLy(Fy) =
PSLy(F2) is the symmetric group &3 which are solvable.

It is also known that SLo(F4) = PSLo(F5) =2 25 and PSLy(Fy) = As.

Remark 5.11. Note that the group PSLy(F,) acts faithfully on the projective space P*(F,). The
isomorphism in (4) of Proposition 5.10 is obtained from this action. The commutator subgroup
of 63 = PSLy(Fy) = SLy(FFy) is Cs (generated by 3-cycles). The commutator subgroup of 204
PSLy(F3) is Cy x Co (generated by (2,2)-cycles). Through the surjective group homomorphism
7w SLy(F3) — PSLy(F3), we have that the commutator subgroup of SLy(F3) is of order 8 (recall
that the commutator subgroup of SLs(F3) is mapped onto the commutator subgroup of P.SLy(F3)
by 7). In fact, the commutator subgroup is isomorphic to the quaternion group Qs

On Schur multipliers of special linear groups, the following holds [Kar, Chapter 7]:

0 (¢ #4,9),
Theorem 5.12. M(SLy(F,)) =< Z/2Z (q=4),
Z/3Z (q=9).
0 (¢ is even and ¢q # 4),

Theorem 5.13. M(PSLy(F,)) =< Z/2Z (q=4, or qis odd and q # 9),
Z/6Z (q=9).
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These theorems were originally proven by Steinberg in 1960s.
Next we look at conjugacy classes of SLa(F,). For a finite field F, denote by F9 the quadratic
extension of F'. Fix a generator z of the multiplicative group F; and a primitive (g + 1)-st root v

of unity. Then v € ng =TFg.

-
Next we describe the conjugacy classes of SLy(F,). Let D,r = ( 26 Z(_)r ) and T, =
0 -1 . % <\2 B 11 _ 1 n

1 Tr(y) . If gis odd, let n € FX\ (Fx)® and Ny y = £ 0 1 , Ny == 0o 1)

Then the following facts are known.

Proposition 5.14. For A € SLy(F,), let n(A) be the size of the conjugacy class containing A.
(1) n(Dyr) =q(g+1) for 1<r <3 ifpisodd, 1<r<g—1ifp=2.
(2) n(wa):q(g—l) for 1 <r < %tifpisodd, 1<r<&ifp=2.
(3) n(Nun)is S5t ifp#£2and ¢ - 1if p=2.

Proof. See [Bon, Proposition 1.3.1] for odd ¢. Similar proof works for even gq. O

Proposition 5.15. A € SLy(F,) is conjugate to exactly one of the following matrices:
(1) 127
( ) 712 lfp 7é 27
(3) D,» f0r1§r§%Jifpisodd1§r§%—1ifp:2(Thisoccursifq24.),
(4) Tyr forlgrgq;—lifpisodd, 1<r<iifp=2,
( ) N+7+a
(6) Ny if p#2,
) Ny — and N_ _ where n € F is a non-square element, if p # 2.

Proof. See [Bon, Theorem 1.3.3] for odd ¢. Similar proof workss for even g. (Il

Proposition 5.16. If ¢ > 4, any conjugacy class of SLs(F,) except for £I, generates the whole
group. If ¢ < 4, a conjugacy class C generates SLo(F,) if and only if C is the conjugacy class of
Ny«

Proof. If ¢ > 4, the group SL2(F,) is simple (if p = 2) or a non-split central extension of PSLy(F,)
which is simple (if p # 2, for the extension is non-split since SLo(F,) is perfect by Proposition 5.10).
Thus any proper normal subgroup of SLy(F,) is a subgroup of the center. Since every subgroup
which is generated by some conjugacy class is normal in the whole group, the first statement holds.

