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ABSTRACT 

A one-step direct fabrication of thin-film manganese oxide electrodes was accomplished 

via low-temperature thermal decomposition of inks composed of manganese formate 

(Mnf), alkylamines, and hexanol. As complexing agents, amines were used in molar 

ratios of Mnf:amine that ranged from 1:1 to 1:4. Prepared inks were directly coated onto 

the substrate, and then calcined at 170 to 210 oC under air. Cyclic voltammetry and 

charge/discharge measurements of the thin films were conducted in an electrolyte 

solution. Following immersion, the specific capacitance of the electrodes increased and 

eventually reached a constant value. Based on the results of cyclic voltammetry (CV) at 

1 mV s−1, a thin-film electrode fabricated at 180 oC from Mnf-octylamine-hexanol ink at 
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a molar ratio of 1:3:0.5 had the highest level of specific capacitance at 400 F g−1. CV 

measurement at 1,000 cycles revealed a deterioration of specific capacitance of only 5%, 

which indicates good stability for this thin-film electrode. 

 

Keywords: Manganese, Amine, Complex ink, Thermal decomposition, Specific 

capacitance 

 

 

 

 

1. Introduction 

 

Electrical energy storage devices have roles that are of paramount importance in 

electric vehicles and in power back-up systems such as in computers and web servers. 

Continuous and intensive efforts are currently underway to develop high-performance 

electrodes for use as supercapacitors in energy storage systems. The origin of large 

levels of specific capacitance in supercapacitor electrodes typically relies on two 

charge-storage mechanisms — an electric double layer at the electrolyte/electrode 

interface and the pseudocapacitive effect that electrode materials generate [1]. The 

enhancement of specific capacitance through the simple and low-cost fabrication of 

electrodes is a main objective in their development. Recent demands have included 

assembly for portable electronic equipment that is compact and multifunctional. These 

types of equipment require high flexibility, foldability, and the use of lightweight plastic 

as a substrate. A low-temperature fabrication process is required. 
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Currently, supercapacitor electrodes consisting of transition-metal oxides such as 

Co3O4 [2,3], NiO [4,5], RuO2 [6,7], and MnOx [8,9] are being intensively investigated 

due to better electrical conductivity and higher capacitance. RuO2 and MnOx are ideal 

materials for supercapacitors based on qualities such as good electrochemical and 

chemical stability, variation of oxidation states, a facile fabrication process, and high 

theoretical specific capacitance. RuO2, however, is toxic, expensive, and has low 

porosity, which is problematic for commercialization in supercapacitors. MnOx, on the 

other hand, is an environmentally friendly and abundant natural resource that is non 

toxic while delivering high capacitance, which makes it the optimal candidate for use in 

supercapacitor electrodes. Electrodes of single manganese oxide have shown low 

specific capacitances that range from 320 to 774 F g−1 [10–14], although MnO2 

electrodes with a thin-film morphology have achieved a specific capacitance of 1,380 F 

g−1, assuming the reduction MnO2 to Mn3O4 as a pseudocapacitance effect for the 

entire portion of the thin film [15]. This effect has been achieved via a process of 

diffusion into the inner layer of thin films and to an enlargement of the surface area. 

Various fabrication methods using nanomaterials and hybrid materials have effectively 

enlarged the surface area of manganese oxide electrodes [8,16–25].  Research into the 

nano- and porous-structuring of electrodes has been reported [10–13,23,25–40]. 

Nanostructures of spherical particles [16,18,19,41–43], nanorods or nanowires 

[13,20,21,44–50], and nanosheets [51–55] have been applied to create supercapacitor 

electrodes. Reported examples of hybrid electrodes include reduced graphene oxide–

manganese oxide (rGO-MnO2) via a simple one-step process [56], MnO2/graphene 

nanocomposites [57,58], a composite electrode of Mn2O3/Mn3O4/MnO@C fabricated 

by carbon coatings on manganese oxide [59], a binder-free electrospun MnO@C 



 4 

nanofiber [60], an electrode of manganese zinc ferrite (MnZnFe2O4) nano-needles with 

a specific capacitance of 783 F g−1 [61], and δ-MnO2 nanosheets as electroactive 

material [62]. Fabricating hybrid and composite electrodes has usually required several 

steps. 

