Hiroshima University Doctoral Thesis

Design and Synthesis of PhotolabileProtecting Group with Two PhotonAbsorption and Reactivity:Application to Caged Compounds2光子吸収と反応性に優れた光解離性保護基の設計と合成:ケージド化合物への応用

2021

Department of Chemistry Graduate School of Science Hiroshima University

Pham Thi Thu Thuy

Table of Contents

1. Main Thesis

Design and Synthesis of Photolabile Protecting Group with Two Photon Absorption and Reactivity: Application to Caged Compounds (2光子吸収と反応性に優れた光解離性保護基の設計と合成: ケージド化合物への応用)

2. Articles

- "*p*-Nitroterphenyl Units for Near-Infrared Two-Photon Uncaging of Calcium Ions" <u>Thuy Thi Thu Pham</u>, Satish Jakkampudi, Ko Furukawa, Fung-Yu Cheng, Tzu-Chau Lin, Yoki Nakamura, Norimitsu Morioka, Manabu Abe *Journal of Photochemistry & Photobiology, A: Chemistry* 2021, 409, 113154-113167.
- (2) "Impact of five-membered heterocyclic ring on photophysical property including twophoton absorption character"
 <u>Thuy Thi Thu Pham</u>, Youhei Chitose, Tran Thi Thanh Tam, Wei-Lun Tseng, Tzu-Chau Lin, Manabu Abe
 Chem.Lett 2021, CL-210420, *in press*.

3. Thesis Supplements

(1) "Design and Synthesis of Two-Photon Responsive Chromophores for Near-Infrared Light Induced Uncaging Reactions"
M. Abe, Y. Chitose, S. Jakkampudi, <u>P. T. T. Thuy</u>, Q. Lin, B. T. Van, A. Yamada, R. Oyama, M. Sasaki, C. Katan *Synthesis* 2017, 49, 3337-3346.

Contents

Chapter 1. General Introduction

- 1-1. Caged compound
- 1-2. One-photon excitation and two-photon excitation
- 1-3. Example for two-photon uncaging reaction
- 1-4. Molecular design for two-photon chromophores
- 1-5. Caged calcium
- 1-6. Purpose of this research study

References

Chapter 2. Design and synthesis of two-photon responsive photolabile protecting group with a terphenyl unit for near IR calcium ion uncaging reaction

- 2-1. Introduction
- 2-2. Design and Synthesis of *p*-nitroterphenyl-EGTA derivatives
- 2-3. Measurement of calcium ion binding affinity
- 2-4. Photophysical property
- 2-5. One-photon photolysis
- 2-6. Two-photon photolysis
- 2-7. Photochemical release of calcium ion
- 2-8. Laser flash photolysis
- 2-9. Experiment section
- 2-10. Supplementary material

References

Chapter 3. Impact of five-membered heterocyclic ring on photophysical property including two-photon absorption character

- 3-1. Introduction
- 3-2. Synthesis of *p*-terphenyl derivatives
- 3-3. Photophysical property
- 3-4. Two-photon absorption
- 3-5. Experiment section
- 3-6. Supplementary material

References

Chapter 4. Conclusion and Outlook List of Publications Acknowledgement

Chapter 1

General Introduction

1-1. Caged compound

Biologically active compounds play an extremely important role in our life. They are potential sources of new drugs development. To make use of these compounds, their roles and mechanisms in life phenomena must be elucidated. One of the research methods for elucidating mechanism of such physiologically active substances is using caged compounds. A caged compound in which a physiologically active substance is protected by a photolabile protecting groups (PPGs) and made inactive can regenerate the physiologically active substance by light irradiation^{1–10} (Figure 1). Since the process needs only light irradiation, the release of physiologically active substances can be controlled temporally and spatially, which is very useful for elucidating biological phenomena.

Figure 1. Caging and uncaging process of bioactive substances.

Until now, various types of PPGs have been developed and used to investigate the bioactivity of substances such as *ortho*-nitrobenzyl (*o*-NB) type^{11,12} and photo S_N1 type^{13,14} (Figure 2). Among them, the *o*-NB type photocleavable protecting group is most often used for caged compounds, and many reports have been made on its synthesis method and excellent photoreactivity. The *o*-nitrophenyl moiety has been widely used not only as a PPGs, but also as an electron-withdrawing group to induce nonlinear optical properties¹⁵. A donor–acceptor substitution pattern in π -conjugated systems endows molecules with good 2P absorption (2PA) properties.

ortho-nitrobenzyl type

ortho-nitro benzyl *Chem. Commun.* **1966**, 22, 822-823

Photo-S_N1 type

Quinoline Org. Lett. **2002**, 4, 3419

ortho-nitrophenyl ethyl *Tetrahedron Lett.* **1997**, 53, 4247

J.Org. Chem. 1995, 60, 3953-3956

Figure 2. PPGs of uncaging reaction.

1-2. One-photon excitation (1PE) and two-photon excitation (2PE).

The bioactive molecules used to be uncaged by 1PE using ultraviolet and visible light. However, conventional 1PE does not allow the three-dimensional spatial localization of the released molecules deep within living tissues. Furthermore, high energy light can induce cell damage. Thus, 1PE processes, especially with an ultraviolet light source, are not suitable for physiological experiments. As a result, the 2PE was introduced to solve these problems.

In contrast, a two-photon excitation (2PE) process, in which molecules are excited by the simultaneous absorption of two lower energy photons^{7–9,16–21}, decreases the risk of cell damage. In contrast to 1PE, because 2PE is nonlinear process, the excitation probability is proportional to the square of light intensity, leading to molecules at the focal point of the laser will be electronically excited. Moreover, if wavelengths in the near-infrared (NIR) region (680–1050 nm) can be used for 2PE, molecules located deep within tissues can be activated with three-dimensional control because tissues are relatively transparent to NIR light^{22–26} (Figure 3).

Figure 3. One-photon excitation and two-photon excitation process.

The 2P uncaging efficiency ($\delta_u = \sigma_2 \ge \Phi$) was calculated from 2P absorption crosssection (σ_2 in GM), (1 GM = 10⁻⁵⁰ cm⁴ s photon⁻¹), multiplied by the quantum yield (Φ) of the corresponding uncaging reaction. The unit of GM was named in honor of Göppert-Mayer, who introduced the theory of two-photon absorption (2PA) in 1931²⁷.

1-3. Example for two-photon uncaging reaction

Since the last few decades, several caged compounds have been developed for 2PA application but not many of them show high two-photon efficiency. For example, in 2006, Ellis-Davies and co-workers successfully developed a nitrodibenzofuran (NDBF) skeleton substituted with ethylene glycol tetraacetic acid (EGTA), which is known to be a selective Ca^{2+} chelator^{28,29}, as a 2P-responsive caged calcium species (Figure 1). The Ca^{2+} uncaging efficiency of NDBF-EGTA using 2PE at 720 nm was ~0.6 GM³⁰. Since then, new caged calcium compounds with better 2PA characteristics have been designed and synthesized. In 2012, Goeldner and co-workers developed biphenyl derivatives as highly 2P-responsive chromophores for caged glutamates and caged γ -aminobutyric acids with 2P-uncaging efficiencies of up to 11 GM at 800 nm and 3.2 GM at 740 nm³¹ (Figure 4). Some physiologists suggested that 2P uncaging efficiency should be more than 3 GM for application to physiological studies³². Therefore, the design of chromophores with a larger 2PA cross-section and uncaging quantum yield is promising.

Figure 4. Example for two-photon uncaging reaction

1-4. Molecular design for two-photon chromophores

To design the chromophores with a larger 2PA cross-section, several factors that affect about 2PA cross-section should be considered. The parameter to increase 2PA cross-section are extension of π -conjugation and donor/acceptor group that increase the transition dipole moment.

Extension of π -conjugation: Benzene has no 2PA cross-section, naphthalene has 2PA cross-section with a value of 0.9 GM at 530 nm³³. Moreover, stilbene, which has a double bond between two benzene rings, shows an improvement of 2PA cross-section with a value of 12 GM at 514 nm³⁴. These values clearly demonstrated that the extension of π -conjugation can enhance the 2PA cross-section.

Figure 5. Influence of π -extension on 2PA cross-section.

Donor/Acceptor group: Donor and acceptor groups are a key strategy to enhance 2PA cross-section value^{35–37}. When the strong donor and acceptor groups was introduced to the

 π -conjugation system, the chromophores have higher transition dipole moments. For example, the simple systems such as a dipolar system (D- π -A) and a quadrupolar system (D- π -D, A- π -A, D- π -A- π -D or A- π -D- π -A) show a significantly larger 2PA cross-section than that of the stilbene. The triangular or star-shaped structures which were called octupolar chromophores D(- π -A)₃ or A(- π -D)₃, exhibit the same principle and show even more considerable TPA cross-section values than simple systems³⁷ (Figure 6).

Figure 6. Influence of donor-acceptor groups on 2PA cross-section.

1-5. Caged calcium

The importance of Ca²⁺ in physiological and cells was investigated over 100 years ago. Ca²⁺ contributes significantly to numerous biological processes such as second messengers in cells, secretion of neurotransmitters, muscle contraction, nerve impulses and non-muscle motility³⁸. Based on these reasons, an explanation about the mechanism of calcium ion in cells is needed for physiologists to elucidate the mechanism related to memory and learning.

In 1980's, the structures of ethylene glycol tetraacetic acid $(EGTA)^{39}$ have been known as Ca^{2+} selective chelators (Figure 7). Since 1990's, Ellis-Davies and co-workers used an EGTA chelator³⁰ for the photo triggering of biologically active Ca^{2+} .

Figure 7. EGTA based calcium chelators.

1-6. Purpose of this research study

As mentioned above, in 2006, nitrodibenzofuran (NDBF) skeleton substituted with ethylene glycol tetraacetic acid (EGTA), which is known to be a selective Ca²⁺ chelator^{28,29}, was reported to have the 2P uncaging efficiency value of about 0.6 GM at 720 nm. Nonetheless, to be applied to physiological studies, a high cross-section value in the TP uncaging reaction, at least 3 GM, is required. Therefore, in this research, new chromophores have been designed based on *ortho*-nitro (NB) PPG with dipolar character (D- π -A) to increase the 2P-uncaging efficiencies of caged calcium compounds.

References

- 1 H. Yu, J. Li, D. Wu, Z. Qiu, Y. Zhang, Chem. Soc. Rev. 2010, 39, 464.
- 2 M. Matsuzaki, T. Hayama, H. Kasai, G. C. R. Ellis-Davies, *Nat Chem Biol* 2010, *6*, 255.
- 3 G. C. R. Ellis-Davies, Beilstein J. Org. Chem. 2013, 9, 64.
- 4 S. E. Crowe, S. Kantevari, G. C. R. Ellis-Davies, ACS Chem. Neurosci. 2010, 1, 575.
- 5 J. H. Kaplan, B. Forbush, J. F. Hoffman, *Biochemistry*. **1978**, *17*, 1929.
- 6 J. Engels, E. J. Schlaeger, J. Med. Chem. 1977, 20, 907.
- M. Abe, Y. Chitose, S. Jakkampudi, P. T. T. Thuy, Q. Lin, B. T. Van, A. Yamada, R. Oyama, M. Sasaki, C. Katan, *Synth.* 2017, 49, 3337.
- 8 S. Jakkampudi, M. Abe, *Ref. Modul. Chem. Mol. Sci. Chem. Eng.* 2018, 1.
- 9 Y. Chitose, M. Abe, *Photochemistry* **2019**, *46*, 221.
- 10 M. Goeldner, R. Givens, *Dynamic studies in biology: Phototriggers, Photoswitches and Caged biomolecules*, John Wiley & Sons, **2006**.
- 11 J. A. Barltrop, P. J. Plant, Chem. Commun. 1966, 22, 822.
- 12 R. S. Foote, P. Cornwell, K. R. Isham, H. Gigerich, K.-P. Stengele, W. Pfleiderer, R. A. Sachleben, *Tetrahedron* 1997, 53, 4247.
- 13 O. D. Fedoryak, T. M. Dore, Org. Lett. 2002, 4, 3419.
- 14 T. Furata, H. Torigai, M. Sugimoto, M. Iwamura, J. Org. Chem. 1995, 60, 3953.
- L. Donato, A. Mourot, C. M. Davenport, C. Herbivo, D. Warther, J. Léonard, F. Bolze, J.
 F. Nicoud, R. H. Kramer, M. Goeldner, A. Specht, *Angew. Chemie Int. Ed.* 2012, 51, 1840.
- 16 W. Denk, J. H. Strickler, W. W. Webb, Science. 1990, 248, 73.
- 17 A. Sikder, M. Banerjee, T. Singha, S. Mondal, P. K. Datta, A. Anoop, N. D. P. Singh, Org. Lett. 2020, 22, 6998.
- A. L. K. Hennig, D. Deodato, N. Asad, C. Herbivo, T. M. Dore, *J. Org. Chem.* 2020, 85, 726.
- 19 K. Hishikawa, H. Nakagawa, T. Furuta, K. Fukuhara, H. Tsumoto, T. Suzuki, N. Miyata, *J. Am. Chem. Soc.* **2009**, *131*, 7488.
- 20 T. Furuta, H. Takeuchi, M. Isozaki, Y. Takahashi, M. Kanehara, M. Sugimoto, T. Watanabe, K. Noguchi, T. M. Dore, T. Kurahashi, M. Iwamura, R. Y. Tsien, *ChemBioChem* 2004, 5, 1119.
- T. Furuta, S. S. H. Wang, J. L. Dantzker, T. M. Dore, W. J. Bybee, E. M. Callaway, W. Denk, R. Y. Tsien, *Proc. Natl. Acad. Sci. U. S. A.* 1999, *96*, 1193.
- 22 G. Bort, T. Gallavardin, D. Ogden, P. I. Dalko, Angew. Chemie Int. Ed. 2013, 52, 4526.
- 23 T. Šolomek, J. Wirz, P. Klán, Acc. Chem. Res. 2015, 48, 3064.
- 24 E. Palao, T. Slanina, L. Muchová, T. Šolomek, L. Vítek, P. Klán, J. Am. Chem. Soc. 2016, 138, 126.
- 25 Y. Chitose, M. Abe, K. Furukawa, C. Katan, Chem. Lett. 2016, 45, 1186.

- 26 M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, H. Kasai, *Nat. Neurosci.* **2001**, *4*, 1086.
- 27 J. G.- Mayer, Von Maria G 6 ppert Mayer, **1928**.
- 28 P. A. Price, J. Biol. Chem. 1975, 250, 1981.
- 29 G. C. R. Ellis-Davies, *Tetrahedron Lett.* **1998**, *39*, 953.
- A. Momotake, N. Lindegger, E. Niggli, R. J. Barsotti, G. C. R. Ellis-Davies, *Nat. Methods* 2006, 3, 35.
- A. Specht, F. Bolze, L. Donato, C. Herbivo, S. Charon, D. Warther, S. Gug, J. F. Nicoud,
 M. Goeldner, *Photochem. Photobiol. Sci.* 2012, 11, 578.
- 32 N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, D. Ogden, *Eur. Biophys. J.* 2002, 30, 588.
- S. Z. Weisz, A. B. Zahlan, J. Gileeath, R. C. Jarnagin, M. Silver, *J. Chem. Phys.* 1964, *41*, 3491.
- 34 R. J. M. Anderson, G. R. Holtom, W. M. McClain, J. Chem. Phys. 1979, 70, 4310.
- M. Albota, D. Beljonne, J. L. Brédas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, *Science*. 1998, 281, 1653.
- 36 F. Terenziani, C. Katan, E. Badaeva, S. Tretiak, M. Blanchard-Desce, Adv. Mater. 2008, 20, 4641.
- 37 F. Terenziani, C. Sissa, A. Painelli, J. Phys. Chem. B 2008, 112, 5079.
- 38 G. C. R. Ellis-Davies, Chem. Rev. 2008, 108, 1603.
- 39 G. C. R. Ellis-Davies, J. H. Kaplan, Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 187.

Chapter 2

Design and synthesis of two-photon responsive photolabile protecting group with a terphenyl unit for near IR calcium ion uncaging reaction

1-1. Introduction

In this study, new NIR-2P-responsive chromophores with *para*-terphenyl backbones featuring an ethylene glycol tetraacetic acid (EGTA) unit as a Ca²⁺ selective chelator. Oneand two-photon photochemical excitations of the synthesized *para*-terphenyl derivatives featuring two different electron-donating groups (dimethylamino (NMe₂) and methoxyl (OMe)) was investigated.

1-2. Design and synthesis of *p*-nitroterphenyl-EGTA derivatives

In 2012, Goeldner and co-workers developed biphenyl derivatives as highly 2Presponsive chromophores for caged glutamates and caged γ -aminobutyric acids with 2Puncaging efficiencies of up to 11 GM at 800 nm and 3.2 GM at 740 nm¹⁵. In 2016, this laboratory reported EGTA-substituted nitrophenylbenzofuran and biphenyl derivatives (NPBF-EGTA and BP-EGTA) as caged calcium compounds with 2P uncaging efficiencies of 7.4 GM at 800 nm and 20.7 GM at 740 nm⁴⁰, respectively (Figure 8a). In comparison with these compounds, the addition of another benzene ring has been shown to give higher 2PA cross-section values (Figure 8b), as reported by Turro and co-workers in 2004⁴¹ and Kamath and co-workers in 2014⁴².

Computationally, the hyperpolarizability (β) of paraphenylenes has been predicted to be maximized in terphenylenes⁴³. Indeed, a donor–acceptor-substituted terphenyl derivative was reported to possess a large dipole moment of 6.75 D⁴⁴. Under such a background, in this study, EGTA-substituted p-nitroterphenyl (PNTP) derivatives with two different electron-donating groups (dimethylamino (NMe₂) and methoxy (OMe)) were synthesized and their photoreactions were investigated (Figure 8c).

Figure 8. a) Structures and two-photon (2P) uncaging efficiencies of selected chromophores. b) example of 2P chromophores having terphenyl unit. c) this study.

First, *p*-nitroterphenyl-EGTA derivatives with OMe and NMe₂ substituents is shown in Scheme 1. The Suzuki–Miyaura coupling reactions of key compound 1^{40} with biphenylsubstituted boronic acids **2a,b**^{45,46} were conducted in the presence of Pd(PPh₃)₄ and K₂CO₃ to give target terphenyl derivatives **3a** (R = Et) and **3b** (R = Et) in 92% and 51% yield, respectively. Ethyl esters **3a,b** were hydrolyzed with KOH to afford tetraacids **4a** (R = H) and **4b** (R = H) in 90% and 89% yield, respectively. Corresponding acetoxy methyl (AM) esters **5a,b** (R = AM), which can be directly used for physiological studies⁴⁷, were synthesized in 30% and 17% yield, respectively. Because compounds **4a,b** are intended for use in physiological experiments, their thermal stability was investigated at room temperature and 37 °C in HEPES buffer (pH 7.4) under air. HPLC analyses demonstrated that compounds **4a,b** were stable for 36 h at 37 °C (Table S1).

Scheme 1. (i) 2a or 2b, Pd(PPh₃)₄, K₂CO₃, THF, H₂O, RT to 60 °C, 3 h, 92% for 3a and 51% for 3b; (ii) KOH, MeOH, 0 °C to RT, 16 h, 90% for 4a and 89% for 4b. ; (iii) bromomethyl acetate, DIPEA, DMF, 0 °C to RT, 16 h, 30% for 5a and 17% for 5b. DIPEA = N,N-diisopropylethylamine.

1-3. Measurement of calcium ion binding affinity

The dissociation constants (K_d) of **4a**,**b** for Ca²⁺ were determined by titration using fluo-3 as a fluorescent dye^{39,48,49} (Figure 9), which has a dissociation constant for Ca²⁺ of 500 nM. For these experiments, the concentrations of free Ca²⁺ ions ([Ca²⁺]_F) in 1.0 mM solutions of **4a** and **4b** were obtained from the fluorescence intensity of fluo-3 at 530 nm (Figure 9a,c). Using Scatchard analyses (Figure 9b,d), the dissociation constants were determined to be $K_d = 202$ nM for compound **4a** and $K_d = 213$ nM for compound **4b**, which were similar values reported for the NPBF derivative²⁸.

Figure 9. Emission spectra of fluo-3 (10 μ M, excitation at 490 nm) obtained by titrating compound (a) **4a** and (c) **4b** (1.0 mM in HEPES/100 mM KCl, pH 7.4 at 298 K) with Ca²⁺. (b) Scatchard analyses for (b) **4a** and (d) **4b** using a *K*_d value of 500 nM for fluo-3 ([Ca²⁺]_B = bound calcium and [Ca2⁺]_F = free calcium).

1-4. Photophysical property

The photophysical properties including the 2P absorption values of 3a,b and 4a,b in DMSO and in HEPES buffer (pH 7.4) are summarized in Table 1. The electronic absorption spectra of 3a,b and 4a,b were obtained in DMSO and HEPES buffer (pH 7.4), respectively (Figure S25). The absorption maxima of 3a,b were observed at 350 and 392 nm, respectively, in DMSO (entries 1 and 2), whereas those of 4a,b were found at 344 and 363 nm, respectively, in HEPES buffer at pH 7.4 (entries 3 and 4). Thus, the 2PA maxima in the NIR region are expected to be ~700 nm for 3a, ~780 nm for 3b, ~690 nm for 4a, and ~720 nm for 4b.

entry		Solv.	$K_{\rm d}$ / nM ^a	λ_{abs} / nm^b	$\epsilon \ / \ M^{-1} \ cm^{-1c}$
1	3a (R ¹ = OMe)	DMSO	-	350	16030
2	$\frac{\mathbf{3b}}{(\mathbf{R}^1 = \mathbf{NMe}_2)}$	DMSO	-	392	17102
3	$\frac{4a}{(R^1 = OMe)}$	HEPES buffer pH 7.4	202	344	14351
4	$\frac{4\mathbf{b}}{(\mathbf{R}^1 = \mathbf{NMe}_2)}$	HEPES buffer pH 7.4	213	363	10371

Table 1. Photophysical properties, and binding constants of compounds 3a,b and 4a,b

^aDissociation constant determined by Scatchard analysis (Figure 9). ^bAbsorption maximum. ^cMolar extinction coefficient.