If ¢ < 3, we saw in Remark 5.11 that SLy(F,)’ is the 2- (resp. 3-)Sylow subgroup of SLy(F,) if
g = 3 (resp. ¢ = 2). Now the order of T is 4 (resp. 3) if ¢ = 3 (resp. ¢ = 2.) which is a power
of 2 (resp. 3). Therefore T, is contained in SLy(Fy)" and T does not normally generate the group
SLy(F4). On the other hand, If ¢ = 3, the order of N , (resp. N_ ) is 3 (resp. 6). By Proposition
5.10, PSLs(F3) = 24 and N, . is mapped to a 3-cycle. Since a 3-cycle normally generates the group
A, and SLo(F3) is a non-split central extension (since the order of the Abelianization of SLo(F3)
is 3 which is coprime to 2) of PSLy(F3), N_ . normally generates the group SLy(F3). If ¢ = 2,
the order of N,  is 2. Since SLy(F2) = G5 and a 2-cycle normally generates G, N4  normally
generates SLy(F2). O

Corollary 5.17. If ¢ > 4, every non-central conjugacy class forms a connected subquandle
of Conj(SLy(F,)). If ¢ < 4, only the conjugacy classes of N, . are connected subquandles of
Conj(SLy(Fy)).
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If ¢ = 2, the conjugation quandle @) generated by N, , is isomorphic to the dihedral quandle
of A = C5. If ¢ = 3, the quandle generated by N, . is isomorphic to a subquandle of Conj(2l4)
generated by (1,2,3).

Next we give definitions and basic facts on modular representations, i.e. representations of groups
over fields of positive characteristics. For details, see [NT, Chapter 3, §6].

Definition 5.18. Let p be a prime. For a natural number n, denote by n’ the number satisfying
n = p®n’ and ged(n',p) = 1.
Definition 5.19. Let R be a complete discrete valuation ring of characteristic 0 with uniformizer
m. Let F be the residue field R/7R, p the characteristic of F' and K the field of fractions of R. Let
G be a finite group.
(1) The triplet (K, R, F) is called a p-modular system for G if R contains every exp(G)-th root
of unity where exp(G) denotes the exponent of the group G, i.e. the least common multiple
of ord(g) for g € G.
(2) Let (K, R, F) be a p-modular system for G and F’ be the subfield of F' generated by roots
of unity. Then the Teichmiiller character tr is defined on (F’)* as follows:

tr: (F)* = R;aw (,,

where (, is the root of unity in R with {, = a mod 7. Such an element exists uniquely by
Hensel’s lemma.

(3) An element g € G is said to be p-regular if ord(g) is coprime to p. Otherwise, g is said to
be p-singular. Denote by G;, the set of p-regular elements in G.

Definition 5.20. Let G be a finite group and (K, R, F') be a p-modular system for G. Let (V, p)
be a representation of G over F. For g € G;, let a1, ..., a, be the eigenvalues of p(g), where
r = dimp (note that eigenvalues are in F'* since F' contains enough roots of unity). Then the
map ¢, : G, = R;g — i tr(ay) is called the Brauer character for (p, V) over a characteristic
p. Denote by IBr,(G) the set of irreducible Brauer characters over characteristic p, i.e. Brauer
characters induced from irreducible F-representations. This is independent of the choice of the
p-modular system up to identification.

One of the fundamental results in modular representations is stated as follows [NT, Chapter 3,
Theorem 6.5]:

Theorem 5.21. #IBr,(G) is equal to the number of p-regular conjugacy classes.

Now we consider representations of SLo(F,) over fields of characteristic p. Fix a p-modular
system (K, R, F) for SLs(F,). Since the exponent of SLs(F,) is

{p”z;l (p #2),
2(¢°-1) (p=2),

F contains (F;)9 = F2. An element A € SLy(F,) is p-singular if and only if A is conjugate to
N «. Therefore thze number of p-regular conjugacy classes is

{2+q§3+q§1q (p #2),
I+4-1+d=q (p=2).
Therefore the following holds:

