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Abstract

Deep learning has seen an unprecedented boost in recent years, and has advanced

artificial intelligence and its applications in many fields. One of the areas where

research in deep learning has yielded amazing results is computer vision, which

deals with the understanding of image data by computer-based algorithms. This is

largely due to the emergence of convolutional neural networks (CNN), specialized

networks that can learn and extract important features from images for various tasks.

This is very significant, as digital images have become a part of our everyday life

and continue to take up a large part of people’s day-to-day activities, from social

media to medicine and engineering applications. Our work is predicated on the fact

that most real-world images tend to have metadata that includes multiple labels

as opposed to a single label per image. This is because a single image database

can be used by different individuals, in different usage scenarios, each possibly

requiring different types of information and classification schemes. It is therefore

important for deep learning algorithms to learn how to effectively learn various

tasks effectively on multi-label image datasets. We argue that multi-label learning

requires special treatment and poses unique challenges that are not encountered

in single label learning. We propose improvements to standard multi-label deep

learning algorithms in two computer vision tasks: multi-label image annotation and

multi-label image retrieval. In multi-label annotation, we focus on the recurring

problem of incomplete or incorrect labels in multi-label image datasets. This affects

the ultimate performance of deep learning algorithms, since these models are greatly

affected by the accuracy of the data they are trained on. We propose two separate

solutions to solve this problem. We propose a regularization-based approach, that

extends the loss function in-order to leverage label co-occurrence patterns inside the
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training data, and label similarity outside the training data. Additionally, we propose

using a separate graphical model (called a restricted Boltzmann machine) to learn

label dependencies and reconstruct label vectors to supplement training images with

extra labels. We evaluate our methods on 3 benchmark datasets and show that they

lead to a more accurate multi-label annotation model than the baseline CNN model.

On the image retrieval task, we propose a simple and intuitive function for calculating

pairwise similarity of multi-label images, based on the intersection-over-union of

their label vectors. This allows for a clear distinction between different similarity

levels of image pairs in the training data, and leads to more accurate ranking of

retrieval results at test time. We also tackle the idea of multi-object images, which are

multi-label images with several instances of a particular concept appearing in a single

image. We introduce corresponding changes in the loss function and neural network

architecture to reflect the varying levels of similarity. We further improve upon this

method by introducing label reconstruction using a variational auto-encoder, to

correct errors in the similarity function introduced by missing labels. We show that

our method achieves better results on both multi-label and multi-object retrieval

tasks than the baseline, and a several other recently proposed methods.
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Chapter 1

Introduction: Multi-label Images in

Deep Learning and Neural Networks

1.1 Deep learning and computer vision

Since its emergence, deep learning has steadily gained popularity in recent years

because of the expressive power and vast applicability of deep neural networks

(DNNs). The "deep" in deep neural networks refers to the hiearchical nature of

these artificial neural networks, where layers of parameters learn to make decisions

based on features learned from lower layers. This enables neural networks to learn

and represent complex functions that can perform many pattern recognition and

generation tasks. One particular type of DNN, called a convolutional neural network

(CNN) [1–4] has given rise to a large family of algorithms categorized as computer

vision. As illustrated by Figure 1.1, computer vision is a blanket term for algorithms

aimed at such tasks as image classification [3, 5, 4, 6], image segmentation [7–10],

object detection [11–16], activity recognition [17–20], image de-noising [21–24], super

resolution [25–27], and image retrieval [28–31] just to mention a few. Some of these

fields usually overlap or are extended to form a sub-field. For example, object

detection includes some element of classification, and activity recognition could be

considered as classification applied to video data.
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Classification

Segmentation

Object detection

Activity recognition

Generation

De-noising

Retrieval

Multi-label annotation

Fig. 1.1 Some of the tasks constituting computer vision. We focus on the highlighted
tasks

CNNs have enabled neural networks to achieve near-human performance in

computer vision tasks, and improved their real world applicability in fields such as

autonomous driving, medical imaging, automatic surveillance, biometric imaging,

visual media storage and retrieval, and many more. However, there is still on-going

research to improve their applicability to various types and formats of visual data.

One of the areas with room for improvement is the accuracy of CNNs on multi-label

data.

1.2 The significance and challenges of multi-label im-

age data

Most real life image collections, such as social media images and medical images

cannot be easily labeled with a set of mutually exclusive labels such that each image

has a single label. This is because a single image usually conveys multiple concepts

or multiple types of information. Additionally, users may require different image

categorization schemes depending on their needs. As an example, imagine a person

searching a collection of photos for a particular type of event. This requires that

the images be categorized according to event type (e.g. wedding, party, concert
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etc.). However another person might want to search the same database for images

featuring a particular person. This requires a second annotation scheme based on

which people appear in the photos.

animal person animal animal person

reindeer bird shark

user1

user2

jungle outdoor sky underwater indooruser3

Fig. 1.2 An example showing how users may require different classification schemes
for the same image collection

Being able to assign multiple labels to each image is usually a necessary feature

of image databases. This flexibility is especially important for images that are

created without an initial application purpose in mind e.g. social media images. In

some cases, it is also possible to for a new categorization scheme to be added to

a pre-existing image database if the usage scenario changes. Given the necessity

of multi-label image data, it imperative for deep learning algorithms to be able to

effectively learn on multi-label image datasets, to enable fast automated organization

and retrieval of large image databases.

However, there are some challenges associated with multi-label annotation. Due

the spread of digital imaging technology and the rise of social media, the difficulty and

cost of producing and sharing digital images has decreased substantially. Therefore,

more digital images are created by typical everyday users than professional users.

Furthermore, multi-label image collections might be created by several users over

an extended period of time, which means individual preference becomes a factor.

This leads to inconsistent, inaccurate or incomplete labeling. Even when these

datasets are created in a professional setting, it is difficult to ensure consistency

and completeness, especially if the number of possible labels is large. Since the

performance of a deep learning model is limited by the accuracy of the ground-truth
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data it is trained on, there is need to address these labeling issues when training

CNNs. This leads us to the following observations, with regards to deep learning

for multi-label image data:

1. It is important to recognize the difference between single-label and multi-label

image data, and find unique characteristics that can be leveraged when training

deep learning models on multi-label images.

2. There is need to take into account the unique challenges that arise when training

deep learning models on multi-label data

1.3 Our approach to multi-label annotation

Though multi-label annotation is in some cases considered an extension of the

traditional classification problem, there are some fundamental differences. In

traditional multi-class image classification we assume that given an example image,

there is only one single correct label. Therefore, the assignment of a label to an

image automatically assumes the exclusion of all other labels in the label set. In deep

learning, this is usually implemented by a soft max activation function applied to

units of the last layer of a CNN, as follows:

σ(y)i =
eyi∑︁N
j=1 ey j

(1.1)

where yi is the output from the i-th unit in the output layer, and N is the number of

labels. This can be interpreted as the relative strength of the i-th signal compared

to the rest of the units. The objective would then be to maximize the output of the

softmax function for the correct label, given by the ground-truth label, through a

cross-entropy loss function. In a standard multi-label annotation formulation, a

sigmoid function is applied to the output of each unit, as follows:

σ(y)i =
1

1 + e−yi
, (1.2)
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Standard multi-class classifiers using soft-max activations are easy to train and

evaluate. Additionally, there are numerous reliable datasets for developing and

testing models. Multi-label annotation models on the other hand, have fewer datasets

to work with and even these are have somewhat unreliable labeling. However, multi-

label data has an added advantage because aside from image-to-label mappings,

models can also learn from inter-label relations and co-occurrence dependency, hence

improving prediction accuracy of each label. It is this property that we leverage in

chapter 2 to circumvent the missing label problem of multi-label datasets described

in section 1.2.

The standard cross entropy objective, coupled with the sigmoid activation shown

in Equation 1.2, does not explicitly leverage label relations and co-occurrence patterns

in the training data. We therefore introduce an explicit mechanism to enforce label

relation-awareness in a multi-label annotation CNN. First of all, we adopt Hayashi’s

quantification method type II, to derive a vector for each ground-truth label, such

that the Euclidean distance of two vectors reflect the similarity of their corresponding

labels. We then use this similarity in a Laplacian regularization term that enforces

identical probability predictions for similar labels. We show that this alone can boost

the prediction of relevant missing labels and test time accuracy in general. Using

internal label co-occurrence patterns helps to smooth out the effect of incomplete

and inconsistent labels, but it is ultimately still reliant on the goodness of the training

data. Therefore, we introduce an additional Laplacian regularization term that

incorporates label similarity based on Word2vec embeddings from an external

corpus. Evaluated on three benchmark datasets, our method using regularization

with internal similarity achieves an improvement of up to 1.4%, and our unified

approach using internal and external label similarity achieves an improvement of

up to 1.48% over the baseline.

Additionally, we present an approach that tries to solve the missing label problem

in the pre-training stage. We train a generative graphical model called a restricted

Boltzmann machine to capture label interactions and dependencies in the training

data, and use it to predict additional labels for the training images. We show that

the model is able to recover missing labels, and append additional relevant labels
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to training samples. We then use these new labels to train a standard multi-label

CNN and show that this approach yields comparable performance to the unified

regularization approach, and performs slightly better than the "internal similarity

only" regularization approach.

1.4 Our approach to image retrieval for multi-label and

multi-object images

Content based image retrieval (CBIR) is a field that deals with the retrieval of

digital images from a database, based on a supplied query image, using only image

content as a basis for comparison. A family of algorithms collectively known as

deep metric learning have made it possible for DNNs to be used in CBIR, enabling

big improvements in this research area. Deep metric learning enables the compact

representation of a digital image as a lower dimensional vector which in turn enables

fast image comparison and retrieval. A sub-field called deep hashing aims to further

encode these representations into binary vectors to enable even faster retrieval by

comparing hamming distances. These models typically comprise a CNN backbone,

followed by one or more fully connected layers. This pipeline extracts useful features

from image pixel data, and reduces them to similarity preserving vectors, called

embeddings. The similarity between a query and database image is usually defined

as an inner product between their low dimensional embeddings.

There have been many methods proposed over the years to achieve state-of-

the-art performance in deep metric learning. However, we note that most of these

approaches have the following recurring issues:

1. They either ignore multi-label images or treat them more or less the way as

single label images.

2. They do not tackle multi-object images, and how the definition of similarity

might be affected in this case.

We argue that special treatment has to be observed when dealing with multi-label

images, as opposed to single-label images. For example, care has to be taken when
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defining ground-truth similarity, and choosing the objective for training deep metric

learning models. We define multi-object images as those that not only have multiple

labels per image, but also multiple instances of each label in a single image. In chapter

3, we introduce a new definition of ground-truth similarity for multi-label and multi-

object images, and modify the objective function accordingly. We show that our

model outperforms the baseline and some state-of-the-art approaches dealing with

the same type of data. Later, we present a further improvement of our method,

comprising an improved loss function, a new triplet selection strategy, and label

reconstruction through an auto-encoder model, to deal with label incompleteness

in multi-label data. We show that each of these contributions test time retrieval

performance over both the baseline and our first proposed method.





Chapter 2

Multi-label Annotation with Missing

Labels

2.1 Introduction

With the recent exponential growth of the web, and consequently multimedia, it has

become necessary to be able store, organize and retrieve large quantities of images

and videos. This usually requires efficient automatic image annotation or tagging.

