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Abstract
Biomolecular dynamics study based on computational science is an indispensable
research field complement to experiments in structural biology, which primarily
deals with proteins. In recent years, structures and dynamics of not only proteins
but also nucleic acids (DNA and RNA) have been attracting attention in the fields
of molecular and structural biology. Biological phenomena involving nucleic
acids observed by rapidly developing experimental measurement technologies of
genomics (e.g. RNA-seq, Chip-seq, etc.), are the background of that attention.
These findings suggest that nucleic acids are no longer regarded merely as the
media of genetic information. They should be considered as molecular machines
that work with concrete structures and dynamics, in the same manner as proteins.
Presently, structural biology involving nucleic acids is expected to be important
in the research fields of life science and drug discovery.

Unfortunately, the dynamics of nucleic acids were not focused well in the bio-
logical research fields. Thus, these remain opportunities to extensively improve
the dynamics analysis method of nucleic acids. For example, nucleic acid dy-
namics with sequence dependence, which is sensitive to alteration of nucleotide
sequences, have not been much elucidated. Therefore, it is often difficult to
evaluate the dynamics of molecular systems involving nucleic acids and their
interaction with other molecules, by currently available analysis methods.

In this research, we studied several biomolecular systems involving nucleic
acids using computational methods, to suggest effective dynamics analysis pro-
cedures. This proposal follows the historical developments of dynamics analysis
methods of proteins in the field of structural biology. Through the analysis,
we targeted following biomolecular systems: (i) simple double-stranded DNA;
(ii) assembly of RNAs and proteins involving specific binding sites of two RNA
segments; and (iii) complex of DNA and proteins bound by strong electrostatic in-
teraction. I performed molecular dynamics analysis, and considered significance
of simulated molecular dynamics. These topics and proposed methodologies are
discussed, and are expected to apply to dynamics analysis of other biomolecular
systems.
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1 Introduction

1.1 Evolution of Genomics
Genetic information is well known to be encoded using DNA sequences [1]. This
fact is common sense in life science [2, 3]. Proteins are synthesized through the
process of transcription and translation in the cell [4], and some of them work
as molecular machines [5–7]. The projects to try to decode genetic information
and to determine complete eukaryotic genome sequences started shortly after the
discovery of genetic information [8]. Currently, genomes of many organisms (e.g.
human and mouse) have been completely determined [8–11].

Complete determination of human genome sequence provided the fact that
gene coding regions occupy approximately 1.5% of the whole genome [8], whereas
gene coding regions occupy almost the whole genome in yeasts and bacteria [12,
13]. Therefore, non-gene coding (non-coding) regions should play other biological
roles in the genomes of higher eukaryotes [8]. These non-coding regions have
been studied since the discovery of them, with developing DNA sequencing
technologies [14–18]. For example, enhancer regions activate the transcription
of their spatially neighbor genes, by associations of binding proteins [19–22].
Insulator regions deactivate genes and interrupt genomic regions spatially [23–26],
and their consensus sequences (in non-coding regions) have been revealed by
recently developed Hi-C method [27–30]. Of course, large-scale genomic analysis
projects have been proceeding [31–34].

The roles of DNA sequences including the non-coding regions have been stud-
ied focusing not only on biological but also physical properties [35–37]. For exam-
ple, activities of transcription regulation regions showing higher-order structure
formation require many modulation factors [38–40]. The factors show specific
binding to genomic sites depending on DNA sequence, which has been observed
by many biological experiments [41,42]. Because these factors are protein (i.e. that
shows concrete structure), sequence-dependent specific affinities between DNA
and protein should exist. Hence, it is reasonable that many biological functions are
realized by their mechanical interactions, and this hypothesis is practically correct.
Some significant mechanical interactions of them have been found [43–45].

Those previous findings suggest that DNA is not only genetic information
container but also molecular machines showing distinct structure and dynamics,
similar to protein. However, the physiological conditions involving nucleic acids
and proteins are extremely complex environments including a huge number of
molecules [46, 47]. Precisely designed interactions of DNA and protein are at
least required, to realize collective biological activity, though a comprehensive
understanding of the mechanism is not enough due to the difficulty of observa-
tions. Currently, a lot of studies, which employ bottom-up structural biological
approaches based on the structure and dynamics of biomolecules, have been con-
ducted [48,49]. The development of structural biology is expected also in the field
of genome biology.
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1.2 Development of Structural Biology
There are two major ways in the analysis of biomolecular structure and dynam-
ics. One of them is experimental structure analysis methods [50]. Biomolecular
structures are determined by crystallography [51–53], nuclear magnetic resonance
(NMR) method [54–56], and cryo electron microscopy (cryoEM) [57–59]. Then,
their structural dynamics are inferred and discussed by employing dynamics
measurement methods like NMR and FRET [60–62]. Recently, cryoEM structure
determination has been significantly developed, and determined structures have
been rapidly increasing [63–65]. Note that although most of these methods are ex-
perimental, there are also computational procedures (e.g. spectral attributions of
excited atoms in NMR, structure construction of proteins through fitting electron
density in cryoEM), as mentioned below [55,57, 66].

Another approach in the field of structural biology is molecular simula-
tion [67–69], in other words, numerical calculations of molecular properties using
computational methods. More specifically, it is numerical calculation (of molec-
ular dynamics, electron density distribution, etc.) methods based on theoretical
physics and theoretical chemistry [70–72]. These methods provide microscopic
molecular properties, difficult to capture by currently established experimen-
tal procedures [67–69]. Molecular simulation enables the complex operation of
molecules (e.g. adding chemical modifications, exchanging monomer, etc.) and
is indeed useful, while it requires experimentally determined information (e.g.
reference molecular structures) before carrying out [73, 74]. Because of their ad-
vantages, molecular simulation has been developed and has played not separative,
but cooperative roles in experimental approaches [75–77]. Practically, in studies
focused on the structure and functions of proteins (e.g. enzyme activities), molec-
ular simulation is indispensable and has contributed enormously [69,77–79]. Ad-
ditionally, it has been gradually recognized that computational approaches are
useful for similar problems in the field of drug discoveries [80–84]. Further de-
velopment of molecular simulation techniques and applications is hoped in a lot
of research fields [73, 74, 85].
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1.3 Analysis of Biomolecular Dynamics
Molecular simulation has been developed presently [85–87]. Molecular simula-
tion methods are typically classified into two types. One of them is the quantum
mechanics (QM) based method. This method can deal with chemical reactions in-
volving electron transfer [88,89]. As it requires huge computational cost because of
calculation of basis set [90,91], then it cannot focus on protein dynamics at domain
scale in general. To overcome the problem, another method is employed in such
cases. The method is based on classical mechanics (molecular mechanics; MM)
and called molecular dynamics (MD). Although MD assumes that the molecular
dynamics do not involve electron transfer [88, 89], it can reach dynamics of large-
scale molecules because of reduction of computational costs [92]. Additionally,
the hybrid simulation method involving QM and MM (called QM/MM method)
was proposed to gain both advantages and has been developed presently [92,93].

In this thesis, I only used the MD simulation method, to analyze the dynamics
of biomolecular systems including nucleic acids (larger molecules than protein
in general; explained in Sec. 1.4). The methodologies of MD are classified as
follows: (i) obtaining the time series of molecular dynamics; (ii) evaluation of con-
formational ensembles and physical quantities (e.g. free energy), with employing
extended theoretical methods and sacrificing time-series information [94]; (iii)
an exhaustive evaluation of intermolecular affinities between their already deter-
mined structures (relatively similar to (ii)).

The method (i) is used to obtain real-time series of molecular dynamics instead
of experimental observation. In this case, though the potential energy defined
for intra- and inter-molecular interactions should be calculated by quantum me-
chanics in principle, it is defined by approximated classical mechanics assuming
the molecular dynamics does not involve electron transfer [88, 89]. In particular,
first, atomic forces applied to molecules are obtained from the summation of po-
tential energies. Then, the evolution of atomic position is calculated by Newton’s
equation of motion [95, 96]. With assuming ergodicity, obtained time series of
molecular dynamics can be regarded as ensembles [97]. However, the following
major problem of the conformational sampling method is raised. Through the
ordinary simulation (obtaining time series of molecular dynamics), their trajecto-
ries may be distributed only in local minimum regions of free energy profiles and
this problem often induces biased sampling [98–101]. Following computational
methods (ii) are approaches to overcome that problem.

The method (ii) provides more efficient sampling of molecular conformations
and physical quantities than ordinary simulation and is called the extended sim-
ulation method [102, 103]. On the other hand, ordinary simulation should be
employed to obtain time series integrity because extended methods often sacri-
fice it. This extended simulation method includes replica exchange molecular
dynamics simulation (REMD), free energy perturbation (FEP), etc. [94, 102, 104].
For example, the temperature REMD (T-REMD) method is a famous one [104–106].
T-REMD carries out molecular dynamics simulation of several independent sim-
ulation replicas, and each replica is set at different constant temperature. Then,
exchanging trials of atomic coordinates between neighbor two replicas are proba-
bilistically conducted at constant time intervals [104,105]. This exchange prevents
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trapping at local minimum regions and allows accurate sampling of free energy
profiles [98–100]. The advantages of REMD are confirmed in the studies of pro-
tein folding dynamics [107–109]. Currently, new sampling methods have been
proposed along with the evolution of theoretical physics and computational sci-
ence [110–114].