Proposition 5.22. #(IBr,(SLs(F,)) = q.
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Next we find out ¢ irreducible representations. Recall that ¢ = pf. Let o : 7+ 2P € Gal(F,/F,)
(note that o generates Gal(F,/F,)). Now for i =0, ..., f—1,1let x; : SLo(F,) = GLy(F); A —
o'(A) (o acts on each entry in A). Then x; is a 2-dimensional irreducible representation. Let
V; = F? be the representation space of ;. Then the action of SLy(F,) on V; extends to an
action on the symmetric algebra S(V;). Recall that for an n-dimensional vector space V, S(V) is
isomorphic to the polynomial ring in n variables. In this identification, for a polynomial h and

A= ( CCL Z ), the action of SLa(F,) on S(V;) is written as follows:

ANX;,Y;) = h(o"(a)X; + o' (c)Y;, o' (b) X; + o' (d)Y7)

where X, Y; denotes the standard basis for V;. Then the subspace V; 11 = S(V;)i of homogeneous
polynomials of degree k for k > 0 is a (k + 1)-dimensional subrepresentation of S(V;). We denote
this representation by x; r+1. Clearly x; 1 is the trivial representation and x; 2 = x;-

With these notations, the following holds [Hum, Chapter 2.7 and 2.11]:

Proposition 5.23 (Steinberg Tensor Product Theorem for SLy(F,)). Let r; € {1, ..., p} for
i=0, ..., f—1. Then

Pro,...,rg—1 = XO0,ro Q- ® Xf=1,mf5_1

give distinct irreducible representations of SLy(F,).

Steinberg tensor product theorem gives distinct irreducible representations of groups of Lie type.
The proposition is the special case for SL(F,) which is of type A;.
Next we give a concrete description of the group As(Q).

Proposition 5.24. Let ¢ # 2,3,4,9 and @ be a conjugacy class in SLy(F,) which generates the
whole group (i.e. @ is a non-central conjugacy class of SLy(F,)). Let h: As(Q) — SLs(F,) be the
group homomorphism induced by adjunction from the inclusion map @ — Conj(SLy(F,)). Then
As(Q) = SLy(IFg) x Z by the map g — (h(g), deg(g))-

Proof. Note that Inn(Q) = PSLy(F,) by Example 1.3 and Inn(Q) is simple by Proposition 5.10.
Recall that Zy(Q) is a quotient group of M (PSLy(F,)) by Proposition 1.10 and that Inng(Q) =
Asy(Q)/Zo(Q). By assumption and Theorem 5.13, M(PSL4(F,)) is Z/2Z if q is odd, otherwise 0.
Therefore the order of Aso(Q) is at most 2(§PSLo(Fy)) if ¢ is odd, §PSLy(F,) otherwise, i.e. at
most §(SLa(Fy)) for both cases. Take P € Q. Since Inng(Q) = Inn(Q), there exists z € Asy(Q)
such that x.A = gp.A for any A € Q. Then 2~ !gp is in the center of As(Q) by Proposition 1.6. This
shows that As(Q) = Aso(Q) x (x71gp). Since h is surjective and SLy(F,) is perfect by Proposition
5.10, As(Q) is mapped onto SLy(F,) by h. (Again note that the commutator subgroup is mapped
onto the commutator subgroup by a surjective group homomorphism). By comparing the orders,
we see that Asy(Q) = SLy(F,). O

Let @ be a conjugacy class in SLy(F,) which generates the whole group where g # 2,3,4,9. By
Proposition 5.16, this is equivalent to saying that ¢ # 2, 3,4, 9 and @ is a non-central conjugacy class.
Then 71 (Q, P) for P € @ is the stabilizer of P in Asy(Q), hence is isomorphic to the centralizer of P
in SLy(F,). By proof of Proposition 5.14, it is Abelian. Therefore there are (71 (Q, P))’ irreducible
covering modules (recall that n’ denotes the prime-to-p part of n). Since As(Q) = SLy(F,) x Z,
every irreducible representation of As(Q) is of the form y 14 for a« € F* and x € IBr,(SL2(F,))
by Proposition 4.4. We write the same symbol x for the corresponding modular representation.
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Let tr(2) = ¢, and tr(y) = (. Then (. (resp. () is a (¢ — 1)-st (resp. (g + 1)-st) root of unity.
Now the eigenvalues of x; r, (D) (vesp. Xir, (Tyr)) are