Multi-label image annotation involves specifying the most relevant labels for any

given image that describe its visual content. During the past decade, automated

annotation with multi-label learning has been widely researched [32, 33]. Multi-label

image annotation has also achieved great progress in various sub-domains such as

multi-object recognition [34, 35], scene recognition [36], facial action detection [37],

and medical diagnostic prediction [38, 39]. It is difficult to prepare complete labels

to ensure correct predictions for multi-label learning, which makes training of neural

networks with missing labels an important problem in automated multi-label image

annotation.

Most approaches to multi-label annotation begin by transforming the problem

from one of multi-label annotation to one of single-label classification [40, 41]. Binary

relevance [41, 42] is perhaps the most popular transformation of this kind and is

considered the baseline for multi-label image annotation. This approach involves
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learning several binary classifiers, one for each label in the label space. The idea of

binary relevance has been extended to deep neural networks, where each node in

the output layer predicts a score for a single label [43–45]. Figure 2.1 shows such a

formulation implemented using a CNN.

CNN

. . .
. . .

fully
connected
layers

lab
el1

lab
el2

one classifier for each of N labels

Fig. 2.1 Binary relevance, implemented by a CNN

While binary relevance is preferred among the various problem transformation

techniques, it has been argued that it may lack the ability to model label co-

occurrence relationships. However, several recently developed techniques based

on deep neural networks have shown that label relations are important, especially

when dealing with missing labels. Researchers have achieved acceptable multi-label

annotation performance with this type of data by incorporating label relationship

mechanisms.The relationships are derived using various strategies such as generating

tree-structured graphs [46], using a structured inference neural network [47] and
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co-occurrence dependency [48]. However, these methods only implement internal

relations for multi-label learning. To better understand ambiguous examples and

minimize false predictions, multi-label image annotation requires not only internal

relations between labels but also strong relations that are external to the ground

truth[47].

Incorporating both internal and external label relations in training a deep CNN

could capture diverse contextual relations and specifically infer the remaining

missing labels for a given set of labels for a particular image. For example, in

Figure 2.2, the missing label “arctic” can be correctly recovered, which is meaningful

and directly related to the given label subset as well as to the visual content of

the image. In this chapter, we propose a regularization term that combines strong

dependencies derived from both internal and external similarities between labels.

Regularization enables superior and effective fine-tuning of the network layers, thus

improving its performance. This could be understood from earlier studies showing

that incorporating semantic regularization in a deep network improves accuracy

and convergence speed [49–51].

Additionally, we propose an idea for multi-label learning with incomplete labels

by combining a restricted Boltzmann machine (RBM) with a CNN. RBMs are

primarily used to learn generative models[52], although they can be adapted to

learn supervised discriminative models [53]. We use the RBM to generate additional

labels (assumed to be missing) for images used to train a CNN for multi-label image

annotation. Our reasoning is that by supplementing each training example with

labels based on co-occurrence relationships learned from the entire set, we can

improve the model’s capability to generalize to unseen data. This approach is similar

in essence to the approach presented in [54], where RBMs are used for collaborative

filtering for movie recommendation. In our case, each hidden unit learns to model

dependency between different labels. The learned weights between visible and

hidden layers hold co-occurrence information. This approach requires relatively less

hyper-parameter tuning to build co-occurrence relationships between the input label

vectors. In this study, we demonstrate that an RBM and CNN combination can more
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accurately predict the relationship of input instances than the baseline multi-label

CNN approach. We also compare its performance to the regularization approach.

Fig. 2.2 Example demonstrating the consistency of predicted label ( arctic ) with the
given labels (bear, snow, polar, tundra), and its relevance to the image content

The contributions of this study can be summarized as follows: (1) A novel con-

textual regularization for CNN models is proposed for improved image annotation,

which differs from conventional approaches, by introducing a unified internal and

external graph Laplacian regularization term in the objective function of the CNN; (2)

A contextual similarity metric between labels internally and externally is generated

using Hayashi’s quantification method-type III and the word2vec method, respec-

tively; (3) A separate method is introduced that uses an RBM to pre-process training

data to recover missing labels before training a CNN. Extensive evaluation on three

different datasets is performed to confirm whether a unified internal-external label-

relation regularization graph derived from co-occurrence data could produce better

performance than individual regularization for an image annotation deep CNN,

and whether test time accuracy is improved by our RBM-based label pre-processing
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approach. Contributions (1) and (2) were published in [55] and contribution (3) was

published in [56].

2.2 Related works

The problem of multi-label learning for data with missing-labels has been studied in

a number of contexts. In this section we review related works on multi-label learning

with a focus on label relations, followed by a discussion of regularization in neural

networks.

2.2.1 Multi-label learning with label relations

Co-occurrence distributions learned from the internal label space can be used to

compensate for missing labels [48]. For example, the multi-label local correlation

approach encodes the local influence of label correlations using the feature represen-

tation of each instance [57]. Other researchers have proposed parametric models,

which combine pair-wise correlations of class labels to solve the multi-label learning

problem [58]. Several works on multi-label learning have suggested that external

knowledge of label relations could improve label prediction [59, 60]. For example,

[61] generated the co-occurrence of pairs of labels using external knowledge for

multi-label annotation. Furthermore, to adequately address the problem of missing

labels, an integrated framework can be used to learn the complex correlations

between labels for multi-label classification with missing labels [62]. Lee et al. [63]

proposed that label relations observed in the external space can be used to identify

multiple unseen class labels for each input instance for performing multi-label

classification.

The above-mentioned methods independently handled internal or external

label relations in learning algorithms, while our proposed model incorporates

co-occurrence distributions of both internal and external label relations. Note

that inter-relations between different labels have already been exploited in recent

techniques by using a mixed graph to encode a network of label dependencies [64], a

unified correlative multi-label method to classify the labels [32], and quadratic energy
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function graphs for constructing complete labels [65]. However, these algorithms

are too complex and are not appropriate for large datasets.

2.2.2 Approaches using specialized architectures

Various techniques have been proposed to incorporate label co-occurrence infor-

mation in training algorithms. Utilizing label inter-dependency information found

in ground truth data can also solve the problem of inaccurate or missing labels. J.

Wang et al. [66] proposed a framework that combines a CNN and a recurrent neural

network (RNN), where the CNN acts as a feature extractor, and the RNN models

image-label relationships and label dependency. Label dependency is incorporated

by representing a multi-label annotation as an ordered path of label predictions.

Another approach is presented in [43], which consists of a deep neural network-based

Canonical-Correlated Auto-encoder that can exploit label inter-dependency during

both label embedding and prediction processes. The authors also claim that it can

easily be extended to the case of missing labels. Like one of the approaches presented

in this paper, the approach presented in [67] also uses an RBM, with the main

difference being that while they use a ‘conditional RBM’ network to both predict

labels and fine tune those predicted labels, we train our RBM to reconstruct the

training labels that are used to train a separate multi-label prediction CNN.

2.2.3 Regularization techniques in neural networks

The introduction of a label relation graph in the regularization term of a deep neural

network model enables more efficient training and avoids over-fitting which in

turn leads to better performance. Pengfei et al. [68] used semantic information

to regularize the combination of two different neural network layers. Similarly,

Yan et al. [51] implemented an attribute induced semantic regularization to tune

the middle embedding layer. Several works have focused on the loss function of

a neural network to solve the multi-label learning with missing labels problem with

large-scale labels. Wu et al. [69] proposed a sub-modular objective function to

handle the problem of large numbers of negative labels. Another study [70] exploited
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the structure of a specific loss function for the annotation problem. Inspired by

these research techniques, we measure the effectiveness of a unified label-relation

regularization graph in training a deep CNN for multi-label image annotation.

In our proposed method, we combine two different matrices for regularization.

One matrix is the graph Laplacian matrix of all the Word2Vec similarities between

labels in the dataset [71]. The Word2Vec similarity is calculated from a model

trained on the Wikipedia dumped data 1. The second matrix is the graph Laplacian

matrix with all the co-occurrence-based label similarities calculated by Hayashi’s

quantification method-type III (HQ-III) [72]. The combination of these two matrices

is used as a regularization term in conjunction with the neural network’s original

objective function. Thus, the weights of the graph Laplacian matrix are calculated by

using the similarities between vectors obtained from both the internal and external

label spaces. Hence, the regularization term in the proposed objective function

introduces correlation information between each pair of labels in the training

process and increases the co-occurrence probability of labels with high observed

co-occurrence frequency.

Fig. 2.3 Illustration of the proposed approach

1at the time of writing, available at https://dumps.wikimedia.org/enwiki/
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2.2.4 Hayashi’s quantification method-type III

HQ-III is applied in the understanding of categorical data, including cross-tabulation

or contingency tables [72]. It is used to calculate the vector representations of

each row and column by utilizing the information of co-occurrences. Suppose the

cross-tabulation that records label occurrence is represented by T = [ti j], where

i = 1, 2, · · · ,M and j = 1, 2, · · · ,N.

Table 2.1 The example of cross tabulation.

Labels(Θ) sum
Examples(Ω) θ1 θ2 · · · θN

ω1 t11 t12 · t1N t1.

ω2 t21 t22 · · · t2N t2.
...

...
...
. . .

...
...

ωM tM1 tM2 · · · tMN tM.

sum t.1 t.2 · · · t.N n

Using this table, we can extract the vector representations qi and q j of the ith row and

the jth column respectively, by applying HQ-III. If we assign numerical scores ui and

vi to each category and sample respectively, the weighted averages of u and v are

defined as:

ū =
t1.u1 + t2.u2 + · · · + tM.uM

n
(2.1)

v̄ =
t.1v1 + t.2v2 + · · · + t.NvN

n
(2.2)

and the variance of u and v and their covariance, is defined as:

σ2
u =

1
n

∑︂
i

ti.(ui − ū)2 (2.3)

σ2
v =

1
n

∑︂
j

t. j(v j − v̄)2 (2.4)

σuv =
1
n

∑︂
i

∑︂
j

ti j(ui − ū)(v j − v̄) . (2.5)
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The goal of HQ-III is to find values of ui and vi that maximize the correlation

coefficient:

ruv =
σxy

σxσy
. (2.6)

This becomes an eigenvalue problem, with N − 1 possible solutions, we can use

these vectors to get an N − 1-dimensional vector for each label. Note that the

distance between these vectors becomes small if the pattern of responses in the

cross-tabulation is identical. In this study, HQ-III is used to calculate the distance

between the vectors of each label, which can explain the internal similarity between

each pair of labels.

2.2.5 Laplacian eigenmaps

This is a manifold learning algorithm based on spectral graph theory, proposed by

Belkin et al. [73]. Given N samples, it constructs a vector representation for each

sample based on sample similarities. Assuming the similarity between any two

samples i and j is given by si j, they construct a weighted graph (G,E) where each

node in G corresponds to a sample and the edge (i, j) ∈ E connecting two nodes i and

j represents the similarity si j between these two samples. Figure 2.4 illustrates this.

Then the 1-dimensional representation yi for each sample is obtained by minimizing

𝑙!

𝑙"𝑙#

𝑠!"

𝑠"#

𝑠!#

Fig. 2.4 Illustration of a simple weighted graph with sample similarities
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the objective function

1
2

N∑︂
i, j

si j(yi − y j)2 = yTLy (2.7)

where y =
[︂
y1 · · · yN

]︂T
. The matrix L is Laplacian matrix defined as L = D − S,

where S =
[︂
si j

]︂
and D is a diagonal matrix with diagonal elements dii =

∑︁N
j=1 si j. K.