MnOx composite electrodes fabricated on flexible substrates are being examined 

for use as supercapacitors [63–66]. Murat et al. have reported that the fabrication of an 

electrode on carbon-fiber fabric (CFF) via a green hydrothermal method has resulted in 

hybrid composites of CFF and coral-like MnO2 nanostructures with a specific 

capacitance of 467 F g−1 [63]. Carol et al. have reported the development of 

nanostructured carbon fiber electrodes by introducing birnessite-type potassium 

manganese oxide nanotubes via wet-spinning, which increased the specific capacitance 

to 246 F g-1 [64]. Yuan et al. have reported the fabrication of flexible 

MnO2@carbonized cotton textile electrodes (MCCT) via a facile in-situ low-

temperature chemical reaction method, which resulted in a specific capacitance of 751 F 

g−1 [65]. Huang et al. have reported a method to fabricate plain MnO2 films for flexible 

transparent supercapacitors that involve arrays of MnO2 islands deposited 

electrochemically on polymer films that has resulted in a specific capacitance of 4.73 

mF cm−2, which obviously is quite low [66]. The other important factor in flexible 

electrodes is the temperature constraint, because most flexible substrates are incapable 

of withstanding temperatures above 200 oC. 

We previously reported a single-material electrode of manganese oxide that 

resulted in a high level of specific capacitance [9]. That version's high specific 

capacitance was due to the morphology of the multi-plate thin film, which was 

fabricated via the thermal decomposition of manganese formate-amine ink at 260 oC. 
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The thermal decomposition process used in the present proposed method features a 

simple one-step process that is used to fabricate copper film at temperatures ranging 

from 140 to 180 oC [67–69]. The key to decreasing the temperature was the selection of 

suitable amines with which to prepare the ink. 

In the present study, thin-film electrodes were fabricated via the thermal 

decomposition of manganese formate-amine ink at low temperature via a simple, one-

step process. The prepared ink was spin-coated onto the substrate, and the ink was then 

thermally decomposed under air. Various types of amines were used and the ratio of 

amine to manganese formate was varied to determine the optimum conditions for thin-

film electrodes. Electrochemical measurements were conducted to investigate the 

specific capacitance and stability of thin-film electrodes fabricated from various inks. 

The morphology and microstructure of this thin-film electrode was observed and 

analyzed.  

 

2. Experimental 

 

2.1. Preparing an ink of manganese formate-amine 

 

     Powder of manganese (II) formate dihydrate was used as a manganese source. The 

powder was heated at 160 oC under vacuum conditions for 1 h to obtain anhydrous 

manganese formate (Mnf), which was then mixed with amine and hexanol. Heptylamine 

(bp: 155 oC), octylamine (bp: 176 oC), and nonylamine (bp: 201 oC) were used as 

complexing agents, and were purchased from Wako Chemical, Ltd., Japan. Hexanol 

(bp: 157 oC) was added to adjust the viscosity of the ink. The molar ratios 
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(Mnf:amine:hexanol) were varied at 1:1:1, 1:2:0.5, 1:3:0.5, and 1:4:0.5. The mixed ink 

was thoroughly kneaded with a spatula to incorporate the manganese-amine complex. 

     Thermal gravimetric (TG) analyses of the Mnf-amine-hexanol ink complexes were 

conducted using a thermal gravimetric analyzer (TG-DTA 6300, EXSTAR6000, SII 

Nano Technology Inc., Japan) at a heating rate of 5 oC min−1 under an air atmosphere. 

 

2.2. Fabrication of thin-film electrodes 

      

The ink mixture was coated onto a stainless steel substrate (10 x 10 mm) [12, 22], 

and adhesive tape with a 5 mm hole in the diameter was attached. The coating was 

conducted using a spin coater (1H-DX II, Mikasa Co. Ltd., Japan) at rotating speeds of 

3,000 to 5,000 rpm for 1 min to control the mass loading of the thin-film electrodes. The 

substrate-coated ink was calcined on a hot plate (HP 2SA, As One Co., Japan) by 

heating from room temperature at heating rate 5 oC min–1 for 40 min under an air 

atmosphere to reach setting temperatures ranging from 170 to 210 oC. An electronic 

balance (CP225D, Sartorius AG Co., Germany) was used to measure the difference 

between the mass of a plain substrate and that of a substrate with the active material 

after calcination. The mass loading of the thin-film electrodes ranged from 0.1 to 0.2 mg. 