1-5. One-photon (1P) photolysis

First, the 1P photochemical reactions of compounds **3a,b** in C₆D₆ were investigated using a 365 nm LED lamp. The photochemical reaction was directly monitored by ¹H NMR (400 MHz) spectroscopy (Figure 10). The photolysis of **3a,b** results in the clean formation of bond-breaking product **7**. After 100% consumption of **3a,b**, triphenylmethane was added to the photolysate as an NMR standard to determine the NMR yields of compound **7** (78% from **3a** and 76% from **3b**; Figure 10). Compounds **6a,b**, which are thermally and photolabile, were not clearly identified in the photolysate. However, following quick column chromatography, the formation of compound **6b** was confirmed based on ¹H-NMR and MS spectra (Figure S23 and S24). The quantum yield for the decomposition of **3a** (R₁ = OMe) was much higher than that of **3b** (R₁ = NMe₂) ($\Phi = 0.27$ and 0.02, respectively). Ferric oxalate was used as a chemical actinometer to determine the quantum yield of the bond-breaking process (see experimental section)⁵⁰.

Figure 10. ¹H NMR (400 MHz, δ 1-4 ppm) spectra during the photolysis of compounds **3a,b** in C₆D₆ using a 365 nm LED: (a) before irradiation of **3a**, (b) after 5 min irradiation of **3a**, (c) after 25 min irradiation of **3a**, (d) after 35 min irradiation of **3a**, (e) compound 7, (f) before irradiation of **3b**, (g) after 10 min irradiation of **3b**, (h) after 40 min irradiation of **3b**, and (i) after 60 min irradiation of **3b**.

The 1P photochemical reactivities of compounds **4a,b** in CD₃OD were also investigated using a 365 nm LED. The clean formation of compound **9** was observed during photolysis (Figure 11), indicating that EGTA derivatives **4a,b** can be used as caged Ca²⁺ compounds. After photoirradiation, triphenylmethane was added to the photolysate as an NMR standard to determine the NMR yields of compound **9** (86% from **4a** and 79% from **4b**; Figure 11). The quantum yield for the decomposition of **4a** was also much higher than that of **4b** ($\Phi = 0.40$ and 0.04, respectively). Thus, the quantum yields of *p*-nitroterphenyl compounds **3a** and **4a** with OMe substituents were much higher than those for *p*nitrobiphenyl and *p*-nitroterphenyl compounds **3b** and **3b** with NMe₂ substituents. As NMe₂ is a better electron-donating group than OMe, the zwitterionic character of the NMe₂substituted chromophore tends to slow down hydrogen abstraction from the benzylic position⁵¹. Similarly, low quantum yields have also been observed for amino-substituted caged compounds⁵².

Figure 11. ¹H NMR (400 MHz, δ 3.5–4.6 ppm) spectra during the photolysis of compounds 4a,b in CD₃OD using a 365 nm LED: (a) before irradiation of 4a, (b) after 30 min irradiation of 4a, (c) after 40 min irradiation of 4a, (d) compound 9, (e) before irradiation of 4b, (f) after 40 min irradiation of 4b, and (g) after 1 h irradiation of 4b.

1-6. Two-photon (2P) photolysis

2P excitation using NIR light was performed for **3a,b** in DMSO and **4a,b** in HEPES buffer pH 7.4⁴⁷. The 2PE reactions were conducted at different wavelengths using a femtosecond Ti:sapphire laser (~700 mW) at ~25 °C (Figure 12,13). The 2P-induced decomposition of the compounds was monitored by HPLC. As shown by the time profiles in Figure 12a,c, and 13a,c, the photochemical decomposition of **3a,b**, and **4a,b** mainly depended on the photolysis wavelength. The action 2PA cross-sections at each wavelength were determined by comparing the rate constants with that of 2-(4-nitrophenyl)benzofuran, which has a cross-section of 18 GM at 720 nm⁵³. The action 2PA spectra were extrapolated as shown in Figure 12b,d and 13b,d. The 2PA cross-sections and 2PA uncaging efficiencies are summarized in Table 2. NMe₂-substituted derivatives **4b** and **3b** had higher 2PA cross-section values (75 and 220 GM, respectively) than OMe-substituted derivatives **4a** and **3a**

because the stronger electron-donating ability of NMe₂, which increased the 2P responsiveness of the chromophores. However, the 2P-uncaging efficiencies ($\delta_u = \sigma_2 \times \Phi_u$) of **4b** and **3b** (3.0 and 4.4 GM, respectively) were lower than those of **4a** and **3a** (3.3 and 5.7 GM, respectively) due to the lower quantum yields for the decomposition of **4b** and **3b**.

Figure 12. Time profiles for the 2P uncaging of (a) 3a, $\ln([3a]/[3a]_0)$ vs. irradiation time at 700–760 nm, and (c) 3b, $\ln([3b]/[3b]_0)$ vs. irradiation time at 710–830 nm. 2PA spectra (b) 3a and (d) 3b.

Figure 13. Time profiles for the 2P uncaging of (a) 4a, $\ln([4a]/[4a]_0)$ vs. irradiation time at 690–770 nm, and (c) 4b, $\ln([4b]/[4b]_0)$ vs. irradiation time at 710–840 nm. 2PA spectra of (b) 4a and (d) 4b.

1-7. Photochemical release of calcium ion

The release of Ca^{2+} from $Ca^{2+}@4a,b$ upon photolysis was confirmed by the 360 nm irradiation of a solution of 4a or 4b (1.00 mM), fluo-3 (0.01 mM), KCl (100 mM), and CaCl₂ (1.08 mM) in HEPES buffer at pH 7.4 (Figure 14). The fluorescence emission from $Ca^{2+}@$ fluo-3 was used to confirm the release of Ca^{2+} . As shown in Figure 14, the emission intensity of $Ca^{2+}@$ fluo-3 clearly increased during irradiation, indicating that photolysis results in the release of $Ca^{2+}@4a$ or 4b.

Figure 14. Emission spectra of Ca^{2+} @fluo-3 (0.01 mM, excitation at 490 nm) (a) after 20 min irradiation at 360 nm of **4a** (1.00 mM) and Ca^{2+} (1.08 mM) in HEPES/100 mM KCl at pH 7.4, 298 K, and (b) after 60 min irradiation at 360 nm of **4b** (1.00 mM) and Ca^{2+} (1.08 mM) in HEPES/100 mM KCl at pH 7.4, 298 K.

1-8. Laser flash photolysis

Based on the well-studied mechanism for the uncaging of *o*-nitrophenyl PPGs, the reaction pathway for the uncaging process of **4a** is shown in Scheme 2^{54-57} . To obtain information on the rate constants of each process, transient absorption (TA) spectroscopy of **4a** was conducted using laser flash photolysis (LFP) at 355 nm (Nd-YAG, 10 ns pulse width, 17 mJ/pulse) on sub-nanosecond and sub-microsecond time scales (Figure 15a,b). Compound **4a** was selected for the LFP experiments because its quantum yield for photochemical decomposition was much higher than that of **4b**. First, the TA spectroscopy on the sub-microsecond time scale was used to investigate the photolysis of **4a** (1.24×10^{-4} M, Abs at 355 nm = 0.89) in HEPES buffer (pH 7.4) under air at ~298 K (Figure 8). LFP of **4a** resulted in bleaching at ~340 nm, the generation of an *aci*-nitro intermediate at ~420–440 nm, and a broad signal above 500 nm (Figure 15b).

Scheme 2. Reaction pathway for the uncaging of 4a.

Figure 15. (a) UV-vis spectra of 4a (0.124 mM, HEPES buffer (pH 7.4), $Abs_{355} = 0.89$) under air before and after LFP measurements. (b) Sub-microsecond transient absorption of 4a (0.124 mM, HEPES buffer (pH 7.4), $Abs_{355} = 0.89$) under air.

Figure 16. LFP time profiles (355 nm, Nd-YAG, 10 ns pulse width, 17 mJ/pulse) of 4a (0.124 mM, HEPES buffer (pH 7.4), $Abs_{355} = 0.89$) at ~298 K: (c) rise of 4a at 340 nm under air, (d) decay of A1 at 420 nm under air, (e) decay of A2 at 420 nm under air, (f) rise of 8a at 420 nm under air.

The rate constant of the signal growth at 340 nm was determined to be 2.5×10^6 s⁻¹ (Figure 16c), and this process was assigned to the recovery of **4a** from *aci*-nitro intermediate **A1** via a [1,5] sigmatropic rearrangement⁵⁶. This rate constant was consistent with one of the dual decay rate constants at 440 nm (those are 2.5×10^6 s⁻¹ and 1.1×10^2 s⁻¹; Figure 16d,e). The slow decay process was assigned to the formation of cyclic compound **B** from another isomer of *aci*-nitro intermediate **A2**⁵⁶ (Scheme 2). In addition to this relatively fast process, very slow signal growth was observed at 440 nm with $k = 7.5 \times 10^{-1}$ s⁻¹ (Figure 16f). This process was assigned to the formation of nitroso ketone compound **8a**⁵⁶, which is a product of the uncaging reaction. Indeed, an increase in the absorbance at ~420–450 nm was observed after the LFP experiments (Figure 15a).

1-9. Experiment section

3,12-bis(2-ethoxy-2-oxoethyl)-5-(4"-methoxy-4-nitro-[1,1':4',1"-**Diethyl** terphenyl]-3-yl)-6,9-dioxa-3,12-diazatetradecanedioate (3a): Compound 1⁴⁰ (300 mg, 0.43 mmol), (4'-methoxy-[1,1'-biphenyl]-4-yl)boronic acid 2a (118 mg, 0.52 mmol), Pd(PPh₃)₄ (25 mg, 0.02 mmol), potassium carbonate (138 mg, 0.65 mmol) were mixed in 10 mL of THF:H₂O (9:1) in a round-bottom flask. The resulting mixture was stirred for 3h at 60 °C. Then, the reaction mixture was filtered. The filtrate was washed with water and extracted with EtOAc. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure. The products were purified through silica gel column chromatography to give the desired coupling product **3a** (92%) as yellow oil. ¹H-NMR of compound **3a** (400 MHz, CDCl₃): δ 8.11-8.04 (m, 2 H), 7.75-7.56 (m, 7 H), 7.03-6.97 (m, 2 H), 5.31 (dd, J = 7.6 and 2.6 Hz, 1 H), 4.21-4.02 (m, 8 H), 3.87 (s, 3 H), 3.83-3.71 (m, 4 H), 3.63-3.43 (m, 10 H), 3.21-3.04 (m, 2 H), 2.96-2.81 (m, 2 H), 1.26 (t, *J* = 7.21 Hz, 6 H), 1.19 (t, J = 7.21 Hz, 6 H). ¹³C-NMR (100 MHz, CDCl₃) δ 171.67, 171.29, 159.46, 146.88, 145.97, 141.24, 137.51, 136.75, 132.57, 128.04, 127.68, 127.18, 126.13, 125.38, 114.26, 78.09, 70.23, 70.19, 68.90, 61.29, 60.30, 55.75, 55.65, 55.27, 53.61, 14.16, 14.09. IR: v 2980, 2910, 2870, 1740, 1605, 1580, 1520, 1510, 1470, 1350, 1255, 1180, 1090, 1015 cm⁻ ¹. HRMS-ESI calcd for $C_{41}H_{53}N_3O_{13}Na [M + Na]^+ 818.34706$, found 818.34625.

3,12-Bis(carboxymethyl)-5-(4''-methoxy-4-nitro-[1,1':4',1''-terphenyl]-3-yl)-6,9dioxa-3,12-diazatetradecanedioic acid (4a): Compound **3a** (50 mg, 0.06 mmol) was dissolved in methanol (2 ml), and then hydrolyzed by the addition of KOH (17 mg, 0.31 mmol). The reaction mixture was stirred for 2 h at 60 °C. After evaporation of the solvent, the reaction mixture was acidified with 2N aqueous HCl to pH 2. The resulted yellow solid was taken and dried to afford **4a** (90%). ¹H-NMR (400 MHz, CD₃OD) of compound **4a**: δ 8.26 (d, *J* = 8.56 Hz, 1 H), 8.16-8.13 (m, 1 H), 7.96 (dd, *J* = 8.62 and 2.02 Hz, 1 H), 7.86-7.76 (m, 4 H), 7.67-7.62 (m, 2H), 7.05-6.99 (m, 2H), 5.70-5.64 (m, 1 H), 4.60-4.43 (m, 3 H), 4.24-3.95 (m, 4 H), 3.92-3.44 (m, 14 H). ¹³C-NMR (100 MHz, CD₃OD): 169.75, 168.59, 161.31, 148.44, 148.14, 143.02, 135.11, 133.56, 129.14, 129.07, 128.39, 127.80, 127.43, 115.58, 75.20, 71.40, 69.60, 66.83, 61.18, 57.24, 56.88, 56.07, 55.94. IR: *v* 3000, 2900, 2850, 1740, 1600, 1580, 1520, 1510, 1410, 1350, 1250, 1210, 1180, 1110, 1020 cm⁻¹. HRMS-ESI calcd for C₂₈H₃₆N₄O₁₂ [M - H]⁻ 682.22536, found 682.22534, mp 170-172 °C.

Bis(acetoxymethyl) 3,12-bis(2-(acetoxymethoxy)-2-oxoethyl)-5-(4''-methoxy-4nitro-[1,1':4',1''-terphenyl]-3-yl)-6,9-dioxa-3,12-diazatetradecanedioate (5a): To a solution of compound 4a (80 mg, 0.1 mmol) in 3 mL of EtOH : THF : H_2O (1: 1 : 1) was added LiOH (42 mg, 1.0 mmol) at 0 °C. and then, the reaction mixture was stirred for 16 h at room temperature. The reaction mixture was evaporated and dried under reduced pressure. The yellow color solid was dissolved in freshly distilled dry DMF (3 mL). *N,N*-Diisopropylethylamine (113 mg, 0.88 mmol) and bromomethyl acetate (449 mg, 2.94 mmol) were added at 0 °C, after 16 h stirring at room temperature the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with water, brine, dried over Na₂SO₄, and evaporated under reduced pressure. The reaction products were purified by silica gel column chromatography and recycling HPLC with GPC column to give the pure AM ester as a yellow color oil **5a** (30%). ¹H-NMR (400 MHz, CDCl₃) of compound **5a**: δ 8.10 (d, *J* = 8.5 Hz, 1 H), 8.05 (d, *J* = 2.02 Hz, 1 H), 7.74-7.57 (m, 7 H), 7.04-6.98 (m, 2 H), 5.76 (s, 4 H), 5.67 (s, 4 H), 5.31-5.26 (m, 1 H), 3.91-3.80 (m, 7 H), 3.64-3.40 (m, 10 H), 3.21-3.05 (m, 2 H), 2.94-2.80 (m, 2 H), 2.11 (s, 6 H), 2.06 (s, 6 H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.71, 170.21, 169.77, 169.65, 159.78, 147.08, 146.40, 141.63, 137.53, 136.96, 132.78, 128.32, 127.96, 127.50, 126.88, 126.56, 125.78, 114.58, 79.38, 79.37, 78.42, 77.40, 70.52, 69.13, 61.40, 55.61, 55.56, 55.52, 53.83, 20.87, 20.81. IR: *v* 3000, 2950, 2870, 1765, 1605, 1580, 1520, 1510, 1470, 1410, 1370, 1340, 1290, 1250, 1230, 1140, 1040 cm⁻¹. HRMS-ESI calcd for C4₅H₅₃N₃O₂₁Na [M + Na]⁺ 994.30638, found 994.30621.

Diethyl-5-(4"-(dimethylamino)-4-nitro-[1,1":4,1"-tephenyl]-3-yl)-3.12-bis(2ethoxyl-2-oxoethyl)-6,9-dioxa-3,12-diazatetradecanedioate (3b): In a round-bottom flask, compound 1 (114 mg, 0.20 mmol), (4'-methoxy-[1,1'-biphenyl]-4-yl)boronic acid 2b (231 mg, 1.00 mmol), Pd(PPh₃)₄ (10.1 mg, 0.24% mmol) was degassed with N₂ for 30 min. potassium carbonate (41 mg, 0.22 mmol) dissolved in H₂O (2 mL) and THF (18 mL) was added in the mixture. The solution heated to 60 °C for 3 h. The reaction was cooled to room temperature and the reaction mixture was filtered. The filtrate was washed with water and extracted with EtOAc. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure. The products were purified through silica gel column chromatography and further purified by recycling HPLC with gel permeation chromatography (GPC) column to give the desired coupling product 3b (82 mg, 51%) as an orange color oil. ¹H-NMR (400 MHz, CDCl₃) of compound **3b**: δ 8.09 ppm (m, 2H), 6.82 ppm (d, *J* = 8.6 Hz, 2H), 7.57 ppm (d, *J* = 8.6 Hz, 2H), 7.64 ppm (s, 4H), 7.64 ppm (dd, J = 8.6 Hz & J = 1.9 Hz, 1H), 5.31 ppm (m, 1H), 4.13 (q, 4H), 4.06 (q, 4H), 3.74 ppm - 3.83 ppm (m, 4H), 3.60 ppm - 3.47 ppm (m, 10H), 3.07 ppm - 3.19 ppm (m, 2H), 2.85 ppm - 2.91 ppm (m, 2H), 1.24 (t, J = 7.3 Hz, 6H), 1.17 (t, J = 7.3 Hz, 6H), 3.02 ppm (s, 6H). ¹³C-NMR (100 Hz, CDCl₃): δ 171.8, 171.3, 150.3, 146.9, 146.3, 141.8, 137.6, 136.0, 127.9, 127.7, 126.7, 126.1, 125.5, 112.8, 78.3, 70.3, 69.0, 61.4, 60.3, 55.9, 55.7, 53.9, 40.5, 14.3, 14.2. IR: v 2917, 2849, 1766, 1600, 1512, 1369, 1347, 1225, 1139, 1048, 1007, 985, 815. HRMS-ESI: calcd for $C_{42}H_{56}N_4O_{12}Na [M + Na]^+ 831.37869$, found 831.37860.

3,12-Bis(carboxymethyl)-5-(4-(dimethylamino)-4-nitro-[1,1-terphenyl]-3-yl)-6,9-dioxa-3,12-diazatetradecanedioic acid (4b): In a round-bottom flask, compound **3b** (26 mg, 0.03 mmol) was dissolved in methanol (1 mL) and then hydrolyzed by the addition of KOH (10 mg, 0.19 mmol). The reaction mixture was stirred for 2 h at 60 °C. After evaporation of the solvent, the reaction mixture was acidified with 1N aqueous HCl to pH 1. The resulted yellow solid was taken and dried to afford **4b** (19 mg, 89%). ¹H-NMR (400 MHz, CD₃OD) of compound **4b**: δ 8.28 ppm (d, *J* = 9.10 Hz, 1H), 8.17 ppm (s, 1H), 8.00 – 7.93 ppm (m, 7H), 7.80 ppm (d, *J* = 8.3 Hz, 2H), 5.69 ppm (d, *J* = 7.9 Hz, 1H), 4.50 ppm (s, 4H), 4.21 ppm (s, 4H), 4.00-3.57 (m, 10H), 4.06 (q, *J* = 7.1 Hz, 4H), 3.74 ppm – 3.83 ppm (m, 4H), 3.60 ppm – 3.47 ppm (m, 10H), 3.35 ppm (s, 3H) , 3.35 ppm (s, 3H). ¹³C-NMR (100 Hz, CD₃OD): δ 167.5, 166.9, 147.3, 146.3, 142.3, 141.7, 139.7, 137.9, 133.3, 128.7, 128.1, 127.9, 127.7, 126.7, 126.0, 120.9, 73.2, 69.9, 68.1, 65.3, 59.4, 55.8, 55.1, 45.7. IR: *v* 2928, 2581, 1735, 1604, 1517, 1341, 1253, 1133, 1107, 899, 822. HRMS-ESI: calcd for C₃₄H₃₉N₄O₁₂ [M - H]⁻ 695.25590, found 695.25873, mp 148-150 °C.

3,12-Bis(carboxymethyl)-5-(4-(dimethylamino)-4-nitro-[1,1-terphenyl]-3-yl)-6,9-dioxa-3,12-diazatetradecanedioate (5b): In a round-bottom flask, compound 4b (26 mg, 0.04 mmol) was dissolved in freshly distilled dry DMF (0.56 mL). N,N-Diisopropylethylamine (0.13 mL, 0.76 mmol) and bromomethyl acetate (0.07 mL, 0.76 mmol) were added at 60 °C. After 24 h of stirring at room temperature, the reaction mixture was diluted with water and extracted with dichloromethane. The organic layer was washed with water and brine solution, dried over Na₂SO₄, and evaporated under reduced pressure. The reaction products were purified using silica gel column chromatography and further purified by recycling HPLC with gel permeation chromatography column (GPC) to give compound **5b** (6.50 mg, 17%) as a yellow color oil. ¹H-NMR (400 MHz, CDCl₃) of compound **5b**: δ 8.08 ppm (d, J = 8.64 Hz, 1H), 8.06 ppm (m, 1H), 7.64 ppm (s, 4H), 7.64 ppm (m, 1H), 7.57 ppm (d, J = 8.6 Hz, 2H), 6.82 ppm (d, J = 8.6 Hz, 2H), 5.77 (s, 4H), 5.68 (s, 4H), 5.29 ppm (m, 1H), 3.87 ppm (m, 4H), 3.70 ppm – 3.47 ppm (m, 12H), 3.08 ppm – 3.17 ppm (m, 2H), 3.08 ppm – 3.17 ppm (m, 2H), 2.87 ppm - 2.90 ppm (m, 2H), 2.07 (s, 6H), 2.12 (s, 6H), 3.02 ppm (s, 6H). ¹³C-NMR (100 Hz, CDCl₃): δ 170.5, 170.0, 169.6, 169.4, 150.3, 146.7, 146.4, 141.9, 137.3, 135.9, 127.8, 127.7, 127.6, 126.7, 126.5, 126.2, 125.5, 112.7, 79.2, 77.2, 70.5, 70.3, 68.9, 61.2, 56.4, 56.3, 53.6, 40.4 (CH₃), 20.7, 20.6. HRMS-ESI: calcd for C₄₆H₅₆O₂₀N₄Na [M + Na] ⁺ 1007.33765, found 1007.33801.