Watanabe et al. [74] introduced a regularization term based on this objective function

to preserve locality of the input space in the outputs of multi-nominal logistic

regression. In out study, we use this objective function as a CNN regularization term

to constrain network outputs using ground-truth label similarities obtained from

label co-occurrence information in the training data.

2.2.6 Word2Vec

The Word2Vec method was developed by Mikolov et al. [71] in 2013. The model is

trained on a corpus of text (like Wikipedia or Google News) and then outputs the

vector representations of all words in the text. Unlike the previous method, where a

neural network learns the expression vectors of words, Word2Vec employs the Skip-

gram model, which reduces the calculation of dense matrix multiplications. In our

proposed method, we use the Word2Vec model to obtain the vector representations

of labels in a dataset and then calculate the similarity between each pair of labels.

2.3 Unified Graph Laplacian Regularization Approach

2.3.1 Training with missing labels

Let {(xi, ti)}Mi=1 = {X,T} be the set of training samples with missing labels, where

X =
[︂
x1 · · · xi · · · xM

]︂T
(2.8)

T =
[︂
t1 · · · ti · · · tM

]︂T
(2.9)
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Here, xi is the ith image used as an input to the CNN and ti =
[︂
ti1 · · · tiN

]︂
represents

the binary vector representation of the labels for the ith image, where ti j = 1 when

the jth label assigned to the ith image; otherwise, ti j = 0. M and N are the number of

samples and labels, respectively.

Let y = f (x;θ) be the function of the CNN model for the input image x where

θ represents the parameters of the CNN. AlexNet [3] is used as the baseline CNN

architecture. The network has five convolutional layers and two fully connected

layers. The acronym “BN” in the figure denotes batch normalization.

To estimate the posterior probability of each label, a sigmoid activation function

is used after the output layer and the sum sigmoid cross entropies across all the

labels used as the loss function. After training the parameters θ, we can estimate the

labels ŷ by feeding the test input image x into the trained CNN model

ŷ = f (x;θ) (2.10)

The value of each component in the estimated vector ŷ is the probability of the

corresponding label.

2.3.2 Internal distributions of label similarity

The internal similarity distributions of each label in the dataset is obtained by

applying HQ-III on the frequency Table T. Let q j, ( j = 1, . . . ,N) be the HQ-III vector

representation of each label. We calculate the co-occurrence distance between a pair

of labels using the vectors qi and q j in their internal label space as

dh
ij = ||qi − q j||

2 (2.11)

The similarity using internal co-occurrence distributions is defined as

sh
ij = exp(−δ × dh

ij) (2.12)

where δ controls the influence of the distance.
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2.3.3 External distributions of label similarity

The external similarity of each label in the dataset is derived using the Word2Vec

method. Let v j be the vector of the j-th ( j = 1, . . . ,N) label. The word2vec distance

between a pair of labels vi and v j is defined as

sw
ij = exp(−ϵ × dw

ij) (2.13)

where ϵ controls the influence of the Word2Vec distance.

2.3.4 Regularization graph with unified co-occurrence distribu-

tions

To control the similarities si j between estimated labels, we introduce the graph

Laplacian regularization term based on Equation 2.7, defined as

G =
1
2

N∑︂
i, j

(yiˆ − y jˆ )2si j = ŷTLŷ (2.14)

where ŷ =
[︂
y1̂ · · · yN̂

]︂T
and (0 ≤ yiˆ ≤ 1]) is the vector of network outputs

representing estimated labels.

Since we have two similarities sh
ij and sw

ij representing both internal and external

similarity, we can define two Laplacian regularization terms. The regularization

term for the internal co-occurrence similarity graph is defined as

Gh =
1
2

N∑︂
i, j

(ŷi − ŷ j)
2sh

ij = ŷTLh ŷ (2.15)

Similarly, the regularization term for the external co-occurrence similarity graph is

defined as

Gw =
1
2

N∑︂
i, j

(ŷi − ŷ j)
2sw

ij = ŷTLw ŷ (2.16)
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where Lh and Lw are the co-occurrence dependency Laplacian matrices from the

internal and external label spaces, respectively. For M training samples, we can

define the average graph Laplacian regularization terms as

Dh =
1
M

M∑︂
l=1

⎛⎜⎜⎜⎜⎜⎜⎝1
2

N∑︂
i, j

sh
ij(ŷli − ŷl j)

2

⎞⎟⎟⎟⎟⎟⎟⎠ = M∑︂
l=1

ŷT
l Lhylˆ (2.17)

Dw =
1
M

M∑︂
l=1

⎛⎜⎜⎜⎜⎜⎜⎝1
2

N∑︂
i, j

sw
ij(ŷli − ŷl j)

2

⎞⎟⎟⎟⎟⎟⎟⎠ = M∑︂
l=1

ŷT
l Lwylˆ (2.18)

The values of Dh and Dw become small if the estimated labels are similar for a given

pair of labels with similar vector representations implying high co-occurrence or

similar meaning. Finally we combine the graph Laplacian regularization term from

internal and external co-occurrence similarities as

D = αDh + (1 − α)Dw =

M∑︂
l

ŷT
l (αLh + (1 − α)Lw)ŷl (2.19)

where α controls the contribution of each regularization term.

2.3.5 Training with a combined objective function

The original objective function for standard multi-label annotation over all the

training samples is given by

E =
M∑︂

l=1

N∑︂
k=1

{−tlk log(ŷlk) − (1 − tlk) log(1 − ŷlk)}. (2.20)

Here, the objective function is modified by combining the original objective function

E with the graph Laplacian regularization term D, which gives

Q = E + βD. (2.21)

The parameter β controls the effect of the regularization term.
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2.4 Label Reconstruction by RBM Approach

In this section, we present an approach that uses an RBM to capture label dependen-

cies in the training data, and reconstruct the label vectors with supplemental labels.

The illustration of our proposed method is shown in Figure 2.5.

Fig. 2.5 The architecture of the proposed CNN+RBM model for multi-label annotation.
Before input into the CNN, the missing labels are firstly reconstructed by the pre-
trained restricted Boltzmann Machine.

2.4.1 Train Restricted Boltzmann Machine with missing labels

We use training samples with missing labels to train the RBM model. An RBM is

a 2-layer neural network which contains visible units v ∈ {0, 1}N and hidden units

h ∈ {0, 1}H where N and H are the numbers of visible and hidden units, respectively

(Figure 2.6). It is an energy-based model and can be used to encode the dependencies

between the visible units. In the learning process, we minimize the energy function

of a certain state (v,h), defined as

E(v,h) = −bTv − cTh − vTWh (2.22)

= −
∑︂
i=1

bivi −

∑︂
j=1

c jh j −

∑︂
i, j

vih jwi j (2.23)

with the parameter θ = {W, b, c}. W denotes the weights between the 2 layers,

and b and c represent visible and hidden unit biases, respectively. If there are no
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Fig. 2.6 Restricted Boltzmann Machine

connections between hidden units, then the probability distribution of v is given as

p(v) =
1
Z

∑︂
h

p(v,h) =
1
Z

∑︂
h

e−E(v,h) (2.24)

where Z is the normalization factor by the summation of over all possible pairs of

visible and hidden vectors.

Z =
∑︂
v,h

e−E(v,h) (2.25)

Because both visible and hidden units can only have state of 0 or 1, then the

conditional probability of a visible and hidden unit value being set to 1 is defined as

p(hi = 1|v) = σ(
M∑︂
j=1

wi jv j + ci) (2.26)

p(v j = 1|h) = σ(
N∑︂

i=1

wi jhi + b j) (2.27)

where σ denotes the logistic sigmoid function. The log-likelihood for a single training

example v is given as

lnL(θ|v) = ln p(v|θ) = ln
1
Z

∑︂
h

e−E(v,h) (2.28)
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According to [75] the process of calculating the gradient function θ is

∂lnL(θ|v)
∂wi j

= p(hi = 1|v)v j −

∑︂
v

p(v)p(hi = 1|v)v j (2.29)

∂lnL(θ|v)
∂b j

= v j −

∑︂
v

p(v)v j (2.30)

∂lnL(θ|v)
∂ci

= p(hi = 1|v) −
∑︂

v

p(v)p(hi = 1|v) (2.31)

Computing the second term of equations 2.29, 2.30 and 2.31, one can approximate

the expectation by samples obtained by Gibbs sampling. In the learning process,

Gibbs chain runs for only k steps [76], which is called k-step contrastive divergence

learning (CD-k).

2.4.2 Reconstruction of labels by Pre-trained RBM model

Let D = {(xi, ti)}Mi=1 = {X,T} denote a set of training samples. Here xi is the i-th

sample used as input to the neural network and ti =
[︂
t(1)
i · · · t

(N)
i

]︂T
are the training

labels (supposedly containing missing labels) which denotes the binary vector

representation of the i-th sample. t( j)
i = 1 when the j-th label is annotated to the

i-th image, otherwise t( j)
i = 0. M and N are the numbers of samples and labels

respectively. According to the RBM, the number of hidden units H is less than the

number of visible units N (H < N).

Suppose R(x) is the reconstruction function of the pre-trained RBM model for

training label set T. The reconstructed label set q of the original label set t can

be obtained using the equation q = R(t) =
[︂
q(1)
· · · q(N)

]︂T
. The label reconstruction

algorithm used in this study is presented in algorithm 1.
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Algorithm 1: Label reconstruction algorithm R

Given missing label set t =
[︂
t(1)
· · · t(N)

]︂T

▷ Prop up
for i = 0, . . . ,H do

hi ← σ(
∑︁N

j=1 wi jt( j) + ci)
end
▷ Prop down
for j = 0, . . . ,N do

v j ← σ(
∑︁H

i=1 wi jhi + b j)
end
▷ Get binomial samples of the visible units based on their activation v
for j = 0, . . . ,N do

q( j)
← binomial(v j)

end
▷ Keep all the elements in t which are equal to 1
for j = 0, . . . ,N do

if t( j) = 1 then
q( j)
← t( j)

end
end

2.4.3 Training the CNN using RBM reconstructed labels

Let Dnew = {(xi, qi)}Mi=1 = {X,Q} denote the newly reconstructed training samples. We

use T to train the CNN. AlexNet [3] is used as the CNN architecture, which has 5

convolution layers and 2 fully connected layers. Because the true and predicted

values are given by the state {0, 1}, we use sigmoid cross entropy to evaluate

dissimilarity between them. The loss function used to train the CNN is

H(y, ŷ) = −y log ŷ − (1 − y) log (1 − ŷ) (2.32)

where y and ŷ denotes true and predicted values, respectively. The original objective

function of the CNN is

J =
M∑︂

i=1

N∑︂
j=1

H(t j
(i), y jˆ (i)) (2.33)
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We used the reconstructed labels as a teacher signal and thus the objective function

becomes

J′ =
M∑︂

i=1

N∑︂
j=1

H(q j
(i), y jˆ (i)) (2.34)

Let S(x) be the function learned by the CNN for the input image x. Then the

estimated labels ŷ can be obtained by feeding image x from the test data set to the

trained CNN model as

ŷ = S(x). (2.35)

The value of the each element in the estimated vector ŷ can be considered as the

probability of the corresponding label.

2.5 Experiments

To validate the proposed approach, we use three standard image datasets and

compare the results to a baseline CNN without regularization, a CNN using internal

similarity alone with HQ-III, and a CNN using external similarity alone by the

Word2Vec method. In this section, we describe the datasets, model parameter

settings, and experimental results.