Cgi,’,(,,.i_l)’ Cgi,r,(,,.i_zg)7 o <£i7'(_7'i+3)7 Cfir(_,,.i_;'_l)
(resp. C}yﬁr(m—l)’ C}y)"r(ri—ii)) e C}yﬂr(—m—l—ﬁi)’ g]y}"r(—m—&-l))-

Now a module which is not induced from As(Q)-modules is obtained as MQ(x Tid’a_l) for x €
IBr,(SL2(F,)) and an eigenvalue a of x(P) for some P € () (note that « is an eigenvalue of x(P)
for any P € @) since Q is a conjugacy class of SLs(F,)).

As an example, we classify all 1-dimensional Q-modules.

Proposition 5.25. Let ) be a non-central conjugacy class in SLo(F,) for ¢ # 2,3,4,9. Then any
1-dimensional @)-module is isomorphic to one of the followings:

(1) irreducible covering modules,

(2) MQ(p1,... 1 1) for a # 1,

(3) MO(xi2 tida™) where o € F* is an eigenvalue of Xi2(P) for P € @ for a p-regular
conjugacy class @) (As stated above, « is an eigenvalue of x; o(P) for any P.),

(4) MQ(xiz2 14E!) where Q is a p-singular conjugacy class (i.e. @ is a class of N, .) and +1
is the eigenvalue of P € @,

(5) MQ(xi3 1'41) where @Q is a conjugacy class of order 4. (Note that this occurs if p # 2.
Then since either ¢ — 1 or ¢ + 1 is divisible by 4, there exists an element of order 4.)

For the cases (4), (5), the module is defined over F,. For the case (3), the module is defined over
IF, if and only if @ is the class of D,. If @ is the class of T, the module is defined over ng =Fg.

Proof. First note that if @ is a p-regular conjugacy class and x is a representation of Asy(Q) =
SLy(F,), then x(P) is diagonalizable for any P € @ and MQ(x 114%) is 1-dimensional for some «
if and only if:

X(P) has 2 distinct eigenvalues with multiplicities dim xy — 1 and 1 respectively. ()

Note that a is taken to be the inverse of the former eigenvalue.

As above, every irreducible covering module is 1-dimensional.

On the other hand, a non-covering 1-dimensional module is irreducible, and hence by The-
orem 3.5, it is isomorphic to MQ(M) for some nontrivial irreducible As(Q)-module M. Let
X € IBr,(SLs(F,)) be its restiction to Asog(Q) = SLa(F,). If dimyx = 1, x = po,... o and this
case corresponds to the case (2).

If dimy = 2, x = xs4,2 for some ¢. If Q) is a p-regular conjugacy class, every element P € Q)
has a common pair of eigenvalues in F. Therefore MO(x; 2 Tid’o‘fl) is a 1-dimensional ()-module
if o is an eigenvalue of x;2(P). If Q is a p-singular conjugacy class, every element P € () has an
eigenvalue +1 with multiplicity 2. Since y; 2(P) # Iz, MQ(xi2 119*1) is 1-dimensional.

For the case dim x > 3, by the following two lemmas we see that MQ(x) is 1-dimensional if and
only if @ and x are as in (5). O

Lemma 5.26. Let @ be a p-regular class. Let R be the set of f-tuples of integers from 1 to p
indexed by 0,..., f — 1. For r = (r;) € R, denote p. = pry, .. r;_,-
(1) Let r € R satisfy that just one of r; is > 3 and the others are 1. Then for P € @, the
condition (*x) is satisfied for x = p, if and only if P is of order 4 and r; = 3.
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(2) Let s = (s;) € Rand a € {1,...,p}. Choose an index iy such that s;;, = 1 and let
r = (r;) € R where r; = s; if i # ip and r;, = a. If ps; does not satisfy the condition (xx)
for any P € @, neither does p,..