The thickness of the electrode was approximately 0.1 to 0.2 µm. 

     The morphologies of the thin-film electrodes fabricated under various conditions 

were observed using a scanning electron microscope (SEM, VE-7800, Keyence Corp., 

Japan). An X-ray diffractometer (XRD MiniFlex600, Rigaku Co. Ltd.) with Cu Kα 

monochromatized radiation was used to analyze the structures of the thin-film 

electrodes. 
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2.3. Electrochemical measurement 

A three-electrode system that involved a potentio/galvanostat (Compact Stat, 

Ivium Technologies) was used for the electrochemical testing of the thin-film electrodes, 

which was conducted under 0.5 M of Na2SO4 electrolyte-purged nitrogen gas at 35 oC. 

An Ag/AgCl electrode in saturated KCl solution and a platinum plate served as the 

reference and counter electrodes, respectively. Cyclic voltammetry (CV) was measured 

over a potential of 0 to 1.0 V vs. the Ag/AgCl with scan rates of 1 to 100 mV s−1 during 

20 to 1,000 cycles. Galvanostatic charge/discharge (CD) was measured for a potential 

that ranged from 0 to 0.9 V vs. Ag/AgCl with a current of 1 to 10 mA. The stability of 

the thin-film electrodes was evaluated via CV measurement for 1,000 cycles. 

The specific capacitance of the thin-film electrodes was calculated by integrating 

the CV curves with respect to the potential window as described in Eq. (1), where m is 

the mass loading, ΔV is the potential window, and v is the scan rate.  

𝐶𝐶 =
1

𝑚𝑚∆𝑉𝑉𝑉𝑉
� 𝐼𝐼 𝑑𝑑𝑑𝑑

𝑉𝑉𝑓𝑓

𝑉𝑉𝑖𝑖

 (1) 

By comparison, the specific capacitances of the thin-film electrodes were also 

calculated from a chronopotentiogram of the CD data using Eq. (2). 

𝐶𝐶 =
𝐼𝐼

(∆𝐸𝐸/∆𝑡𝑡)𝑚𝑚
  (2) 

In Eq. 2, 𝐼𝐼 is the current and ∆𝐸𝐸/∆𝑡𝑡 is the slope of the discharge curve at potential ∆𝐸𝐸 

with a discharge time of ∆𝑡𝑡. Therefore, the specific capacitance (gravimetric 

capacitance, F g-1), or real capacitance (F), can be calculated using Eqs. 1 and 2. The 
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specific capacitance was calculated by dividing the real capacitance by the initial mass 

of the active material measured following the calcination process. 

 

3. Results and discussion 

 

3.1. Properties of manganese formate-amine ink 

 

     The TG analyses of Mnf powder and Mnf-amine-hexanol inks with various types of 

amines at the prescribed molar ratio (Mnf:amine:hexanol = 1:2:0.5) under air are shown 

in Fig. 1. A significant mass decrease in Mnf powder was observed at 230-260 oC, 

followed by a constant value of 53% as the temperature increased (Fig. 1a). The mass 

decrease was due to the thermal decomposition of Mnf and to the oxidation to 

manganese oxide under air [9]. The masses of Mnf-heptylamine-, Mnf-octylamine-, and 

Mnf-nonylamine-hexanol inks were gradually decreased at several steps to a range of 

from 20-200 oC. This showed that the thermal decomposition of Mnf was decreased by 

the addition of amines, but the decomposition process was different. The temperatures 

for the three steps differed according to the type of amine at 20-150, 60-170, and 60-200 

oC for Mnf-heptylamine-, Mnf-octylamine- and Mnf-nonylamine-hexanol inks, 

respectively. The decomposition temperature corresponded to the boiling point of each 

amine, and ink with an amine that had a lower boiling point showed a lower 

decomposition temperature. This allowed for large decreases in temperatures that were 

lower than the boiling point of each amine (heptylamine: 155 oC, octylamine: 176 oC, 

nonylamine: 201 oC), because the temperature of total decomposition approximated the 

boiling point. The final product calcined from the inks using amine and after 
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electrochemical measurement was Mn3O4 as indicated by XRD data in a following 

section. The amount of Mnf as a source of manganese in the Mnf-heptylamine-hexanol 

ink was 34.0 wt%. When the thermal decomposition and oxidation had finished, and the 

Mnf was transformed to Mn3O4 under air, the mass percentage of Mn3O4 was 47.2 

wt% (=34.0 x 229/(3 x 55)), when using Mn at 55 g mol-1, and Mn3O4 at 229 g mol-1. 