2.5.1 Datasets

We use three benchmark image annotation datasets: Corel5k, NUS-WIDE-LITE, and

ESPGame. To generate the training dataset with missing labels, we randomly remove

some labels in each training sample such that the number of labels in each sample is

more than two. Table 2.2 shows the datasets used in our experiments. The columns

in Table 2.2 named average and missing average represent the average number of

assigned labels in each training sample and the average number of processed labels

respectively.



2.5 Experiments 27

2.5.2 Parameter Settings

Fig. 2.7 CNN architecture

Before feeding the images into the CNN, we reshape all the original images to a

size of 127 × 127 pixels. The parameter α in Eq.(2.19) is set to 0.5 and β in Eq.(2.21) is

set to 0.1. We obtained these values by performing a validated parameter sweep in

the ranges [0, 1] and [0.001, 10] for α and β respectively.

Table 2.2 Datasets and their corresponding labels

Dataset Labels #Training #Test Average Missing Average
Corel5k 260 4500 499 3.4 2.5
NUS-WIDE-LITE 81 27807 27808 1.6 1.4
EspGame 268 18689 2081 3.7 3.0

2.5.3 Performance measures

The micro-F1 score is used to measure the performance of the proposed model for

estimating multiple labels. This score measures the accuracy on the test datasets,

considering both precision p and recall r, and is defined as

Micro − F1 = 2 ×
precision × recall
precision + recall

. (2.36)
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The performance on test datasets is calculated by

Micro − F1 =
1
M

M∑︂
i=1

2
∑︁N

j=1 t j
(i)y j

(i)∑︁N
j=1 t j

(i) +
∑︁N

j=1 y j
(i)
. (2.37)

Here M and N are the number of test dataset samples and labels, respectively. The

prediction is considered perfect when the score is 1 (perfect precision and recall)

and worst when its value is 0. To select the most suitable labels, we use three kinds

of label selection thresholds: labels whose predicted probability is above 0.1, the

top-three ranked labels, and the top-five ranked labels. We compare the performance

of the deep CNN model with unified regularization to those of a regularized deep

CNN with internal label dependency alone, external label dependency alone, and a

baseline CNN without any regularization term. Furthermore, to confirm the learning

ability with incomplete labels, we remove some labels and observe the performance

at different label removal rates (10%, 30%, and 50%) and compare the results in terms

of the micro-F1-score against the baseline CNN.

2.5.4 Results and Discussion

Unified graph Laplacian regularization

We found that the model trained by the new combined objective function has better

prediction ability than the one using the original objective function. To evaluate our

results comparatively, we set up the experimental analyses according to previous

works utilizing external [61] and internal [48] label similarity. Tables 2.3, 2.4 and 2.5

show the results evaluated by measuring the micro-F1 score at 30% label removal

rates on different datasets based on the three kinds of label selection criteria. The

proposed deep CNN model with unified regularization achieves higher F1-scores

than the other methods, as highlighted in the tables. Furthermore, it can be observed

that the deep CNN model with either internal similarity regularization or external

similarity regularization produces better scores than the baseline CNN without

a regularization term. On the Corel5k dataset, the micro-F1 score for labels with

probability over 0.1% for the proposed method is higher than that of the baseline
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CNN, by more than 0.64%. Similarly, the score of the proposed method is higher

than the deep CNN model with a regularization term of red internal [48] and external

[61] similarity by more than 0.30% and 0.6%, respectively. The approach presented

in [77], using pairwise label correlations for multi-label classification achieved

lower accuracy (12.1%) on the Corel5k dataset. Our unified approach modelling

label relations on the same dataset achieves an acceptable improvement on label

prediction. On the NUS-LITE, and EspGame datasets, the micro-F1 scores based on

the labels with probability over 0.1% are higher (in the range of 5.37%-8.87%) for

the unified regularization and lower (in the range of 4.22%-8.49%) for the baseline

CNN, demonstrating the efficiency of the proposed unified regularization technique

in deep CNN for predicting missing labels.

Table 2.3 Comparison of the micro-F1 score on the Corel5k dataset

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 17.25 17.75 17.12
Regularized with internal simi-
larity alone 18.14 18.23 17.30

Regularized with external simi-
larity alone 17.88 18.13 17.16

Proposed unified regularization 18.52 17.99 17.76

Table 2.4 Comparison of the micro-F1 score on the NUS-WIDE-LITE dataset.

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 5.95 6.31 4.22
Regularized with internal simi-
larity alone 7.35 7.65 5.17

Regularized with external simi-
larity alone 7.26 7.58 5.09

Proposed unified regularization 7.43 7.73 5.37

Furthermore, to evaluate the performance of the unified regularization model

against the baseline CNN without regularization, we visualize and compare the

predicted labels across three different dataset images used in this study, as shown in

figs. 2.8, 2.9 and 2.10. The labels with predicted probability over 0.1 are considered
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Table 2.5 Comparison of the micro-F1 score on the EspGame dataset.

Deep CNN methods Top-3(%) Top-5(%) Probability ≥ 0.1(%)
Without regularization 9.42 10.13 8.49
Regularized with internal simi-
larity alone 9.46 10.40 8.54

Regularized with external simi-
larity alone 9.44 10.39 8.52

Proposed unified regularization 9.68 10.74 8.87

Table 2.6 Model sensitivity to parameters α and β on the Corel5k dataset (micro-F1
score for top-3 labels %).

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1
β = 0.01 17.88 17.74 17.59 17.39 17.12
β = 0.1 17.08 16.71 18.52 16.63 16.82
β = 1 17.64 17.74 17.09 18.02 18.14

for the comparison of the methods. The additional labels predicted by the proposed

method are shown in bold. The results show that the proposed model can accurately

capture labels that are related to the original given label set as well as to the

visual content of the objects appearing in Figure 2.8. The proposed model notably

predicts “tree“ and “forest“, which are not predicted by the baseline CNN. It clearly

demonstrates exemplars on which our proposed method improves the baseline

predictions. Similarly, the proposed method detects the missing labels “valley“

and “sky“ for the given label “lake“ in Figure 2.9. However, the baseline CNN

without regularization predicted a limited number of missing labels. The proposed

unified co-occurrence approach can effectively infer the labels “sky“ and “valley“

from “clouds“ and “mountain“, respectively, because it can infer labels based on

similarities in the internal space as well as from the external world of common

sense. Though the micro-F1 score of the proposed approach is lower than that of the

baseline CNN, the probability of predicting missing labels is more accurate, precise

and relevant to the visual content of the objects appearing in Figure 2.9.

Finally, we explain the results for Figure 2.10, which includes a large number of

object classes. In terms of the micro-F1 score, the proposed approach outperforms

the baseline CNN in terms of accurate and very relevant missing labels related to
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Fig. 2.8 of Corel5k dataset and predicted labels with probability ≥ 0.1%.
Given labels: cat, tiger, tree
Baseline CNN: cat, tiger, flowers, grass
Proposed: cat, tree, grass, tiger, forest

the visual content of the objects. The experimental results indicate that the internal

and external distributions of label similarity are more appropriate for detecting

missing labels when the number of training labels is small and the number of object

classes is large. In addition, the learning ability of the proposed model with different

missing-label rates, measured in terms of the micro-F1 score, compared to that of the

baseline CNN on the Corel5K dataset is shown in Figure 2.11, Figure 2.12 and Figure

2.13. We observe that the proposed model outperforms the baseline CNN across

different percentages of missing labels.

An analysis of the effect of parameters α and β on the performance of the model

is shown in table 2.6. The results show that as the value of β increases from 0.01 to

1 exponentially, the optimal value of alpha changes from 0.25 to 1.0. This means

that the two parameters interact with each other, with bigger values of β requiring

bigger values of α. We reason that at larger values of β, increased contribution of the

external label similarity term leads to too much contradiction with the ground truth.
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Fig. 2.9 Example image from NUS-WIDE-LITE dataset and predicted labels with
probability ≥ 0.1%.
Given labels: lake
Baseline CNN: clouds, mountain
Proposed: clouds, mountain, valley, sky

Label reconstruction by RBM

Table 2.7 shows the performance of the RBM-CNN combination, compared against

the regularization-based methods. We note that the unified regularization approach

achieves a minimal lead of 0.09% and 0.39% on the top-3 and probability≥1 micro-F1

scores respectively. We interpret this to mean the unified regularization approach has

a slightly better ability to capture label-dependencies and hence can recover missing

labels accurately at test time. However, we note that the RBM-CNN combination

still offers better performance than the baseline CNN, and more importantly, the

internal similarity regularization approach. This is important because while the

regularization approaches can only be used on outputs representing label probability

predictions, abel reconstruction approaches can be used on training data prior to

any task. This makes this approach more versatile. We show in chapter 3 that label

reconstruction using a graphical model can be applied to deep metric learning for

image retrieval.
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Fig. 2.10 Example image from EspGame dataset and predicted labels with probability
≥ 0.1%.
Given labels: guitar, woman, music, hair, sing
Baseline CNN: guitar, man, music, light, hair, sing, singer
Proposed: guitar, music, hair, sing, singer, man, light, band

Table 2.7 Comparison of the micro-F1 score on the Corel5k dataset

Deep CNN methods Top-3(%) Probability ≥ 0.1(%)
Without regularization 17.25 17.12
Regularized with internal similarity alone 18.14 17.30
Regularized with external similarity alone 17.88 17.16
Proposed unified regularization 18.52 17.76
Label reconstruction by RBM (hidden
units=50) 18.43 17.37

2.6 Conclusion

In this chapter, we introduced a novel approach to address the multi-label image

annotation problem with missing labels. Our study employed a unified approach,

combining internal and external label dependencies. We implement this mechanism

as a graph Laplacian regularization term in order to reliably recover missing labels

from available labels and CNN inference. Due to this combined nature of label

dependency representation, our proposed approach obtained distinctively more
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Fig. 2.11 Comparison of the micro-F1 score of the proposed method with that of the
baseline CNN using different missing-label rates on the Corel5K dataset (probability
≥ 0.1%)

accurate results than other competing methods described in this study. Experimental

analyses on three popular datasets revealed that our approach performs better than

the baseline CNN without our proposed regularization. For future work, it would be

interesting to test our approach with other neural network architectures. Moreover,

we would like to conduct tests on other benchmark data sets to further evaluate its

effectiveness for the recovery of missing labels.
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Fig. 2.12 Comparison of the micro-F1 score of the proposed method with that of the
baseline CNN using different missing-label rates on the Corel5K dataset (Top-3)

Fig. 2.13 Comparison of the micro-F1 score of the proposed method with that of the
baseline CNN using different missing-label rates on the Corel5K dataset (Top-5)





Chapter 3

Multi-label and Multi-object Deep

Metric Learning for Image Retrieval

3.1 Introduction

Image retrieval is one of the popular areas of interest in computer vision and pattern

recognition today. Research in this area began in the early 1990’s [78, 79] and recently,

with the increase in the number of digital images collected and used in various

domains, there is need for more accurate and faster algorithms for searching and

retrieving images from large collections. Traditionally, real-world image retrieval

systems use meta-data information associated with images to index and retrieve

images. However, since textual information may not accurately or exhaustively

describe visual content, CBIR is preferred [80]. CBIR is the search and retrieval of

images from large-scale image databases using visual features such as texture, shape

and color [81].