(3) Let r € R satisfy that at least 2 of ;’s are > 2. Then p, does not satisfy the condition (xx)
for any P € Q.

Proof. (1) We may assume that the index ¢ is 0. If ) is a p-regular class, as stated before the propo-
sition, for an eigenvalue ¢ € F of P, the eigenvalues of p,.(P) are ("o~1, (o3 . . (~rof3 (~rot+l,
Since (2 # 1, two neighboring eigenvalues cannot be equal. Thus if (%) is satisfied, then we have
r =3 and (? = (72, Therefore we see that the condition () is satisfied if and only if 7 = 3 and
(¢ is a fourth root of unity.

(2) First note that ps does not satisfy the condition (xx) for any P € @ if and only if at least
one of the following conditions is satisfied:

e p.(P) has at least 3 distinct eigenvalues,
e the multiplicity of every eigenvalue of ps(P) is at least 2.

Note that p, corresponds to ps ® Xiy,q- Since every eigenvalue of ps @ xi,.o(P) is of the form Ap
where A (resp. p) is an eigenvalue of ps(P) (resp. Xi,.«(P)), if ps satisfies one of the conditions
above, the same condition is satisfied for p,..

(3) By (1),(2), it is enough to show that the assertion for the case just 2 of r; are 2 or 3 and the
others are 1. Then p, = xi o ® X;» Where ¢,5 € {0,...,f — 1} and a,b € {2,3}. We proceed by
dividing into 3 cases:

(i) Ifa=b=21let \,\"! (resp. p, u~') be the eigenvalues of x; o(P) (resp. x;2(P)). Then p,(P)
has the eigenvalues A, A=t A1, A=t =L, To prevent p,.(P) from having 3 distinct eigenvalues, 2
of the 4 values must be equal. Since the order of P is not 2, A # A~ and u # p~!. Therefore both
A= A"t~ and A=t = A~y must hold. Then Ay, A\u~—t € {£1} since these are equal to their
inverses. Since pu # p~!, these are distinct. Therefore p,.(P) has 2 eigenvalues with multiplicities
2,2 respectively.

(ii) If @ = 2 and b = 3, note that @ must be a conjugacy class of order 4 and the eigenvalue of
Xj.3 are —1,—1,1. Since P € Q is of order 4, the eigenvalues of x; 2 are 4th roots A\, \™! of unity.
Therefore A=! = —\. Therefore p,.(P) has eigenvalues A, —\ with multiplicities 3,3 respectively.

(iii) If a = b = 3, p,.(P) has eigenvalues —1, 1 with multiplicities 4, 5 respectively. |

Lemma 5.27. Let @) be a p-singular class with eigenvalue € and R the set defined in the previous
lemma. Then for P € Q and 7 = (r;) € R, p,(P) has the unique eigenvalue £2:("i=1)_ The
codimension of the eigenspace is 1 if and only if dim(p,) = 2.

Proof. The first statement is clear. Let P = ¢ < (1) ? ) € Q. Then

1 oi(a) o%(a)? --- oi(a)"!
0 1 20%(a) -+ (n—1)o%(a)"2
Xin(P)=e""1]1 0 0 1 :
0 0 0 . (n—=1)o%(a)
0 0 0 0 1
for the basis XZ-"*l7 Xi"*2Yi7 e XiY;”727 Yinfl. Since n < p and a # 0, the codimension of the