The method (iii) is called "Docking" simulation and employed to compare the
affinity of many pairs of molecules (e.g. antigens and antibodies) [115–118]. For
example, to evaluate structural affinity between target molecules (e.g. proteins),
interaction scores (potentials) between molecules are calculated based on inter-
action functions (force fields), and candidates of the structures in interaction are
suggested [119]. Its advantage is well known in the fields of designing antibodies
and compounds [120–122]. Recently, other types of methods based on machine
learning have been proposed [123–126].

To carry out the molecular simulation, although their execution programs
can be made by own, several public (paid and unpaid) packages are available in
the ranges of conventional simulation methods. AMBER [127, 128], CHARMM
[129, 130], GROMACS [131, 132], GENESIS [133, 134], MODYLAS [135, 136], and
NAMD [137, 138] are major molecular dynamics (MD) packages and have been
well employed. On the other hand, in quantum mechanics, Gaussian (http:
//gaussian.com), etc. are widely used. In this research, NAMD (https://www.
ks.uiuc.edu/Research/namd/) is employed (Sec. 7.1). NAMD is good at large
scale parallel numerical calculation [137,138].

Force field functions are also necessary for MD simulation. Force field involves
fundamental parameters of functions and coefficients (e.g. elastic bonds and
spring constant), to express physical constraints of atomic (molecular) interaction
such as chemical bonds and van der Waals (VDW) force [139]. Major ones are
AMBER [140, 141], CHARMM [142, 143], GROMOS [144], and OPLS [145]. These
force field parameters have been updated periodically.

Coarse-grained modeling, in which multiple atoms are substituted with one
particle has been developed [146–149]. This method provides fast numerical
simulations because of the representation, and contributed to research focusing
on relatively large molecular systems [150–156]. Although not used in this study,
our group also has tried coarse-grained modeling of proteins and DNA [157–160].
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1.4 Molecular Dynamics Analysis of Nucleic Acids
As mentioned above, molecular simulation methods have been greatly devel-
oped [85–87]. Practically, the recent acceleration of numerical calculation by the
development of computer science enables a long-time, large-scale molecular sim-
ulation [161,162]. This acceleration expanded the targets of numerical simulation.
In the past, almost all targets were small molecules (e.g. single proteins). Cur-
rently, molecular complexes and nucleic acids, which involve larger atom numbers
than conventional cases, have been gradually dealt with by computational meth-
ods [163, 164]. As referred in Section 1.1, mechanical properties of biomolecular
systems involving nucleic acids have been gradually focused. Therefore, molec-
ular simulation of biomolecular systems involving nucleic acids is expected to
occupy important research areas in life sciences and drug discoveries [165].

Unfortunately, biomolecular complex systems involving nucleic acids are less
studied [166] as they are difficult to deal with by mechanics [167, 168]. Let us
consider DNA. First, the gyration radius of nucleotides is larger than that of amino
acids. In addition, their polymerized segments show much extended and linear
conformation [169,170] while peptide segments (proteins) often show folded and
compacted structure [171,172]. These different shapes result in different solvated
system volumes and numbers of water molecules (of course size of DNA is large).
It makes computational costs of solvated systems of DNA much larger than that
of protein. Next, the mechanics of DNA is extremely anisotropic unlike proteins,
because their structures are composed of two flexible segments coupled by weak
hydrogen bonds [173–176]. Furthermore, although it has been already known that
mechanical properties of DNA depend on DNA sequences [43, 177, 178], unified
solution of sequence-dependent DNA dynamics was hardly worked out because
of the various combinations of sequence (nucleotides). Besides, it is extremely
hard to distinguish the interaction among DNA and proteins, electrostatic force
and sequence-dependent structural affinity [179,180]. These complexities make it
difficult to elucidate specific nucleotide recognition mechanisms used by binding
proteins. Two DNA segments (= double strand) are connected by only hydrogen
bonds, then the cleavage of them easily occurs at typically 350∼360 K, i.e. not high
temperature [181]. This less thermal stability is sometimes useful in experiment
[182]. However, that makes it impossible to apply T-REMD, which is a powerful
computational approach to obtain structural ensembles of proteins [104–106],
because DNA cannot endure the high temperature (e.g. 600 K, which is often
used in T-REMD of proteins). Double-strand separates rapidly, and cannot be
expected to revert to the original structure in simulation time scales. Therefore,
the acceleration of structural sampling by tempering methods is not applicable.
Instead, methods such as reaction coordinate-based methods may be appropriate
[110–113].

Furthermore, several difficulties exist in the case of RNA. Due to the irreg-
ularity of single-strand RNA dynamics, physical determination of their folded
(secondary) structure is much difficult [166, 183], while mathematical estimation
is not easy [184, 185]. Currently, though non-coding RNAs have been attracted
attention along with the rapid development of sequencing technology, their bio-
logical roles are hardly elucidated [186,187]. Studies of their roles from a physical
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viewpoint are somehow conducted [188, 189]. Appropriate computational ap-
proaches may enable us to elucidate their roles through the evaluation of their
dynamics and molecular interactions [165].

Presently, though above-mentioned unfortunate problems are raised, several
computational approaches have been performed and their outcomes have been
presented. For example, the dynamics of a nucleosome, which is well known
biomolecular complex of DNA and proteins, have been studied by several research
groups [190–195]. In particular, Kono et al. (QST, Japan) analyzed dynamics of
histone core and tails [163, 164, 196, 197], tail dynamics dependent on histone
modification [198, 199], and DNA unwrapping dynamics [194, 200, 201], using
molecular dynamics simulation. These studies commonly employed free energy
evaluation using long-time and extended methods, to bridge biological roles and
intractable nucleic acid dynamics. To analyze biomolecular systems involving
nucleic acids, which is hard to deal with, it is necessary and appropriate to capture
structural dynamics and their sequence dependence with eliminating unnecessary
dynamics, in the extent of currently available computational methods.
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1.5 Outline of This Study
To survey the various roles of genomic DNA (Sec. 1.1), I have considered effec-
tive methods to evaluate the mechanics and dynamics of nucleic acids, regarding
them not as primitive media of genetic information but as molecular machines,
which involve structures and information. In this thesis, I discussed several re-
search topics currently I propose [202–205]. These topics focused on several target
biomolecular systems involving nucleic acids and employed effective analysis
methods to evaluate the molecular systems (Fig. 1). My suggested methods are
expected to be employed in similar studies in the future.

(i) First, in Section 2, we considered a statistical analysis method to detect
structural dynamics changes of double-stranded DNA at atomic scale induced by
chemical modification [202]. This evaluation method provides effective insight
into sequence-dependent double-stranded DNA physics and is expected to be
applied in the studies of sequence-dependent nucleotide recognition [206–208].

(ii) Second, in Section 3, we considered sequence-dependent RNA binding
dynamics, which is thought to be more complicated than double-stranded DNA,
based on free energy profiles obtained with respect to multiple reaction coordi-
nates [203]. This is a cooperative study with chemical biology researchers and
expected to complement the experimental research, to analyze microscopic dy-
namics of RNA binding. This free energy-based evaluation should be adopted in
further studies of analysis and prediction of RNA structural dynamics.

(iii) Finally, in Section 4, I evaluated nucleosome dynamics. In particular, I
proposed a statistical analysis method to evaluate effective dynamics of DNA,
which is restrained by interaction with histone proteins [204,205], from long time
simulation trajectories. This research also employed multiple probability pro-
files (equivalent to free energy profiles) and associated them with experimentally
observed biological phenomena involving nucleosome dynamics.

These methodologies, results, and conjectures will be discussed as follows
(Fig. 1).
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Figure 1. Performed Researches in This Study. (i) Methylation Dependent DNA
Dynamics. (ii) Sequence Dependent Binding Dynamics of RNAs. (iii) Molecular
Dynamics Analysis of Partially Disassembled Nucleosomes.
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2 Methylation-Dependent DNA Dynamics
This section is based on ref. [202].

2.1 Introduction
DNA methylation is one of well known biochemical modifications of genomic
DNA and has been associated with many biological phenomena by a huge num-
ber of biological researches [209–211]. A methyl group (CH3-) binds to the cytosine
(C) base in a C → G (CpG) dinucleotide [209]. CpG with a methylated cytosine
is conventionally called mCpG. mCpGs are widely and frequently distributed in
higher eukaryotic genomes and affect transcription regulation [210,212]. In partic-
ular, whole genomic regions are globally methylated in mammalian genomes (e.g.
human and mouse) [213]. Though mCpGs are distributed all over the genome,
their biological roles show the dependency on the genome regions [214]. For ex-
ample, DNA methylation at transcription start sites (TSSs) induces condensation
of TSS with binding or recruitment of several mCpG recognition enzymes [215].
Then, the expression of (TSS methylated) genes is silenced. For the regulation of
selective gene expressions, only parts of TSSs including CpG (called CpG Island
(CGI)) are unmethylated while almost all genes are silenced [216].