One of the challenges in CBIR remains the ‘semantic gap’ [82], which refers to the

difficulty of describing high-level semantic concepts that humans are familiar with

using low-level visual features [83–85]. Bridging this gap requires understanding

and comparison of image content at a semantic level similar to that demonstrated by

humans[83].
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The ability to assess how closely one image matches another is an indispensable

component of image retrieval systems, especially in search-by-example applications,

where the aim is to retrieve images that are similar to a supplied query image. It has

been shown that features extracted by convolutional neural networks can provide

useful representations of image data [86, 87], which can in turn be used for various

image processing and recognition tasks [88]. In deep metric learning [89], the goal is

to learn such representations and their corresponding induced metrics by training

the network to estimate similarity or relative similarity of image samples. The

learned embeddings and their corresponding similarity metric can then be used

directly in image retrieval, usually by performing a nearest neighbour search.

It has been argued that the ability to classify local image regions into semantic

object or concept classes e.g water, rocks, person is key to achieving semantic scene

understanding which is essential for better CBIR performance[90]. Furthermore,

when considering semantic image retrieval, it is more desirable to represent and

interpret images as scenes (that is, a collection of interacting objects and concepts) as

opposed to collections of isolated objects [91].

In line with the above, our main contributions include the following:

1. A triplet metric learning architecture that combines the feature aggregation

power of multi-layer perceptrons with the object-relation encoding and enu-

meration capabilities of relation networks, to learn embeddings that can be

used to reliably compare image scenes.

2. A novel soft-similarity function for computing the similarity of multi-label

image data. We show that our soft-similarity leads to better performance than a

previously proposed approach, and works for both multi-label and multi-object

images.

3. An adaptive margin triplet loss function that uses a similarity coefficient to

adapt the margin for varying degrees of similarity.

Furthermore, we show that the embeddings learned by our architecture are quan-

tizable, by employing a previously proposed quantization method that works on
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top of a triplet metric learning network. Part of the contributions presented in this

chapter were published in [92].

3.2 Related Work

3.2.1 Deep Metric Learning

In simplest terms, the metric learning problem is as follows: given an initial distance

function d(x, y) between two points x and y and a teacher signal representing the

ground truth, construct a new distance function d′(x, y) that is closer to the ground

truth distance than the original function. Note that this definition does not strictly

require a distance function i.e. it holds for some similarity function s. In deep metric

learning, the problem becomes one of constructing a distance function d′( f (x), f (y))

where f is a deep neural network that extracts features f (x) and f (y) given inputs

x and y respectively. There are two predominant models: Siamese networks [93–95]

and Triplet networks [89, 96–98], which focus on contrastive embedding and triplet

embedding respectively.

A basic Siamese network consists of a two-branch network that learns contrastive

embedding from pairs of samples. The two parallel branches share parameters, and

the model learns by minimizing a cost function that favors a small distance between

pairs of samples labeled as similar and a large distance between pairs labeled as

dissimilar. One shortfall of this type of model is that it requires training data with

real-value precise pairwise distances which is not usually available [99]. It has also

been observed that representations learned by these models provide sub-par results

and for some types of data, the model almost completely fails to learn [89].

The Triplet network model is perhaps one of the most popular deep metric learning

models [89, 96–98]. This model learns a triplet embedding by exploring the relative

similarity of image samples. A triplet is made up of three samples: an anchor, a positive

sample that is similar to the anchor and a negative sample that belongs to a different

category from the anchor. The network learns by minimizing a cost function which

favors an anchor-positive distance that is smaller than the anchor-negative distance.
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There have been multiple variations to this function [100, 101], but primarily it is

defined as:

L(a,p,n) =
N∑︂

i=1

max{d(ai,pi) − d(ai,ni) +m, 0} (3.1)

where d(xi,yi) = ||xi − yi||
2
2, ai = f (Ii), pi = f (I+i ) and ni = f (I−i ) are the outputs of a

network f for inputs Ii, I+i and I−i respectively. Ii, I+i and I−i are the anchor, positive

and negative example from the i-th triplet. m is a parameter that controls the gap

between the distances of the two image pairs, and N is the sample size. The Triplet

network model has been widely used in deep metric learning and has achieved

promising results [96][102]. However, by using a fixed margin parameter, the cost

function in Eq. (3.1) assumes equal ranking of all positive examples relative to

the anchor. This function does not reflect the ground truth when images exhibit

a non-binary similarity ranking, and may in fact disturb training. We propose a

simple but effective version of this function that varies the margin parameter based

on degree of similarity.

3.2.2 Deep Hashing and Quantization

Deep representations are effective for accurate image retrieval but for large-scale

image datasets, converting the representations into compact binary codes allows

more efficient storage and retrieval.

The goal of deep hashing is to learn deep image representations and their binary

codes while preserving similarity. Xia et al. [103] proposed an approach that splits

the problem into two stages: learning similarity-preserving hash codes for training

samples using a scalable coordinate descent method, and learning an image deep

hashing function that fits the learned hash codes. Lai et al. [104] presented an

approach that jointly learns deep features and a hashing function, inside a triplet

formulation to enforce ranking.

Quantization methods, which represent each sample by a code that points to the

nearest center in a codebook, have been shown to be superior to hashing methods in

approximate nearest neighbour search. One of such methods, proposed by Cao et al.

[105], learns a similarity-preserving, quantizable deep image representation by jointly
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minimizing a pairwise cosine loss and product quantization loss, respectively. Later,

Cao et al. [106] adopted an approach that transforms deep image representations into

a new space, where similarity with Word2Vec label embeddings is enforced using

an adaptive margin loss, and quantization is achieved by minimizing quantization

error of approximate inner-product search. An approach by Liu et al. [30] utilises a

novel triplet selection approach for selecting hard triplets, called Group Hard, used in

conjunction with triplet quantization with weak orthogonality to reduce codebook

redundancy. We adopt DTQ’s quantization and triplet selection strategies in our

approach.

3.2.3 Multi-label image retrieval

Most deep metric learning and deep hashing methods define pairwise similarity

coarsely on a single-label basis. That is to say, two images are considered similar if

any one label matches and dissimilar if no labels match. However this definition

fails to capture the similarity ranking of multi-object images, and falls short of

the fine-grained scene comparison capabilities displayed by humans. Recently,

several approaches have been proposed to address this issue. DSRH [107] uses a

weighted ranking loss to constrain deep hash codes to follow a ranking based on

the number of common labels between data points. Another approach, presented

in [108], first generates region proposals and then aggregates them into separate

deep representations, which are combined and mapped to a single semantic hash

code. IDHN [109] is another method targeted at multi-label images, that employs a

soft-similarity based on the cosine distance of label vectors, and a mean square error

function that constrains hash-codes to preserve this similarity.

To the best of our knowledge, all existing methods take into account the presence

or absence of certain labels, but not their multiplicity. We propose a more generalized

similarity function that is not only sensitive to the presence or absence of labels,

but also the number of occurrences of their corresponding objects in the image. We

also propose an architecture that is primed for extracting such information. For

simplicity, we disregard examples where all labels are missing.
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3.2.4 Relation networks

A relation network (RN) [110] is a neural network module that is geared towards

relational reasoning. An RN is defined simply by the composite function

RN(O) = fϕ

⎛⎜⎜⎜⎜⎜⎜⎝∑︂
i, j

gθ(oi, o j)

⎞⎟⎟⎟⎟⎟⎟⎠ (3.2)

where O = {o1, o2, · · · , on} is a set of objects, oi is the ith object and fϕ and gθ are

functions with parameters ϕ and θ respectively[110]. The function gθ infers the

ways in which two objects are related and fϕ uses the sum of these relations to

make a decision. The two functions gθ and fϕ are feed forward neural networks

and θ and ϕ are the weights of these networks. A CNN augmented with an RN

was shown to offer superior performance in tasks involving object comparison and

counting. A two-stage variant of the RN architecture was also used in [111] to extract

relation-aware features and retrieve images with similar object relationships. In our

work, we use an RN module in parallel with a fully connected layer to equip our

model with the capability to individualize and count objects.

3.2.5 Triplet selection strategies for triplet networks

Triplet networks, introduced in Section 3.2.1, require good triplet selection strategies

to speed up convergence and achieve higher quality image embeddings. To date,

numerous such strategies have been proposed. These can be roughly categorized

into online [112–117] and offline [118, 119] strategies. Online strategies generate all

possible triplets or a number of useful triplets for training within each mini-batch.

This is more efficient as it is faster to mine optimal triplets within a mini-batch

and this can be done on the fly, during training. The downside of this approach,

however, is that a mini-batch often does not provide an accurate reflection of the

properties of the embedding space and it is possible to overlook some important

triplets. Offline triplet generation involves generating all the triplets before training,

and each mini-batch contains a fixed number of triplets. This strategy suffers from

being computation-heavy, since we only have two options: generate all possible
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triplets or search for optimal triplets over the entire training set. Additionally, as the

model becomes better at embedding images, some of the originally selected triplets

become ineffective for training. This can be counteracted by regenerating triplets

using the latest model checkpoint at regular intervals.

In order to achieve faster convergence, it is important to select triplets that yield

a non-zero loss, as these are the only triplets that the network can learn from. If we

assume the standard triplet ranking loss, this can be written as:

{a,p,n : d(a,p) − d(a,n) +m > 0} , (3.3)

where d is the Euclidean distance function, and a, p and n are the embeddings for the

anchor, positive and negative examples respectively. m is a chosen margin parameter.

Given an anchor, there are several ways of selecting the negative and positive

examples. Batch-hard [114] selects the hardest positive and negative examples in a

batch, that is to say:

arg max
p

d(a,p)

arg min
n

d(a,n)
(3.4)

Batch-all [113] generates all valid triplets in a batch and averages the loss over

non-zero loss triplets. Schroff et. al [112] argue that selecting the hardest negatives

can cause the model to collapse, and instead adopt an approach that selects all

possible (a,p) pairs in a batch and for each of these pairs, selects a semi-hard negative

such that:

d(a,p) − d(a,n) +m > 0, d(a,n) > d(a,p) . (3.5)

Liu et. al [30] propose a similar approach but instead of selecting a semi-hard

negative, they randomly pick a negative from all hard and semi-hard negative

examples. We adopt this approach in method I (section 3.3) of this chapter, and a

similar but slightly different approach in method II (section 3.4). Figure 3.1 illustrates
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the idea of hard, semi-hard, and easy triplets. As a rule, easy triplets are disregarded

as they do not contribute to training the model.

Fig. 3.1 An illustration of hard, semi-hard, and easy triplets

3.2.6 Losses for multi-label deep metric learning

As we mentioned in section 3.2.3, approaches that define pairwise similarity of

multi-label images as a continuous variable are few. In this section, we briefly

introduce the approaches that adopt this approach and how they modify the loss

function to account for image similarity levels.
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Zhao et al. [107] weight the entire triplet ranking loss with a coefficient based on

the number of shared labels between a database point and a query. The weight term

is defined as:

w =
2Wap − 2Wan

Z
(3.6)

where Wap and Wan are the number of shared labels between the anchor, and the

positive and negative samples respectively. Z is a constant of normalization. The

loss then becomes:

L = w max{d(a,p) − d(a,n) +m, 0} (3.7)

The effect is that the larger the anchor-positive similarity is than the anchor-

negative similarity, the bigger the gradients generated through the network.