According to the TG data, the remaining mass following the thermal decomposition of 

Mnf-heptylamine-hexanol ink was approximately 55 wt%, which resulted in a larger 

mass following calcination. This showed that Mnf remains in the products, as shown 

later. The same calculation for Mnf-octylamine- and Mnf-nonylamine-hexanol ink 

showed that Mnf remained in the products, although the temperature of thermal 

decomposition was decreased.  

 

Fig.1. Thermal gravimetric analysis of (a) Mnf, (b) Mnf-heptylamine-hexanol, (c) Mnf-

octylamine-hexanol, and (d) Mnf-nonylamine-hexanol inks under air. The molar ratio of 

Mnf:amine:hexanol was 1:2:0.5. 

 

3.2. Electrochemical performance of thin-film electrodes 
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The CV curve of a thin-film electrode fabricated at 180 oC from Mnf-amine-hexanol 

using various types of amines with a scan rate of 50 mV s−1 is shown in Fig. 2. The 

molar ratio of Mnf-amine-hexanol was 1:2:0.5. An almost semi-rectangular shape was 

observed in all samples. The manganese oxide electrode that was fabricated showed a 

semi-rectangular shape CV, which is typical of a pseudocapacitive oxide, although 

some of the peaks on the CV curve were of metal oxide composite materials [70]. The 

electrode fabricated from Mnf-octylamine-hexanol ink showed wavy portions in a 

potential range of 0.4 to 0.8 V, which indicated a reversible redox reaction had occurred 

on the surface of the thin-film electrode [70]. The specific capacitances of each of the 

thin-film electrodes were calculated using Eq. (1) in order to compare the properties. 

 

Fig. 2. Cyclic voltammetry of a thin-film electrode fabricated at 180 oC from (a) Mnf-

heptylamine-hexanol, (b) Mnf-octylamine-hexanol, and (c) Mnf-nonylamine-hexanol 

inks. The molar ratio of Mnf:amine:hexanol is 1:2:0.5. The scan rate was 50 mV s−1. 
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The specific capacitances calculated from the CV curves of thin-film electrodes 

fabricated at 180 oC for various Mnf-amine-hexanol inks (molar ratio is 1:2:0.5) is 

shown in Fig. 3. The scan rate was 50 mV s−1. The specific capacitance of each thin-

film electrode showed low values of 12 to 70 F g−1 at the initial measurement, but a 

gradual increase resulted in a constant-value state after 30 cycles. In a comparison of the 

specific capacitance of each electrode after 50 cycles, the thin-film electrode fabricated 

from Mnf-octylamine-hexanol ink showed the highest value at 100 F g−1. 

 

Fig. 3. Specific capacitance calculated from CV curves of thin-film electrodes 

fabricated at 180 oC from (a) Mnf-heptylamine-hexanol, (b) Mnf-octylamine-hexanol, 

and (c) Mnf-nonylamine-hexanol inks. The molar ratio of Mnf:amine:hexanol was 

1:2:0.5. The scan rate was 50 mV s−1. 

 

Fig. 4 shows the CV curve of a thin-film electrode fabricated at 180 oC from Mnf-

octylamine-hexanol inks with various ratios of Mnf:octylamine. Semi-rectangular 

shapes were observed in all samples, although wavy portions in a potential range of 0.4 

to 0.8 V were observed in the samples with ratios of 1:1, 1:2, and 1:3. Fig. 5 shows the 

calculations for specific capacitance based on the CV of thin-film electrodes fabricated 
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at 180 oC from Mnf-octylamine-hexanol inks for various molar ratios. The scan rate was 

50 mV s−1. The specific capacitance of each thin-film electrode fabricated from Mnf-

octylamine-hexanol ink showed a similar behaviour of increases before reaching an 

almost constant value, as shown in Fig. 5. The specific capacitance of the electrodes 

fabricated from inks with Mnf:amine ratios of 1:1 and 1:4 showed the same values after 

the first measurement (Fig. 5ad), whereas the specific capacitance of the electrodes 

fabricated from inks with Mnf:amine ratios of 1:2 and 1:3 (Fig. 5bc) showed the same, 

or higher, values than the electrodes with ratios of 1:1 and 1:4. CV measurement 

showed a large increase in specific capacitance of electrodes fabricated from inks with a 

ratio of 1:3 after 20 cycles, and then a gradual increased of up to 50 cycles. 