DNA methylation has been studied from the aspects of not only biological and
experimental but also physical properties of nucleic acids. Through the previ-
ous researches from the viewpoint of physics, the following mechanical effects
and responses of DNA induced by methylation were observed: (i) methylation
decreases flexibility of DNA as chainlike polymer [217]; (ii) methylation might
affect (facilitates or prevents) DNA strand separation [218]; (iii) methylation en-
hances attractions of homologous DNA [219]; (iv) methylation modulates dynam-
ics of nucleosomes involving mCpG [220]. Therefore, DNA methylation should
be an important factor of sequence-dependent mechanics of DNA, which is the
fundamental basis of molecular recognition and complex formation with other
biomolecules (e.g. proteins). In particular, extreme methylation levels of DNA
(e.g. TSSs in mammalian genomes) are considered to determine their mechanical
properties, however their details are mostly unclear. Thus, a further systematic
analysis which can distinguish the origin of the effects on structural dynamics
of DNA, the dependence of sequence and methylation patterns, should be more
appropriate than previous researches [221–225].

In this study, to systematically evaluate the changes of DNA dynamics by
methylation pattern in more detail, we performed a fully atomic molecular dynam-
ics simulation of double-stranded DNA with several typical methylation patterns,
and analyzed differences of mechanics among the patterns [202]. The findings in
this study may serve as a basis for a discussion on methylation-dependent DNA
dynamics.
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2.2 Materials and Methods
Atomic coordinates of double-stranded DNA are necessary to carry out fully
atomic molecular dynamics (MD) simulation, in the same way as proteins. Typi-
cally, atomic coordinates of proteins were determined by experiments [51, 55, 58],
and can be obtained from Protein Data Bank (PDB) (https://www.rcsb.org).
However, it is impossible to obtain DNA structures consisting of assigned se-
quences in the same way (though some short DNA structures can be downloaded
from PDB). Therefore, we constructed DNA coordinates of designed sequences
using X3DNA (the method referred to in Sec. 7.2). In this research, to focus
on structural dynamics of DNA that depend only on methylation patterns (i.e.
eliminating (sacrificing) sequence pattern dependency), we restrict the targets to
50 base-pairs, repetitive CpG dinucleotide sequences (i.e. 5’-(CG)25-3’). Then,
we modified some CpG to mCpG (Fig. 2 (a)) to obtain sequences corresponding
to certain mCpG ratios, as listed in Tab. 1. To infer the coordinates of missing
atoms, we employed CHARMM36 force-field (2017 update) and VMD [226]. For
the detailed procedures, please see Sec. 7.1.

Table 1. Target Sequences. For each model, methylated CpG (mCpG) content
ratio, methylated cytosine (mC) sites, and repeat units are listed. All sequences are
composed of only CpG dinucleotides. mC sites are indexed as shown in Fig. 2 (c).
Note that the models, except SEQ 0.00 and SEQ 1.00, include partial (fractional)
sequences at the ends (Tab. 2).

Model mCpG Content mC Site (Nucleotide Indices) Repeat Unit
SEQ 0.00 0% (0) - CG
SEQ 0.25 25% (1/4) 1 9 17 25 33 41 49 51 59 67 75 83 91 99 CGCGmCGCG
SEQ 0.33 33% (1/3) 1 7 13 19 25 31 37 43 49 51 57 63 69 75 81 87 93 99 CGmCGCG
SEQ 0.50 50% (1/2) 1 5 9 13 17 21 25 29 33 37 41 45 49 51 55 59 63 67 71 75 79 83 87 91 95 99 CGmCG
SEQ 0.67 67% (2/3) 3 5 9 11 15 17 21 23 27 29 33 35 39 41 45 47 CGmCGmCG

53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97

SEQ 0.75 75% (3/4) 3 5 7 11 13 15 19 21 23 27 29 31 35 37 39 43 45 47 CGmCGmCGmCG
53 55 57 61 63 65 69 71 73 77 79 81 85 87 89 93 95 97

SEQ 1.00 100% (1) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 mCG
51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Constructed DNA molecules were solvated in a 60 Å × 60 Å × 200 Å water
box of TIP3P water model, and neutralized by K+, and added 150 mM KCl (Fig. 2
(b)). Periodic boundary condition with Particle-Mesh Ewald (PME) electrostatics
[227,228] was employed and a cutoff of 12 Å (with switching from 10 Å) was used
for nonbonded interactions. Langevin thermostat (damping coefficient: 5/ps) and
Langevin-piston barostat were adopted in MD simulation [229,230]. Temperature
and pressure were set at 300 K and 1 atm, respectively. Energy minimization
(10,000 steps) and 10.0 ns of annealing were carried out before the 50.0 ns of
production run in equilibrium. During annealing and production run (time-
step: 2fs), weak harmonic restraints were applied to C1’ atoms of nucleotides at
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both ends of the DNA segment (Fig. 2 (b); spring constant: 1.0 pN/Å, centered
at the position after the energy minimization). This restraint was applied to
prevent translation and rotation of DNA molecule, to reduce computational costs.
Individual ten simulation trials were carried out for each DNA model (Tab. 1).
Numerical simulation was performed using NAMD (version 2.13 multicore with
CUDA) [137,138].

Figure 2. Overview of the Model. (a) Structure of DNA with poly-CpG (left) and
poly-mCpG (right). The methyl groups are shown in orange. (b) Solvated DNA
model. Small particles represent ions. C1’ atoms located at both ends (shown in
yellow) are restrained in the simulation. (c) Nucleotide indices 𝑛 (shown in black)
and base-pair indices 𝑖 (shown in red) of the double-stranded DNA. (d) Locations
of C5 and C5M atoms in 5-methylated cytosine. (e) Schematic representation of
helical axis 𝒉𝑛 (𝒉 𝑖).
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2.3 Analyses and Results
2.3.1 Profiles of Double-Stranded DNA Stiffness

First, we confirmed that DNA is stiffened by methylation, observed in exper-
imental research [217], through evaluation of (i) overall structural variation of
DNA [157] and (ii) persistence length as polymer physics [231].

On the overall structure variation (i), the following statistical method was
applied. For atomic coordinates (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘) for all heavy atom 𝑘s at individual
time points were transformed as (Δ𝑥𝑘 ,Δ𝑦𝑘 ,Δ𝑧𝑘) = (𝑥𝑘 − ⟨𝑥𝑚⟩𝑚 , 𝑦𝑘 − ⟨𝑦𝑚⟩𝑚 , 𝑧𝑘 −
⟨𝑧𝑚⟩𝑚) (⟨⟩𝑚 means the average for all atom 𝑚s). Then, covariance matrix 𝐼 of
(Δ𝑥𝑘 ,Δ𝑦𝑘 ,Δ𝑧𝑘) for individual time points were calculated as Eq. 2.1. The de-
scending ordered eigenvalues

√
𝜆1,

√
𝜆2, and

√
𝜆3 (

√
𝜆1 >

√
𝜆2 ≥ √

𝜆3 > 0) were
obtained from eigendecomposition of matrix 𝐼. 𝜆1 and 𝜆2 corresponded to the ex-
tension and distortion of double-stranded DNA, respectively [157]. Scatter plots
of (

√
𝜆1,

√
𝜆2) were shown in Figs. 3 and S2. Note that (

√
𝜆1,

√
𝜆2) can be obtained

from each time point 𝜏. Thus, those scatter points correspond to individual time
point 𝜏s.

𝐼 := ©­«
⟨(Δ𝑥𝑘)2⟩𝑘 ⟨Δ𝑥𝑘Δ𝑦𝑘⟩𝑘 ⟨Δ𝑥𝑘Δ𝑧𝑘⟩𝑘
⟨Δ𝑦𝑘Δ𝑥𝑘⟩𝑘 ⟨(Δ𝑦𝑘)2⟩𝑘 ⟨Δ𝑦𝑘Δ𝑧𝑘⟩𝑘
⟨Δ𝑧𝑘Δ𝑥𝑘⟩𝑘 ⟨Δ𝑧𝑘Δ𝑦𝑘⟩𝑘 ⟨(Δ𝑧𝑘)2⟩𝑘

ª®¬ (2.1)

Figure 3. Profiles of Overall Geometry. The distribution of (
√
𝜆1,

√
𝜆2) summed

over ten trials is shown.

Methylation content ratios of DNA (Tab. 1) correlate with increasing of larger√
𝜆1 and lower

√
𝜆2 (Fig. 3). More details, mostly, (

√
𝜆1,

√
𝜆2) was in the range of

47 ≤ √
𝜆1 ≤ 49 and 5 ≤ √

𝜆2 ≤ 6, corresponding to a conformation similar to the
shape of stretched DNA. The distribution outside of this range was different for
these models. The probability within this range was higher for SEQ 1.00 than that
for SEQ 0.00.

√
𝜆2 of SEQ 1.00 tended to be smaller than that of SEQ 0.00. This

implied that high mCpG content resulted in a stretched, or stiffer DNA shape.
The other models (Tab. 1) showed intermediate stiffness between SEQ 0.00 and
SEQ 1.00 (Figs. 3 and S2). The variation of

√
𝜆2 was suppressed as the mCpG

content increased. These results showed that higher methylation content stiffened
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DNA in equilibrium conditions. The typical extension level of the DNA structure
is shown in Fig. 4.