 Ca^{2+} binding affinities: The association constant (K_a) of newly synthesized chelator 1a and 1b was determined using the reported method^{39,48,49} by Ellis-Davies *et al.* by the equation:

 $[Ca^{2+}]_{\rm B} / [Ca^{2+}]_{\rm F} = K_{\rm a} ([chelator]_{\rm T} - [Ca^{2+}]_{\rm B})$

Here $[Ca^{2+}]_B$ is the concentration of Ca^{2+} bound to the chelator, $[Ca^{2+}]_F$ is the concentration of the free Ca^{2+} and $[chelator]_T$ is the total concentration of chelator **4a** (TP-EGTA acid with methoxyl-substituted) or **4b** (TP-EGTA acid with dimethylamino-substituted) in the solution. The free calcium concentration and bound calcium concentration were measured from emission spectra of calcium sensitive dye (fluo-3, $K_d = 500$ nM) through the titration with aqueous calcium chloride solution.

In this procedure, chelator (1.0 mM), fluo-3 (0.01 mM), HEPES (10 mM), and 100 mM KCl solutions were used. A 3.0 mL solution of 1.0 mM of chelator was used. The solution was buffered to pH 7.4 with HEPES and the ionic strength was set with 100 mM KCl. Titration with incremental addition of Ca^{2+} gave the plot shown in Figure 9. $[Ca^{2+}]_B/[Ca^{2+}]_F$ were obtained from the emission spectra in Figure 9. The concentration of chelator was adjusted to be 1.0 mM and the CaCl₂ concentrations were 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 and 0.45 mM for the compound **4a** and **4b**, respectively. The intensity of the emission at 530 nm did not change over 0.45 mM of $CaCl_2$ for these two compounds.

The free calcium concentrations were calculated from the following equation.

$$[\mathrm{Ca}^{2^+}]_{\mathrm{F}} = K_{\mathrm{d}} (\mathrm{E}_{\mathrm{int}} - \mathrm{E}_{\mathrm{min}}) / (\mathrm{E}_{\mathrm{max}} - \mathrm{E}_{\mathrm{int}})$$

Where $K_d = 500$ nM (fluo-3), $E_{int} = emission$ intensity of chelator at setted Ca²⁺ concentration, $E_{min} = emission$ intensity of chelator without Ca²⁺, $E_{max} = emission$ intensity of chelator with excess Ca²⁺.

Chemical actinometer for quantum yield measurement⁵⁰: The rate of photo uncaging reaction can be quantified by quantum yield (Φ).

 $\Phi = \frac{\text{number of reacted molecules per time unit}}{\text{number of photons absorbed per time unit}}$

Chemical actinometers are widely used to measure photon fluxes, one of the most popular and reliable one i.e., ferrioxalate, during the photo irradiation the potassium ferrioxalate decomposes according to the following equations.

$$Fe(C_2O_4)_3^{3+} \xrightarrow{hv} Fe^{2+} + C_2O_4^{-} + 2C_2O_4^{2-}$$

$$Fe^{2+} + 3phen \longrightarrow Fe(phen)_3^{2+}$$

The number of ferrous ions formed during a photoirradiation is measured by conversion to the colored tris-phenanthroline compound at 510 nm ($\epsilon = 11100 \text{ M}^{-1} \text{ cm}^{-1}$). The original ferric ions are not substantially complexed by 1,10-phenanthroline and the complex does not absorb at 510 nm.

TP-EGTA has absorption maximum around 360 nm, in this study measured the light quantities at 360 nm using a xenon lamp with a monochromator as a light source. The equation as below

$$I \text{ (mol/s)} = \frac{\text{moles of Fe}^{2+}}{\Phi_{\lambda} \text{ x t x F}} = \frac{V_1 \text{ x } V_3 \text{ x } \Delta A(510 \text{ nm})}{10^3 \text{ x } V_2 \text{ x l x } \epsilon \text{ (510 nm) x } \Phi_{\lambda} \text{ x t}}$$

V₁: the irradiated volume (mL)

 V_2 : the aliquot of the irradiated solution taken for the determination of the ferrous ions (mL) V_3 : the final volume (mL)

 ΔA : the optical difference in absorbance between the irradiated solution and that taken in the dark

l: optical pathlength of the irradiation cell

 ϵ (510 nm): ϵ of the complex Fe(phen)₃²⁺

 Φ_{λ} : the quantum yield of ferrous ion production at the irradiation wavelength

t: the irradiation time

F: mean function of light absorbed by the ferrioxalate solution

Procedure for measurement:

1. 117.7 mg of K_3 [Fe(C₂O₄)₃] ·3H₂O was dissolved in 20 mL of 0.05 M H₂SO₄. (0.012 M Ferrioxalate was prepared)-solution-1

2. 10.2 mg of 1,10-phenanthroline monohydrate and 2.25 gram of $CH_3COONa \cdot 3H_2O$ were dissolved in 10 mL of 0.5 M H_2SO_4 - solution-2

3. Both solutions were degassed with nitrogen for 20 minutes.

4. 3 mL solution of solution-1 irradiated at 360 nm for 0, 10, 20 and 30 seconds, 0.5 mL of solution solution-2 was added each time then measured the absorption spectra at 510 nm to measure the change in absorbance with respect to an irradiation time was used to calculate the light amount.

Calculated number of photons from Xe-lamp at 360 nm= 3.94×10^{-7} mol/min.

1-10. Supplementary material

1PA and 2PA of compounds 1'a,b and 2'a,b.

First, *p*-nitrobiphenyl **1'a**,**b** and *p*-nitroterphenyl **2'a**,**b** without EGTA groups were synthesized and their photophysical properties were investigated to understand the effects of extending π -conjugation and the OMe and NMe₂ substituents on the 1P and 2P responses. These four compounds were synthesized via Suzuki–Miyaura coupling reactions^{44,45,58,59} (Scheme S1 and Figure S6–S10)

As shown in Table 1 (Figure S1), the absorption maxima of 1'a and 2'a ($R^1 = OMe$) shifted bathochromically with increases in the number of phenyl rings and the solvent polarity (335 nm for 1'a in toluene (Tol) (entry 1), 338 nm for 1'a in CHCl₃ (entry 2), 348 nm for 1'a in dimethyl sulfoxide (DMSO) (entry 3), 339 nm for 2'a in Tol (entry 4), 344 nm for 2'a in CHCl₃ (entry 5), and 352 nm for 2'a in DMSO (entry 6)). The observation is rationalized by the extension of the π -system and the stabilization of the intramolecular charge transfer (ICT) state in polar solvents. In contrast, in the case of NMe₂, which is a stronger electron-donor compared to OMe, the absorption maximum of terphenyl derivative 2'b was hypsochromically shifted relative to that of biphenyl derivative 1'b, despite the increase in the number of phenyl rings (398 nm for 1'b in Tol (entry 7), 407 nm for 1'b in CHCl₃ (entry 8), 423 nm for 1'b in DMSO (entry 9), 361 nm for 2'b in Tol (entry 10), 362 nm for 2'b in CHCl₃ (entry 11), and 372 nm for 2'b in DMSO (entry 12)). Compound 2'b showed a much smaller bathochromic shift in polar solvents than 1'b, indicating that the excited state of 2'b has less ICT character of than that of 1'b. In other words, the strong ICT character in the excited state of 1'b is predominant in determining the absorption maximum of 1'b, whereas the conjugation effect dominates the absorption maximum of $2'b^{60}$.

Interestingly, compounds **1'b** and **2'b** exhibited strong emission in nonpolar Tol (Figure S2c,e) but manifested nil or very weak emission in polar solvent (entries 7–12, Figure S2d). The fluorescence quantum yields of **1'b** and **2'b** were 0.66 and 0.20 in Tol, respectively (entries 7 and 10). In contrast, compound **1'a** showed weak emission in DMSO (entry 3, Figure S2a) but no emission in nonpolar solvents (entry 1). Similarly, **2'a** only exhibited weak emission in chloroform (entry 5, Figure S2b). This behavior can be explained using the lowest-energy excited state, at least for the behavior in Tol. In the case of chromophores with strong donor–acceptor groups, the ICT of the π - π * transition shifts to a lower energy, resulting in the corresponding excited state lying below that of the n– π * transition. For the weaker electron-donating group (–OMe), because the n– π * transition is

at a lower energy, no emission or weak emission occurs⁵¹ (Table S1). The fluorescence lifetimes of **1'b** and **2'b** were determined to be <1 ns by time-correlated single-photon counting technique (entries 7 and 10). The 2PA cross-sections (σ_2) of **1'b** and **2'b**, as determined by 2P-excited florescence measurements, were 44 and 13.9 at 830 nm and 810 nm, respectively (entries 7 and 10, Figure S4).

To gain further insight into the electronic excitation process, the absorption spectra of compounds 1'a,b and 2'a,b were computed at the TD-B3LYP/6-31G(d) level of theory in the gas phase. In the computed geometries, all the chromophores possessed significant twist angles between the phenyl groups ($\sim 35^{\circ}$). In all cases, the NO₂ moiety was coplanar with the adjacent ring. The NMe₂ group was also nearly coplanar with the adjacent benzene ring (Figure S26). A bathochromic shift of 2'b (477 nm) relative to 1'b (423 nm) was found in the TD-DFT calculation, which was not consistent with the experimental observation (entries 7 and 10, Table S1). However, it has been reported that the charge transfer transition from the highest-occupied-molecular-orbital (HOMO) to the lowest-unoccupiedmolecular-orbital (LUMO) is overestimated by the TD-B3LYP/6-31G(d) level of theory⁶¹⁻ ⁶³. When the four compounds were calculated at the TD-M06-2X and TD-CAM-B3LYP level of theory with the SMD solvent model⁶⁴, the trend experimentally observed in the absorption spectra was well reproduced, although the absolute values were all blue-shifted (~30 nm for 1'a and 2'a and ~60–70 nm for 1'b and 2'b; Table S1). For example, the computed absorption maxima in Tol, CHCl₃, and DMSO were 338, 346, and 349 nm, respectively, for compound 1'b (entries 7-9), whereas the experimentally observed absorption maxima were 398, 407, and 423 nm, respectively.

			-	1		1					
			λ _{abs} /	ε/	λ_{abs} /	$\lambda_{abs}/$	λ_{abs} /	λ _{em} /			σ_2 /
Entry		Solv.	nma	M^{-1}	nm ^c	nm ^d	nm ^e	nmf	$\Phi_{\rm flu}{}^{\rm g}$	$\tau \ / \ ns^i$	GMİ
			11111	$\mathrm{cm}^{-1\mathrm{b}}$	(f) ^k	(f) ^k	(f) ¹	11111			OWP
1	T 1	225	$15756 \pm$		296	300	. 1				
1		101	333	97		(0.78)	(0.59)	па	na	na	na
2	Bi-OMe	CUCL	240	14512±	360	301	305	- 1	d	1	n d
2	1'a	CHCl3	340	100	(0.38)	(0.76)	(0.74)	па	na	na	na
3		DMSO	3/0	$13481 \pm$		302	307	554	$0.032 \pm$	nd	nd
5		DIVISO	549	6		(0.75)	(0.74)	554	0.005	liu	liu
4		Tal	3/1	$33089 \pm$		302	304	nd	nd	nd	nd
- -	т Тол	101	541	87		(1.15)	(0.59)	nu	na	na	na
5		CHCh	3/3	$27710 \pm$	400	306	311	589	$0.053 \pm$	nd	nd
	220	CHCI3	545	135	(0.37)	(1.04)	(1.06)		0.0006		
6	2 a	DMSO	252	$23827 \pm$		308	312	690	nd	nd	nd
0	0	DIVISO	332	112		(1.09)	(1.08)	080	na	110	na
				17219+		338	339		0.66+	(<1 ns	44
7		Tol	398	1/21) ±		(0.04)	(0.02)	536	0.00 ±	2.61)	(830
	Bi-			167	400	(0.84)	(0.83)		0.01	2.61)	nm)
0	NMe ₂	CUCL	407	17613 ±	423	346	347	669	0.012±		n d
8	1'b	UHUI3	407	146	(0.39)	(0.83)	(0.81)	008	0.00036^{h}	na	па
0		DMSO	122	$17718 \pm$		349	350	nd	nd	nd	nd
,		DIVISO	723	3		(0.81)	(0.80)	litt	lid	na	liu
			1	8860+		331	328	1	0.20+	(<1 ns	13.9
10		Tol	Tol 361	32	477	(1.02)	(1.02)	565	0.005	2.00)	(810
	Ter-			52		(1.02)	(1.02)		0.005	2.09)	nm)
11	NMe ₂	CUCL	CHCla 262	$15243 \pm$	(0.2%)	335	331	nd	nd	nd	nd
11	2'b		502	5	(0.20)	(1.01)	(1.00)	nu	110	na	na
12		DMSO	372	$9099\pm$		339	336	nd	nd	nd	nd
				5		(1.03)	(1.01)				

Table S1. Experimental and theoretical photophysical data for 1PA and 2PA of 1'a,b and 2'a,b.

^aAbsorption maximum measured in Tol, CHCl₃, or DMSO. ^bMolar extinction coefficient. ^cAbsorption maximum in the gas phase calculated at the TD-DFT/B3LYP/6-31G(d) level of theory in Gaussian 09. ^dAbsorption maximum calculated at the TD-M06-2X/6-31G(d) level in Gaussian 09 using the SMD solvent model. ^eAbsorption maximum calculated at the TD-DFT/CAM-B3LYP/6-31G(d) level in Gaussian 09 using the SMD solvent model. ^fEmission maximum measured in Tol, CHCl₃, or DMSO. ^gFluorescence quantum yield measured in Tol, CHCl₃ or DMSO using 9,10-diphenylanthracene ($\Phi_f = 0.84$) as a standard. ^hRhodamine B ($\Phi_f = 0.5$) was used as the fluorescence quantum yield standard. ⁱFluorescence lifetimes observed at 536 and 565 nm for **1'b** and **2'b**, respectively. ^j2P cross-section measured using the 2PE fluorescence method in Tol with a chromophore concentration 1 × 10⁻³ M. ^kOscillator strength.

Figure S1. UV-Vis absorption spectra of **1'a,b** and **2'a,b**. (a) In toluene, (b) In chloroform, (c) In DMSO.

Figure S2. (a) Emission spectra of compound 1'a in DMSO, (b) Emission spectra of compound 2'a in chloroform, (c) Emission spectra of compound 1'b in toluene, (d) Emission spectra of compound 1'b in chloroform, (e) Emission spectra of compound 2'b in toluene.

2PA spectroscopic measurement of 1'b and 2'b

Two-photon-excited fluorescence spectra of the studied model fluorophores **1'b** and **2'b** in solution phase (concentration: 1×10^{-3} M) were measured according to the reported protocols using Rhodamine 610 (in MeOH) as the standard^{65,66}. The excitation light source was a mode-locked Ti:Sapphire laser (Chameleon Ultra II, Coherent Inc.) which delivers ~140 fs pulses with the repetition rate of 80 MHz and the beam diameter of 2 mm. The intensity level of the excitation beam was carefully controlled by the combination of a $\lambda/2$

wave plate and a polarizer in order to avoid the saturation of absorption and photodegradation. To minimize the effects of re-absorption, the excitation beam was focused as close as possible to the front-wall of the quartz cell (10 mm x 10 mm cuvette) and the up-converted emissions were collected at a right angle to the incident excitation beam and was induced by a fiber bundle into a CCD imaging spectrometer (USB-4000, Ocean Optics) for the spectra recording. This optical system was also utilized for the characterization of the quadratic dependence of the 2PA-induced up-conversion emission intensity on the pumping intensity for every data point. The measured 2PA spectra of the studied compounds are shown in Figure S4.

Figure S3. Optical setup for two-photon-excited-fluorescence-related experiments.

Figure S4. TPA spectra of 1'b and 2'b was determined by the 2P-induced fluorescence measurement in Toluene.
In this experiment, the mode-locked Ti: Sapphire laser (Mai Tai, Spectra Physic Inc.) was used as the light excitation source which delivers ~ 80 fs pulses with the repetition rate of 80 MHz. The excitation wavelength range was used in these experiments at 690 – 840 nm. Three mirrors were used to deliver the laser beam and a lens on top of the sample to focus a light (Figure S5).

Figure S5. Optical setup for two-photon-excited-related experiments.

¹H-NMR and ¹³C-NMR spectrum

Figure S6. ¹H-NMR spectrum of compound 1'a⁵⁸ in CDCl₃.

Figure S7. ¹H-NMR spectrum of compound 1'b⁵⁹ in CDCl₃.

Scheme S1. Synthesis of compound **2'a**. Reagents and conditions: (a) **2'a**, Pd(PPh₃)₄, K₂CO₃, THF, H₂O, rt to 80 °C, overnight, 50% for **2'a**.

4-(Dimethylamino)-4''-nitro-*p*-terphenyl (2'a): In a round-bottom flask, the compound A^{46} (426 mg, 1.62 mmol), 4-nitrophenylboronic acid (272 mg, 1.63 mmol), Pd(PPh₃)₄ (94.1 mg, 0.08 mmol) was degassed with N₂ for 30 min. Potassium carbonate (315 mg, 2.28 mmol) dissolved in H₂O (10 mL) and THF (10 mL) was added in the mixture. The solution heated to 80 °C for overnight. The reaction was cooled to room temperature and the reaction mixture was filtered. The filtrate was washed with water and extracted with EtOAc. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure. The products were purified through silica gel column chromatography to give the desired coupling product **2'a** (245 mg, 50%) as a yellow color solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.33 ppm (d, *J* = 9.2 Hz, 2H), 7.80 ppm (d, *J* = 9.0 Hz, 2H), 7.69 ppm (s, 4H), 7.60 ppm (d, *J* = 9.0 Hz, 2H), 7.03 ppm (d, *J* = 9.2 Hz, 2H), 3.87 ppm (s, 3H). ¹³C-NMR (400 Hz, CDCl₃): δ 171.8, 171.3, 150.3, 146.9, 146.3, 141.8, 137.6, 136.0, 127.9, 127.7, 126.7, 126.1, 125.5, 112.8, 78.3, 70.3, 69.0, 61.4, 60.3, 55.9, 55.7, 53.9, 40.5, 14.3, 14.2. IR: ν 2917, 2849, 1766, 1600, 1512, 1369, 1347, 1225, 1139, 1048, 1007, 985, 815. HRMS-ESI: calcd for C₄₂H₅₆N₄O₁₂Na [M + Na] + 831.37869, found 831.37860.

Figure S8. ¹H-NMR spectrum of compound 2'a in CDCl₃.

Figure S9. ¹³C-NMR spectrum of compound 2'a in CDCl₃.

Figure S10. ¹H-NMR spectrum of compound 2'b^{44,45} in CDCl₃.

Figure S11. ¹H-NMR spectrum of compound 3a in CDCl3.

Figure S13. ¹H-NMR spectrum of compound 4a in CD₃OD.

Figure S14. ¹³C-NMR spectrum of compound 4a in CD₃OD.

Figure S15.¹H-NMR spectrum of compound 5a in CDCl₃.

Figure S16. ¹³C-NMR spectrum of compound 5a in CDCl₃.

Figure S17. ¹H-NMR spectrum of compound 3b in CDCl₃.

Figure S18. ¹³C-NMR spectrum of compound 3b in CDCl₃.

Figure S19. ¹H-NMR spectrum of compound 4b in CD₃OD.

Figure S20. ¹³C-NMR spectrum of compound 4b in CD₃OD.

Figure S21. ¹H-NMR spectrum of compound 5b in CDCl₃.

Figure S22. ¹³C-NMR spectrum of compound 5b in CDCl₃.

Figure S23. ¹H-NMR spectrum of compound 6b in C₆D₆.

Figure S24. MS spectrum of compound 6b

Figure S25. UV-vis absorption spectra. (a) Compound **3a** in DMSO, (b) Compound **3b** in DMSO, (c) Compound **4a** in HEPES buffer pH 7.4, (d) Compound **4b** in HEPES buffer pH 7.4.

Computational details

We used density functional theory (DFT) and time-dependent (TD) DFT approaches, as implemented in the Gaussian 09 packages⁶⁷, to model the four chromophores of interest. Calculations have been performed in vacuum, in SMD solvent model⁶⁴ and were limited to properties related to the ground state geometry: geometry optimization, one photon absorption related to the electronically excited states (ES). One-photon absorption (1PA) were obtained at the TD-B3LYP/6-31G(d), TD-M062X/6-31G(d) and TD-CAM-B3LYP/6-31G(d) level of theory, including up to 20 singlet ES.

Figure S26. Molecular scheme of the chromophores of interest and selected dihedral angles.