Zhang et al. [109] propose a pairwise loss that constrains the inner product of a

pair of binary embeddings to equal a value weighted by a similarity coefficient. The

loss is defined as:

L =
(︄
⟨xi, x j⟩ +D

2
− si jD

)︄2

(3.8)

where ⟨xi, x j⟩ is the inner product between binary embeddings xi and x j, D is the

dimensionality of the embeddings, and si j is defined as:

si j =
⟨yi, y j⟩⃦⃦⃦
yi

⃦⃦⃦ ⃦⃦⃦
y j

⃦⃦⃦ (3.9)

which is the cosine similarity between label vectors yi and y j. The loss function in

equation 3.8 forces the pairwise hamming distances of network-generated binary

codes to preserve the ranking of their corresponding cosine similarities. In this

chapter, we present two methods that involve weighting different parts of the triplet

ranking loss with a similarity coefficient.
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3.2.7 Variational auto-encoders

Auto-encoders (AE), introduced in the 1980s [120] have proven to be powerful

unsupervised models for dimensionality reduction, image de-noising, compression,

and feature extraction, among other tasks. The standard AE architecture consists

of an encoder module terminating in a latent layer, followed by a decoder module

that reconstructs the original input from the latent layer. An AE learns by mapping

input to the latent space, and then mapping it back to the original space such that the

reconstruction error between the input and output is reduced. Figure 3.2 illustrates

the basic idea of an auto-encoder.

Fig. 3.2 An illustration of a basic auto-encoder
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For an AE to perform any of the above mentioned tasks, a constraint must

be placed on the latent layer. In de-noising and compression the latent layer is

constrained to have a lower dimension than the input, forcing the encoder to

learn a recoverable lower dimensional representation of the input [121, 122]. In

some feature extraction AEs, a sparsity constraint is applied to the latent layer,

creating an information bottleneck without reducing dimensionality of the original

input[123, 124].

Variational auto-encoders (VAE), first introduced by Kingma et al. [50], have

quickly gained popularity as generative models. Instead of directly assigning values

to the latent variables, the encoder part of a VAE estimates the latent state as a

probability distribution. The decoder then samples from this distribution and

generates an example. The model typically learns by minimizing the following

penalty:

Lvae = Er(x, x̄) +
|lh|∑︂
i=1

KL
(︂
N(µ, σ2)||N(0, 1)

)︂
(3.10)

where x is the input, x̄ is the reconstructed input, and |lh| is the size of the latent layer.

The first term is a reconstruction error between the original input and reconstructed

input, and the second term is the Kullback-Leibler (KL) divergence between the

Gaussian distribution of the latent state, estimated by the encoder, and the standard

Gaussian distribution. Figure 3.3 illustrates the idea of a VAE.

Graphical models have been used to capture inter-label relations in order to

deal with incomplete labeling in multi-label datasets [64, 67]. We present one such

approach in chapter 1, using a restricted Boltzmann machine (RBM). In recent years,

VAEs have replaced RBMs in most applications because they easier to optimize,

versatile and extensible. We present a method in this chapter that employs a VAE to

capture inter-label relations and complement label vectors with additional relevant

labels. We show that training an embedding network on these new labels yields

higher retrieval accuracy.
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Fig. 3.3 The architecture of a variational auto-encoder

3.3 Proposed Method I

Our first proposed method is illustrated in Figure 3.4. In this section, we describe

the various components that make up our model.

3.3.1 Triplet generation scheme

We adopt Group-Hard, a triplet selection scheme introduced in [30]. It involves

dividing the training labels into P partitions, and randomly selecting a non-easy

negative for each anchor-positive pair in each partition. Fresh triplets are generated
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Fig. 3.4 An illustration of our architecture

at the beginning of each epoch, and once the number of triplets falls below a pre-

determined threshold, the number of groups is halved to ensure that a sufficient

number of triplets is available for training in each epoch. The strategy is summarized

in Algorithm 2
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Algorithm 2: The Group-hard triplet generation algorithm
Input: image embeddings X = {xi}

N
i=1

Input: image similarities S = {xi}
N
i=1, j=1

Randomly split X into P partitions of equal size

T← ∅

for p=0 to P do

foreach {xa, xp
∈ Gp : sap > 0} do

Tap ← ∅

foreach {xn
∈ Gp : san == 0} do

if ∥xa
− xn
∥

2
2 − ∥xa

− xp
∥

2
2 < m then

\\ xp and xn have the wrong distance-wise ranking w.r.t. xa

Tap ← Tap ∪ { < xa, xp, xn > }

end

end

T← T ∪ rand(Tap)

end

end

3.3.2 Feature extractor

Without loss of generality, we follow [105, 106, 30, 109] and adopt AlexNet [3] as our

base CNN architecture. The feature extractor consists of five convolutional layers

with a ReLU non-linearity after each layer and max-pooling after the first, second,

and fifth convolutions. Our features are the output of the fifth layer, consisting of 256

convolutional feature maps, max-pooled to a size of 6×6. We use this architecture

for simplicity and consistency with similar proposed methods, but other CNN

architectures could just as easily be used with our approach. To prove this, we

perform additional experiments using VGG16 [125] as the underlying architecture

and show that our method outperforms the closest competing method with a larger

margin.
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3.3.3 Feature aggregation

The features from the last convolutional layer are fed into a feature aggregation

module that consists of a fully connected section and an RN in parallel. The fully

connected layers combine all the locations from the incoming feature maps into a

global, compact representation, whereas the RN encodes object relationships, and

more importantly, instances. The fully connected section is made up of two layers

from the AlexNet architecture, fc-6 and fc-7, and terminates in a linear layer that

outputs a 64-dimensional vector, which we will denote xFC. The RN takes as its

input O, the set of point-wise features from the last convolutional layer. It is a slight

modification of equation (3.2), and is defined as:

xRN = RN(O) = fϕ

⎛⎜⎜⎜⎜⎜⎜⎝∑︂
i, j

gθ(xFC,oi,o j)

⎞⎟⎟⎟⎟⎟⎟⎠ (3.11)

where xFC is appended to add global context to the processing of each pair. gθ and fϕ
consist of three fully connected layers each. We apply a ReLU activation after each

layer except the last layer, which outputs a 64-dimensional vector, xRN. We apply a

batch normalization layer before fϕ, as we found that the summation in equation

(3.11) leads to large gradients, which cause the model to diverge. The final compact

deep representation is a concatenation of the outputs of the two parallel modules:

x = [xFC, xRN] (3.12)

where [·, ·] denotes concatenation.

3.3.4 Triplet quantization

Out of the quantization schemes presented in section 3.2.2, the one introduced in

[30] most fits our approach, since it is targeted at the triplet embedding case. It also

includes an orthogonality constraint, which prevents codeword duplication across

codebooks. Furthermore, it was proven to yield better results than the product

quantization presented in [105]. Therefore, we adopt the triplet quantization scheme

presented in [30] with a slight modification. It involves learning a set of M codebooks
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C = [C1, ...,CM], with each codebook containing K D-dimensional cluster-centroid

vectors Cm = [Cm1, ...,CmK]. Then for each deep representation, we learn a binary

assignment vector bi, made up of M indicator vectors where each indicator vector

bmi selects 1 of the K codewords in the m-th codebook to approximate the i-th deep

representation xi. The set of codebooks C is shared across all triplets to enable

knowledge sharing. To reduce redundancy, an orthogonality penalty is applied

across the M codebooks. The entire quantization objective is defined as:

Q =
N∑︂

i=1

⃦⃦⃦⃦⃦
⃦⃦xi −

M∑︂
m=1

Cmbmi

⃦⃦⃦⃦⃦
⃦⃦

2

2

+ γ
M∑︂

m=1

M∑︂
n=1

∥C⊺mCn − I∥22 (3.13)

where the second term, weighted by γ, is the orthogonality penalty. N is the number

of samples in a mini-batch, including anchors, positives, and negatives. Thus far,

this is similar to the approach presented in [30]. In our case, we found that it was

better to split the quantization of xFC and xRN, as these branches learn different

deep representations. We split the set of codebooks into two, where each part

has M/2 codebooks and each codebook has K D/2-dimensional centroid vectors.

Before splitting, the number of bits used for each code is M log2 K. Assigning M/2

codebooks to each part of the output vector means the total number of bits remains

2(M/2) log2 K =M log2 K. This allows us to preserve the number of bits used for each

code, but requires the total number of codebooks M to be even. Hence equation

(3.13) becomes

Q =
∑︂

∗∈(FC,RN)

⎛⎜⎜⎜⎜⎜⎜⎝ N∑︂
i=1

⃦⃦⃦⃦⃦
⃦⃦xi −

M/2∑︂
m=1

C∗mb∗mi

⃦⃦⃦⃦⃦
⃦⃦

2

2

+ γ
M/2∑︂
m=1

M/2∑︂
n=1

⃦⃦⃦
C∗⊺m C∗n − I

⃦⃦⃦2

2

⎞⎟⎟⎟⎟⎟⎠ (3.14)

During retrieval, we follow [105, 106, 30] and compute the Asymmetric Quantizer

Distance (AQD), which is defined as the inner product similarity between the

embedding of a given query and the vector obtained by reconstructing a database
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point xn from its binary code. In our case, taking into account the splitting of the

codebooks, it becomes:

AQD(q, xn) =
∑︂

∗∈(FC,RN)

z∗⊺q

⎛⎜⎜⎜⎜⎜⎝M/2∑︂
m=1

C∗mb∗mn

⎞⎟⎟⎟⎟⎟⎠ (3.15)

where zq is the embedding of query q. With AQD, we can pre-compute all possible

values of the inner product z∗⊺q C∗mb∗mn and store them in a query specific M×K lookup

table from which we calculate the AQD between the query and each database point.

This only requires M table lookups and additions for each database point, which

leads to a reduced computational cost of retrieval.

3.3.5 Triplet loss with an adaptive margin

Given two label vectors yi and y j, we compute a similarity measure based on the

Jaccard similarity coefficient [126]. The general idea is illustrated in Figure 3.5 .

Using label vectors, we formally define this metric as:

si j =

∑︁
|S|
n=1 min(yin, y jn)∑︁
|S|
n=1 max(yin, y jn)

. (3.16)

where |S| is the size of the label space under consideration and yin ≥ 0 is the number

of occurrences of the n-th label for the i-th example. To put it simply, this is the

intersection over union (IOU) between two label vectors, which takes the number

of occurrences of each object into account. This similarity measure has the nice

property of being in the range [0, 1], is robust against sparsity in label vectors, and

treats both binary (for multi-label) and non-binary (for multi-object) label vectors.

We modify the triplet loss function in Equation 3.1 to adjust the margin based on the

similarity of the positive pair as follows

L =
N∑︂

i=1

max{d(xa
i , x

p
i ) − d(xa

i , x
n
i ) + si

a,pm, 0} (3.17)

where sai,pi is the similarity between the anchor and positive from the i-th triplet.

This is slightly similar to the function presented in [106]. However, there are some
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Fig. 3.5 An graphical illustration of the definition of the similarity function

key differences; the loss presented in [106] is a function of cosine similarities with

no constant part, whereas ours uses our proposed similarity measure to scale a

constant margin, allowing us to use large margin values. Additionally, they consider

cosine similarities between deep representations and word embeddings whereas we

consider relative distances between deep representations. The final loss function is

then defined as

E = L + λQ, (3.18)

where λ is a parameter that controls the strength of the quantization loss term.
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3.4 Proposed Method II

In this section, we present several incremental improvements over the method pro-

posed in section 3.3. These include a new triplet generation scheme, a corresponding

modification to the loss function, and a strategy for reconstructing labels under an

assumption of incompleteness.