Next, persistence length 𝐿𝑝 of DNA was evaluated by following procedures.
The set 𝐴𝑑, inner-product of helical axes 𝒉 𝑖 (Fig. 2 (e)) separated by 𝑑 nm (𝑑 ∈
[0.3, 10.0] at intervals Δ𝑑 (= 0.01)), was defined as

𝐴𝑑 :=
{
𝒉 𝑖 · 𝒉 𝑗 | 𝑑 − 1

2Δ𝑑 ≤ 𝐶𝑖 𝑗 < 𝑑 + 1
2Δ𝑑

}
𝐶𝑖 𝑗 :=

𝑗−1∑
𝑙=𝑖

|𝒄𝑙+1 − 𝒄𝑙 | (2.2)

(11 ≤ 𝑖 < 𝑗 ≤ 40)
where 𝒄𝑖 is the center of base-pair 𝑖. 𝒄𝑖 and 𝒉 𝑖 were obtained using X3DNA
[232, 233]. Then, pair sets {(𝑑, ⟨𝐻⟩𝐻∈𝐴𝑑)} (⟨...⟩𝐻 , which indicates the average for
all 𝐻s) were fitted by function 𝑓 (𝑑) := exp(−𝑑/𝐿𝑝). Profiles of persistence length
𝐿𝑝 for each methylation level were shown in Fig. 4. Each point corresponds to 𝐿𝑝
obtained from one simulation trajectory (5,000 snapshots). Overall, a clear corre-
lation was observed between mCpG content and 𝐿𝑝 , the significant difference of
𝐿𝑝 was confirmed. Note that evaluated 𝐿𝑝 scores well agreed with experimentally
obtained persistence length of DNA (∼ 50 Å [234–236]).

Figure 4. Profiles of the Persistence Length of DNA. (Left) Persistence length 𝐿𝑝 .
The average within each trial and over ten trials are shown. The horizontal axis
corresponds to the mCpG content (Tab. 1). 𝑝-values (by Welch’s 𝑡-test) between
mCpG content 0.0 and 0.5, 0.5 and 1.0, and 0.0 and 1.0 are 9 × 10−3, 8 × 10−3, and
1× 10−4, respectively. (Right) Snapshots of the structure of SEQ 0.00 and SEQ 1.00
models at 40 ns.
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2.3.2 Local Geometry and Flexibility

Figure 5. Profiles of 𝜎shift
𝑖 , 𝜎tilt

𝑖 , and 𝜎twist
𝑖 . Colors show different simulation trials

and the black line shows the overall flexibility (structural variation) in ten trials.
In the horizontal axis, odd and even numbers correspond to base-steps of C→G
and G→C, respectively (see Fig. 2 (c)). Purple lines show mC→G (C→G in the
case of mC) base-steps.

We confirmed DNA methylation stiffened double-stranded DNA (Figs. 3 and
4). Then, we analyzed the origin of DNA stiffening by evaluating structural
geometries of base-steps using X3DNA [232, 233] as follows. (i) The scores 𝑋•

𝑖 (𝜏)
for base-step parameter (BSP, see Fig. S1) • of base-step 𝑖 (base-pair indices from 𝑖
to 𝑖+1 (Fig. 2 (c))) at respective simulation time point 𝜏, were evaluated. (ii) 𝑋•

𝑖 (𝜏)
was transformed as 𝑋̂•

𝑖 (𝜏) := 𝑋•
𝑖 (𝜏)−𝑋•

𝑖 (0), where 𝑋•
𝑖 (0) means the score just after

energy minimization (see Sec. 2.2). Thus, 𝑋̂•
𝑖 (𝜏) correspondes to difference of BSP
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• of base-step 𝑖 from (meta-)stable (= energy minimized) conformation. (iii) The
flexibility score 𝜎•𝑖 of BSP • at base-step 𝑖 was defined as the standard deviation
(S.D.) of 𝑋̂•

𝑖 (𝜏). Note that 𝜎•𝑖 was calculated either in each simulation trial or over
ten trials for the same model. The results of BSPs (Fig. S3) that show especially
remarkable changes of 𝜎•𝑖 among different mCpG contents were shown in Fig. 5.

By considering mCpG sites, the following trends could be observed. 𝜎shift
𝑖 and

𝜎tilt
𝑖 decreased at the base-steps G→C adjacent to the mCpG, while not in the

middle C→G base-step (Fig. 5). In particular, similar 𝜎tilt
𝑖 profiles over individual

simulation trials were observed (while not observed in 𝜎shift
𝑖 case). This result

suggests that mCpG restricts neighbor 𝑋̂ tilt
𝑖 dynamics and their deformation in

determined ranges. On the other hand, a fundamentally different trend was
observed in terms of 𝜎twist

𝑖 (Fig. 5). Overall decrease of 𝜎twist
𝑖 appeared with

increasing of mCpG content, then it is shown that methylation globally restricts
twisting between base-pairs. However, the decrease of twisting was not observed
at mCpG base-step.

Table 2. Sequence Constitution of the Models. ★𝑚 represents 𝑚-times of the
iteration of the repeat unit.

Model Repeat Unit Sequence Constitution
SEQ 0.00 CG 5’-★25-3’
SEQ 0.25 CGCGmCGCG 5’-mCGCG-★5-CGCGmCG-3’
SEQ 0.33 CGmCGCG 5’-mCGCG-★7-CGmCG-3’
SEQ 0.50 CGmCG 5’-mCG-★12-3’
SEQ 0.67 CGmCGmCG 5’-★8-CG-3’
SEQ 0.75 CGmCGmCGmCG 5’-★6-CG-3’
SEQ 1.00 mCG 5’-★25-3’

To clarify the above-mentioned trends, we aligned and averaged 𝜎•𝑖 in terms
of repeat units with eliminating boundary ten base-steps, i.e. only base-steps 𝑖 in
11 ≤ 𝑖 ≤ 40 were employed. The repeat units were listed in Tab. 2. We calculated
𝜎•𝑖 for each simulation trajectory, then averaging 𝜎•𝑖 for equivalent base-steps 𝑙 in
repeat units noted as

𝜎•𝑙 := ⟨𝜎•𝑖 ⟩𝑖∼𝑙 (2.3)

where 𝑖 ∼ 𝑙 means that 𝑖 corresponds to equivalent location of 𝑙 (Tab. 2). Average
± S.D. over simulation trajectories were evaluated (Fig. S4), and only remarkable
results were shown in Fig. 6. Suggested trends of 𝜎tilt

𝑖 and 𝜎twist
𝑖 could be observed.
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Figure 6. Profiles of 𝜎•𝑙 for the Repeat Unit. 𝜎tilt
𝑖 and 𝜎twist

𝑖 (shown in Fig. 5)
are aligned and averaged in terms of the repeat unit (Tab. 1). Error bars show
mean ± S.D. over ten trials; see Sec. 7.2 for the method. As these profiles are
for base-step parameters, data points are shown between two consecutive bases.
Nucleotides at both ends (shown with * in the horizontal axis) are identical. (a)
𝜎tilt
𝑙 of SEQ 0.33 (CGmCGCG, averaged over five iterations); (b) 𝜎twist

𝑙 of SEQ
0.33 (CGmCGCG, averaged over five iterations); (c) 𝜎twist

𝑙 of SEQ 0.50 (CGmCG,
averaged over seven iterations). In (a), reduction of S.D. at G→C is significantly
larger at both neighbors of mCpG (* 𝑝 = 3 × 10−16 each). In (b) and (c), S.D. at
mC→G is significantly higher than unmethylated C→G (* 𝑝 = 1 × 10−7 (b; left),
1 × 10−6 (b; right), and 6 × 10−11 (c)).
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2.3.3 Methyl Group Distribution

Based on the previous results (Figs. 5 and 6), changes of base-step dynamics 𝜎•𝑖
can be considered to originate from physical interaction between DNA and methyl
groups. Then, we analyzed methyl group dynamics from simulation trajectories.
At first, we calculated 𝜃𝑛 , the angle between vectors of the direction of the methyl
group and the plane formed by the base-pair (Fig. 7 (a)). In particular, employing
normalized direction vectors 𝒉𝑛 of base-step axis at base 𝑛 (Fig. 2 (e)), 𝒅

𝑝
𝑛 of

base-pair at base 𝑛, which connects atoms of C1’ of base 𝑛 to opposite strand, and
𝒅𝑚
𝑛 of methyl group at base 𝑛 (Fig. 2 (d)), 𝜃𝑛 was obtained as follows.