Measurements of specific capacitance after 50 cycles showed 24, 105, 325, and 73 F g−1 

for Mnf:amine ratios of 1:1, 1:2, 1:3 and 1:4, respectively. Thus, the specific 

capacitance was the maximum at an Mnf:amine ratio of 1:3. 

 

Fig. 4. CV curves of the thin-film electrodes fabricated at 180 oC from Mnf-octylamine-

hexanol inks with Mnf:octylamine ratios of (a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4. The 

scan rate was 50 mV s−1. 
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Fig. 5. Specific capacitance calculated from the CV curves of the thin-film electrodes 

fabricated at 180 oC from Mnf-octylamine-hexanol inks with Mnf:octylamine ratios of 

(a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4. The scan rate was 50 mV s−1. 

 

Fig. 6 shows the specific capacitance calculated from the measurement of CV curves 

after 50 cycles for thin-film electrodes fabricated from Mnf-octylamine-hexanol inks 

with various Mnf-octylamine ratios at various temperatures. The scan rate was 50 mV 
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6b), 325 F g−1 at 180 oC (ratio of 1:3, Fig. 6c), and 192 F g−1 at 190 oC (ratio of 1:4, Fig. 

6d). This was caused by the surface morphology of the thin films, as shown later. These 

results showed that the thin-film electrode with the highest specific capacitance was 
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at 180 oC. Thus, the calcination temperature to fabricate a thin-film electrode using 

octylamine was achieved at 180 °C, which is significantly lower than the temperature of 

260 °C that is required for the fabrication of a thin-film electrode using TETA 

(Triethylenetetramine) [9]. Such a low temperature would allow application to a flexible 

substrate. The decrease in calcination temperature was related to the boiling point of 

octylamine, 176 °C, which approximates calcination temperature, because the synthesis 

of manganese oxide electrodes proceeds in solution.  

 

Fig. 6. Specific capacitance calculated from the CV curves after 50 cycles for a thin-

film electrode fabricated from Mnf-octylamine-hexanol ink with Mnf:octylamine ratios 

of (a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4 at various temperatures. The scan rate was 50 mV 

s−1. 
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value of 400 F g−1. The low specific capacitance was the result of an insufficient 

diffusion of ions into the inner layer of the electrode [71]. As the scan rate was changed 

from 50 to 10 mV s−1, the ratio of specific capacitance increased to 20%. This suggested 

a large amount of diffusion into a relatively thick inner layer. Thus, the fabricated thin-

film electrode projected pseudocapacitive properties. 

 

Fig. 7. Specific capacitance calculated from the CV curves after 50 cycles of a thin-film 

electrode fabricated from Mnf-octylamine-hexanol ink with a Mnf:octylamine ratio of 

1:3 at various scan rates. 

 

Fig. 8 shows 48-50 cycles of charge-discharge (CD) curves for a thin-film electrode 

fabricated at 180 oC from Mnf-octylamine-hexanol ink with a Mnf:amine molar ratio of 

1:3 at 1 and 10 mA. The CD curves show a linear trend and symmetric behavior. The 
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dissimilarities in the values for specific capacitance calculated from CD and CV were 

due to the differences in the range of potential.  

 

Fig. 8. Charge-discharge curves during 48 to 50 cycles of thin-film electrodes fabricated 

at 180 oC from Mnf-octylamine-hexanol ink with a Mnf:amine ratio of 1:3 at 1 mA (a) 

and 10 mA (b). 
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region displays the Warburg resistance and indicates fast speeds of diffusion and 

adsorption of ions onto the electrode surface [72–75]. This result confirmed the 

dominance of the capacitive properties during the formation of the charge storage on the 

electrode surface [72–75]. That result is in good agreement with the corresponding 

specific capacitance data. Therefore, the high specific capacitance of the thin-film 

electrode fabricated at 180 oC from Mnf-octylamine-hexanol ink with a Mnf:amine 

molar ratio of 1:3 was confirmed by EIS and both CV and CD measurement.  