eigenspace of x; ,,(P), which is equal to the rank of x; ,(P) —e"'I, is n — 1. Therefore it is equal
to 1 if and only if n = 2.
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To complete the proof, let r = (r;) € R. Then p, = Xo0,r, ® - ®@ Xf-1,r,_, is a space spanned by
X(‘(;’OY’O(T“_D_S0 R+ ® X;f_’llYf(iffl_l)_sf’l, where 0 < s; <r; — 1. Assume that r; and r; are > 2
for distinct ,j. Then we write Z; = X;° '@ - @Y/ " '®...® X;f_]ﬁl and Z; = X;° '@ ®
erj*l®. . .®X;f:1171. Then p,.(P)(Z;) = ng(Tk—l)Xgo*l@. @Y +oi(a)X;) " T ®- - .@X}“f:llfl
and p,.(P)(Z;) = e x0 M @@ (Yj+0l(a) X)) '@ ~®X;f:11_1. Since 2 < 1,7 < p, it
is clear that p,.(P)(Z;) — e2=x("+=V Z; and p,(P)(Z;) — eXr("~Y Z; are linearly independent. This
shows that the rank of p,(P) — e2x("*=DT is at least 2. Therefore the number of indices i such
that r; > 2 is at most 1. O

For the case (5) of Proposition 5.25, a similar case occurs over characteristic 0. Let G = SLy(C)
and @ be the subquandle of order 4 matrices in Conj(G). Note that @ is the set of matrices with
eigenvalues i, —i € C*. Similarly to the positive characteristic case, extending the representation
G = SLy(C) — GL(C?) to the representation on S(C?), we have a 3-dimensional representation

b a ab b
X3 : SLy(C) — GL(C?); A = ( “ ) — | 2ac ad+bc 2bd
c d 5 o
c cd d
Then for P € Q, x3(P) has eigenvalues —1,—1,1. Now the map P — —x3(P) is a quandle
homomorphism and this gives a group homomorphism ¢ : As(Q) — GL(C?). Then MQ(p) =
[Ipeo(l — gp)C? is a 1-dimensional quandle module.

REFERENCES

[AG] N. Andruskiewitsch, M. Graha, From Racks to Pointed Hopf Algebras, Adv. Math. 178 (2003) no. 2, 177-243.

[Aki] T. Akita, The Adjoint Group of a Cozeter Quandle, Kyoto J. Math. 60 (2020) no. 4, 1245-1260.

[Bon] C. Bonnafe, Representations of SLa(Fq), Springer-Verlag London, London, 2011.

[Cla] F.J.-B.J. Clauwens, The Adjoint Group of an Alezander Quandle, preprint: arXiv:1011.1587.

[Eis] M. Eisermann, Quandle Coverings and Their Galois Correspondence, Fund. Math. 225 (2014) no. 1, 103-168.

[FR] R. Fenn, C. Rourke, Racks and Links in Codimension Two, J. Knot Theory Ramifications 1 (1992) no.4,
343-406.

[Hum] J. E. Humphreys, Modular Representations of Finite Groups of Lie Type, Cambridge University Press, Cam-
bridge, 2006.

[Jac] N. Jackson, Extensions of Racks and Quandles, Homology Homotopy Appl. 7 (2005) no. 1, 151-167.

[Joy] D. Joyce, A Classifying Invariant of Knots, the Knot Quandle, J. Pure Appl. Algebra 23 (1982) no. 1, 37-65.

[Kar] G. Karpilovsky, The Schur Multiplier, The Clarendon Press, Oxford University Press, New York, 1987.

[Mat] S. V. Matveev, Distributive Groupoids in Knot Theory, Mat. Sb. (N.S.) 119 (1982) no. 1, 78-88.

[Nosl] T. Nosaka, On Homotopy groups of Quandle Spaces and the Quandle Homotopy Invariant of Links, Topology
Appl. 158 (2011) no. 8, 996-1011.

[Nos2] T. Nosaka, Central Extensions of Groups and Adjoint Groups of Quandles, RIMS Kokyuroku Bessatsu, B66,
Res. Inst. Math. Sci. (RIMS), Kyoto, 2017.

[NT] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, MA, 1989.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA,
HIGASHIHIROSHIMA, 739-8526 JAPAN
E-mail address: d182522@hiroshima-u.ac.jp