𝜃𝑛 := 𝜃𝑚
𝑛 − 𝜃

𝑝
𝑛

𝜃𝑚
𝑛 := cos−1(𝒉𝑛 · 𝒅𝑚

𝑛 ) (2.4)
𝜃
𝑝
𝑛 := cos−1(𝒉𝑛 · 𝒅𝑝

𝑛)
Note that length of 𝒉𝑛 , 𝒅𝑚

𝑛 , and 𝒅
𝑝
𝑛 were equal to 1. Statistics of 𝜃𝑛 at base

𝑛 over ten simulation trial for each model were evaluated (Figs. 7 (a) and S5).
Overall, profiles of𝜃𝑛 were negative but could fluctuate. These negatively directed
methyl group dynamics suggested that any physical interactions between methyl
groups and neighbor (5’- side) nucleotide. Then, we evaluated contact frequency
between them averaged over ten simulation trial (Fig. 7 (b)). A pair of a methyl
group and nucleotide was regarded in contact if their shortest atomic distance
was less than 3.0 Å. In all cases, methyl groups contacted to neighbor (5’- side)
nucleotide (Figs. 7 (b) and S6). We considered the electrostatic interaction between
methyl groups and others. However, no interaction pairs were identified (data
not shown). Therefore, it was shown that changes of 𝜎•𝑖 by positional effects of
methyl groups (Fig. 6) were induced by weak van der Waals (VDW) interactions
and simple excluded volume effects.
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Figure 7. Orientation of Methyl Groups and Their Interactions with DNA.
(a) The definition and observed distribution of 𝜃𝑛 . The average ± the standard
deviation (S.D.) of 𝜃𝑛 for each methyl group is shown. (b) The definition of
nucleotide indices relative to the methyl group, and estimated contact frequencies.
The average ± S.D. of contact frequency for all methyl groups is shown.
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2.4 Discussion and Conclusion
The schematics (Fig. 8) show the result of this research [202]. Due to site-specific
methylation, BSP (Fig. S1) dynamics corresponding to local bending of DNA
shape (shift and tilt) in the neighbor of mCpG were prevented (Fig. 5). In
addition, winding and unwinding dynamics of base-steps (twist) were restricted
and decreased in the long-range, whereas the mCpG base-step itself shows an
inverse trend. These restrictions of BSP were induced by physical interaction
between methyl groups and their neighbor nucleotides (Fig. 7). Further analysis
of molecules involving DNA methylation (e.g. exploring dynamics of methylation
recognition enzyme [206,207]) might provide additional interesting findings.

Figure 8. Schematics of Directed Effects Induced by DNA Methylation. Sug-
gested effects on tilt and twist dynamics. Navy (or red) squares represent ranges
where site-specific DNA methylation (i.e. existence of mCpG) makes the tilt or
twist mode stiffer (or relatively flexible).

Macroscopic mechanics in terms of CGI (CpG Island), i.e. typical hypo-
methylated DNA, was investigated previously [237]. This research evaluated
the mechanical response of hypermethylated DNA to stretching by nanometry
using optical tweezers. Stiffening of DNA was observed, though disappeared
when DNA was overstretched. Our simulation study suggested that the base-
step dynamics (Fig. 5) was suppressed by dynamic interactions between DNA
and methyl groups (Fig. 8). These interactions are expected to occur only in
B-DNA like conformation. Thus, our proposed mechanism (Fig. 8) agrees well
with this experimental study [237].

Another study suggested that hydration around methyl groups affects base-
step dynamics [225]. These chemical properties might be involved in the DNA
stiffening mechanism.

Previous research suggests that mCpG stabilizes nucleosome positioning [238].
The nucleosome structure was determined by X-ray crystal analysis using typical
sequences of DNA showing high affinity to core histone proteins. In the structures,
DNA conformation was not uniformly curved around histones but bent at several
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sites [239]. The result of our study can be associated with this fact, because (above-
mentioned) experimental observation supports the hypothesis that site-specific
DNA methylation may change local base-step dynamics (Fig. 5). This change
might induce a similar situation and enhance nucleosome positioning.

In this study, we employed fully atomic molecular dynamics simulation, to
focus on detailed DNA dynamics. However, coarse-grained modeling of DNA
with reduced atom numbers and degrees of freedom has proceeded to inves-
tigate dynamics of long DNA with reducing computational costs [156–158, 240].
Methylation-dependent DNA dynamics showed in this study will be incorporated
into those extended modeling in the future.
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3 Sequence Dependent Affinity of RNAs
This section is based on ref. [203].

3.1 Introduction
A biological process to synthesize protein in gene expression is called translation
[241, 242]. Protein is synthesized based on the nucleotide sequence of (already
spliced) mRNA in the molecular complex "ribosomes" through the conversion of
nucleotide sequence to amino acid sequence [243]. Each three-nucleotide unit
from the start codon (AUG) toward the 3’-terminal corresponds to one amino
acids [244]. AUG is employed as typical start codon over all organisms [245].

The eukaryotic translation process is established by following procedures
[246]. First, ribosomal subunit 40S changes to 43S preinitiation complex (PIC) with
the help of several modulation factors (eukaryotic Initiation Factors; eIFs) [247].
Next, the 43S PIC forms 48S PIC, which can start to read mRNA sequence, and
seeks a start (AUG) codon with several eIFs. Finally, after scanning of mRNA,
recognition of start codon, and binding of Met-tRNAMet

𝑖 at P-site, the 48S PIC
structure forms 80S with combining 60S ribosomal subunit and additional fac-
tors [248, 249]. Elongation of peptide starts after the formation of 80S ribosomal
complex. Note that the ribosomal molecular complex consists of rRNA (nucleic
acids) and initiation factors (proteins), and its structural determination is much
interesting topic in structural biology [250–252].

In the start codon recognition in the procedure above, typical start codon
(AUG) and its complementary nucleotides (CAU) of Met-tRNAMet

𝑖 are known
to bind strongly [253, 254]. Therefore, the binding affinity of AUG-CAU bases
(codon and anticodon) determines the possibility of translation initiation of 48S
PIC. Actually, in PIC structure, scanning of mRNA starts at the 5’-terminal and
reads three-nucleotide sites sliding at one nucleotide interval [241, 242].

However, other three nucleotides (i.e. not AUG) could play a role of the start
codon in previous experimental studies [255, 256]. For example, in archaea and
eubacteria, not only AUG but also GUG and UUG could work as start codons
though initiation frequency is much lower than AUG [255]. On the other hand, in
eukaryotes, CUG can initiate translation though less frequently than AUG [256].
The accuracy of start codon selectivity has been studied, and relationships to eIFs
have been revealed [257, 258]. In eukaryotes, several eIFs (eIF1 and eIF1A) show
specific interaction during start codon recognition in 48S PIC. They are responsible
for providing strict AUG recognition in mRNA sequence [259,260]. This strictness
(AUG recognition) and exception (CUG start codon) are conflicting, which is an
interesting biological problem. Additionally, although several mismatch codons
(e.g. GUG) hardly work as start codon, their chemically modified derivatives do
it at a high frequency. Therefore, nucleotide-dependent free energy profiles of
codon-anticodon binding should be an important information to determine the
possibility to start translation initiation. In other words, binding dynamics of
three nucleotides of mRNA and CAU of Met-tRNAMet

𝑖 in 48S PIC determines the
frequency of translation initiation by the three nucleotides.
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Previously, a computational study on the start codon recognition was per-
formed using molecular dynamics simulation [261]. This study focused on the
binding affinity of CAU of Met-tRNAMet

𝑖 , and typical (AUG) and near-cognate (e.g.
GUG) codons of mRNA in the partial model of 48S PIC [261]. The free energy dif-
ference between AUG and other codons in (artificial) bound states was calculated
using free energy perturbation (FEP [94]). However, the codon-anticodon bound
state defined in this FEP-based method conjectured merely through substituting
a base with the corresponding base in the AUG. The result of this method cannot
solve the problem: what molecular dynamics and interaction cause the changes
of binding affinity between various types of codons. For example, the transition
process from unbound to bound states cannot be analyzed, then differences of the
transition between different codons cannot be discussed. Generally, the structure
of a single RNA segment is much flexible and disordered than that of folded
proteins. This uncertainty makes it difficult to determine the apparent bound
state (also unbound state). Therefore, to discuss the changes of nucleotide, other
simulation methods are required.

In this study, another free energy evaluation method, adaptive biasing force
(ABF [113, 262, 263]), was employed to discuss the binding dynamics of 48S PIC
model (similar to previous study [261]) involving several types of codons. The
established procedure of free energy evaluation enables us to discuss binding
dynamics of different codons, using ABF at individual base-pair resolution. In
particular, free energy profile in terms of three reaction coordinates, which corre-
spond to the distance of individual base-pairs of codon-anticodon, was calculated.
Then, changes of binding dynamics can be discussed by the changes of the free
energy profile. These changes provide a structural insight into binding dynamics
depending on nucleotide sequence [203]. This method is expected not only to be
employed in binding analysis of further various (including chemically modified)
codons but also to provide further solutions for free energy-based RNA dynamics
analysis in other biomolecular systems.
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3.2 Materials and Methods

Figure 9. PIC Structure Models and Reaction Coordinates in This Study. (Left)
mRNA and tRNA around the codon-anticodon base-pairs (Tab. 3) are shown in
black and silver, respectively. Distances 𝑑1, 𝑑2 and 𝑑3 used as reaction coordinates
are indicated. (Center) rRNA segments (split) are shown in green, and protein
components are shown in other colors. (Right) Water molecules are shown in
pink, which enclose the system and form a sphere.

Previous research of start codon recognition in eukaryotic translation initiation
using all-atom molecular dynamics (MD) simulations [261] was referred in this
study. To reconstruct codon-anticodon interaction in solution, open pre-initiation
complex (PIC) structure (PDB ID: 3J81) determined by CryoEM [264] was em-
ployed. To reduce computational cost for MD simulation, atoms within 25 Å from
N1 atom in the middle base of anticodon in tRNA molecule were extracted [261].
Then, nucleotides were edited to reconstruct PIC models involving target codons
in our study (Tab. 3). When editing the nucleotide (e.g. AUG → GUG), first,
atoms except N1 and N9 in base group, sugar group, and phosphate group were
deleted. Then, coordinates of missing atoms were inferred. All histidine residues
were configured as 𝜖-protonated. These molecules were soaked into a 36 Å radius
water sphere (Fig. 9), neutralized by K+, and added 150 mM KCl. TIP3P water
model was employed. VMD [226] was used to infer missing atom coordinates,
solvate the model, and visualize the structure throughout the study. For the
detailed procedures, please see Sec. 7.1.