3.4.1 Triplet generation scheme

In the first method, we utilize a triplet selection scheme adopted from [30]. Based

on that, we introduce a simple but effective triplet selection scheme we developed

in order to explicitly enforce the correct ranking of retrieved results based on the

continuous similarity level of database points. Whereas the approach presented in

the authors’ paper assumes that relative to a chosen anchor image, an example can be

either positive or negative, our approach only considers relative similarity. Relative

to a query, the goal is then to find two examples that have incorrect distance-wise

ranking, given their ground-truth similarity to the query. We select a small m as

the minimum margin with which to separate d(xa, xi) and d(xa, x j), for any triplet

of embeddings xa, xi and x j such that sai ≠ saj. We still divide the training data

into a number of P partitions, but unlike in Algorithm 2, this number remains

fixed throughout training. This is because the number of triplets generated by

our algorithm does not decrease substantially. The triplet selection algorithm is

summarized in algorithm 3.
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Algorithm 3: Our triplet generation algorithm
Input: image embeddings X = {xi}

N
i=1

Input: image similarities S = {xi}
N
i=1, j=1

Randomly split X into P partitions of equal size

T← ∅

for p=0 to P do

foreach {xa, xi
∈ Gp : sai > 0} do

Tai ← ∅

foreach x j
∈ Gp do

if saj < saiand
⃦⃦⃦
xa
− x j

⃦⃦⃦2

2
−

⃦⃦⃦
xa
− xi

⃦⃦⃦2

2
< m then

\\ xi and x j have the wrong distance-wise ranking w.r.t. xa

Tai ← Tai ∪ { < xa, xi, x j > }
end

end

T← T ∪ rand(Tai)
end

end

3.4.2 Improved triplet loss

Since the objective is simply to encourage the correct ranking between a pair of

examples relative to the anchor, we no longer implement an adaptive margin. Since

it is possible to have a triplet such that sai > saj > 0, we can directly control the

ordering of positive results. There is hence no need to vary the margin to account

for the different levels of similarity that a "positive" example might have. Instead,

we introduce the similarity coefficient into the loss function as follows:

L =
N∑︂

i=n

max{wn ·
[︂
d(xa

n, x
i
n) − d(x j

n, xn
i ) +m

]︂
, 0} , (3.19)

wn =Wn
ai · (s

n
ai − sn

aj) (3.20)
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where Wn
ai is the number of shared labels between the anchor and sample i. Note

here that sn
ai > sn

aj, therefore wn is always positive. The weight term has the following

effect:

• It yields big gradients for triplets with a large difference in relative similarity,

as opposed to the adaptive margin implemented in section 3.3.5, which does

not propagate back into the network.

• It attributes more importance to triplets that involve large numbers of shared

labels

3.4.3 Label reconstruction using a variational auto-encoder

We introduced VAEs in section 3.2.7. Assuming the existence of examples with

missing labels in the training data, we use a VAE to learn label correlations in the

label space and add supplemental labels to the training samples. To teach the model

to recover missing labels, we introduce noise in the input by zeroing out a percentage

of the labels. We train the model using the following function:

Lvae = Er(y, ȳ) + γ ·
|lh|∑︂
i=1

KL
(︂
N(µ, δ2)||N(0, 1)

)︂
(3.21)

where γ is a parameter that controls the strength of the KL divergence regularization

term. y is the label vector (before label removal) and ȳ is the label vector reconstructed

from the latent state by the decoder, in form of probabilities. At test time, we calculate

the reconstructed label vector as follows:

ŷ =
{︂
⌊max(yi, ȳi) + 1 − t⌋

}︂|S|
i=1

(3.22)

where t is a threshold parameter. Essentially, this function just adds any new labels

that are predicted with probability ≥ t to the original label vector. We later analyze

the effect of this parameter on model performance.
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Fig. 3.6 Examples of samples with missing labels in the NUSWIDE dataset

3.5 Experiments

3.5.1 Datasets

We train our model on two benchmark datasets, NUS-WIDE [127], and MS-COCO

[34].

NUS-WIDE contains 269,648 images, where each image is labeled with a subset of

81 concepts. We follow [105, 106, 30] and randomly sample 5000 images as queries,



3.5 Experiments 59

10,000 images for training, and use the rest as database data. This dataset is an

example of a multi-label image dataset. Two sample images are shown in Figure 3.7.

(a) sun, sunset, sky, clouds

(b) buildings, tower, nightime, sky, clouds

Fig. 3.7 Two sample images from the NUS-WIDE dataset

MS-COCO contains 82,783 training images and 40,504 validation images, where

objects in each image fall in one of 80 categories. We follow the procedure in [30]

and randomly sample 5000 images as queries, 10,000 images for training, and use
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the rest as database data. This dataset is an example of a multi-object image dataset.

We show two sample images from this dataset in Figure 3.8.

(a) person (2), frisbee (1)

(b) cow (8)

Fig. 3.8 Two sample images from the COCO dataset (The number in brackets is the
number of occurrences of each object in the target image)

3.5.2 Training

For method I, we set the number of partitions for triplet generation P=20 for

MS-COCO and P=50 for NUS-WIDE. Following [106, 30], we fix the number of
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codewords as K = 256. Thus for M codebooks, the binary code for each sample is

8M-bit long. We quantize the RN and FC components of the output vector separately,

and assign an equal number of codebooks to each, so that the final number of bits

becomes 2 × 8M.

During training, we fine-tune convolutional layers from conv-3 to conv-5, and

fully connected layers fc-6 and fc-7 of AlexNet. On VGG16, we only train the fully

connected layers fc-6 and fc-7. The last fully connected layer, and the entire RN

portion of the architecture are trained starting from scratch, using a random Gaussian

initialization. We use stochastic gradient descent (SGD) with a momentum of 0.9

as our optimizer, and start with a learning rate of 10−5, later scaling it down by

10−1. We determined the rest of the parameters by doing parameter searches within

reasonable ranges. We set m = 15 by doing a parameter search in the range [5, 30],

and λ = 0.001 by doing a parameter search in the range [0, 1]. We initially held back

1000 samples from the training set for validation and hyper-parameter tuning, then

used the entire training set to train the final model.

For method II, we use a VAE with layers {(in:81, out:128), (in:128, out:256), (in:256,

out:256) , (in:256, out:256), (in:256, out:128), (in:128, out:81)}, where the layer in bold

is the latent layer. We set the KL divergence regularizer strength as γ = 1e − 05. We

optimize the model using SGD with momentum, with an initial learning rate of 0.1,

which is decayed to 0.01 at 50000 iterations. For the metric learning model, we set

P as 25, and the margin as m = 8. We noticed that the contribution of the RN part

of our architecture is minimal, so we drop it for method II, to focus more on the

contribution of the loss function and triplet selection scheme.

3.6 Results and Analysis

3.6.1 Method I

Table 3.1 shows the MAP results of our method compared to some state-of-the-art

methods, and it shows that our method outperforms the comparison methods, with

margins as large as 5% on NUS-WIDE and 12.2% on MS-COCO. Specifically, our
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Table 3.1 Mean average precision (MAP) for different number of bits on two bench-
mark datasets. The underlying architecture is AlexNet.

Method NUS-WIDE MS-COCO
16
bits

32
bits

16
bits

32
bits

DQN [105] 0.735 0.752 0.653 0.685
DVSQ
[106] 0.790 0.797 0.712 0.720

DTQ [30] 0.798 0.801 0.760 0.767
MLMO1
(Ours) 0.803 0.805 0.806 0.807

Table 3.2 Mean average precision (MAP) for our method and several of its variants.
The underlying architecture is AlexNet

Method NUS-WIDE MS-COCO
deep
feat

16
bits

32
bits

deep
feat

16
bits

32
bits

MLMO1-
RN 0.799 0.789 0.763 0.775 0.773 0.774

MLMO1-
FC 0.799 0.797 0.799 0.799 0.794 0.795

MLMO1-
cosine 0.800 0.796 0.800 0.773 0.774 0.775

MLMO1 0.805 0.803 0.805 0.806 0.806 0.807

method shows gains of 0.4% and 4% over DTQ, a method which shares the most

similarities with our method. This MAP is calculated using the coarse definition

of similarity, that is, two data points are considered similar if they share at least

1 label, and dissimilar otherwise. This shows that for multi-label data, using

the coarse definition of image similarity for triplet sampling hurts performance,

even if we maintain the same definition during evaluation. We also note that our

method outperforms the competing methods by a larger margin on the MS-COCO

dataset than on the NUS-WIDE dataset. This proves that while our method offers

competitive performance for multi-label data, there is marked improvement over

previous methods when dealing with multi-object data.

Table 3.3 compares the mean average precision of our method against the closest

competing method, with VGG16 as the underlying architecture. We note that our
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Table 3.3 Mean average precision for our method and the best competing method
with VGG16 as the underlying architecture.

Method NUS-WIDE MS-COCO
deep
feat

16
bits

32
bits

deep
feat

16
bits

32
bits

DTQ [30] 0.806 0.801 0.803 0.803 0.801 0.802
MLMO1 0.835 0.828 0.833 0.856 0.859 0.859

Table 3.4 Mean average precision@0.50 (MAP@0.50) for our method and several of
its variants on the NUS-WIDE dataset (AlexNet architecture).

Method NUS-WIDE MS-COCO
deep
feat

16
bits

32
bits

deep
feat

16
bits

32
bits

DTQ [30] 0.398 0.392 0.400 0.121 0.117 0.116
MLMO1-
RN 0.454 0.366 0.354 0.123 0.119 0.170

MLMO1-
FC 0.451 0.449 0.447 0.173 0.170 0.170

MLMO1-
cosine 0.455 0.444 0.447 0.148 0.145 0.146

MLMO1 0.454 0.449 0.451 0.173 0.168 0.170

method outperforms DTQ with a larger margin (about 3% on NUS-WIDE and 5% on

MS-COCO) than when using the AlexNet architecture. This shows that our method

is more able to utilize the increased network capacity to yield a corresponding boost

in performance than other methods. At the very least, it shows that our method

maintains its lead in performance despite the underlying architecture.

Table 3.2 shows the MAP results for ablative experiments on our architecture. The

results justify some architectural choices we made for our final model. MLMO-RN is

a variant of our method using only the RN module after the feature extractor, whereas

MLMO-FC is a variant using only the fully connected module. MLMO-cosine is a

variant that uses cosine distance to compute similarity between label vectors, like

some other works propose [106, 109]. Our final proposed model has the highest

MAP for all numbers of bits on both datasets. It is worth noting that MLMO-FC,

a version of our model with the RN module removed, still performs better than

MLMO-cosine in multiple configurations (all configurations on MS-COCO, 16-bits
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on NUS-WIDE) and offers competitive performance in the rest of the configurations.

This points to the importance of our IoU-based similarity measure.

Since the deep feature can also be directly used in nearest neighbour search, we

include this result to show the information loss incurred due to the quantization step.

We note that this is something other works on the same topic fail to include. Our

results show no drop in MAP between the deep features and the 32-bit quantized

features. This proves that our learned deep feature can be quantized while preserving

similarity between images.

Table 3.4 shows MAP@0.50 results for the same ablative experiments shown in

table 3.2. This is similar to the standard MAP, but we only consider a retrieved image

as positive if its similarity sqi with the query, defined in equation 3.16, is greater

than 0.50. We also include results for the baseline, DTQ. We include this metric to

investigate how well our model learns the objective based on the similarity measure

we proposed, and how well it performs in multi-label and multi-object retrieval.

Under each configuration, a variant of our method outperforms the baseline, which

proves the superiority of our method on both multi-label and multi-object image

retrieval. Except for the deep feature-based nearest neighbour search on NUS-WIDE,

variants of our method using the proposed similarity metric give the best MAP@0.50.