B3LYP/6-31G(d) in gaussian 09 packages in gas phase

Compound **1'a** Number of Imaginary Frequencies = 0 Zero-point correction = 0.217420 (Hartree/Particle) Thermal correction to Energy = 0.231446 Thermal correction to Enthalpy = 0.232390 Thermal correction to Gibbs Free Energy = 0.175262 Sum of electronic and zero-point Energies = -782.114608 Sum of electronic and thermal Energies = -782.100582 Sum of electronic and thermal Energies = -782.099638 Sum of electronic and thermal Free Energies = -782.156765

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Ζ
1	6	-0.000028886	-0.000002341	-0.000000725
2	6	0.000046497	-0.000008619	0.000002340
3	6	0.000009091	-0.000000295	-0.000000781
4	6	0.000010530	-0.000001224	0.000001587
5	6	-0.000002710	-0.000010829	-0.000005612
6	6	-0.000002518	0.000009979	-0.000002557
7	1	0.000003300	-0.000004798	0.000001446
8	1	0.000002613	0.000002155	-0.000002953
9	1	-0.000009032	0.000005536	0.000002906
10	1	-0.000008405	-0.000005542	-0.000001999
11	6	-0.000048652	0.000013625	0.000022010
12	6	0.000026038	-0.000004717	-0.000007153
13	6	0.000003454	0.000010976	-0.000003739
14	6	0.000006108	-0.000011801	-0.000005940
15	6	-0.000007949	0.000003888	-0.000001655
16	6	-0.000008778	-0.000001593	0.000004578
17	1	0.000008085	-0.000005398	0.000004437
18	1	0.000007936	0.000003254	-0.000006477
19	1	-0.000003097	0.000003208	0.000000663
20	1	-0.000002715	-0.000001000	-0.000000610
21	7	0.000016796	-0.00000087	-0.000009098
22	8	-0.00000828	-0.000010775	0.00000892
23	8	-0.000002104	0.000005849	0.000004560
24	8	-0.000014209	0.000002259	0.000004568
25	6	0.000001146	0.000004741	-0.000001669
26	1	-0.000000694	0.00000788	-0.00000016
27	1	-0.000000565	0.000001834	0.000000709
28	1	-0.000000453	0.000000925	0.00000286

Compound **1'b** Number of Imaginary Frequencies = 0 Zero-point correction = 0.258055 (Hartree/Particle) Thermal correction to Energy = 0.273988

Thermal correction to Enthalpy = 0.274932 Thermal correction to Gibbs Free Energy = 0.213121 Sum of electronic and zero-point Energies = -801.519761 Sum of electronic and thermal Energies = -801.503828 Sum of electronic and thermal Enthalpies = -801.502884 Sum of electronic and thermal Free Energies = -801.564695

Center	Atomic	For	ces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	6	0.000015176	-0.00000025	-0.000000773
2	6	-0.000000624	-0.000002445	0.000008044
3	6	-0.000001288	0.00000389	-0.000000556
4	6	-0.000000979	-0.000002849	0.000000229
5	6	0.00000796	0.000001195	0.000001594
6	6	0.000004503	-0.000001659	-0.000006594
7	1	-0.000001086	0.000000518	-0.000004866
8	1	-0.000000844	-0.000000796	0.000003738
9	1	-0.000003245	-0.000000279	0.000000778
10	1	-0.000001194	0.000002296	-0.000004248
11	6	-0.000000010	0.000004788	-0.000003763
12	6	-0.000009644	-0.000002822	-0.000000218
13	6	-0.000002397	-0.000003630	0.000001507
14	6	-0.000002516	0.000000813	0.000001420
15	6	0.000003146	0.000001389	0.00000356
16	6	-0.000001397	0.000001350	-0.000003090
17	1	0.000000787	0.000000050	-0.000004177
18	1	0.000004439	0.000001724	0.000004338
19	1	0.000001377	0.000000654	0.000002789
20	1	-0.000001616	-0.000001737	-0.000001973
21	7	-0.000015745	-0.000000589	-0.000000753
22	8	0.000001785	-0.000003529	-0.000003569
23	8	0.000002298	0.000003249	0.000002189
24	7	0.000009311	0.000002418	0.000012161
25	6	-0.000002726	0.000002373	-0.000000712
26	1	0.000001640	-0.000001792	0.000002417
27	1	0.000000420	0.000000980	0.000004569
28	1	-0.000001586	0.000002497	0.000002278

29	6	-0.000000456	-0.000004107	-0.000007333
30	1	-0.000000154	-0.000001240	-0.000001933
31	1	0.000001516	0.00000894	-0.000002322
32	1	0.000000314	-0.000000075	-0.000001527

Compound **2'a** Number of Imaginary Frequencies = 0 Zero-point correction = 0.298398 (Hartree/Particle) Thermal correction to Energy = 0.317134 Thermal correction to Enthalpy = 0.318078 Thermal correction to Gibbs Free Energy = 0.249288 Sum of electronic and zero-point Energies = -1013.090849 Sum of electronic and thermal Energies = -1013.072113 Sum of electronic and thermal Enthalpies = -1013.071169 Sum of electronic and thermal Free Energies = -1013.139959

_

Center	Atomic	Forces (Hartrees/Bohr)		nr)
Number	Number	Х	Y	Z
1	6	-0.000010157	-0.000000868	0.000004948
2	6	0.000006811	0.000001074	0.000001920
3	6	0.00000351	0.000002543	-0.000002355
4	6	0.000000751	-0.000002273	-0.000001574
5	6	0.000000198	0.000000514	-0.000000747
6	6	-0.000000912	0.00000367	-0.000000004
7	1	0.00000086	-0.000001618	-0.00000342
8	1	0.000000775	0.000001285	-0.000000061
9	1	0.000000147	0.00000871	-0.000000049
10	1	-0.000000693	-0.000000448	-0.000001216
11	6	0.000009795	-0.000000075	-0.000005852
12	6	-0.000004963	0.000000984	-0.00000325
13	6	-0.000000132	-0.000002956	0.000001510
14	6	0.00000033	0.000002131	0.000002257
15	6	0.000001556	0.000000794	-0.000000519
16	6	-0.000000139	-0.000000135	0.00000629
17	1	-0.000000920	0.00000832	0.00000831
18	1	-0.000000090	-0.000001150	-0.000001160

19	1	0.00000683	-0.000000657	0.00000047
20	1	0.000000614	0.000000224	0.000000480
21	6	0.000001259	-0.000000562	-0.00000208
22	6	-0.000000350	-0.000000314	0.00000305
23	6	-0.000000145	0.000000323	0.000000716
24	6	0.000000355	-0.000000218	0.00000353
25	6	0.000000488	-0.000000428	-0.000000049
26	6	0.000000527	0.00000026	0.000000437
27	1	-0.00000086	-0.000000301	0.000000593
28	1	0.000000275	-0.000000126	-0.00000338
29	1	0.000000129	-0.000000127	-0.000000127
30	1	-0.00000096	-0.000000314	0.000000653
31	7	0.000001730	-0.000000831	0.000000657
32	8	-0.000001330	0.000000772	0.00000057
33	8	-0.000001400	-0.000001021	0.000000665
34	8	-0.000004113	-0.000000984	-0.00000893
35	6	-0.00000070	0.000002519	-0.000000798
36	1	-0.00000243	-0.000000225	-0.000000129
37	1	-0.000000268	0.00000065	-0.000000225
38	1	-0.000000454	0.00000308	-0.00000087

Compound **2'b** Number of Imaginary Frequencies = 0 Zero-point correction = 0.339035 (Hartree/Particle) Thermal correction to Energy = 0.359632Thermal correction to Enthalpy = 0.360576Thermal correction to Gibbs Free Energy = 0.287391Sum of electronic and zero-point Energies = -1032.495338Sum of electronic and thermal Energies = -1032.474741Sum of electronic and thermal Enthalpies = -1032.473797Sum of electronic and thermal Free Energies = -1032.546983

Center	Atomic	For	rces (Hartrees/Bol	ır)
Number	Number	X	Y	Z
1	6	-0.000006076	-0.000000039	0.000000269
2	6	0.000010997	-0.000003288	0.000005584

3	6	0.000003038	0.000000315	-0.000001296
4	6	0.000002517	-0.000001629	0.000001862
5	6	-0.000002368	0.000001077	-0.000002147
6	6	-0.000004846	-0.000000549	-0.000001242
7	1	-0.00000082	0.000000818	-0.00000127
8	1	0.000000105	-0.000001077	0.000001653
9	1	-0.00000238	-0.000000846	0.000001899
10	1	-0.000002464	0.000002786	-0.000002596
11	6	-0.00000267	-0.000004766	0.000004063
12	6	0.000012440	0.000000658	-0.000000331
13	6	0.000002456	-0.000000614	0.000000121
14	6	0.000002260	0.000003244	-0.000004168
15	6	0.000000704	0.000000922	0.000002944
16	6	-0.00000383	0.000000070	-0.000000068
17	1	-0.000004069	-0.000001433	-0.000002782
18	1	-0.000002071	0.000000676	0.000003415
19	1	0.000000703	0.000001847	0.000000929
20	1	-0.000000315	-0.000000894	-0.000001080
21	7	0.000004600	0.000000149	0.00000366
22	8	-0.000000522	-0.000001394	-0.000001458
23	8	-0.00000383	0.000000767	0.000001791
24	7	-0.000011269	-0.000006626	-0.000013254
25	6	0.000000715	0.000004862	0.000004427
26	1	-0.00000380	0.00000032	-0.000000198
27	1	-0.000001154	0.000001730	0.000002017
28	1	-0.000000212	0.000001421	0.000001953
29	6	0.000001977	0.000000937	0.00000585
30	1	-0.000000049	-0.000001708	-0.000001336
31	1	-0.000000527	0.000001183	-0.000002151
32	1	-0.000000438	-0.000000829	-0.000002395
33	6	-0.000009713	0.000002105	-0.000005140
34	6	0.000002457	0.000001207	-0.000006693
35	6	0.000001374	0.000002621	-0.000000759
36	6	-0.000001202	-0.000003022	0.000003636
37	6	-0.000004753	0.000002607	0.000004024
38	6	-0.000001796	-0.000002718	-0.000001949
39	1	0.000003283	-0.00000805	-0.000001030
40	1	0.000000967	0.000001142	0.000003632
41	1	0.000001672	-0.000000958	0.000002781

M062X/6-31G (D) in gaussian 09 packages using SMD solvent model

Compound **1'a** In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.220491 (Hartree/Particle) Thermal correction to Energy = 0.234341 Thermal correction to Enthalpy = 0.235286 Thermal correction to Gibbs Free Energy = 0.178352 Sum of electronic and zero-point Energies = -781.801458 Sum of electronic and thermal Energies = -781.787608 Sum of electronic and thermal Enthalpies = -781.786664 Sum of electronic and thermal Free Energies = -781.843598

Center Atomic		Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z	
1	6	0.000060496	-0.000006423	0.000002436	
2	6	0.000003461	-0.000004507	-0.000002142	
3	6	-0.000017069	-0.000005767	-0.000001511	
4	6	-0.000020516	-0.000000351	0.000002838	
5	6	-0.000000123	-0.000004729	0.000000709	
6	6	0.000004051	0.000001875	0.000002806	
7	1	0.000002385	-0.000003788	0.000000671	
8	1	-0.000002135	-0.000005962	0.000001466	
9	1	-0.000003814	-0.000003272	0.000002480	
10	1	0.000003229	-0.000001362	-0.000000700	
11	6	-0.000005955	0.000006288	0.000001730	
12	6	-0.000011662	0.000015273	0.000003049	
13	6	0.000007917	-0.000001641	-0.000002384	
14	6	0.000002234	-0.000000127	-0.000000377	
15	6	0.000004397	-0.000003835	0.000000479	
16	6	-0.00000088	0.000001628	-0.000000443	
17	1	0.000002056	0.000000597	-0.000001244	
18	1	-0.000000050	-0.000000228	-0.000000996	
19	1	0.000001200	0.000004320	-0.000001172	

20	1	0.000003627	0.000003687	-0.000001319
21	7	-0.000023250	-0.000006747	0.000000172
22	8	0.00000343	-0.000005752	0.000003119
23	8	-0.000005142	-0.000007013	0.000001215
24	8	0.000011008	0.000003115	-0.000011534
25	6	-0.000009071	-0.000000475	0.000006930
26	1	-0.000003680	0.000009005	-0.000002865
27	1	-0.000001579	0.000007004	-0.000000738
28	1	-0.000002270	0.000009188	-0.000002678

In chloroform
Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.220421 (Hartree/Particle)
Thermal correction to $Energy = 0.234296$
Thermal correction to Enthalpy $= 0.235240$
Thermal correction to Gibbs Free Energy $= 0.178184$
Sum of electronic and zero-point Energies = -781.803028
Sum of electronic and thermal Energies = -781.789153
Sum of electronic and thermal Enthalpies = -781.788209
Sum of electronic and thermal Free Energies = -781.845264

Center	Atomic	For	rces (Hartrees/Boł	ır)
Number	Number	Х	Y	Z
1	6	-0.000040429	-0.000006863	0.000006343
2	6	-0.000010637	0.000000613	0.00000240
3	6	0.000023290	0.000002294	0.00001088
4	6	0.000022276	-0.000009567	-0.000005150
5	6	-0.000003843	0.000005909	-0.000001820
6	6	0.000002172	-0.000008455	0.000002316
7	1	0.000003195	-0.000009405	0.000007705
8	1	-0.000001066	-0.000000682	-0.000002618
9	1	-0.000005351	0.000001653	-0.000004551
10	1	0.000001534	-0.000004963	0.000009003
11	6	0.000012092	-0.000007910	0.000005799
12	6	0.000020349	-0.000006597	0.000008600
13	6	-0.000006727	0.000004976	-0.000000623

14	6	-0.000006069	0.000005181	-0.000006255
15	6	-0.000005646	0.000009192	-0.000008543
16	6	0.000003201	0.000005602	0.000003963
17	1	0.000003501	0.000001531	0.000006310
18	1	-0.000001931	-0.000000989	-0.000005801
19	1	-0.000001288	0.000002994	-0.000007682
20	1	0.000002535	0.000005141	0.000006077
21	7	0.000019348	-0.000000741	-0.000019284
22	8	-0.000004791	-0.000013158	0.000007601
23	8	-0.000006611	-0.000006352	0.000012542
24	8	-0.000011110	0.000008150	-0.000008968
25	6	-0.000006120	0.000003905	-0.000002333
26	1	-0.000002085	0.000008136	-0.000005261
27	1	0.000002327	0.000008704	-0.000001989
28	1	-0.000002118	0.000001702	-0.000006508

In DMSO Number of Imaginary Frequencies = 0 Zero-point correction = 0.220420 (Hartree/Particle) Thermal correction to Energy = 0.234313 Thermal correction to Enthalpy = 0.235257 Thermal correction to Gibbs Free Energy = 0.177862 Sum of electronic and zero-point Energies = -781.800101 Sum of electronic and thermal Energies = -781.786208 Sum of electronic and thermal Enthalpies = -781.785264 Sum of electronic and thermal Free Energies = -781.842659

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	0.000041651	-0.000001943	0.000000977
2	6	0.000006069	-0.000002879	0.000000437
3	6	-0.000009505	-0.000004949	0.00000382
4	6	-0.000013294	0.000000220	0.000000593
5	6	-0.000003830	-0.000003212	-0.000001207
6	6	-0.000003253	0.000001455	0.000002977
7	1	0.000000262	-0.000002712	0.000002525

8	1	-0.000002163	-0.000001802	-0.000000719
9	1	-0.000001449	-0.000000789	-0.000000424
10	1	0.000001290	-0.000001368	0.000001282
11	6	-0.000008659	0.000002774	0.000000266
12	6	-0.000001064	0.000004082	0.000000171
13	6	0.000005791	0.000001421	0.000000019
14	6	0.000007006	0.000000741	-0.000000307
15	6	-0.000006662	0.000000713	-0.000001540
16	6	0.000000313	0.000001755	0.000000503
17	1	0.000001707	0.00000885	0.000001672
18	1	-0.00000862	-0.000000460	-0.000002561
19	1	-0.00000202	0.000000956	-0.000002476
20	1	0.000001488	0.000002227	0.000000927
21	7	-0.000029842	-0.000004892	0.000005998
22	8	0.000009267	-0.000002530	0.000001717
23	8	0.000008393	-0.000004124	-0.000001410
24	8	-0.000002764	-0.000005130	-0.000000193
25	6	0.000005281	0.000012720	-0.000003707
26	1	-0.000001509	0.000002448	-0.000003189
27	1	-0.000001347	0.000003172	-0.000001114
28	1	-0.000002113	0.000001219	-0.000001601

Compound 1'b

In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.261588 (Hartree/Particle) Thermal correction to Energy = 0.277189 Thermal correction to Enthalpy = 0.278133 Thermal correction to Gibbs Free Energy = 0.217441 Sum of electronic and zero-point Energies = -801.191098 Sum of electronic and thermal Energies = -801.174573 Sum of electronic and thermal Enthalpies = -801.174553 Sum of electronic and thermal Free Energies = -801.235245

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Ζ
1	6	-0.000008446	0.000000135	-0.000002192
2	6	-0.000002809	0.000000010	0.000000280
3	6	0.000001445	0.000000702	0.000004409
4	6	0.000003990	0.000001622	-0.000002175
5	6	0.000001555	-0.000001212	-0.000003833
6	6	-0.000000894	0.000000422	0.000003051
7	1	-0.000002220	0.000001650	0.000006168
8	1	0.000000997	-0.000000903	-0.000003012
9	1	0.000001739	-0.000000874	-0.000003856
10	1	-0.000000052	0.000001206	0.000005055
11	6	0.000001912	-0.000000599	-0.000000654
12	6	0.000020938	-0.000001395	-0.000001525
13	6	-0.000000779	-0.000002870	0.000000606
14	6	-0.000000210	0.000000406	-0.000003295
15	6	-0.000006010	-0.000002223	-0.000005413
16	6	-0.000008005	-0.000000974	0.00000385
17	1	-0.000001247	-0.000002804	0.000003929
18	1	0.00000228	0.000001320	-0.000005870
19	1	0.00000065	0.000000053	-0.000006730
20	1	-0.000001945	-0.000003608	0.000002904
21	7	0.000008769	0.00000833	0.000002744
22	7	-0.000006804	-0.000002695	-0.000002487
23	8	0.000000560	0.000001132	0.000000902
24	8	0.000001634	-0.000005966	-0.000007214
25	6	-0.000001154	0.000000706	0.000006651
26	1	-0.000000017	0.000001634	0.000005095
27	1	-0.000000249	0.000004700	0.000004948
28	1	-0.000000563	0.00000807	0.000006890
29	6	-0.000002649	0.000004252	-0.000001941
30	1	-0.000001531	-0.000001247	-0.000001250
31	1	0.000001196	0.000002952	-0.000003215
32	1	0.000000556	0.000002827	0.000000644

In choloform
Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.261583 (Hartree/Particle)
Thermal correction to $Energy = 0.277131$
Thermal correction to Enthalpy $= 0.278075$
Thermal correction to Gibbs Free Energy $= 0.217529$
Sum of electronic and zero-point Energies = -801.193282
Sum of electronic and thermal Energies $= -801.177735$
Sum of electronic and thermal Enthalpies $= -801.176790$
Sum of electronic and thermal Free Energies = -801.237336

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	0.000011602	0.000000030	-0.000000501
2	6	0.000000594	-0.000001284	0.000002825
3	6	-0.000004772	-0.000001830	0.000005797
4	6	-0.000004465	0.000002850	-0.000005065
5	6	0.000001776	-0.000004146	-0.000004582
6	6	0.000002352	0.000004004	0.000004688
7	1	0.000002671	0.000004214	0.000008074
8	1	0.000002188	-0.000003735	-0.000005720
9	1	0.000001581	-0.000002247	-0.000006629
10	1	0.000001192	0.000001672	0.000006518
11	6	-0.00008006	0.000000677	-0.000003755
12	6	0.000077689	0.00000013	0.000000845
13	6	0.000007979	-0.000001943	0.000003669
14	6	0.000007766	-0.000000483	-0.000003056
15	6	-0.000014034	0.000001637	-0.000003198
16	6	-0.000016176	-0.000004528	-0.000000281
17	1	-0.000001571	-0.000003074	0.000006848
18	1	-0.000000182	0.000001776	-0.000007568
19	1	0.000001920	0.000001169	-0.000008739
20	1	0.000000784	-0.000003226	0.000006514
21	7	-0.000012048	-0.000000520	0.000001143
22	7	-0.000038105	-0.000000339	-0.000003296
23	8	-0.000010995	-0.000006421	0.000004566
24	8	-0.000010236	0.000002787	-0.000007052

25	6	0.000002582	0.000004986	0.000006083
26	1	-0.000000134	0.000000698	0.000004116
27	1	-0.000000211	0.000006290	0.000004360
28	1	-0.000003288	0.000001639	0.000009204
29	6	0.000002515	-0.000001097	-0.000006090
30	1	-0.00000327	-0.000004080	-0.000003253
31	1	-0.000000923	0.000002648	-0.000006046
32	1	0.00000282	0.000001867	-0.000000419

In DMSO

Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.261602 (Hartree/Particle)
Thermal correction to $Energy = 0.277096$
Thermal correction to Enthalpy $= 0.278040$
Thermal correction to Gibbs Free Energy $= 0.217789$
Sum of electronic and zero-point Energies = -801.189072
Sum of electronic and thermal Energies = -801.173578
Sum of electronic and thermal Enthalpies = -801.172634
Sum of electronic and thermal Free Energies = -801.232885

Center	Atomic	For	rces (Hartrees/Boh	ur)
Number	Number	Х	Y	Ζ
1	6	0.000025204	0.000000562	0.000010422
2	6	-0.000009507	-0.000001207	0.000000987
3	6	-0.000010685	-0.000000304	0.000000623
4	6	-0.000005828	0.000003795	0.000000548
5	6	0.000006108	-0.000001017	-0.000001039
6	6	0.000005682	0.000001772	0.00000023
7	1	0.000001239	0.00000848	0.000000537
8	1	0.000003035	-0.000002576	0.000003786
9	1	0.000001984	-0.00000023	0.000002537
10	1	0.00000366	0.000000740	-0.000000809
11	6	0.000004385	0.000001352	-0.000000654
12	6	0.000045143	-0.000000241	-0.000001117
13	6	0.000002183	-0.000001308	-0.000005041
14	6	0.000001802	-0.000000680	-0.000000790