Table 3. Codons Modeled in Our Simulation. Nucleotide sequence and reference
atoms to define the codon-anticodon distance.

Codon 1st Nucleotide 2nd Nucleotide 3rd Nucleotide
AUG A N1 and N6 U N3 and O4 G N1, N2, and O6
GUG G N1, N2, and O6 U N3 and O4 G N1, N2, and O6
CUG C N3, N4, and O2 U N3 and O4 G N1, N2, and O6

All simulations were carried out using NAMD (version 2.13 multi-core) [137].
CHARMM36 force-field (July 2019 update) was used [142, 143]. Multilevel sum-
mation method (MSM) electrostatics [265] was employed. Cutoff at 12 Å (with
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switching from 10 Å) was applied to non-bonded interactions. Temperature and
pressure were set at 310 K and 1 atm, respectively; Langevin thermostat (damping
coefficient: 5/ps) and Langevin-piston barostat were adopted [229, 230]. All C1’
(nucleotide) and C𝛼 (amino acid) atoms farther than 22 Å from the center of the
system (i.e. water sphere) were restrained at their initial positions, and water
molecules crossing the boundary of water sphere (radius 36 Å) were restrained.
Harmonic potential functions with spring constant 10 pN/Å were adopted as the
restraint of molecules. After energy minimization (10,000 steps), the system was
equilibrated for 10 ns, and then simulated for 1 𝜇s (time-step: 2 fs); the biasing
force was applied only after collecting 200 samples in the bin. Each model (Tab.
3) was simulated five times.

Adaptive biasing force (ABF) molecular dynamics method [113, 262, 263] was
performed to evaluate multi-dimensional free energy profiles in terms of 𝑑1, 𝑑2,
and 𝑑3 (Fig. 9), which were defined as the distances of the 1st, 2nd, and 3rd
base-pairs in Å, respectively (Tab. 3). Specifically, these 𝑑𝑖 were evaluated as
distance between the centers of hydrogen donor and acceptor atoms of codon and
anticodon (Table 3 shows the atoms in a mRNA segment). Each 𝑑𝑖 was sampled
over 4.0 ≤ 𝑑𝑖 ≤ 9.0 with bin width Δ𝑑 = 0.5 Å, and was restrained by harmonic
bonds with spring constant 10 pN/Å if 𝑑𝑖 crosses lower boundary (3.0 Å) or upper
boundary (10.0 Å). The details of ABF is explained in Sec. 7.3.
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3.3 Analyses and Results
3.3.1 Binding Free Energy

The free energy profile 𝐺(𝑑1, 𝑑2, 𝑑3) with respect to three variables 𝑑1 to 𝑑3 was
obtained through the analysis of ABF results. The probability of Gibbs free energy
for each state 𝑃(𝑑1, 𝑑2, 𝑑3) obeys Eq. 3.1:

𝑃(𝑑1, 𝑑2, 𝑑3) :=
exp

(
−𝐺(𝑑1 ,𝑑2 ,𝑑3)

𝑘𝐵𝑇

)
∑

4.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0 exp
(
−𝐺(𝑑1 ,𝑑2 ,𝑑3)

𝑘𝐵𝑇

) . (3.1)

Furthermore, 𝑃(𝑑1, 𝑑2, 𝑑3) was averaged over the simulation trials for each
model (see Sec. 3.2), and then 𝐺(𝑑1, 𝑑2, 𝑑3) was evaluated as Eq. 3.2:

𝐺(𝑑1, 𝑑2, 𝑑3) = −𝑘𝐵𝑇 ln𝑃(𝑑1, 𝑑2, 𝑑3) + 𝑐𝑜𝑛𝑠𝑡., (3.2)

assuming min{𝐺(𝑑1, 𝑑2, 𝑑3)|4.0 ≤ 𝑑1, 𝑑2, 𝑑3 ≤ 9.0} = 0.

Figure 10. Convergence of Free Energy Profiles with Time Evolution. The
𝐿(𝜏, 𝜏−Δ𝜏) of 𝑃(𝑑1, 𝑑2, 𝑑3), 𝑃(𝑑1, 𝑑2), and 𝑃(𝑑2, 𝑑3) are shown (see Eq. 3.3; Δ𝜏 = 100
ns). The data points are plotted between the two consecutive time points (𝜏−Δ𝜏)
and 𝜏.

Probability 𝑃(𝑑1, 𝑑2, 𝑑3) was obtained at equal intervals Δ𝜏 (= 100 ns) through
the ABF simulation. The convergence of 𝑃(𝑑1, 𝑑2, 𝑑3) with increasing simulation
time steps was evaluated as follows. To compare profiles of 𝑃(𝑑1, 𝑑2, 𝑑3) at two dif-
ferent time points (𝜏1, 𝜏2), squared-error function of two probability distributions
was employed. These profiles of different time points 𝜏1 and 𝜏2 were represented
by 𝑃(𝑑1, 𝑑2, 𝑑3; 𝜏1) and 𝑃(𝑑1, 𝑑2, 𝑑3; 𝜏2), respectively. Then, the squared-error func-
tion 𝐿(𝜏1, 𝜏2) was calculated as Eq. 3.3:

𝐿(𝜏1, 𝜏2) :=
∑

4.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0
(𝑃(𝑑1, 𝑑2, 𝑑3; 𝜏1) − 𝑃(𝑑1, 𝑑2, 𝑑3; 𝜏2))2 (3.3)

The convergence of 𝑃(𝑑1, 𝑑2, 𝑑3) at 𝜏 [ns] was tested by 𝐿(𝜏, 𝜏 − Δ𝜏) (Fig. 10).
The convergence of 𝑃(𝑑1, 𝑑2), 𝑃(𝑑2, 𝑑3), and 𝑃(𝑑1, 𝑑3) was evaluated in the same
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way. Almost small difference of 𝐿 and fast convergence could be observed in
AUG and GUG, while could not observed in CUG. This suggest that to confirm
convergency of the result of CUG, further long time, many trial of simulation is
expected.

Then, to evaluate the free energy difference between the codon-anticodon
bound and unbound states, the free energy scores 𝐺bound and 𝐺unbound, and their
gap Δ𝐺binding were defined as Eq. 3.5:

𝐺bound :=
∑

4.0≤𝑑1 ,𝑑2 ,𝑑3≤6.0 𝐺(𝑑1, 𝑑2, 𝑑3)𝑃(𝑑1, 𝑑2, 𝑑3)∑
4.0≤𝑑1 ,𝑑2 ,𝑑3≤6.0 𝑃(𝑑1, 𝑑2, 𝑑3)

𝐺unbound :=
∑

7.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0 𝐺(𝑑1, 𝑑2, 𝑑3)𝑃(𝑑1, 𝑑2, 𝑑3)∑
7.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0 𝑃(𝑑1, 𝑑2, 𝑑3) (3.4)

Δ𝐺binding := 𝐺bound − 𝐺unbound

Here the bound and unbound states are defined as ∀𝑖 : 4.0 ≤ 𝑑𝑖 ≤ 6.0 and
∀𝑖 : 7.0 ≤ 𝑑𝑖 ≤ 9.0, respectively (Fig. 11). The distance range for the bound
state corresponds to the codon-anticodon (AUG-CAU) structure [264], and that
for the unbound state is based on a previous research that described unbound
conformation of the complex [266]. 𝐺bound and 𝐺unbound were hence weighted
average of 𝐺(𝑑1, 𝑑2, 𝑑3) in the ranges of bound and unbound states, respectively
(Eq. 3.5).

Figure 11. Binding Free Energy. Schematic representation of 𝐺bound, 𝐺unbound,
and Δ𝐺binding (Eq. 3.5).

𝐺bound :=
∑

4.0≤𝑑1 ,𝑑2 ,𝑑3≤6.0 𝐺(𝑑1, 𝑑2, 𝑑3)𝑃(𝑑1, 𝑑2, 𝑑3)∑
4.0≤𝑑1 ,𝑑2 ,𝑑3≤6.0 𝑃(𝑑1, 𝑑2, 𝑑3)

𝐺unbound :=
∑

7.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0 𝐺(𝑑1, 𝑑2, 𝑑3)𝑃(𝑑1, 𝑑2, 𝑑3)∑
7.0≤𝑑1 ,𝑑2 ,𝑑3≤9.0 𝑃(𝑑1, 𝑑2, 𝑑3) (3.5)

Δ𝐺binding := 𝐺bound − 𝐺unbound
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Figure 12. Estimated Binding Free Energy. Δ𝐺binding scores (Eq. 3.5; see also
Fig. 11) are shown. The scores were obtained from 𝑃(𝑑1, 𝑑2, 𝑑3) averaged over five
simulation trials for each model.