 

Fig. 9. Nyquist plot of a thin-film electrode fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine ratio of 1:3. 

 

CV measurements were conducted for 1,000 cycles to evaluate the performance and 

stability of these thin-film electrodes. Fig. 10 shows the specific capacitance calculated 

from the CV curves during 1,000 cycles of the thin-film electrodes of ink complexes 
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constant after approximately 50 cycles of CV measurement. After 1,000 cycles, the 

specific capacitance of the thin-film electrodes had decreased by only 2% from each of 

the maximum values. The decreases in specific capacitance in the thin-film electrodes 

were low. Thus, the thin-film electrodes fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine molar ratio of 1:3 showed good stability.  

 

 

Fig. 10. Specific capacitances of thin-film electrodes fabricated from Mnf-octylamine-

hexanol ink with Mnf:amine molar ratios of 1:3 at 180 oC calculated from CV during 

1,000 cycles at a scan rate 50 mV s−1. 
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consisted of large particles with gap-like cracks of 0.5 µm (Fig. 11a). The thin-film 

electrode with a molar ratio of 1:3 showed small gaps between protrusions of 0.5 µm, 
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but no cracks (Fig. 11b). The thin-film electrode with a molar ratio of 1:4 indicated 

many gaps of 0.5 µm between pillars (Fig. 11c). The specific capacitance of the thin-

film electrode with a molar ratio of 1:3 was four-fold larger than that of the thin-film 

electrodes with molar ratios of 1:2 and 1:4, as shown in Fig. 6. 

 

 

Fig. 11. Surface morphology of thin films fabricated at 180 oC from Mnf-octylamine-

hexanol ink with Mnf:amine ratios of (a) 1:2, (b) 1:3, and (c) 1:4 after 50 cycles of CV 

measurement with a scan rate of 50 mV s−1. 

 

Fig. 12 shows the effect that 50 cycles exerted on the surface morphologies of thin-

film electrodes fabricated at 170 and 210 oC from Mnf-octylamine-hexanol ink with a 

Mnf:amine molar ratio of 1:3. Compared with the results at 180 oC (Fig. 11b), the 

surfaces of the thin-film electrodes fabricated at 170 and 210 oC were smooth and 

protrusions were not observed, although no gaps were observed, as shown in Fig. 11b. 

The smooth surface of thin film fabricated at 170 oC due to the formation of manganese 

oxide particles was not in the final process of thermal decomposition, as shown in the 

decline curve in the TG results (Fig. 1c); thus, manganese oxide particles were not 

generated to form protrusion as with a temperature of 180 oC. At a temperature of 210 

oC the manganese oxide was in the final process of thermal decomposition, as shown by 

the flat TG curve (Fig. 1c), which resulted in a compact arrangement of manganese 
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1 μm
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oxide particles on the thin film surface. A calcination temperature of 180 oC 

approximated the boiling point of octylamine (bp: 176 oC), and the manganese oxide 

grew in the solvent during evaporation and generated 0.5 µm protrusions (Fig. 11b). 

The thin-film electrodes with small protrusions, but no gaps, had a higher level of 

specific capacitance.  

 

Fig. 12. Surface morphology of thin films fabricated at (a) 170 oC, and (b) 210 oC from 

Mnf-octylamine-hexanol ink with a Mnf:amine ratio of 1:3 after 50 cycles of CV 

measurement with a scan rate of 50 mV s−1.  

 

The surface morphology of thin films fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine ratio of 1:3 before electrochemical measurement is 

shown in Fig. 13. Compared with the surfaces following electrochemical measurement 

(Fig. 11b), the morphology was relatively smooth with no protrusions. This was caused 

by the dissolution of the unreacted Mnf that remained during electrochemical 

measurement, as previously reported [76]. The low specific capacitance at the initial 

measurement of thin-film electrodes (Figs. 3, 4 and 9) was due to the dissolution of Mnf, 

although the behavior of each thin film was different. 