It is also worth noting that on the NUS-WIDE dataset, where label vectors are binary

and there is no supervised information of object multiplicity, the margin between the

models using cosine similarity and Jaccard index is small (0.4 under 32 bits%). On

MS-COCO dataset, however, the margin is large (2.4%), emphasizing the superiority

of our proposed similarity metric for multi-object retrieval.

Figure 3.9 shows the top-10 retrieved results for our method, its cosine variant,

and the baseline method. The IOU between the label vectors of the retrieved image

and the query is shown against each result. All the examples use 32-bit quantized

features. For the NUS-WIDE example, the cosine and Jaccard similarity variants of

our model offer comparative performance, with our approach (MLMO) returning

slightly more results with an IOU over 0.5. Both variants perform better than the

baseline. The MS-COCO example shows that our method is more able to factor in
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object multiplicity during retrieval than both the cosine similarity-based variant and

the baseline.

Query
Top 10 retrieved images

(sqi)

NUS-
WIDE

military
vehicle

sky
clouds
plane

(0.6) (0.8) (0.8) (0.8) (0.0) (0.67) (0.5) (0.8) (0.5) (0.67)

MLMO1

(0.6) (0.6) (0.6) (0.6) (1.0) (0.8) (0.4) (0.8) (0.4) (0.8)

MLMO1-
cosine

(0.5) (0.5) (0.3) (0.5) (0.5) (0.6) (0.57) (0.4) (0.29) (0.5)

DTQ

MS-
COCO

airplane
(x6)

(0.75) (0.17) (0.0) (0.67) (0.17) (0.0) (0.17) (0.43) (0.67) (0.17)

MLMO1

(0.83) (0.17) (0.17) (0.17) (0.17) (0.17) (0.17) (0.33) (0.17) (0.17)

MLMO1-
cosine

(0.0) (0.33) (0.17) (0.33) (0.17) (0.17) (0.17) (0.33) (0.17) (0.17)

DTQ

Fig. 3.9 Retrieval examples for two variants of our method and the baseline method
(using 32-bit quantized features)
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3.6.2 Method II

Effectiveness of label reconstruction

We present some examples to demonstrate how the VAE adds relevant missing labels

to some examples in the NUSWIDE dataset. Figures 3.10 and 3.10 demonstrates

the ability of our trained VAE to suggest supplemental labels that are relevant to

the images. From Figure 3.10, we observe that label reconstruction increases the

similarity s for training images that were originally dissimilar. This encourages the

correct semantic ranking of retrieved results. In this specific case, the similarity

coefficient of the examples shown in Figures 3.10e and 3.10f changes from s = 0 to

s = 0.5.

Retrieval performance

In this section, present the quantitative retrieval performance of method II in terms of

MAP. We achieve an improvement of 0.4% over method I on the NUSWIDE dataset,

and 0.4% over the closest competing method. More notable is the improvement in

MAP@0.5, which requires that a database point have s ≥ 0.5 to be a positive result.

On this metric, method II offers an improvement of 2.1% over the first method, and

35% over the closest competitor. This shows that the improvements introduce in

method II are necessary for superior performance in multi-label image retrieval.

Table 3.6 shows the effect of the threshold parameter t on the retrieval performance

of the model. Note that t = 1 is the case where the original labels are maintained.

We note that there is still an improvement in MAP@0 (single label similarity) in this

case, which means that our triplet generation strategy and loss function alone lead

to a performance improvement. However, a bigger improvement is observed with

label reconstruction on the MAP@0.5 metric (multi-label similarity) than without.

This shows that incomplete labeling affects the accuracy of s in describing the true

similarity of multi-label images in the training data. We also observe that for the

most part, 16-bit codes yield better results than 32-bit codes. This means that the

feature learned by method II can be quantized with fewer centroid vectors, which

could lead to better retrieval speed.
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(a) military, sky, plane, clouds (b) coral, fish, water, animal

(c) lake, water, clouds, sky, ocean (d) garden, clouds, grass, sky

Fig. 3.10 Examples of label supplementation (text in bold indicates new labels
suggested by the VAE)

3.7 Conclusion

In this chapter, we introduced a deep metric learning approach focused on scene

comparison between multi-label and multi-object images. We define a simple and
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(e) bird, animal (f) dog, animal

Fig. 3.10 More examples of label supplementation (text in bold indicates new labels
suggested by the VAE). Originally dissimilar images become partially similar

Table 3.5 Mean average precision (MAP) for method II compared to method I. The
underlying architecture is AlexNet.

Method NUS-WIDE (MAP@0) NUS-WIDE (MAP@0.5)
deep
feat

16
bits

32
bits

deep
feat

16
bits

32
bits

MLMO1 0.805 0.803 0.805 0.454 0.449 0.451
MLMO2 0.810 0.810 0.809 0.247 0.475 0.472

effective similarity measure that enables our model to learn similarity preserving deep

representations for multi-label and multi-object images. We show that our method

offers better performance than some state-of-the-art methods on two benchmark

datasets. Our work represents an important step towards fine-grained scene

comparison in CBIR. A possible extension of this work would be to introduce a

similarity measure that also takes into account the relations between objects in

an image, and an architecture that reliably preserves the similarity of entire scene

graphs.
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Table 3.6 Effect of threshold parameter t on model performance (AlexNet).

t NUS-WIDE (MAP@0) NUS-WIDE (MAP@0.5)
deep
feat

16
bits

32
bits

deep
feat

16
bits

32
bits

0.4 0.810 0.810 0.807 0.241 0.465 0.460
0.5 0.810 0.810 0.809 0.247 0.475 0.472
1.0 0.808 0.807 0.807 0.248 0.452 0.454





Chapter 4

Conclusion

4.1 Summary

In this study, we developed techniques for dealing with multi-label and multi-object

image data in deep learning algorithms. In chapter 1, we introduced multi-label

image data and why it is important in real world applications. We presented the

unique challenges that emerge when training deep learning algorithms on multi-label

data, and established that there is need to pay special attention in such cases. In

chapter 2, we tackled the task of multi-label image annotation using a convolution

neural network (CNN), and focused on how to deal with missing labels, which

is usually an inevitable problem in multi-label image datasets. We presented two

possible solutions, both of which showed promise in smoothing out the effect of

incomplete labeling in training data. In chapter 3, we changed the target task to image

retrieval through deep metric learning, and looked at how we can adapt the loss

function, architecture and sample selection strategy to the case of multi-label data.

We proved on popular benchmarks that our approaches are effective in increasing

the performance and quality of retrieval offered by CNNs.
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4.2 Findings

We presented two approaches in chapter 2. One involved using a regularization

term that leverages label co-occurrence and similarity distributions inside and

outside the training data. Either method, when used alone, still offers a performance

improvement over the baseline, but their combined effect is better. Using an RBM to

reconstruct the training labels offers competitive, albeit slightly lower performance

than the unified regularization approach. We think that all approaches that utilize

internal label co-occurrence distributions will ultimately be limited by the training

data itself. However, using a separate model like the RBM to pre-process label

data in the pre-training stage holds an advantage in that it can be applied to other

tasks apart from image annotation, since it is not couple with the target model itself.

The disadvantage is that RBMs are not straightforward to train and the approach

employing label reconstruction adds an extra stage to the whole algorithm.

We also presented two approaches in chapter 3, with the second one being an

extension of the first. Both approaches are better than the baseline in quantitative

and qualitative retrieval performance, with the second method being the best. The

second method’s major contributions are an improved triplet selection scheme, a

modified loss function, and label reconstruction using a VAE. We observe that using

an RN to aggregate convolutional features in order to increase the model’s ability

to tackle multi-object data did not yield substantial improvements than using a

simple feed forward network. However, we speculate that a specialized model

to separate instances of an object in an image is still necessary and with further

architecture adjustments, an RN could still offer the required boost. In keeping with

current trends, we included a quantization step in our model pipeline, to enable low

storage and computation costs. Whereas other researchers report some performance

variability with different numbers of bits used in hashing or quantization models,

we found that our model is invariable to the number of bits for the most part. We

reason that since the embedding and quantization stages of the architecture are

separate, the quality of the quantized feature is directly dependent on the quality of

the embedding. Above a certain number of bits, the retrieval performance of the
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quantized vector will saturate, unless the embedding itself becomes better. This is a

phenomenon that is more observable in quantization models rather than hashing

models.

4.3 Limitations and Further Considerations

One limitation common to the approaches presented in both chapter 2 and 3 is the

backbone network. To enable easy troubleshooting and reduce training time, we

resorted to using the simple AlexNet CNN architecture, but it is quite possible that

the architecture itself puts a limit on how much performance improvements we

are able get from our proposed contributions. At a certain point, the performance

saturates because of network capacity regardless of improvements made in other

parts of the algorithm. Using more recent, deeper architectures [125, 128, 4, 6, 129],

we might see a bigger margin between the competing approaches and our method.

As mentioned above, as an additional solution to the missing label problem, we

used an RBM to encode label dependencies and generate supplemental labels for

the training data in chapter 2. However, it is important to note is that recently, VAEs

have begun to replace RBMs as generative models, since they are easier to train and

in most circumstances offer better performance. Based on this, we made a change in

chapter 2 and switched to a VAE as the model used to learn label dependencies in

the training data. In future, it might be pertinent to switch out the RBM with a VAE

in the method presented in Chapter 2 as well.

A drawback of both approaches proposed in Chapter 3 is that they use offline

triplet mining to generate training examples. This means that fresh triplets have

to be generated at the beginning of every epoch to account for the change in

model parameters and structure of the embedding space. This slows down training

noticeably. We tried moving the triplet generation online, by computing similarities

batch-by-batch, but failed to achieve comparable performance. One reason for this

could be because online triplet generation causes the network to learn on triplets

containing a lot of repeated examples, hence reducing variability within a batch.
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One pitfall of learning on multi-label data is that the missing label problem persists

through to the evaluation stage. Though we notice a performance improvement in

both multi-label annotation and multi-label retrieval after taking measures to deal

with incomplete labeling, the quantitative score could still be negatively affected by

missing labels in the test data. To reliably evaluate the ability of a method to learn a

good model regardless of missing labels in training data, the test data itself needs to

be labeled perfectly. This is a tedious and time-consuming process, especially for

large-scale datasets. Therefore, in addition to quantitative evaluation, it is necessary

to analyze the performance qualitatively, by inspecting several annotation or retrieval

examples.
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Appendix A

Retrieval Examples

This appendix illustrates qualitatively the retrieval performance of our methods

in chapter 3, compared with the closest competing method. The labels given in

the dataset for each query are indicated next to it. We added relevant labels where

applicable to provide more context and demonstrate the models’ performance

assuming that all labels are available.



88 Retrieval Examples

Query
plants, animal, flowers

partially similar
fully similar

Method Top 20 retrieved images

DTQ [30]

MLMO1

MLMO2
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Query
buildings, tower, nighttime, sky,

clouds[, water, reflection]
partially similar
fully similar

Method Top 20 retrieved images

DTQ [30]

MLMO1

MLMO2



90 Retrieval Examples

Query
sky, valley, rocks, sky, water,

clouds, mountain, grass
partially similar
fully similar

Method Top 20 retrieved images

DTQ [30]

MLMO1

MLMO2
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Query
flowers, sky[, plants]

partially similar
fully similar

Method Top 20 retrieved images

DTQ [30]

MLMO1

MLMO2
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