The free energy scores of bound and unbound states (𝐺bound and 𝐺unbound;
see Eq. 3.5) averaged over five simulation trials (Fig. S7), and presented their
difference Δ𝐺binding (Fig. 12) were evaluated. In the case of the cognate start
codon AUG, Δ𝐺binding must be negative to stabilize the initiation of translation,
and was indeed ∼ −4 𝑘𝐵𝑇. In contrast, the GUG codon, less frequently used as a
start codon [258, 267], showed a positive Δ𝐺binding ∼ 2 𝑘𝐵𝑇. For the CUG codon,
which is considered as a stronger start codon than GUG [258, 267], Δ𝐺binding
showed an intermediate value ∼ 1 𝑘𝐵𝑇. Thus, Δ𝐺binding accounts for observed
initiation rates from the respective start codons.

Furthermore, the difference of free energy score of bound state for two dif-
ferent ribonucleotides (Tab. 3) was calculated to confirm consistency to different
computational approach [261]. Assuming that 𝐺unbound is common for all the
models, i.e. the free energy of the unbound state is independent of the codon,
𝐺bound andΔ𝐺binding are equivalent. The difference, or penalty, of binding free en-
ergy (ΔΔ𝐺) induced by AUG → GUG and AUG → CUG substitution was ≃ 6 𝑘𝐵𝑇
(3.6 kcal/mol) and ≃ 5 𝑘𝐵𝑇 (3.0 kcal/mol), respectively. This result is largely con-
sistent with another computational approach using the free energy perturbation
(FEP) [261].
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3.3.2 Projected Free Energy

To visualize the profiles,𝐺(𝑑1, 𝑑2, 𝑑3)was projected (marginalized) onto 2-dimension,
as 𝐺(𝑑1, 𝑑2) in Eq. 3.6. Projected profile 𝑃(𝑑1, 𝑑2) was obtained from 𝐺(𝑑1, 𝑑2).

𝐺(𝑑1, 𝑑2) :=
∑

4.0≤𝑑3≤9.0 𝐺(𝑑1, 𝑑2, 𝑑3)𝑃(𝑑1, 𝑑2, 𝑑3)∑
4.0≤𝑑3≤9.0 𝑃(𝑑1, 𝑑2, 𝑑3) (3.6)

𝑃(𝑑1, 𝑑2) := 𝐺(𝑑1, 𝑑2)∑
4.0≤𝑑1 ,𝑑2≤9.0 𝐺(𝑑1, 𝑑2)

𝐺(𝑑1, 𝑑3), 𝐺(𝑑2, 𝑑3) and 𝑃(𝑑1, 𝑑3), 𝑃(𝑑2, 𝑑3) were defined in the same way.

Figure 13. Projected Free Energy Profiles. Profiles of 𝐺(𝑑1, 𝑑2), 𝐺(𝑑2, 𝑑3), and
𝐺(𝑑1, 𝑑3) obtained from Eq. 3.6 for each model is shown by contour plots.
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Figure 14. Schematics of the Base-Pair Binding Dynamics. Conformational
changes inferred from the free energy landscape (Fig. 13). The transition path 𝑅•

𝑛
(• is AUG or GUG) is shown by black arrows.

The projected free energy profiles are shown in Fig. 13, and the transition
dynamics were inferred. The suggested paths and their schematics are shown
in Fig. 14. In the case of the AUG start codon, the following transitions were
expected in the AUG-CAU dynamics in equilibrium (Fig. 14). Starting from the
bound state, 𝑑3 shows large fluctuations while 𝑑1 and 𝑑2 show small ones (𝑅AUG

3 ).
𝑑1 and 𝑑2 are bistable (bound and unbound), and once the 3rd G:C base-pair is
broken (large 𝑑3), the 2nd U:A base-pair may become unbound (𝑅AUG

2 to the large
𝑑2 state). Only after that, the 1st A:U base-pair dissociates (𝑅AUG

1 to the large 𝑑1
state); this is expected to occur less frequently due to the higher barrier than those
for 𝑅AUG

2 and 𝑅AUG
3 . Starting from the unbound state and reversing the process

above, the AUG codon should bind to the CAU anticodon from the side of the 1st
A:U base-pair, followed by the 2nd and then 3rd base-pairs (Fig. 14). This result
suggests that the recognition of the 1st A:U base-pair is very important for the
accurate start codon recognition, in agreement with the role and location of eIF1
in the P-site [264,268] (see Fig. 16 below).

In the case of the GUG codon, 𝑑1 and 𝑑2 show the transition (𝑅GUG
1 ) between

two distinct (metastable) states (both bound and both almost unbound) as shown
by 𝐺(𝑑1, 𝑑2) in Fig. 14, while 𝑑3 is mostly high. Binding of the 3rd base-pair
(transition to lower 𝑑3) is possible but less frequent, and simultaneous binding of
the 1st and 3rd base-pairs is rare (Fig. 13). As expected, the affinity of the 1st
base-pair (wobble G:U) is lower than the case of AUG. This result is consistent
with infrequent GUG initiation observed in the previous works [258,267].

In the case of the CUG codon, many meta-stable states were observed as shown
in Fig. 13. Transition paths seem to be more complicated than the AUG and GUG
cases. Although concurrent binding of the 2nd and 3rd base-pairs (lower 𝑑2 and
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𝑑3) is possible, the 1st base-pair cannot form simultaneously with these other
base-pairs (Fig. 13), which makes the CUG pairing unstable compared to AUG
base-pairing. Overall, however, the binding free energyΔ𝐺binding is lower for CUG
than for GUG (Fig. 12) (see below). Note that, technically, the rugged free energy
landscape (Fig. 13) demanded more computational cost for the ABF sampling, as
suggested by the slow convergence shown in Fig. 10.
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3.3.3 Binding Dynamics from the Structural Viewpoint

To observe binding dynamics from the structural viewpoint, typical structures,
or atomic coordinates corresponding to a specific reaction coordinate (𝑑1, 𝑑2, 𝑑3),
were obtained by averaging the sampled atomic coordinates as follows. Here, we
assumed that the reaction coordinate (𝑑1, 𝑑2, 𝑑3) is represented by (𝑑1, 𝑑2, 𝑑3) if
Eq. 3.7 is satisfied. Then, each atomic coordinate was averaged over all the snap-
shots (sampled at 10 ps intervals) corresponding to the representative reaction
coordinate (𝑑1, 𝑑2, 𝑑3).

𝑑𝑖 − 1
2Δ𝑑 ≤ 𝑑𝑖 < 𝑑𝑖 + 1

2Δ𝑑 (𝑖 = 1, 2, 3) (3.7)

Figure 15. Typical Bound Structures. Averaged structures corresponding to
reaction coordinate (𝑑1, 𝑑2, 𝑑3) = (4.5, 4.5, 4.5) (see Eq. 3.7). In the structures
(top), nucleotides of the codon and anticodon are drawn by thick lines. In the
schematics (bottom), lines show the direction of the bases. mRNA and tRNA are
drawn by orange and gray, respectively. Red and blue lines are parts of eIF1 and
eIF1A, respectively.

The averaged structures and schematics of the codon and anticodon are shown
in Fig. 15. In the case of AUG, the averaged bound-state structure is ordered and
tightly bound. It is reasonable, as it is the correct start codon, and the binding
free energy is negative (Fig. 12). Note that eIF1 and eIF1A molecules (shown in
red and blue in Fig. 15, respectively) are present near the AUG-CAU base-pair. It
was experimentally suggested that these proteins contribute to the accurate start
codon recognition [247,259,260,264, 269]. (see Fig. 16).

By contrast, the structure of the GUG-CAU base-pair is disordered (Fig. 15).
The mismatched bases (the 1st G:U) avoid each other (rather than forming a
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wobble base-pair) and the uracil in tRNA tilts toward the 2nd U:A base-pair. The
directions of the 2nd and 3rd base-pairs were consequently affected, resulting in
the unstable bound state (Fig. 12). Although the projected free energy profile
𝐺(𝑑1, 𝑑2) (Fig. 13) suggests cooperative binding of the 1st and 2nd base-pairs (Fig.
15), the 3rd base-pair is mostly separate, which may prevent the recognition of
the GUG start codon.

In the case of CUG, the structure is relatively ordered (Fig. 15). Although the
1st C:U base-pair is mismatched, cytosine is smaller than guanine and adenine
(purine bases), which may mitigate steric hindrance at the 1st position. As shown
in Fig. 13, many meta-stable conformations are possible, which we propose to
be attributed to combinations of bound and unbound conformations of the base-
pairs. It is therefore reasoned that some near-bound states can occasionally allow
translation initiation at this codon.
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3.4 Discussion and Conclusion

Figure 16. Binding Mechanism Conjectured by This Study. mRNA and tRNA
are drawn by orange and gray, respectively. Red lines show parts of eIF1. (a)
Schematics of binding and unbinding dynamics. (b) Averaged structures cor-
responding to reaction coordinate (𝑑1, 𝑑2, 𝑑3) = (4.5, 4.5, 4.5) (see Eq. 3.7), and
their schematic representations. Nucleotides of the codon and anticodon, and
N34 (Asn-34) and R36 (Arg-36) are drawn by thick lines.