(a) (b)

1 μm 1 μm
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Fig. 13. Surface morphology of a thin film fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine ratio of 1:3 before electrochemical measurement. 

 

The XRD peaks of the thin-film electrode calcined at 180 oC with a Mnf:amine molar 

ratio of 1:3 before and after immersion in an electrolyte solution are shown in Fig. 14ab. 

For comparison, the XRD peaks of a thin-film electrode calcined at 180 oC with a 

Mnf:amine molar ratio of 1:2 before immersion in an electrolyte solution appear in Fig. 

14c. The XRD of the thin film before immersion showed peaks similar to those of Mnf 

and Mn3O4, which were the result of Mnf that remained in the thin film (Fig. 14a). On 

the other hand, the XRD of the thin film following immersion in the electrolyte solution 

also showed several peaks that matched the characteristic peak of Mn3O4 at angles of 

18.4o, 29.04o, 32.53o, 39.15o, 55o, 57.69o, and 74o (JP JCPDS 18-0803/ICSD-68174) 

(Fig. 14b). This shows that the remaining Mnf was dissolved by the immersion in an 

electrolyte solution. Observation of the thin film before and after electrochemical 

measurement agreed with this observation (Figs. 11b and 13). Before immersion in the 

electrolyte solution, the peaks of Mnf for the electrode calcined with a Mnf:amine molar 

ratio of 1:3 were lower than those from an electrode with a molar ratio of 1:2 (Fig. 14c), 

which confirmed the superior reactivity of the 1:3 version. 

1 μm
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Fig. 14. XRD pattern of thin-film electrodes fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine molar ratio of 1:3 (a) before and (b) after immersion in 

an electrolyte solution, and ink with a ratio of 1:2 before immersion in electrolyte (c). 

 

The thin-film electrode from Mnf and octylamine ink with a ratio of 1:3 developed 

in this study was generated in two stages, as shown in Fig. 15. 

(1) In the first stage, the formation of manganese oxide and growth occurs via thermal 

decomposition of the Mnf-amine complex. Growth is an important process that is 

stopped mid-process by evaporation of the solvent, which results in a remaining portion 

of unreacted Mnf. As indicated by XRD, a smaller amount of Mnf remained in the 1:3 

film than that in the 1:2 version. This shows that the excess amine acts as a solvent, 

because a calcination temperature of 180 oC approximates the boiling point of 

octylamine (bp: 176 oC). As a result, the manganese oxide grows in the solvent and 

generates 0.5 µm protrusions (Fig. 11b). The growth of manganese oxide in the ink of 

the 1:2 version was insufficient, and resulted in a smooth surface. In the ink of the 1:4 

version, the protrusion of manganese oxide grew larger, due to the increased length of 
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the reaction. Hexanol also acted as a solvent, and it also was related to the growth of 

manganese oxide. 

(2) In the second stage, the remainder of the Mnf in the thin-film electrode was 

gradually dissolved during electrochemical measurement in the electrolyte solution, 

which resulted in growth of the manganese oxide protrusions and exposure to the 

electrolyte solution wherein many ions were adsorbed onto the increased active surface 

area of the protruding morphology leading to the generation of a high degree of 

electrochemical capacitance. 

     

 

Fig.15. Mechanism of the formation and growth of a thin-film electrode with high 

specific capacitance through calcination and electrochemical measurement in an 

electrolyte solution to generate an electrochemically active surface. 

 

4. Conclusions 

Thin-film electrodes intended for use as supercapacitors were fabricated via the thermal 

decomposition of manganese formate-amine ink at low temperature in a simple, one-

step process. The prepared ink was coated onto a substrate via a spin coater, and was 

then calcined under air. Various amines were tested to determine the optimum low 

temperature of calcination that would result in thin-film electrodes with a high level of 
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specific capacitance. The molar ratio of Mnf:octylamine in inks and the calcination 

temperatures were varied, which revealed a ratio of 1:3 was the optimum at a 

temperature of 180 oC. The specific capacitance was increased after immersion and 

reached a constant value. The thin-film electrode fabricated at 180 oC from Mnf-

octylamine-hexanol ink with the optimum molar ratio showed a high specific 

capacitance of 400 F g−1 at a CV measurement of 1 mV s−1. The protruding morphology 

had a large area that could adsorb many ions and resulted in a high level of specific 

capacitance. Following 1,000 cycles of CV measurement, specific capacitance had 

deteriorated by only 5%, which indicates good stability for this thin-film electrode. This 

electrode was fabricated by low temperature thermal decomposition of Mnf-based ink 

via one-step and it is expected to have applications on flexible substrates. 
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Figure captions 