15	6	-0.000009900	0.000001805	-0.000002583
16	6	-0.000011595	-0.000003339	-0.000005183
17	1	-0.000001167	0.000001257	-0.000002270
18	1	-0.000001878	-0.000000648	-0.000002410
19	1	0.000000977	-0.000002280	-0.000003217
20	1	-0.00000390	0.000001352	-0.000004145
21	7	-0.000025058	-0.000002673	-0.000004335
22	7	-0.000027741	0.000002133	-0.000013088
23	8	0.00000841	0.000008055	-0.000000656
24	8	0.000001632	-0.000011134	-0.000006295
25	6	0.000005668	0.000005704	0.000003650
26	1	-0.000000767	-0.000000410	0.000006287
27	1	0.000001187	-0.000001129	0.000001872
28	1	-0.00000988	0.000000543	0.000002736
29	6	0.000002680	-0.000003552	0.000003130
30	1	-0.000003257	0.00000043	0.000005080
31	1	-0.000000265	0.000000728	0.000003972
32	1	-0.000001087	0.000001832	0.000007444

Compound 2'a

In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.302607 (Hartree/Particle) Thermal correction to Energy = 0.320895 Thermal correction to Enthalpy = 0.321839 Thermal correction to Gibbs Free Energy = 0.254757 Sum of electronic and zero-point Energies = -1012.687089 Sum of electronic and thermal Energies = -1012.668802 Sum of electronic and thermal Enthalpies = -1012.667857 Sum of electronic and thermal Free Energies = -1012.734940

Center	Atomic	For	rces (Hartrees/Boh	r)
Number	Number	Х	Y	Z
1	6	0.000019255	0.000003036	0.000001388
2	6	0.000031060	-0.000015400	0.000008309
3	6	-0.000007123	0.000001202	0.000015337

4	6	-0.000010842	0.000004097	-0.000012543
5	6	-0.000011360	0.000006338	-0.000005748
6	6	-0.000004250	0.000003371	0.000000417
7	1	-0.000000395	0.000012811	0.000012899
8	1	-0.000002509	-0.000012365	-0.000013101
9	1	-0.000003052	-0.000012636	-0.000017811
10	1	0.000000937	0.000011762	0.000018157
11	6	-0.000025772	-0.000001923	0.000001286
12	6	0.000026670	-0.000002121	0.000004071
13	6	0.000018866	0.000009636	-0.000012443
14	6	0.000015261	-0.000005439	0.000014396
15	6	-0.000015657	-0.000004482	0.000004892
16	6	-0.000014838	0.000009164	-0.000005547
17	1	0.000002612	-0.000000531	-0.000020389
18	1	0.000002978	0.000002793	0.000022604
19	1	0.000003714	0.000003280	0.000020813
20	1	0.000005031	-0.000002981	-0.000019690
21	6	-0.000015560	-0.000001303	-0.000004031
22	6	0.000027736	0.000001028	-0.000000276
23	6	-0.000000911	0.000024386	-0.000004504
24	6	-0.000002691	-0.000022025	0.000007125
25	6	0.000006988	0.000003991	0.000019320
26	6	0.000006248	-0.000003666	-0.000018420
27	1	-0.000007441	0.000010382	-0.000013008
28	1	-0.000006075	-0.000009541	0.000014555
29	1	0.000001725	-0.000014475	0.000010146
30	1	0.000001995	0.000014105	-0.000011207
31	7	-0.000033749	-0.000002931	0.000004399
32	8	0.000001767	-0.000009783	0.000000526
33	8	-0.000002941	0.000013119	-0.000005778
34	8	-0.000008480	0.000023879	0.000019936
35	6	-0.000004407	-0.000018997	-0.000010478
36	1	0.000002653	0.000002274	-0.000011856
37	1	0.000005341	-0.000007754	-0.000004956
38	1	-0.000002784	-0.000012299	-0.000008791

In cholorform
Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.302509 (Hartree/Particle)
Thermal correction to $Energy = 0.320837$
Thermal correction to Enthalpy $= 0.321781$
Thermal correction to Gibbs Free Energy $= 0.254495$
Sum of electronic and zero-point Energies = -1012.689455
Sum of electronic and thermal Energies $=$ -1012.671127
Sum of electronic and thermal Enthalpies = -1012.670183
Sum of electronic and thermal Free Energies = -1012.737469

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	0.000015931	0.000004021	-0.000001655
2	6	0.000034948	-0.000021410	0.000002372
3	6	-0.000015762	0.000005432	0.000011348
4	6	-0.000017044	-0.000002765	-0.000007640
5	6	-0.000010435	0.000011973	-0.000004422
6	6	-0.000000925	0.000001083	0.000000578
7	1	0.000000529	0.000005222	0.000008645
8	1	-0.000002681	-0.000005582	-0.000010011
9	1	-0.000005870	-0.000007750	-0.000011291
10	1	-0.000001297	0.000006534	0.000011392
11	6	-0.000018261	-0.000002006	0.000003196
12	6	0.000023857	-0.000002517	0.000005119
13	6	0.000027199	0.00000870	-0.000003847
14	6	0.000022438	0.000001030	0.000005835
15	6	-0.000021250	0.000000582	0.000005167
16	6	-0.000021633	0.000003939	-0.000006342
17	1	0.00000833	0.000003114	-0.000015493
18	1	0.000000483	-0.000000662	0.000015555
19	1	0.000003304	-0.000000667	0.000012562
20	1	0.000005235	0.00000271	-0.000013917
21	6	-0.000020864	0.000000173	-0.000005692
22	6	0.000012091	0.000001651	0.00000002
23	6	0.000010332	0.000011953	-0.000000683
24	6	0.000007123	-0.000011734	0.000003600
25	6	0.000004569	0.000007818	0.000015196

26	6	0.000001984	-0.000007221	-0.000015700
27	1	-0.000006899	0.000008713	-0.000007769
28	1	-0.000003802	-0.000009112	0.000010361
29	1	0.000003895	-0.000011382	0.000006817
30	1	0.000003994	0.000010368	-0.000007587
31	7	-0.000040731	0.000000511	0.000002934
32	8	0.000008120	-0.000005609	0.000000153
33	8	0.000005042	0.000005084	-0.000003548
34	8	-0.000012799	0.000025924	0.000021664
35	6	0.000002220	-0.000019620	-0.000014126
36	1	0.000003531	0.000003021	-0.000005898
37	1	0.000005161	-0.000003339	-0.000002449
38	1	-0.000002565	-0.000007912	-0.000004425

In DMSO

Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.302432 (Hartree/Particle)
Thermal correction to Energy $= 0.320792$
Thermal correction to Enthalpy $= 0.321736$
Thermal correction to Gibbs Free Energy $= 0.254328$
Sum of electronic and zero-point Energies = -1012.684587
Sum of electronic and thermal Energies $= -1012.666226$
Sum of electronic and thermal Enthalpies = -1012.665282
Sum of electronic and thermal Free Energies = -1012.732690

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	6	0.000003631	0.000009040	-0.000004801
2	6	0.000007345	-0.000000299	0.000006926
3	6	-0.000009527	0.000000177	0.000004566
4	6	-0.000014763	-0.000012736	-0.000002429
5	6	0.000002569	0.000003654	-0.000005425
6	6	-0.000003682	-0.000002789	0.000003735
7	1	0.000000988	0.000004662	0.00000955
8	1	-0.000001693	-0.000003687	-0.000011060
9	1	0.000000120	-0.000007533	-0.000009889

10	1	-0.00000073	0.000005643	0.000008073
11	6	0.000000706	0.000001602	0.000002812
12	6	0.000002290	0.000002429	0.000003690
13	6	0.000017696	-0.000005601	-0.000003321
14	6	0.000015223	0.000004570	0.000005821
15	6	-0.000012568	0.000002403	0.000008418
16	6	-0.000012230	-0.000001216	-0.000005789
17	1	-0.000002001	0.000004200	-0.000013290
18	1	-0.000003011	-0.000003152	0.000011979
19	1	-0.00000233	-0.000002455	0.000009727
20	1	0.000001709	0.000003345	-0.000011455
21	6	-0.000005567	-0.000000478	-0.000004043
22	6	-0.000047823	-0.000001727	0.000004270
23	6	0.000004639	0.000007773	0.00000635
24	6	0.000003971	-0.000005256	0.000004143
25	6	0.000020881	0.000004441	0.000010140
26	6	0.000021455	-0.000002677	-0.000003476
27	1	0.000000260	0.000009405	-0.000008269
28	1	0.000000575	-0.000007994	0.000011192
29	1	0.000001297	-0.000007277	0.000010034
30	1	0.000003219	0.000008675	-0.000008166
31	7	0.000032332	0.000017413	-0.000015398
32	8	-0.000011854	-0.000024256	0.000002676
33	8	-0.000015060	0.000015651	0.000012826
34	8	0.000009729	0.000022538	0.000003243
35	6	-0.000017954	-0.000033209	-0.000007757
36	1	0.000000894	0.000003151	-0.000005805
37	1	0.000006211	-0.000002628	-0.000005898
38	1	0.000000297	-0.000005805	-0.000008189

Compound **2'b** In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.343190 (Hartree/Particle) Thermal correction to Energy = 0.363452 Thermal correction to Enthalpy = 0.364396 Thermal correction to Gibbs Free Energy = 0.292355 Sum of electronic and zero-point Energies = -1032.076402

Sum of electronic and thermal Energies = -1032.056140 Sum of electronic and thermal Enthalpies = -1032.055196 Sum of electronic and thermal Free Energies = -1032.127237

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	1	0.000000428	-0.000002389	0.000002751
2	6	0.000001921	0.000001865	0.000002664
3	6	0.000001221	-0.000001386	-0.000002584
4	6	-0.000000790	0.000001041	-0.000000695
5	6	0.000001139	0.000001094	0.000003781
6	6	-0.000000396	-0.000000042	0.000000589
7	6	0.00000856	-0.000002294	-0.000002144
8	1	0.000000955	-0.000001965	0.000002780
9	1	0.00000313	0.000002345	-0.000002698
10	1	0.000001035	0.000001816	-0.000001921
11	6	0.000001328	-0.000001982	0.000000606
12	6	0.000012675	-0.000000499	0.000007838
13	6	-0.000001915	0.000005238	0.000001569
14	6	-0.000000853	-0.000003602	-0.000003998
15	6	-0.000003569	0.000003760	-0.000004165
16	6	-0.000001677	-0.000001547	0.000000459
17	1	-0.000000941	-0.000000438	0.000001885
18	1	-0.000000851	0.000000555	-0.000002577
19	1	-0.000001501	-0.000001061	-0.000003727
20	1	-0.000001292	0.000001342	0.000000533
21	6	-0.000002347	0.000000661	0.000001717
22	6	-0.000015513	0.000000121	0.000001245
23	6	-0.000000952	-0.000001447	0.00000352
24	6	-0.000001588	0.000000222	0.000001128
25	6	0.000004972	0.000000165	0.000006475
26	6	0.000004057	-0.000001012	-0.000001765
27	1	-0.000000154	-0.000001574	-0.000003020
28	1	0.000000451	0.000001017	0.000003908
29	1	-0.000000776	0.000000736	0.000003149
30	1	-0.000001260	-0.000001317	-0.000000628
31	7	-0.000005845	-0.000001280	-0.000013697

32	7	-0.000005519	-0.000000955	0.000000616
33	8	0.000007510	-0.000012049	0.000004047
34	8	0.000007366	0.000011394	0.000000444
35	6	-0.000000673	-0.000002063	-0.00000084
36	1	-0.000000295	0.000002133	-0.000002975
37	1	-0.000000490	-0.000001222	-0.000002632
38	1	0.000002437	0.000000586	-0.000004868
39	6	-0.000001583	0.000003401	0.000005692
40	1	0.000001843	0.000001329	-0.000000645
41	1	0.000000252	0.000000299	0.000000991
42	1	0.00000024	-0.000000996	-0.00000398

In cholofrom Number of Imaginary Frequencies = 0 Zero-point correction = 0.342911 (Hartree/Particle) Thermal correction to Energy = 0.363209 Thermal correction to Enthalpy = 0.364153 Thermal correction to Gibbs Free Energy = 0.291919 Sum of electronic and zero-point Energies = -1032.079594 Sum of electronic and thermal Energies = -1032.059296 Sum of electronic and thermal Enthalpies = -1032.058352 Sum of electronic and thermal Free Energies = -1032.130586

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Υ	Z
1	1	-0.000003609	0.000000492	-0.000002225
2	6	0.000004120	0.000001165	0.000000445
3	6	-0.000002891	0.000001788	0.000002553
4	6	-0.000000744	-0.000003692	0.000001991
5	6	-0.000005123	0.000000120	-0.000001207
6	6	0.000003228	-0.000002260	0.000001098
7	6	0.000004560	0.000002276	-0.000001194
8	1	-0.000001061	0.000000400	0.000000581
9	1	-0.000001251	-0.000000562	0.000001079
10	1	-0.000000313	-0.000000554	0.000000960
11	6	-0.000004116	-0.000001836	-0.000002726

12	6	0.000011141	-0.000002693	0.000004384
13	6	-0.00000873	0.000000981	-0.000002323
14	6	0.000001658	0.000002430	0.000002519
15	6	-0.000005655	0.000001813	0.000000695
16	6	-0.00000305	0.000000758	-0.000003818
17	1	0.000004114	-0.000000791	-0.00000895
18	1	0.000001437	0.000000793	0.000000090
19	1	-0.000001351	0.000000434	-0.000002184
20	1	0.000001879	-0.000001696	-0.000002616
21	6	-0.000002907	-0.000000604	0.000001099
22	6	0.000036930	-0.000000582	0.000002168
23	6	0.000008161	-0.000000446	0.000001340
24	6	0.000007929	0.000001418	0.000001418
25	6	-0.000014935	0.000002805	-0.000002989
26	6	-0.000014176	-0.000001803	0.000007285
27	1	-0.000000070	0.000001208	0.000003605
28	1	-0.00000008	-0.000001124	-0.000001284
29	1	0.000002759	-0.000001242	0.000002247
30	1	0.000002800	0.000001442	0.000001911
31	7	-0.000011036	-0.000000164	-0.000003061
32	7	-0.000029019	-0.000001086	0.000004185
33	8	0.000000807	0.000001968	-0.000000884
34	8	0.000002149	-0.000000657	0.000004561
35	6	0.000004035	0.000004513	-0.000003046
36	1	-0.00000244	-0.000000221	-0.000001987
37	1	0.000000134	0.000001024	-0.000001878
38	1	0.000000752	-0.000000858	-0.000001226
39	6	0.000001897	-0.000004299	-0.000001489
40	1	-0.000001854	-0.000000810	-0.000002661
41	1	0.000000868	0.000000420	-0.000003819
42	1	0.000000184	-0.000000266	-0.000002702

In DMSO

Number of Imaginary Frequencies = 0 Zero-point correction = 0.342819 (Hartree/Particle) Thermal correction to Energy = 0.363062 Thermal correction to Enthalpy = 0.364006 Thermal correction to Gibbs Free Energy = 0.292108

Sum of electronic and zero-point Energies = -1032.073641 Sum of electronic and thermal Energies = -1032.053398 Sum of electronic and thermal Enthalpies = -1032.052454 Sum of electronic and thermal Free Energies = -1032.124351

Center	Atomic	Fo	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	1	-0.000002613	0.00000890	-0.000005981
2	6	0.000005775	0.000003244	-0.000000674
3	6	-0.000004209	-0.000004200	0.000000990
4	6	-0.000005292	0.000001566	-0.000001303
5	6	-0.000004630	0.000003835	-0.000000926
6	6	0.000003415	0.00000969	0.000001185
7	6	0.000004321	-0.000003690	0.000001737
8	1	0.000003522	0.000000971	-0.000005978
9	1	-0.000002871	-0.000001728	0.000006925
10	1	0.000003384	-0.000001713	0.000007443
11	6	0.000005949	-0.000004542	0.000001126
12	6	0.000019738	-0.000003673	0.000003439
13	6	-0.000003431	0.000003615	-0.000005915
14	6	-0.000000463	-0.000000420	0.000003518
15	6	-0.000003993	0.000004839	0.000004587
16	6	-0.000001514	-0.000002060	-0.000005326
17	1	0.000001763	-0.000001894	-0.000006425
18	1	0.000002163	0.000001552	0.000005513
19	1	0.000000229	0.000001056	0.000005209
20	1	0.000000165	-0.000000854	-0.000008630
21	6	-0.000005215	-0.000001196	0.000000413
22	6	-0.000041487	0.000000119	0.000003384
23	6	0.000005622	-0.000000305	0.000005835
24	6	0.000005040	-0.000000328	-0.000003921
25	6	0.000009116	0.000000182	-0.000003130
26	6	0.000008313	-0.000001190	0.000006416
27	1	-0.000003533	0.000001763	0.000006909
28	1	-0.000002762	-0.000002280	-0.000005202
29	1	0.000003538	-0.000001588	-0.000004949
30	1	0.000003324	0.000000786	0.000008086

31	7	-0.000014048	-0.000001627	-0.000007961
32	7	0.000022027	-0.000003014	-0.000007457
33	8	-0.000005144	-0.000005982	0.000007619
34	8	-0.000004844	0.000006565	0.000002656
35	6	-0.000001547	-0.000001402	0.000001229
36	1	-0.000000532	0.000003333	0.000000439
37	1	-0.000000732	0.000004789	0.000003560
38	1	0.000001665	0.00000320	0.000004406
39	6	-0.000003349	0.000006255	0.000002000
40	1	-0.00000643	-0.000002737	-0.000009045
41	1	0.000003202	0.000002467	-0.000009135
42	1	0.000000583	-0.000002692	-0.000002666

CAM-B3LYP/6-31G (d) in Gaussian 09 packages using SMD solvent model.

Compound 1'a
In toluene
Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.220523 (Hartree/Particle)
Thermal correction to $Energy = 0.234356$
Thermal correction to Enthalpy= 0.235300
Thermal correction to Gibbs Free Energy $= 0.178479$
Sum of electronic and zero-point Energies = -781.739468
Sum of electronic and thermal Energies = -781.725636
Sum of electronic and thermal Enthalpies =781.724692
Sum of electronic and thermal Free Energies = -781.781512

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	Х	Y	Ζ
1	6	-0.000060414	0.000004730	-0.000002646
2	6	-0.000023301	0.000006891	-0.000010930
3	6	0.000033147	0.000001631	-0.000002921
4	6	0.000032338	0.000001047	-0.000001138
5	6	0.000000090	-0.000002962	0.000004415
6	6	0.000001710	0.000004081	0.000001970
7	1	0.00000788	0.00000086	0.000001529
8	1	0.000003062	0.000002805	-0.000003827

9	1	0.000005535	0.000003127	-0.000001523
10	1	0.000007544	-0.000005148	0.000004268
11	6	0.000021130	0.000001816	0.000006825
12	6	0.000011408	0.000004777	0.000010828
13	6	-0.000005208	0.000004388	0.000000190
14	6	-0.000011974	-0.000008537	-0.000004020
15	6	-0.000000949	-0.000000525	-0.000002240
16	6	-0.000009535	0.000000311	0.000001126
17	1	-0.000008394	-0.000004851	-0.000001912
18	1	-0.000004112	0.000003598	-0.000000729
19	1	-0.000005855	-0.000001071	-0.000000873
20	1	-0.000001397	-0.000002242	0.000002625
21	7	0.000017533	0.000000436	0.000004390
22	8	0.000003626	0.000029678	0.000007336
23	8	-0.000000119	-0.000022851	-0.000013694
24	8	-0.000024549	-0.000035396	0.000002397
25	6	0.000016129	0.000046633	-0.000011771
26	1	0.000001249	-0.000011748	0.000001886
27	1	-0.000001629	-0.000006761	0.000004410
28	1	0.000002148	-0.000013944	0.000004031

In chloroform Number of Imaginary Frequencies = 0 Zero-point correction = 0.220483 (Hartree/Particle) Thermal correction to Energy = 0.234320 Thermal correction to Enthalpy= 0.235264 Thermal correction to Gibbs Free Energy = 0.178458 Sum of electronic and zero-point Energies = -781.740817 Sum of electronic and thermal Energies = -781.726980 Sum of electronic and thermal Enthalpies = -781.726036 Sum of electronic and thermal Free Energies = -781.782842

Center	Atomic	Forces (Hartrees/Bohr)		
Number	Number	X Y Z		
1	6	-0.000024487	0.000003800	-0.000000459
2	6	-0.000011393	0.000003849	-0.000013330
3	6	0.000014884	-0.000012285	-0.000002976
----	---	--------------	--------------	--------------
4	6	0.000013808	0.000015282	0.000000717
5	6	0.000003451	0.000005552	0.000009165
6	6	0.000005862	-0.000003532	0.000000947
7	1	-0.000003927	0.000002786	0.000005279
8	1	-0.000001758	0.000001263	-0.000006633
9	1	0.000013815	0.000001922	-0.000005601
10	1	0.000017155	-0.000005622	0.000010501
11	6	0.000010916	0.000001996	0.000008106
12	6	-0.000034255	0.000003305	-0.000000995
13	6	-0.000010092	-0.000001094	0.000009866
14	6	-0.000015147	0.00000321	-0.000012441
15	6	0.000006880	0.000010783	-0.000002672
16	6	0.000002857	-0.000008711	0.000002016
17	1	-0.000017002	-0.000002670	-0.000002332
18	1	-0.000011320	0.000002134	-0.000002045
19	1	-0.000008183	-0.000004881	-0.000004636
20	1	0.000000153	0.00000170	0.000004992
21	7	0.000004891	0.000001998	0.000001130
22	8	-0.000004096	-0.000009158	0.000001546
23	8	-0.000003118	0.000014395	-0.000003106
24	8	0.000025552	-0.000019512	0.000014487
25	6	0.000017577	0.000015555	-0.000009188
26	1	0.000004602	-0.000004453	-0.000002141
27	1	0.000002488	-0.000001603	0.000001696
28	1	-0.000000114	-0.000011592	-0.000001895

In DMSO

Number of Imaginary Frequencies = 0 Zero-point correction = 0.220443 (Hartree/Particle) Thermal correction to Energy = 0.234315 Thermal correction to Enthalpy= 0.235259 Thermal correction to Gibbs Free Energy = 0.178093 Sum of electronic and zero-point Energies = -781.737661 Sum of electronic and thermal Energies = -781.723788 Sum of electronic and thermal Enthalpies = -781.722844 Sum of electronic and thermal Free Energies = -781.780011

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	6	-0.000005099	0.000003739	-0.000000845
2	6	0.000017115	-0.000000270	0.000003226
3	6	-0.000000306	0.000003819	0.00000355
4	6	0.000001177	0.000002939	-0.000002848
5	6	0.000000492	0.000000519	-0.000005922
6	6	-0.000002778	0.000003295	0.000002988
7	1	-0.000000577	0.000001302	0.000001907
8	1	0.000003824	0.000006062	-0.000004011
9	1	-0.000000079	0.000004600	-0.000002976
10	1	-0.000005384	-0.000000953	0.000001385
11	6	-0.000018097	-0.000003048	-0.00000238
12	6	0.000024560	-0.000012187	0.000008716
13	6	-0.000003687	0.000002903	-0.000002174
14	6	0.000009684	0.000001268	0.000001396
15	6	-0.000013019	0.000000091	-0.000004230
16	6	-0.000001225	0.00000872	0.000004198
17	1	0.000001187	-0.000000709	0.000005628
18	1	0.000002794	-0.000000157	-0.000003297
19	1	0.000002258	-0.000002656	-0.000001556
20	1	-0.000004239	-0.000003143	0.000004910
21	7	0.000008973	0.000005185	-0.000001995
22	8	-0.000004252	0.000000654	-0.000002197
23	8	-0.000002558	0.000011065	-0.000001615
24	8	-0.000017756	-0.000006506	-0.000006305
25	6	0.000007895	-0.000001454	0.000005594
26	1	-0.000000923	-0.000003650	-0.000001964
27	1	-0.000000784	-0.000006958	0.000001610
28	1	0.00000804	-0.000006623	0.00000259

Compound **1'b** In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.261691 (Hartree/Particle) Thermal correction to Energy = 0.277371

Thermal correction to Enthalpy= 0.278315 Thermal correction to Gibbs Free Energy = 0.217142 Sum of electronic and zero-point Energies = -801.118321 Sum of electronic and thermal Energies = -801.102641 Sum of electronic and thermal Enthalpies = -801.101697 Sum of electronic and thermal Free Energies = -801.162870

Center	Atomic	Fo	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	6	0.000005742	0.000001668	-0.00000362
2	6	-0.000009145	0.000000186	0.000001481
3	6	-0.000002103	0.000002147	-0.000001470
4	6	0.000000576	0.000001130	0.000000919
5	6	0.000002545	0.000002351	-0.000001455
6	6	0.000001518	-0.000002191	-0.000001793
7	1	-0.000001738	0.000001191	0.000001029
8	1	0.000002524	0.000000818	0.000003125
9	1	-0.000000117	-0.000001138	0.000000539
10	1	-0.00000824	0.000000537	-0.000001481
11	6	0.000008168	-0.000001947	-0.00000887
12	6	-0.000014838	-0.000003159	-0.000002398
13	6	-0.000004415	-0.000002452	-0.000001115
14	6	-0.00000634	0.00000884	-0.000000256
15	6	0.000003942	-0.000004991	0.00000289
16	6	0.000003463	0.000001096	-0.000000960
17	1	-0.000000767	-0.000000375	-0.000002186
18	1	0.000003175	-0.000002294	0.000001055
19	1	0.000000074	-0.000001963	-0.000000470
20	1	-0.000002684	-0.000003126	-0.000002847
21	7	-0.000011739	-0.000001014	-0.000006012
22	7	0.000007670	-0.000003361	-0.000002414
23	8	0.000000865	0.000000474	-0.000000242
24	8	0.000002630	-0.000007860	-0.000003968
25	6	0.000003981	0.000009271	0.000003242
25 26	1	-0.000001226	0.000003535	-0.000001987
20	1	-0.000001220	0.000001908	0.000003200
27	1	0.000000710	0.000003554	0.000000903

29	6	0.000002379	-0.000001145	0.000008323
30	1	0.000001675	0.000002798	0.000003905
31	1	0.000000389	0.000002747	0.000005404
32	1	-0.000000222	0.000000720	-0.000001109

In chloroform Number of Imaginary Frequencies = 0 Zero-point correction = 0.261742 (Hartree/Particle) Thermal correction to Energy = 0.277351 Thermal correction to Enthalpy= 0.278295 Thermal correction to Gibbs Free Energy = 0.217477 Sum of electronic and zero-point Energies = -801.120180 Sum of electronic and thermal Energies = -801.104571 Sum of electronic and thermal Enthalpies = -801.103627 Sum of electronic and thermal Free Energies = -801.164444

	· · ·		/II / /D 1	·····
Center	Atomic	For	rces (Hartrees/Boh	nr)
Number	Number	Х	Y	Z
1	6	0.000012993	0.000002382	0.000004900
2	6	0.000010838	-0.000000131	0.000002158
3	6	-0.000001201	0.000000798	-0.000000072
4	6	-0.000003077	0.000000813	0.000000576
5	6	-0.000003506	-0.000003921	-0.000000194
6	6	-0.000004614	0.000003054	-0.000000254
7	1	0.000001840	0.000001868	-0.000001751
8	1	0.000002003	0.000000535	0.000001755
9	1	0.000002866	0.000001158	0.000002447
10	1	0.000001291	-0.000001094	-0.000002109
11	6	-0.000011957	0.000001427	-0.000002107
12	6	0.000038323	0.000000292	-0.000000177
13	6	0.000010758	0.000000515	-0.000001567
14	6	0.000008788	-0.000005228	0.000001372
15	6	-0.000009092	0.000002929	0.000001146
16	6	-0.000013908	-0.000008225	-0.000004732
17	1	-0.000004677	-0.000000052	-0.000001019
18	1	-0.000002366	-0.000001523	-0.00000018

]	19	1	0.000003684	-0.000004714	-0.000000769
2	20	1	0.000001687	0.000000948	-0.000001013
2	21	7	-0.000004242	-0.000000600	-0.000005519
2	22	7	-0.000023692	-0.000002942	0.000000693
2	23	8	-0.000003619	-0.000005830	-0.000004262
2	24	8	-0.000002796	-0.00000026	-0.000000534
2	25	6	-0.000003402	-0.000002902	0.000005112
2	26	1	0.000000522	0.000002411	0.00000363
2	27	1	0.00000092	0.000002006	-0.000003339
2	28	1	-0.000003572	0.000003923	-0.000000243
2	29	6	-0.000000725	0.000009172	-0.000000375
	30	1	-0.000000140	0.000000397	0.000003713
2	31	1	-0.000000482	-0.000000454	0.000001175
2	32	1	0.000001379	0.000003016	0.000004645

In DMSO

Center	Atomic	For	rces (Hartrees/Boh	
Number	Number	Х	Y	Ζ
1	6	0.000027838	0.000002244	0.000006480
2	6	0.000013189	-0.000000135	0.000002537
3	6	-0.000007179	0.000001725	-0.000002824
4	6	-0.000008769	-0.000000175	0.000004512
5	6	-0.000003215	-0.000001530	0.000006878
6	6	-0.000002531	0.000002579	-0.000005792
7	1	0.000002431	-0.000000653	-0.000008548
8	1	0.000002652	0.000003219	0.000011376

9	1	-0.00000865	0.000002779	0.000008200
10	1	-0.00000106	-0.000003080	-0.000010169
11	6	-0.000013064	0.000000795	-0.000004981
12	6	0.000022910	0.00000061	-0.000003408
13	6	0.000009571	0.000002274	-0.000006676
14	6	0.000008779	-0.000005670	0.000003506
15	6	-0.000006769	0.000004756	0.000002888
16	6	-0.000011938	-0.000009270	-0.000012336
17	1	-0.000004710	0.000003377	-0.000010571
18	1	-0.00000273	-0.000004849	0.000006901
19	1	0.000005301	-0.000008423	0.000002977
20	1	0.000002497	0.000005302	-0.000011857
21	7	-0.000018445	0.000003593	0.000003425
22	7	-0.000014447	-0.000001609	-0.000005841
23	8	-0.000001290	-0.000000056	-0.000013389
24	8	0.00000010	-0.000006223	-0.000000173
25	6	0.000002794	0.000001555	-0.000004388
26	1	-0.000000513	-0.000002665	0.000001148
27	1	-0.000001011	-0.000005531	-0.000003217
28	1	-0.000003111	0.000003526	-0.000002869
29	6	0.000002864	-0.000001045	0.000009424
30	1	-0.000003033	0.000007057	0.000013384
31	1	0.00000341	-0.00000876	0.000010996
32	1	0.00000093	0.000006947	0.000012409

Compound 2'a

In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.303026 (Hartree/Particle) Thermal correction to Energy = 0.321329 Thermal correction to Enthalpy= 0.322273 Thermal correction to Gibbs Free Energy = 0.254859 Sum of electronic and zero-point Energies = -1012.584708 Sum of electronic and thermal Energies = -1012.566405 Sum of electronic and thermal Enthalpies = -1012.565461 Sum of electronic and thermal Free Energies = -1012.632875

Center	Atomic	For	rces (Hartrees/Boł	nr)
Number	Number	Х	Y	Z
1	6	-0.000001506	0.000002362	-0.000001776
2	6	0.000020068	-0.000006438	-0.000008415
3	6	0.00000867	0.000006602	0.000008723
4	6	-0.000002984	-0.000007845	-0.000004254
5	6	0.000002001	-0.000008162	-0.000003064
6	6	-0.000004948	0.000007704	0.000007583
7	1	0.000003165	0.000015336	0.000017878
8	1	0.000002434	-0.000012146	-0.000014341
9	1	0.000000899	-0.000010476	-0.000014637
10	1	-0.000000799	0.000013488	0.000017119
11	6	0.000002068	0.000000756	0.000003241
12	6	0.000001477	-0.000000650	0.000001284
13	6	0.000002838	-0.000002731	-0.000013020
14	6	0.000004170	0.000004701	0.000013811
15	6	-0.000003599	0.000004321	0.000008993
16	6	-0.000001867	-0.000001547	-0.000008745
17	1	-0.000002735	0.000001172	-0.000019540
18	1	-0.000004004	0.000000739	0.000021338
19	1	0.000004378	0.000001427	0.000022947
20	1	0.000004908	-0.00000377	-0.000020408
21	6	-0.000002217	0.000001063	0.000001201
22	6	-0.000018791	0.000001023	0.000000155
23	6	-0.000003946	0.000011796	-0.000009197
24	6	-0.000004977	-0.000010346	0.000010580
25	6	0.000006758	-0.000000282	0.000014138
26	6	0.000007634	0.000001148	-0.000012567
27	1	-0.000004128	0.000011750	-0.000014706
28	1	-0.000004400	-0.000009165	0.000016329
29	1	-0.000000255	-0.000013040	0.000015558
30	1	0.000000298	0.000013872	-0.000014608
31	7	0.000005132	0.000000549	0.000001101
32	8	0.000005944	-0.000010481	0.000005318
33	8	0.000005588	0.000011499	-0.000004726
34	8	-0.000020931	0.000010096	0.000021281
35	6	0.000003131	-0.000004407	-0.000025250

36	1	0.00000636	-0.000004321	-0.000012013
37	1	0.000000400	-0.000002975	-0.000004204
38	1	-0.000002705	-0.000016018	-0.000003108

In chloroform

Number of Imaginary Frequencies = 0

Zero-point correction = 0.302941 (Hartree/Particle)

Thermal correction to Energy = 0.321284

Thermal correction to Enthalpy= 0.322228

Thermal correction to Gibbs Free Energy = 0.254587

Sum of electronic and zero-point Energies = -1012.586757

Sum of electronic and thermal Energies = -1012.568415

Sum of electronic and thermal Enthalpies = -1012.567471

Sum of electronic and thermal Free Energies = -1012.635112

Center	er Atomic Forces (Hartrees/Bohr)		ır)	
Number	Number	Х	Y	Z
1	6	0.000004966	0.000003811	-0.000003319
2	6	0.000012632	-0.000003914	-0.000002416
3	6	-0.000001791	0.000002965	0.000007964
4	6	-0.000009275	-0.000004259	-0.000003931
5	6	-0.000001083	-0.000002017	-0.000002678
6	6	-0.000003756	0.000001466	0.000003885
7	1	0.000001145	0.000009335	0.000011068
8	1	0.000000615	-0.000007599	-0.000009132
9	1	-0.000001466	-0.000008133	-0.000010139
10	1	-0.000001050	0.000008469	0.000011554
11	6	-0.000003852	0.000000636	0.000002402
12	6	0.000006515	-0.000000505	0.000000247
13	6	0.000009274	-0.000000955	-0.000006771
14	6	0.000008509	0.000001778	0.000008468
15	6	-0.000009938	0.000003079	0.000006610
16	6	-0.000009129	-0.000001313	-0.000005293
17	1	-0.000000938	0.000001006	-0.000013707
18	1	-0.000002130	0.000000412	0.000013964
19	1	0.000002219	0.000000167	0.000013756

20	1	0.000002764	0.000000912	-0.000012888
21	6	-0.000005597	0.00000304	0.000000821
22	6	0.000000538	-0.000000277	0.000002342
23	6	-0.000001664	0.000009043	-0.000004914
24	6	-0.000002549	-0.000007395	0.000005139
25	6	0.000009102	0.000000960	0.000014703
26	6	0.000010078	-0.000001407	-0.000012359
27	1	-0.000003406	0.000009543	-0.000010206
28	1	-0.000003859	-0.000007230	0.000010281
29	1	0.000000799	-0.000009961	0.000007544
30	1	0.000000672	0.000011215	-0.000007600
31	7	0.000002821	0.000006701	-0.000010090
32	8	-0.000001491	-0.000009426	0.000002633
33	8	-0.00000872	0.000007003	0.000004440
34	8	-0.000009697	0.000008097	0.000012681
35	6	-0.000000739	-0.000008914	-0.000008966
36	1	0.000002057	0.00000028	-0.000008394
37	1	0.000001587	-0.000003193	-0.000002864
38	1	-0.000002011	-0.000010432	-0.000004835

In DMSO

Number of Imaginary Frequencies = 0 Zero-point correction = 0.302848 (Hartree/Particle) Thermal correction to Energy = 0.321213 Thermal correction to Enthalpy= 0.322158 Thermal correction to Gibbs Free Energy = 0.254436 Sum of electronic and zero-point Energies = -1012.581474 Sum of electronic and thermal Energies = -1012.56310 Sum of electronic and thermal Enthalpies = -1012.562165 Sum of electronic and thermal Free Energies = -1012.629887

Center	Atomic	Fo	rces (Hartrees/Bol	hr)
Number	Number	Х	Y	Z
1	6	-0.000002918	-0.000004517	0.000001793
2	6	0.000026992	-0.000015198	-0.000005101
3	6	-0.000006255	0.000007503	0.000004523

4	6	-0.000001000	-0.000001771	-0.000005716
5	6	-0.000009478	-0.000004344	-0.000002939
6	6	-0.00000018	0.000004793	0.000002201
7	1	0.000001576	0.000005194	0.000009051
8	1	0.000002745	-0.000006795	-0.000007937
9	1	0.000000556	-0.000007006	-0.000008634
10	1	-0.000002584	0.000003251	0.000008912
11	6	-0.000003093	-0.000001194	0.00000082
12	6	0.000008770	-0.000001280	0.000000460
13	6	0.000009822	-0.000000239	-0.000004456
14	6	0.000009977	0.000001341	0.000005891
15	6	-0.000011705	0.00000080	0.000007116
16	6	-0.000009252	0.000003709	-0.000006215
17	1	0.000000647	-0.000000819	-0.000009985
18	1	-0.000001757	0.000001198	0.000010986
19	1	-0.000001245	0.000002703	0.000011332
20	1	0.000000624	-0.000000246	-0.000009498
21	6	-0.000002262	0.000002881	0.000001403
22	6	0.000012321	0.000002637	0.000001462
23	6	0.000005112	0.000006537	-0.000002149
24	6	0.000004620	-0.000002205	0.000004372
25	6	-0.000005221	0.000006299	0.000010389
26	6	-0.000003618	-0.000000606	-0.000008782
27	1	-0.000001280	0.000007884	-0.000007542
28	1	-0.000003790	-0.000004381	0.000009800
29	1	0.000000350	-0.000005507	0.000008265
30	1	0.000002871	0.000011164	-0.000005580
31	7	-0.00000137	0.000003555	0.000003472
32	8	-0.000004603	-0.000003266	0.000001992
33	8	-0.000003702	0.000011110	-0.00000637
34	8	-0.000018885	0.000002221	0.000006329
35	6	0.000007758	-0.000004454	-0.000006435
36	1	0.000001364	-0.000002768	-0.000009499
37	1	-0.000000560	-0.000006185	-0.000003698
38	1	-0.000002737	-0.000011280	-0.000005027

Compound **2'b** In toluene Number of Imaginary Frequencies = 0 Zero-point correction = 0.343859 (Hartree/Particle) Thermal correction to Energy = 0.364103 Thermal correction to Enthalpy= 0.365047 Thermal correction to Gibbs Free Energy = 0.292811 Sum of electronic and zero-point Energies = -1031.963106 Sum of electronic and thermal Energies = -1031.942862 Sum of electronic and thermal Enthalpies = -1031.941917 Sum of electronic and thermal Free Energies = -1032.014154

Center	Atomic	mic Forces (Hartrees/Bohr)				
Number	Number	Х	Y	Z		
1	1	-0.000000590	-0.000003175	0.000004942		
2	6	-0.000007494	-0.000002090	0.000004883		
3	6	0.000008921	0.000001570	-0.000002684		
4	6	0.000009709	-0.000000162	-0.000000603		
5	6	0.000009740	-0.000002660	0.000002818		
6	6	-0.000007314	0.000001045	0.000001669		
7	6	-0.000007158	0.000002561	-0.000004596		
8	1	0.00000304	-0.000003045	0.000006791		
9	1	-0.000000182	0.000003242	-0.000005063		
10	1	0.000000331	0.000002906	-0.000005664		
11	6	-0.000009887	-0.000003824	0.000000481		
12	6	0.000008967	-0.000003357	0.000009058		
13	6	0.000001714	0.000005007	0.000001727		
14	6	0.000008215	-0.000000044	-0.000002734		
15	6	-0.000005424	0.000001572	-0.000003379		
16	6	-0.000003257	-0.000001656	0.000001399		
17	1	0.000001523	0.00000061	0.000006577		
18	1	0.00000816	-0.000000159	-0.000007238		
19	1	0.000000707	0.00000287	-0.000007932		
20	1	-0.000004575	0.000002106	0.000002330		
21	6	0.000003370	0.000000231	-0.000000227		
22	6	-0.000010289	0.000000297	0.000000556		
23	6	-0.000006224	-0.000000221	-0.000001933		

24	6	-0.000007767	-0.000001155	0.000004188
25	6	0.000007007	-0.000004963	0.000006174
26	6	0.000005861	0.000003668	-0.000003884
27	1	0.000001006	-0.000002814	-0.000005186
28	1	0.000001613	0.000002785	0.000006753
29	1	-0.000002217	0.000003361	0.000006631
30	1	-0.000002799	-0.000003960	-0.000004150
31	7	-0.000009169	0.000004603	0.000006473
32	7	0.000005060	-0.000000368	0.000003120
33	8	-0.000000106	-0.000002651	-0.000001351
34	8	-0.00000354	0.000001668	0.000003863
35	6	0.000000660	0.000000439	-0.000016602
36	1	-0.000000424	0.000002013	-0.000001445
37	1	0.000001033	-0.000004514	-0.000005440
38	1	0.000000193	0.000000211	-0.000008565
39	6	0.000003966	-0.000002217	0.000002080
40	1	0.000000295	0.000005477	-0.000000771
41	1	0.000003910	-0.000001758	0.000001570
42	1	0.000000311	-0.000000322	0.000005363

In chloroform

Number of Imaginary Frequencies = 0 Zero-point correction = 0.343676 (Hartree/Particle) Thermal correction to Energy = 0.363964 Thermal correction to Enthalpy= 0.364908 Thermal correction to Gibbs Free Energy = 0.292432 Sum of electronic and zero-point Energies = -1031.965811 Sum of electronic and thermal Energies = -1031.945524 Sum of electronic and thermal Enthalpies = -1031.944579 Sum of electronic and thermal Free Energies = -1032.017055

Center	Atomic	Fo	rces (Hartrees/Boł	ur)
Number	Number	Х	Y	Ζ
1	1	-0.000001667	-0.000000706	0.000000154
2	6	0.000006931	0.00000384	0.000002059
3	6	-0.000006337	0.000000918	0.000000708

4	6	-0.000007474	-0.000000172	-0.000001729
5	6	-0.000006955	0.00000017	0.000001173
6	6	0.000008235	-0.000000708	-0.000000840
7	6	0.000006240	0.000000003	-0.000000623
8	1	-0.000001541	-0.000000953	0.000002134
9	1	-0.000001860	0.00000365	0.000000195
10	1	-0.000000778	0.000000499	-0.000000605
11	6	0.000005446	0.000001263	0.000000104
12	6	-0.000002496	0.000002348	-0.000005547
13	6	-0.000002830	-0.000000389	-0.000001232
14	6	-0.000004780	-0.000000830	0.00000280
15	6	0.000002904	-0.000001379	-0.000000820
16	6	-0.00000847	-0.000000777	-0.000001001
17	1	0.000001401	-0.000000154	0.00000231
18	1	0.000001991	0.000000112	-0.000001953
19	1	0.00000231	0.000000638	-0.000001762
20	1	0.000000240	0.000000250	0.000000576
21	6	-0.000006916	-0.000000562	0.000002150
22	6	0.000004478	-0.000000424	0.000002133
23	6	0.000004967	0.000000841	0.000000058
24	6	0.000005830	-0.000000022	0.000001706
25	6	-0.000003629	0.000002799	0.000000571
26	6	-0.000003249	-0.000002612	0.000002397
27	1	0.000000417	0.000000075	0.000000778
28	1	0.000000979	-0.000000453	0.000000439
29	1	0.000001878	-0.000001108	0.000003091
30	1	0.000001681	0.00000834	0.000000091
31	7	0.000004386	0.000000677	0.000004518
32	7	-0.000004530	-0.000000464	0.000001419
33	8	-0.000000922	-0.000002384	0.000001541
34	8	-0.000000260	0.000002274	0.000002767
35	6	-0.000000180	0.000000093	-0.000001030
36	1	0.000000263	-0.000000813	-0.000003171
37	1	-0.000000582	0.000000332	-0.000003036
38	1	-0.000000997	0.00000289	-0.000001959
39	6	0.000000792	-0.000000368	-0.000004208
40	1	0.000000658	0.000000057	0.000000696
41	1	-0.000001336	-0.000000735	-0.00000257
42	1	0.000000220	0.000000944	-0.000002197