 

Fig.1. Thermal gravimetric analysis of (a) Mnf, (b) Mnf-heptylamine-hexanol, (c) Mnf-

octylamine-hexanol, and (d) Mnf-nonylamine-hexanol inks under air. The molar ratio of 

Mnf:amine:hexanol was 1:2:0.5. 

 

Fig. 2. Cyclic voltammetry of a thin-film electrode fabricated from Mnf-octylamine-

hexanol ink at a molar ratio of 1:2:0.5 at 180 oC. The scan rate was 50 mV s−1. 

 

Fig. 3. Specific capacitance calculated from CV curves of thin-film electrodes 

fabricated at 180 oC from (a) Mnf-heptylamine-hexanol, (b) Mnf-octylamine-hexanol, 

and (c) Mnf-nonylamine-hexanol inks. The molar ratio of Mnf:amine:hexanol was 

1:2:0.5. The scan rate was 50 mV s−1. 

 

Fig. 4. CV curves of the thin-film electrodes fabricated at 180 oC from Mnf-octylamine-

hexanol inks with Mnf:octylamine ratios of (a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4. The 

scan rate was 50 mV s−1. 

 

Fig. 5. Specific capacitance calculated from the CV curves of the thin-film electrodes 

fabricated at 180 oC from Mnf-octylamine-hexanol inks with Mnf:octylamine ratios of 

(a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4. The scan rate was 50 mV s−1. 

 

Fig. 6. Specific capacitance calculated from the CV curves after 50 cycles for a thin-

film electrode fabricated from Mnf-octylamine-hexanol ink with Mnf:octylamine ratios 
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of (a) 1:1, (b) 1:2, (c) 1:3, and (d) 1:4 at various temperatures. The scan rate was 50 mV 

s−1. 

 

Fig. 7. Specific capacitance calculated from the CV curves after 50 cycles of a thin-film 

electrode fabricated from Mnf-octylamine-hexanol ink with a Mnf:octylamine ratio of 

1:3 at various scan rates. 

 

Fig. 8. Charge-discharge curves during 48 to 50 cycles of thin-film electrodes fabricated 

at 180 oC from Mnf-octylamine-hexanol ink with a Mnf:amine ratio of 1:3 at 1 mA (a) 

and 10 mA (b). 

 

Fig. 9. Nyquist plot of a thin-film electrode fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine ratio of 1:3. 

 

Fig. 10. Specific capacitances of thin-film electrodes fabricated from Mnf-octylamine-

hexanol ink with Mnf:amine molar ratios of 1:3 at 180 oC calculated from CV during 

1,000 cycles at a scan rate 50 mV s−1. 

 

Fig. 11. Surface morphology of thin films fabricated at 180 oC from Mnf-octylamine-

hexanol ink with Mnf:amine ratios of (a) 1:2, (b) 1:3, and (c) 1:4 after 50 cycles of CV 

measurement with a scan rate of 50 mV s−1. 
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Fig. 12. Surface morphology of thin films fabricated at (a) 170 oC, and (b) 210 oC from 

Mnf-octylamine-hexanol ink with a Mnf:amine ratio of 1:3 after 50 cycles of CV 

measurement with a scan rate of 50 mV s−1.  

 

Fig. 13. Surface morphology of a thin film fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine ratio of 1:3 before electrochemical measurement. 

 

Fig. 14. XRD pattern of thin-film electrodes fabricated at 180 oC from Mnf-octylamine-

hexanol ink with a Mnf:amine molar ratio of 1:3 (a) before and (b) after immersion in 

an electrolyte solution, and ink with a ratio of 1:2 before immersion in electrolyte (c). 

 

Fig.15. Mechanism of the formation and growth of a thin-film electrode with high 

specific capacitance through calcination and electrochemical measurement in an 

electrolyte solution to generate an electrochemically active surface. 