In DMSO

Number of Imaginary Frequencies $= 0$
Zero-point correction = 0.343857 (Hartree/Particle)
Thermal correction to $Energy = 0.364029$
Thermal correction to Enthalpy= 0.364973
Thermal correction to Gibbs Free Energy $= 0.293199$
Sum of electronic and zero-point Energies = -1031.959080
Sum of electronic and thermal Energies = -1031.938908
Sum of electronic and thermal Enthalpies = -1031.937964
Sum of electronic and thermal Free Energies = -1032.009738

Center	Atomic	For	Forces (Hartrees/Bohr)			
Number	Number	Х	Y	Z		
1	1	-0.000003793	0.000008598	-0.000006431		
2	6	0.000014065	0.000001784	0.000002046		
3	6	-0.000017338	0.000003655	0.000007657		
4	6	-0.000014740	-0.000001230	-0.000001095		
5	6	-0.000015592	-0.000003700	-0.000005726		
6	6	0.000031666	-0.000002119	-0.000001763		
7	6	0.000016153	-0.000002194	-0.000001048		
8	1	-0.000001511	0.000008513	-0.000002860		
9	1	-0.000004270	-0.000008530	0.000006191		
10	1	-0.000000657	-0.000009003	0.000002775		
11	6	-0.000002643	0.000004288	-0.000000060		
12	6	0.000015077	-0.000000304	0.000006908		
13	6	-0.000001574	0.000001330	-0.000008680		
14	6	-0.000003676	-0.000001965	0.000008370		
15	6	-0.000008514	-0.000002353	0.000005142		
16	6	-0.000000660	0.000005505	-0.000006968		
17	1	0.000007823	0.000002829	-0.000004624		
18	1	0.000006828	-0.000002102	0.000004797		
19	1	-0.000002939	-0.000000944	0.000005565		
20	1	0.000006314	-0.000001034	-0.000004402		
21	6	-0.000014460	0.000000857	0.000000807		
22	6	0.000064863	-0.000000917	0.000000134		
23	6	-0.000001756	0.000003949	0.000003332		
24	6	0.00000037	-0.000005058	-0.000002559		

25	6	-0.000011916	0.000022727	-0.000006384
26	6	-0.000011772	-0.000023609	0.000006330
27	1	-0.000006914	-0.000001499	0.000005767
28	1	-0.000006136	0.000000582	-0.000005251
29	1	0.00000899	-0.000008985	-0.000003986
30	1	0.000000604	0.000007767	0.000004950
31	7	-0.000015782	-0.000002166	-0.000031331
32	7	-0.000008218	0.00000011	0.000005562
33	8	-0.000005209	0.000000413	0.000005183
34	8	-0.000005161	-0.000002580	-0.000007652
35	6	0.000009869	0.000014020	0.000008917
36	1	0.00000833	-0.000004292	0.000006054
37	1	-0.000004479	0.00000071	0.000005969
38	1	-0.000000275	-0.000002872	0.000008094
39	6	0.000007911	-0.000009765	0.000005683
40	1	-0.000006864	-0.000001651	-0.000003216
41	1	-0.000005674	0.000005955	-0.000005090
42	1	-0.000000423	0.000006018	-0.000007105

References

- 40 S. Jakkampudi, M. Abe, N. Komori, R. Takagi, K. Furukawa, C. Katan, W. Sawada, N. Takahashi, H. Kasai, *ACS Omega* **2016**, *1*, 193.
- 41 J. Dyer, S. Jockusch, V. Balsanek, D. Sames, N. J. Turro, J. Org. Chem. 2005, 70, 2143.
- 42 L. Kamath, K. B. Manjunatha, S. Shettigar, G. Umesh, B. Narayana, S. Samshuddin, B. K. Sarojini, *Opt. Laser Technol.* **2014**, *56*, 425.
- 43 R. Koch, J. J. Finnerty, T. Bruhn, J. Phys. Org. Chem. 2008, 21, 954.
- 44 L. Drož, M. A. Fox, D. Hnyk, P. J. Low, J. A. H. MacBridé, V. Všetečka, *Collect. Czechoslov. Chem. Commun.* 2009, 74, 131.
- 45 D. Oesch, N. W. Luedtke, Chem. Commun. 2015, 51, 12641.
- 46 T. Katagiri, S. Ota, T. Ohira, T. Yamao, S. Hotta, J. Heterocycl. Chem. 2007, 44, 853.
- 47 B. S. L Homolya, Z Holló, U.A.Germann, I Pastan, M.M. Gottesman, J. Biol. Chem. 1993, 268, 21493.
- 48 H. K. Agarwal, R. Janicek, S. H. Chi, J. W. Perry, E. Niggli, G. C. R. Ellis-Davies, *J. Am. Chem. Soc.* 2016, *138*, 3687.
- 49 G. C. R. Ellis-davies, R. J. Barsotti, *Cell Calcium* 2006, *39*, 75.
- 50 S. Murov, I. Carmichael, G. Hug, Handbook of Photochemistry, 1993.
- 51 M. M. R. and M. B.-D. Emilie Genin, Vincent Hugues, Guillaume Clermont, Cyril Herbivo, bc M. Cidália R. Castro, Alain Comel, *Photochem. Photobiol. Sci.* 2012, 11, 1756.
- 52 I. Aujard, C. Benbrahim, M. Gouget, O. Ruel, J. B. Baudin, P. Neveu, L. Jullien, *Chem. - A Eur. J.* **2006**, *12*, 6865.
- 53 N. Komori, S. Jakkampudi, R. Motoishi, M. Abe, K. Kamada, K. Furukawa, C. Katan, W. Sawada, N. Takahashi, H. Kasai, B. Xue, T. Kobayashi, *Chem. Commun.* 2016, 52, 331.
- 54 G. Fayet, L. Joubert, P. Rotureau, C. Adamo, J. Phys. Chem. A 2009, 113, 13621.
- 55 P. Šebej, T. Šolomek, L. Hroudná, P. Brancová, P. Klán, J. Org. Chem. 2009, 74, 8647.
- 56 Y. V. Il'ichev, M. A. Schwörer, J. Wirz, J. Am. Chem. Soc. 2004, 126, 4581.
- 57 Y. V. Il'ichev, J. Phys. Chem. A 2003, 107, 10159.
- 58 A. Taher, D. Nandi, M. Choudhary, K. Mallick, New J. Chem. 2015, 39, 5589.
- 59 J. He, S. M. Mathew, S. D. Cornett, S. C. Grundy, C. S. Hartley, Org. Biomol. Chem. 2012, 10, 3398.
- 60 S. Kim, A. Oehlhof, B. Beile, H. Meier, *Helv. Chim. Acta* 2009, 92, 1023.
- 61 D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Roos, L. Serrano-ANDRES, *Mol. Phys.* 1999, 97, 859.
- 62 H.-G. M. Dreuw A, Weisman J, J. Chem. Phys. 2008, 2943, 2943.
- J. H. Leonardo Bernasconi, Michiel Sprik, J. Chem. Phys. 2003, 119, 12417.
- 64 A. V Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- 65 C. Xu, W. W. Webb, J. Opt. Soc. Am. B 1996, 13, 481.

- 66 N. S. Makarov, M. Drobizhev, A. Rebane, Opt. Express 2008, 16, 4029.
- 67 M. J. Frisch, G. W. Trucks, H. B. Schlegel, *Gaussian 09 [CP]*. Revision A. 02, Wallingford CT: Gaussian, Inc, **2009**.

Chapter 3

Impact of five-membered heterocyclic ring on photophysical property including two-photon absorption character

3-1. Introduction

Dipolar, quadrupolar, and octopolar systems³⁵⁻³⁷ have been developed to design chromophores with larger 2PA cross-section (σ_2 in GM = 10^{-50} cm⁴ s photon⁻¹). In addition to the polarity effect, π -conjugation and planarity^{33,34,68,69} effects are also known to be crucial to increase the 2P character of molecules. In the previous study, p-nitroterphenyl (TP) and p-nitrobiphenyl (BP) backbone application for the 2P-responsive caged compounds was investigated (Figure 17a). However, because the dihedral angel of BP was smaller than that of **TP**, leading to the 2PA cross-section (σ_2) of **TP**, $\sigma_2 = 13.9$ GM at 820 nm, was relatively lower than that of the biphenyl skeleton (**BP**: $\sigma_2 = 44$ GM at 830 nm), although the number of π electron increases. The planarity would increase the transition dipole moment between the acceptor and donor moieties, and π -conjugation. Therefore, a new chromophore having more planar structure would increase the 2P response in NIR region, reducing the damage of cells in physiological experiments. It has been reported that thiophene derivatives featuring the electron donor (D) and acceptor (A) possess the relatively high 2PA cross section⁵¹ (Figure 17c). The advantage of heteroaromatic rings to benzene rings has been reported by Bhanuparakash⁷⁰ in 2006. Achelle in 2017⁷¹ and Maeda in 2020⁷² (Figure 17b). Several heteroaromatic molecules with large 2PA crosssection were reported in the literature^{48,51,73,74} (Figure 17c). In this study, we designed the teraryl derivatives 10-12, in which the central aromatic ring is replaced by heteroaromatic rings such as thiophene, furan, and pyrrole. The donor (p-NMe₂C₆H₄ group) and acceptor (-NO₂C₆H₄ group) substituents are connected with the π -linker (Figure 17a). The effect of the central heterocyclic rings system would play a vital role in the photophysical properties and two-photon absorption character.

Figure 17. a) previous study and this study. b) example of one photon absorption of hetero terphenyl derivatives. c) example of two-photon absorption

3-2. Synthesis of hetero terphenyl derivatives.

First, compound 10 was synthesized in three steps from the commercially available compound 13. Borylation of compound 13 using trimethoxylborane gave compound 14^{45} in 55% yield, followed by the Suzuki-Miyaura coupling reaction with 2,5-dibromothiophene 15 to afford compound 16^{75} in 58%. The coupling reaction of compound 17^{76} produced the desired compound 10 in 50%. Similarly, compounds 11 and 12 were synthesized as shown in Scheme 3 in 81% and 61%, respectively.

Scheme 3. Synthesis routine of a) Compound 10. b) Compound 11. c) Compound 12.

3-3. Photophysical properties

UV-vis absorption and fluorescence emission measurement

To understand the effects of the central heterocyclic rings system on 1P and 2P responses, the photophysical properties of three compounds **10-12** were investigated and compared with those of TP (Table 3). The absorption and emission of **12** were measured also in 2-propanol because compound **12** was soluble in 2-propanol (entry 18).

As shown in Table 1, the absorption maxima of compounds 10-12, ~430-450 nm for 10, ~440-460 nm for 11, ~460-490 nm for 12, did not change significantly when the solvent polarity increased. In contrast, the strong bathochromic-shift of the fluorescence spectra was observed, for example 598 nm in toluene (Tol) (entry 1), 701 nm in ethyl acetate (AcOEt) (entry 3), 706 nm in tetrahydrofuran (THF) (entry 4) for compound 10 (Figures 18a), demonstrating the charge transfer character in their excited states due to the donor-acceptor combination in the chromophores^{52,77}. The absorption and fluorescence maxima of the parent terphenyl **TP** were found to be 361 and 565 nm in Tol (entry 20). Thus, as expected, the absorption and emission spectra of compounds **10-12** featuring the heterocyclic ring system were bathochromically shifted than those of **TP**. It should be noted that the molar absorption coefficients (ε in M⁻¹ cm⁻¹) of compounds **10-12** were 2-3 times higher than that of **TP**, demonstrating that the π -conjugation of **10-12** is significantly higher than **TP**.

The blue shift of the emission wavelength of compound 12 was observed in the protic solvent, 2-propanol, in comparison with those in the aprotic solvent (AcOEt and THF) (Figures 18c). This can be accounted for because the dipole moment of AcOEt and THF solvent is larger than that of 2-propanol solvent which leads to the stabilization of the excited state. When comparing the absorption maxima of compounds 10-12, the absorption maximum of 12 is the most red-shifted in all solvents used in this study. For example, compound 12 showed the absorption maximum at 491 nm in DMSO (entry 19), which is the longest wavelength. The fluorescence quantum yield (Φ) was found to decrease with increasing solvent polarity. For example, Φ values of compound 10 were 0.6 and 0.015 in Tol and AcOEt, respectively (entries 1, 3). The fluorescence lifetimes of compounds in toluene, AcOEt, THF, and 2-propanol were determined by time-correlated single-photon counting (TCSPC) technique.

			-						
Entry	Comp.	Sol.	μ ^a	λ_{abs} / nm^b	ϵ / $M^{-1}cm^{-1c}$	λ_{emi} / nm^d	Φ^{e}	τ^{g}/ns	
1		Tol	1.0	436	24932 ± 48	598	0.60 ± 0.002	$2.83 \pm 0.02^{\rm h}$	143 GM (900 nm)
2		CHCl ₃	3.8	442	18109 ± 40	_k	_ ^k	_k	nd ^l
3	10	AcOEt	5.9	432	21660 ± 11	701	0.015 ± 0.0001	$\begin{array}{c} 1.49 \pm \\ 0.02^{\mathrm{i}} \end{array}$	nd ^l
4	$\mathbf{X} = \mathbf{S}$	THF	5.8	438	26478 ± 4	706	0.032 ± 0.0003	1.64 ± 0.04^{i}	nd^l
5		ACN	13	434	19183 ± 546	k	_k	_k	nd ^l
6		DMSO	13.5	453	23995 ± 193	_k	_ ^k	k	nd ¹
7		Tol	1.0	444	20722 ± 293	608	0.52 ± 0.002	$2.85 \pm 0.03^{\rm h}$	93 GM (910 nm)
8		CHCl ₃	3.8	451	17618 ± 12	k	_ ^k	k	nd^l
9	11	AcOEt	5.9	440	15245 ± 21	714	0.018 ± 0.001	1.79 ± 0.01^{i}	nd ^l
10	$\mathbf{X} = \mathbf{O}$	THF	5.8	446	19885 ± 42	717	0.039 ± 0.001	1.70 ± 0.01^{i}	nd ^l
11		ACN	13	442	16782 ± 32	k	_k	k	nd ^l
12		DMSO	13.5	462	18234 ± 7	k	k	k	nd^l
13		Tol	1.0	456	27359 ± 369	625	0.11 ± 0.01	$1.13 \pm 0.04^{\rm h}$	150 GM (960 nm)
14		CHCl ₃	3.8	461	$\frac{16598 \pm}{153}$	k	_k	k	nd^l
15	12	AcOEt	5.9	459	11453 ± 20	698	0.0038 ± 0.0006	1.66 ± 0.02^{i}	nd ^l
16	X =	THF	5.8	467	21931 ± 120	705	0.0027 ± 0.0068	$\begin{array}{c} 1.82 \pm \\ 0.02^{\mathrm{i}} \end{array}$	nd ¹
17	1111	ACN	13	460	19188 ± 95	k	k	k	nd ^l
18		2- propanol	5.5	465	17772 ± 177	644	0.0029 ± 0.0003	$\begin{array}{c} 1.69 \pm \\ 0.007^{\mathrm{i}} \end{array}$	nd ⁿ
19		DMSO	13.5	491	18805 ± 99	k	_k	k	nd^n
20		Tol	1.0	361	8860 ± 32	565	$0.20\pm0.005^{\rm f}$	2.09	13.9 (810 nm)
21	ТР	CHCl ₃	3.8	362	15243 ± 5	k	_k	k	nd ^l
22		DMSO	13.5	372	9099 ± 5	k	_ ^k	_ ^k	nd ^l

Table 3. Photophysical properties of compounds 10-12, and TP in different organic solvent.

^aDipole moment ($\mu \ge 10^{30}$ / Cm)⁷⁸. ^bAbsorption maximum measured in Tol, CHCl₃, AcOEt, ACN, THF, 2-propanol or DMSO. ^cMolar extinction coefficient. ^dFluorescence maximum measured in Tol, CHCl₃, AcOEt, ACN, THF, 2-propanol or DMSO. ^eFluorescence quantum yield measured in Tol, CHCl₃, AcOEt, ACN, THF, 2-propanol or DMSO using absolute PL quantum yield spectrometer. ^fFluorescence quantum yield measured in Tol using Rhodamine B ($\Phi_f = 0.5$) as a standard. ^gFluorescence lifetime. ^hFluorescence lifetime monitored at 600 nm. ⁱFluorescence lifetime monitored at 700 nm. ^jTP cross-section measured using the two-photon excited (2PE) fluorescence method in toluene-d₈ with a chromophore concentration 1 × 10⁻⁴ M. ^knot detected or very weak. ^lnot determined.

Figure 18. Absorption spectra (full line) and emission spectra (dashed line) of a) compound 10; b) compound 11; c) compound 12.

Cyclic voltammetry measurement

The HOMO and LUMO levels of compounds **10-12** were estimated by cyclic voltammetry (CV) data (Figure 19 and Table 4). Thus, the HOMO and LUMO level were calculated from the value of oxidation and reduction potentials, by considering the redox potentials relative to ferrocene/ferrocenium (Fc/Fc⁺) (SI, Figure S45) using the equation (1) and (2)⁷⁹:

$$E_{\text{HOMO}} (\text{eV}) = -4.8 + E_{\text{Ferrocene}} - E_{\text{ox}} \quad (1)$$
$$E_{\text{LUMO}} (\text{eV}) = -4.8 + E_{\text{Ferrocene}} - E_{\text{red}} \quad (2)$$

Compounds 10 and 11 showed HOMO levels at -5.12 eV and -5.11 eV, while compound 12 had the highest HOMO value of -4.82 eV. For the LUMO level, compound 10,11 were ~ 0.1 eV lower than compound 12. The smallest HOMO-LUMO gap (1.47 eV) was found for compound 12 (Table 4).

Figure 19. Cyclic voltammetry of compounds **10-12** (0.23 M) recorded in acetonitrile (ACN)/0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) electrolyte with 0.01 M Ag/AgNO₃ reference electrode *vs.* 0.1 M Fc/Fc⁺. a) oxidation wave of compound **10**; b) reduction wave of compound **10**; c) oxidation wave of compound **11**; b) reduction wave of compound **12**; f) reduction wave of compound **12**.

Comp.	$E^{1}_{red}^{a}$ / V	$E^{1}{}_{\mathrm{ox}}{}^{\mathrm{a}}$ / V	HOMO ^b / eV	LUMO ^c / eV	$E_{\text{gap(elec)}}^{d}$ / eV
10 (X=S)	-1.23	0.43	-5.12	-3.46	1.66
11 (X=O)	-1.26	0.42	-5.11	-3.43	1.68
12 (X=NH)	-1.24	0.23	-4.82	-3.35	1.47

Table 4. Optical and electrochemical studies of compounds 10-12.

^aElectrochemical potentials *vs.* Fc/Fc⁺ of the indicated compounds **10-12** in ACN. ^bMeasured from onset value of oxidation half cycle of CV. ^cMeasured from onset value of reduction half cycle of CV. ^dElectrochemical HOMO-LUMO gap.

3-4. Two-photon absorption

The 2P response of compounds **10-12** were determined by two-photon excited (2PE) fluorescence measurements in Tol (entries 1,7,13). The 2PA spectra are shown in Figure 20 in 680-1000 nm. Compound **12** (X = NH) had the largest 2PA cross-section of 150 GM at 960 nm (entry 13), whereas compound **10** (X = S) showed a slightly smaller 2PA maximum cross-section of 143 GM at 900 nm (entry 1). Compound **11** (X = O) showed the smallest response of 93 GM at 910 nm (entry 7). Thus, the heterocyclic linkers that connect donor-acceptor units significantly enhance the 2P response of the terphenyl derivatives as compared to **TP** (σ_2 = 13.9 GM at 820 nm). The smaller dihedral angles of **10-12** enhance the molecular planarity to increase the transition dipole moment of **10-12**. The higher 2PA cross-section of these more-planar (compounds **10-12**) could be observed.

Figure 20. Two-photon absorption spectra of compounds 10-12 in d_8 -toluene.

3-5. Experiment section

4-(*N***,***N***-Dimethylamino)phenylboronic acid (14):** Compound **13** (4.00 g, 0.02 mol) was dissolved in dry 80 mL THF and cooled down to -78 °C. 2.3 M *n*-BuLi (12.6 mL, 0.03 mol) was slowly added over 10 minutes and stirred for 2 h at -78 °C. B(OMe)₃ (8.50 mL, 0.07 mol) was slowly added to the mixture. The reaction was stirred for another 2 h at -78 °C, and for overnight at room temperature (rt). After quenching with saturated aq. NH₄Cl, the reaction was stirred for another 2 h at rt. The organic phase was collected and the water phase was extracted with DCM. The combined organic phases were dried over MgSO4 and solvents removed under reduced pressure. The crude was washed with a mixture of Hexane:EtOAc (1:1) to deliver **14** (1.81 g, 55%) as a colorless solid. ¹H-NMR of compound **14** (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.82 Hz, 2 H), 6.79 (d, *J* = 8.82 Hz, 2 H), 3.06 (s, 6 H).

4-(5-Bromothiophen-2-yl)-*N*,*N***-dimethylaniline** (16): Compound 14 (260 mg, 1.57 mmol) and 15 (381 mg, 1.57 mmol) were dissolved in mixture toluene and EtOH (3:1) and degassed under N₂ for 30 minutes. Then, Pd(PPh₃)₄ (37.0 mg, 0.03 mmol) and a solution of K₂CO₃ (435 mg, 3.15 mmol) in H₂O (5.00 mL) were added. The reaction mixture was degassed with N₂ again and stirred for 70 °C for overnight. After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude compound was purified by Flash column chromatography (Hexane:AcOEt = 2:1,...) to give desired product **16** (258 mg, 58%) as a yellow solid. ¹H-NMR of compound **16** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 8.58 Hz, 2 H), 6.96 (d, *J* = 3.74 Hz, 2 H), 6.88 (d, *J* = 3.74 Hz, 2 H), 6.71 (d, *J* = 8.58 Hz, 2 H), 2.98 (s, 6 H).

4,4,5,5-tetramethyl-2-(4-nitrophenyl)-1,3,2-dioxaborolane (17): Compound **19** (50.0 mg, 0.25 mmol), bis(pinacolato)diboron (64.1 mg, 0.25 mmol), AcOK (77.3 mg, 0.79 mmol) and PdCl₂(dppf) (22.1 mg, 0.03 mmol) were degassed under N₂ for 30 minutes. Then, dioxane (3.30 mL) was added, the reaction mixture was degassed with N₂ again and stirred for 80 °C for overnight. After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude was purified through silica gel column chromatography using 100%AcOEt to give the desired coupling product **17** (50.4 mg, 81%) as grey solid. ¹H-NMR of compound **17** (400 MHz, CDCl₃): δ 8.19 (d, *J* = 8.56 Hz, 2 H), 2.98 (s, 6 H), 1.36 (s, 12 H).

N,*N*-dimethyl-4-(5-(4-nitrophenyl)thiophen-2-yl)aniline (10): Compound 17 (200 mg, 0.71 mmol) and 16 (160 mg, 0.64 mmol) were dissolved into a mixture of toluene (3.90 mL) and ethanol (1.30 mL) and degassed under N₂ for 30 minutes. Then, Pd(PPh₃)₄ (72.8 mg, 0.06 mmol) and an aqueous solution of Na₂CO₃ (134 mg, 1.26 mmol) (1.3 mL) were added. The reaction mixture was degassed with N₂ again and stirred at 70 °C overnight.

After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The crude was purified through silica gel column chromatography and recycling HPLC with GPC to give the desired coupling product **10** (98 mg, 48%) as red solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.24 (d, *J* = 9.02 Hz, 2H), 7.72 (d, *J* = 9.02 Hz, 2H), 7.53 (d, *J* = 8.86 Hz, 2H), 7.43 (d, *J* = 3.81 Hz, 2H), 7.19 (d, *J* = 3.81 Hz, 2H), 6.74 (d, *J* = 8.86 Hz, 2H), 3.02 (s, 6H). ¹³C NMR (100 MHz, pyridine-d6): δ 150.65, 148.68, 146.06, 140.83, 137.92, 127.78, 126.96, 125.31, 124.55, 122.68, 121.74, 112.65, 39.73. HRMS-ESI calcd for C₁₈H₁₇N₂O₂S [M + H]⁺ 325.10354, found 325.10095. Mp: 265°C, IR [KBr, cm⁻¹]: 2911, 1608, 1589, 1541, 1503, 1500, 1440, 1367, 1328, 1226, 1196, 1186, 1109,1064, 947, 849, 815, 796, 751, 742, 690.

4-(furan-2-yl)-*N*,*N*-dimethylaniline (19): Compound 13 (50.1 mg, 0.25 mmol), 18 (56.6 mg, 0.51 mmol) and Pd(PPh₃)₄ (15.2 mg, 0.013 mmol) were degassed under N₂ for 30 minutes. Then, a solution of 2M Na₂CO₃ (0.3 mL) and 1,4-dioxane (5.00 mL) were added. The reaction mixture was degassed with N₂ again and stirred for 90 °C for overnight. After reaction, the reaction mixture was extracted with EtOAc, washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude was separated by column chromatography. The products were purified through silica gel column chromatography using Hex:AcOEt (98:2) to give the desired coupling product **19** (30.3 mg, 65%) as yellow solid. ¹H-NMR of compound **19** (400 MHz, CDCl₃): δ 7.56 (d, *J* = 9.02 Hz, 2 H), 7.39-7.40 (m, 1 H), 6.74 (d, *J* = 9.02 Hz, 2 H), 6.42-6.42 (m, 2 H), 2.98 (s, 6 H).

N,N-dimethyl-4-(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)furan-2yl)aniline (20): Compound 19 (563 mg, 3.01 mmol) was dissolved in dry THF (30.0 mL) and cooled down to -78 °C. n-BuLi (2.3 M in n-hexane, 4.60 mL, 10.6 mmol) was slowly added over 10 minutes and the mixture was stirred for 3 h at -78 °C. Then, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4.30 mL, 21.1 mmol) was slowly added to the mixture. The reaction was stirred for another 2 h at -78 °C, and overnight at rt. After quenching with saturated aqueous solution of NH4Cl (30 mL), the reaction was stirred for another 2 h at rt. After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude was washed with *n*-hexane to give the desired product 20 (150 mg, 34%) as white solid. ¹H-NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.55 Hz, 2H), 7.13 (d, J = 3.51 Hz, 2H), 6.71 (d, J = 8.55 Hz, 2H), 6.49 (d, J = 3.51 Hz, 2H), 2.99 (s, 6H), 2.99 (s, 12H). ¹³C-NMR (100 MHz, CDCl₃): δ 159.76, 150.21, 126.01, 125.91, 112.09, 103.17, 83.93, 83.20, 40.40, 24.76, 24.56. HRMS-ESI calcd for C₁₈H₂₅BNO₃ [M + H]⁺ 314.19220, found 314.19211. Mp: 160°C, IR [KBr, cm⁻¹]: 2981, 1616, 1589, 1546, 1501, 1371, 1341, 1320, 1271, 1193, 1143, 1105, 1061, 1017, 966, 853, 823, 818, 782, 689, 672.

N,*N*-dimethyl-4-(5-(4-nitrophenyl)furan-2-yl)aniline (11): Compound 20 (80 mg, 0.26 mmol) and 21 (29.0 mg, 0.14 mmol) were dissolved into 1,4-dioxane (2.90 mL) and degassed under N₂ for 30 minutes. Then, Pd(PPh₃)₄ (8.03 mg, 6.94 µmol) and an aqueous solution of 2M Na₂CO₃ (0.1 mL) were added. The reaction mixture was degassed with N₂ again and stirred for 90 °C for overnight. After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The products were purified through silica gel column chromatography and recycling HPLC with GPC to give the desired coupling product **11** (35 mg, 81%) as red solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.24 (d, *J* = 9.10 Hz, 2H), 7.80 (d, *J* = 9.10 Hz, 2H), 7.65 (d, *J* = 8.87 Hz, 2H), 6.95 (d, *J* = 3.52 Hz, 2H), 6.76 (d, *J* = 8.87 Hz, 2H), 6.60 (d, *J* = 3.52 Hz, 2H), 3.03 (s, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.06, 150.57, 149.79, 145.86, 136.85, 125.64, 124.58, 123.31, 118.54, 112.37, 111.94, 105.21, 40.19. HRMS-ESI calcd for C₁₈H₁₇N₂O₂S [M + Na]⁺ 331.10532, found 331.10535. Mp: 235°C, IR [KBr, cm⁻¹]: 2921, 1613, 1598, 1505, 1441, 1363, 1327, 1224, 1195, 1107, 1055, 1022, 925, 849, 820, 788, 753, 695.

2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (23): First, Bis(pinacolato)diboron (381 mg, 1.5 mmol), (1,5-cyclooctadiene)(methoxy)iridium (I) Dimer (40.0 mg, 0.06 mmol) and 4,4'-di-tertbutyl-2,2'-bipyridine (32.2 mg, 0.12 mmol) was added into round bottom flask and degassed under N₂ for 30 minutes. Then, dry hexane (15.0 mL) and compound **22** (201 mg, 3.00 mmol) was added into and bubbling under N₂ for 30 minutes again. The reaction mixture was stirred at 25 °C for overnight. The reaction mixture was through silica, washed with DCM and the solvent was removed under reduced pressure. The products were purified through recycling HPLC with GPC to give the desired coupling product **23** (74.0 mg, 21%) as yellow oil. ¹H-NMR of compound **23** (400 MHz, CDCl₃): δ 8.94 (br, 1H of NH), 7.00-7.01 (m, 1 H), 6.86-6.88 (m, 1 H), 6.30-6.32 (m, 1 H), 1.33 (s, 12H).

2-(4-nitrophenyl)-1H-pyrrole (**24**): Compound **21** (28.3 mg, 0.14 mmol), **23** (54.5 mg, 0.28 mmol) and Pd(PPh₃)₄ (8.1 mg, 0.007 mmol) were added into round bottom flask and degassed under N₂ for 30 minutes. Then, a solution of 2M Na₂CO₃ (0.15 mL) and 1,4-dioxane (1.4 mL) were added. The reaction mixture was degassed with N₂ again and stirred for 90 °C for overnight. After reaction, the reaction mixture was extracted with EtOAc, washed with H₂O and brine, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The products were purified through silica gel column chromatography using Hex:AcOEt (2:1) to give the desired coupling product **24** (23.7 mg, 97%) as orange solid. ¹H-NMR of compound **24** (400 MHz, CDCl₃): δ 8.60 (br, 1H of NH), 8.23 (d, *J* = 8.85 Hz, 2 H), 7.57 (d, *J* = 8.85 Hz, 2 H), 6.99-7.00 (m, 1 H), 6.73-6.75 (m, 1 H), 6.38-6.36 (m, 1 H).

2-bromo-5-(4-nitrophenyl)-1H-pyrrole (25): Compound **24** (20.9 mg, 0.11 mmol) was dissolved into DMF (1.10 mL) and then, NBS (23.0 mg, 0.13) was slowly added into

at 0 °C. The reaction mixture was cooled to room temperature and stirred for overnight. The rection mixture was extracted with EtOAc, washed with H₂O and brine, dried over Na₂SO₄ and solvent was removed under reduced pressure. The crude was purified by Flash column chromatography to give compound **25** (20.7 mg, 70%). ¹H-NMR of compound **25** (400 MHz, CDCl₃): δ 8.54 (br, 1H of NH), 8.24 (d, *J* = 8.87 Hz, 2 H), 7.53 (d, *J* = 8.87 Hz, 2 H), 6.65-6.63 (m, 1 H), 6.31-6.29 (m, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 145.46, 138.59, 129.84, 124.66, 123.39, 121.58, 111.35, 109.65. HRMS-ESI calcd for C₁₈H₁₈N₃O₂ [M + H]⁻ 264.96198, found 264.96181. Mp: 65°C, IR [KBr, cm⁻¹]: 3311, 1598, 1500, 1440, 1416, 1332, 1197, 1112,1045, 915,852, 767, 752.

N,*N*-dimethyl-4-(5-(4-nitrophenyl)-1H-pyrrol-2-yl)aniline (12): Compound 25 (20.7 mg, 0.08 mmol) and 14 (52.8 mg, 0.32 mmol) were dissolved into 1,4-dioxane (0.8 mL) and degassed under N₂ for 30 minutes. Then, Pd(PPh₃)₄ (4.6 mg, 4.0 µmol) and an aqueous solution of 2M Na₂CO₃ (0.07 mL) were added. The reaction mixture was degassed with N₂ again and stirred for 90 °C for overnight. After evaporation of the organic solvent, the residue was extracted with DCM, washed with H₂O and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The products were purified through silica gel column chromatography and recycling HPLC with GPC to give the desired coupling product 12 (14 mg, 61%) as dark red solid. ¹H NMR (400 MHz, CDCl₃): δ 8.57 (br, 1H of NH), 8.22 (d, *J* = 9.02 Hz, 2H), 7.57 (d, *J* = 9.02 Hz, 2H), 7.45 (d, *J* = 7.78 Hz, 2H), 6.87 (m, 3H), 6.49 (m, 1H), 3.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 149.91, 144.84, 138.47, 138.47, 137.10, 129.63, 125.42, 124.75, 122.66, 120.11, 112.68, 111.83, 107.27, 40.45. HRMS-ESI calcd for C₁₈H₁₈N₃O₂ [M + H]⁺ 308.13935, found 308.13940. Mp: 275°C, IR [KBr, cm⁻¹]: 3452, 2920, 1613, 1594, 1503, 1441, 1366, 1328, 1281, 1227, 1189, 1110, 1085, 1048, 846, 820, 778, 753, 528.

3-6. Supplementary material

¹H and ¹³C NMR spectra.

Figure S27. ¹H NMR spectrum of compound 14 in CDCl₃.

Figure S28. ¹H NMR spectrum of compound 16 in CDCl₃.

Figure S29. ¹H NMR spectrum of compound 17 in CDCl₃.

Figure S30. ¹H NMR spectrum of compound 10 in CDCl₃.

Figure S31. ¹³C NMR spectrum of compound 10 in pyridine-d6.

Figure S32. ¹H NMR spectrum of compound 19 in CDCl₃.

Figure S33. ¹H NMR spectrum of compound 20 in CDCl₃.

Figure S34. ¹³C NMR spectrum of compound 20 in CDCl₃.

Figure S35. ¹H NMR spectrum of compound 11 in CDCl₃.

Figure S36. ¹³C NMR spectrum of compound 11 in CDCl₃.

Figure S37. ¹H NMR spectrum of compound 23 in CDCl₃.

Figure S38. ¹H NMR spectrum of compound 24 in CDCl₃.

Figure S39. ¹H NMR spectrum of compound 25 in CDCl₃.

Figure S40. ¹³C NMR spectrum of compound 25 in CDCl₃.

Figure S41. ¹H NMR spectrum of compound 12 in CDCl₃.

Figure S42. ¹³C NMR spectrum of compound 12 in CDCl₃.

Figure S43. UV-vis absorption spectra of 10-12 in different solvents.

Fluorescence decay of 10-12

Figure S44. Fluorescence decay measured in Tol, AcOEt, THF and 2-propanol of (a) compound 10, (b) compound 11, (c) compound 12.

Cyclic voltammetry

Figure S45. Cyclic voltammetry of ferrocene (0.1 M) recorded in acetonitrile (ACN)/0.1 M tetrabutylammonium hexafluorophosphate (TBAHFP) electrolyte with 0.01 M Ag/AgNO₃ reference electrode. (a) Redox potential of ferrocene was used to calculate the HOMO and LUMO level of **10,11.** (b) Redox potential of ferrocene was used to calculate the HOMO and LUMO level of **12.**

Table S2. Optical and electrochemical studies of compounds 10-12.

Comp.	$E^{1}_{\rm red}{}^{\rm a}$ /	$E^2_{\rm red}{}^{\rm a}$ /	$E^{3}_{\rm red}{}^{\rm a}$ /	$E^{1}_{ox}{}^{a}$ /	$E^2_{\rm ox}{}^{\rm a}$ /	$E^3_{ox}{}^a$ /	HOMO ^b	LUMO ^c	$E_{\text{gap(elec)}}^{d}$
	V	V	V	V	V	V	/ eV	/ eV	/ eV
10	-1.23	-1.41	-	0.43	0.98	-	-5.12	-3.46	1.66
11	-1.26	-1.43	-	0.42	0.78	0.92	-5.11	-3.43	1.68
12	-1.24	-1.47	-1.75	0.23	0.51	0.62	-4.82	-3.35	1.47

^aElectrochemical potentials *vs.* Fc/Fc⁺ of the indicated compounds **10-12** in ACN. ^bMeasured from onset value of oxidation half cycle of CV. ^cMeasured from onset value of reduction half cycle of CV. ^dElectrochemical HOMO-LUMO gap.

References

- B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan,G. S. He, P. N. Prasad, *Chem. Mater.* 1998, 10, 1863.
- 69 Y. Morel, O. Stephan, C. Andraud, P. L. Baldeck, Synth. Met. 2001, 124, 237.
- 70 B. K. Sanyasi Sitha, J. Mol. Struct. THEOCHEM 2006, 761, 31.
- M. Klikar, P. Poul, A. Barsella, K. D. Dorkenoo, F. Bures, S. Achelle, *J. Org. Chem.* 2017, 82, 9435.
- H. Kita, R. Yamakado, R. Fukuuchi, T. Konishi, K. Kamada, Y. Haketa, H. Maeda, *Chem. A Eur. J.* 2020, 26, 3404.
- 73 A. Abbotto, L. Beverina, R. Bozio, A. Facchetti, C. Ferrante, G. A. Pagani, D. Pedron, R. Signorini, Org. Lett. 2002, 4, 1495.
- 74 M. J.-E. Ricardo J. Vazquez, Hyungjun Kim, Brandon M. Kobilka, Benjamin J. Hale, and T. G. Paul Zimmerman, *J. Phys. Chem. C* **2017**, *121*, 14382.
- 75 Y. Ando, Y. Homma, Y. Hiruta, D. Citterio, K. Suzuki, Dye. Pigment. 2009, 83, 198.
- 76 S. K. Phongsakorn Boontiema, Inorganica Chim. Acta 2020, 506, 119538.
- 77 T. L. Cecil, S. C. Rutan, Anal. Chem. 1990, 62, 1998.
- 78 C. Reichardt, T. Welton, *Solvents and solvent effects in organic chemistry*, Wiley-VCH, Weinheim, **2011**.
- M. C. S. and M. C. B. Peishen Huang, Jia Du, Samodha S. Gunathilake, Elizabeth A. Rainbolt, John W. Murphy, Kevin T. Black, Diego Barrera, Julia W. P. Hsu, Bruce E. Gnade, J. Mater. Chem. A 2015, 3, 6980.

Chapter 4

Conclusion and Outlook

Conclusion and Outlook

In this research, the investigation one-photon of EGTA substituted *p*-nitroterphenyl (PNTP) derivatives with two different electron-donating $-NMe_2$ and -OMe substituents showed that a high quantum yield of up to 0.40 was observed for the photolysis of the caged calcium species featuring -OMe substituent, whereas that with the more strongly electron-donating $-NMe_2$ group showed a sizeable 2PA cross-section.

Comp.	Solv.	K_d / nM	λ_{abs} / nm	$\Phi_{ ext{decomposition}}$	σ_2/GM	δ_u / GM
3a	DMSO	-	350	0.27	21 (730 nm)	5.7 (730 nm)
3b	DMSO	-	392	0.02	220 (770 nm)	4.4 (770 nm)
4a	HEPES buffer pH 7.4	202	344	0.4	8.2 (720 nm)	3.3 (720 nm)
4b	HEPES buffer pH 7.4	213	363	0.04	75 (780 nm)	3.0 (780 nm)

In addition, the synthesis and investigation of one- and two-photon of teraryl derivatives, in which the heterocycle linkers such as thiophene, furan, and pyrrole replaced the central aromatic ring showed much improved 2PA cross-section value. These compounds can be used for chromophores in investigating for 2P-responsive photolabile protecting groups for physiological processes.

O₂N 02 ТР $\sigma_2 = 13.9 \text{ GM}$ at 820 nm

10: X = S, $\sigma_2 = 143$ GM at 900 nm **11**: X = O, $\sigma_2 = 93$ GM at 910 nm **12**: X = NH, $\sigma_2 = 150$ GM at 960 nm

List of Publications

Articles

- (1) "*p*-Nitroterphenyl Units for Near-Infrared Two-Photon Uncaging of Calcium Ions" <u>Thuy Thi Thu Pham</u>, Satish Jakkampudi, Ko Furukawa, Fung-Yu Cheng, Tzu-Chau Lin, Yoki Nakamura, Norimitsu Morioka, Manabu Abe *Journal of Photochemistry & Photobiology, A: Chemistry* 2021, 409, 113154-113167.
- (2) "Impact of five-membered heterocyclic ring on photophysical property including twophoton absorption character"
 <u>Thuy Thi Thu Pham</u>, Youhei Chitose, Tran Thi Thanh Tam, Wei-Lun Tseng, Tzu-Chau Lin, Manabu Abe
 Chem. Lett 2021, CL-210420, *in press*.

Thesis Supplements

(1) "Design and Synthesis of Two-Photon Responsive Chromophores for Near-Infrared Light Induced Uncaging Reactions"
M. Abe, Y. Chitose, S. Jakkampudi, <u>P. T. T. Thuy</u>, Q. Lin, B. T. Van, A. Yamada, R. Oyama, M. Sasaki, C. Katan Synthesis 2017, 49, 3337-3346.

Acknowledgements

All the research described in this dissertation has been carried out under the guidance of Professor Manabu Abe at the Department of Chemistry, Graduate School of Science, Hiroshima University.

I would like to give my appreciation and thanks to Professor Manabu Abe for giving me an opportunity to enter his laboratory at Hiroshima University and approach new researches on chemistry, also for his guidance and encouragement during my research studies.

Moreover, I also give a special thanks to Dr. Ryukichi Takagi, Dr. Sayaka Hatano for their great support and useful discussions during my research.

Besides, I would express a heartful thank to Professor Ko Furukawa (Niigata University), Professor Norimitsu Morioka (Hiroshima University), Dr. Yoki Nakamura (Hiroshima University) and Professor Tzu-Chau Lin (National Central University, Taiwan) for their excellent collaborations.

Thanks to all the Organic Reaction Chemistry Laboratory members for supporting and helping me while I was staying and working at Hiroshima University.

Finally, I would like to give heartfelt thanks to my family and relatives, my friends for their excellent support and encouragement.

July 2021 Pham Thi Thu Thuy Department of Chemistry, Graduate School of Science Hiroshima University