Our ABF-based approach provided not merely the binding free energy but in-
formation on the nucleic acid binding dynamics represented by the free energy
landscape (Figs. 13 and 14), in contrast to the previous work. The free energy
profiles shown in Fig. 13 suggested an unexpected stability of the 1st A:U base-
pair, compared to the 3rd G:C base-pair. According to the free energy profile
of AUG binding, dissociation of the triplet base-pairs starts at the 3rd G:C (Fig.
14, right column). In the open PIC model that is suggested to occur during the
scanning process prior to start codon recognition [264], the tRNA is not perpen-
dicularly attached to the mRNA, in contrast to the P-site tRNA positioning during
the elongation phase. This conformation appears to allow the 5’-side (i.e. cytosine
side) of the anticodon to curve away from the start codon, suggesting a stretch-
ing force towards the tRNA side (Fig. 16(a)). We propose that this stretching
decreases the affinity of the 3rd G:C base-pair during the scanning process (Fig.
16(a)). In contrast, the affinity of the 1st A:U base-pair is likely to be increased
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by interaction with eIF1, so is that of the 2nd U:A base-pair by eIF1A, as pro-
posed previously [247, 259, 260, 264, 268, 269] (Fig. 16(a)). In strong agreement
with the role of eIF1 in stabilizing the 1st A:U base-pair, our averaged simulation
structure indeed positions Asn-34 and Arg-36 in its proximity (Fig. 16(b)). In
fact, the residues Asn-34:Gly-35:Arg-36, termed 𝛽-hairpin loop 1, is absolutely
conserved from yeast to human. Mutations altering Asn-34 and Arg-36 display
significant increase in UUG initiation [270], in agreement with their crucial role
in maintaining open scanning-competent PIC conformation.

The free energy landscape of GUG-anticodon base-pairs (Fig. 13) and its
averaged simulation structure in the P-site (Figs. 15 and 16(b)) also suggest that
the same structural restriction in turn prevents G:U pairing at the 1st position, that
otherwise occurs frequently in its free form. The disordered 3rd G:C base-pair
seen with the GUG structure appears to be consistent with this idea (Fig. 15).
Since we did not observe a strong disorder in CUG-anticodon structure (Fig. 15),
we propose that the near-cognate start codon usage characteristic of eukaryotic
initiation is mostly explained by a strong perturbation on GUG accommodation
in the P-site due to steric restriction imposed by eIF1 𝛽-hairpin loop. In agreement
with this thesis, the level of CUG initiation is just equivalent to that of GUG
initiation in yeast 𝑆.𝑐𝑒𝑟𝑒𝑣𝑖𝑠𝑖𝑎𝑒 [271] (and personal observations of Dr. Asano),
although the former is significantly stronger than the latter in various distinct
contexts in human cells [272].
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4 Molecular Dynamics Analysis of Partially Disas-
sembled Nucleosomes

This section is based on refs. [204, 205].

4.1 Introduction
Nucleosome is a fundamental unit of eukaryotic chromosome [273–275]. The
nucleosome consists of around 150 base-pairs of DNA and 4 types of 8 histone
proteins [239]. DNA wrapping structure around histone proteins makes long
eukaryotic genome compact [276, 277]. This fact is convincing with the genomic
length of the human genome, 3.4 Å (base-step) × 30 billion (base-pair counts) ×
2 (diploid). In addition, histone proteins are well known to play biological roles
other than chromatin compaction [278, 279]. Histone proteins have two regions,
stable "core" and disordered "tail" [280, 281]. Chemically modified tails serve
as various biochemical signals [282–284]. For example, methylation of lysine at
residue index 9 of histone H3 (H3K9me3) induces condensed nucleosomes by
several factors, then makes the locus heterochromatin [285]. Huge numbers of
biological researches were published about histone modifications [280, 281, 283,
286, 287].

As mentioned above, nucleosomes have the potential for biological roles.
However, the nucleosome is a structure in which DNA wraps around histone
proteins [239]. How the nucleosomes (histone proteins) behave through the in-
teraction of DNA binding proteins along with transcription? An answer is that,
nucleosomes may work as physical obstacles [288,289]. Actually, histone proteins
are known to be evicted completely or partially in such situations, by several
modulation factors [290–293]. Nucleosomes that lack some histone proteins (in-
termediate nucleosomes; or "partially assembled nucleosome" [294]) have been
studied in recent years, and the following facts have been shown. (i) DNA in par-
tially disassembled nucleosomes shows higher accessibility than that in canonical
nucleosomes, i.e. partially disassembled nucleosomes facilitate binding of pro-
teins to DNA [295]. (ii) the dissociation frequency of histone H2A/H2B is signif-
icantly higher than that of H3/H4, and nucleosomes lacking only H3/H4 have
not been experimentally observed [296]. However, analysis of mechanical prop-
erties of the nucleosome as a complex of biomolecules, which underlie previous
observation [295], have not proceeded.

In this research, we analyzed dynamics of these partially disassembled nu-
cleosomes by computational approaches, to evaluate their mechanical features
[204, 205]. In particular, nucleosome models of canonical one [239], and partially
disassembled one lacking a histone dimer H2A/H2B (from the canonical struc-
ture), were constructed. Then, their dynamics were compared by fully atomic
molecular dynamics simulation. Additionally, we also constructed an H3/H4-
lacking model for comparison.
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4.2 Materials and Methods
The nucleosome structure which consists of the histone octamer and human
centromere palindromic sequences (𝛼-satellite), published in PDB (PDB ID :
1KX5 [239]) was employed as canonical nucleosome structure in this study. Then,
one of the (four) histone dimers was deleted, to obtain partially disassembled nu-
cleosome structures lacking one histone dimer. Note that components of each pair
of proteins H3/H4 and H2A/H2B are known to show strong binding affinity at the
atomic scale [297, 298]. Thus, the units of lacking histone proteins were H3/H4
and H2A/H2B. We named nucleosomes lacking H3/H4, H2A/H2B, H3’/H4’,
and H2A’/H2B’ (Tab. 4) as ΔH3/H4, ΔH2A/H2B, ΔH3’/H4’, and ΔH2A’/H2B’,
respectively (Fig. 17).

Table 4. Residue IDs of Core Region and Tail Region for each Histones. Each
chain ID and residue ID refer to PDB ID: 1KX5 [239]. Only histone H2A has a
C-terminal tail.

Histone (Chain ID) Core Region Tail Region
H3 (A) and H3’ (E) 45 – 135 1 – 44
H4 (B) and H4’ (F) 25 – 102 1 – 24

H2A (C) and H2A’ (G) 18 – 98 1 – 17 (N-terminal)
99 – 128 (C-terminal)

H2B (D) and H2B’ (H) 35 – 122 1 – 34

Figure 17. Nucleosome Structure and Histone Indices. PDB ID: 1KX5. Histones
H3/H4 (Chain A and B), H2A/H2B (Chain C and D), H3’/H4’ (Chain E and
F), and H2A’/H2B’ (Chain G and H) are shown in blue, red, green, and purple,
respectively. Following these indices, we named each nucleosome lacking one of
the histone-dimers as ΔH3/H4, ΔH2A/H2B, ΔH3’/H4’, and ΔH2A’/H2B’.

To solvate these nucleosome models, TIP3P water molecules and KCl were
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added to construct the water box. The water box was neutralized by K+ and added
150 mM KCl (see Sec. 7.1). Periodic boundary condition with Particle-Mesh Ewald
(PME) [227, 228], non-bonded interactions with 12 Å cutoff (with switching from
10 Å), Langevin thermostat (damping coefficient: 5/ps) and Langevin-piston
barostat were adopted in this simulation [229, 230]. Temperature and pressure
were set at 310 K and 1 atm, respectively. In the numerical (molecular dynam-
ics) simulation, first, 10,000 steps of energy minimization was carried out with
restricting the positions of C𝛼 atoms in amino acids and C1’ atoms in nucleotides,
at initial coordinates (i.e. crystal structure) by harmonic restraint (spring coeffi-
cient: 100pN/Å). Then, 100 ns production run was carried out. Each model was
simulated ten times. Numerical simulation was performed using NAMD (version
2.12 multicore with CUDA) [137,138].
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4.3 Analyses and Results
4.3.1 Structures of Histone Proteins

Figure 18. Secondary Structure Stability of Histones in Each Nucleosome.
Averaged over ten trials (each trial is shown in Fig. S8). Horizontal and vertical
axes of each graph show amino acid index and ratio of 𝛼-helix formation in
respective histones as indicated in figure.

At first, we evaluated ratios of secondary structure formation and collapse of hi-
stone proteins in the remaining nucleosome structure, by partial dissociation of
histones. We employed DSSP [299], which is often used to determine the sec-
ondary structure of proteins. It is already known that histone proteins have only
several 𝛼-helices in core regions [239]. Then, we only calculate 𝛼-helix formation
ratio in all histones over ten simulation trials in each nucleosome model (Fig. 18).
As shown in the results, profiles of formation ratio are hardly different, and the
ratios of each 𝛼-helix forming residue show ∼ 1.0 (100 %). This result suggests
that partial histone dissociation does not affect nucleosome structures, consider-
ing the fact: canonical nucleosome shows much stable structure i.e. conformation
of histone proteins hardly change.

The 𝛼-helix formation was slightly observed in tail regions (Fig. 18). These
agreed with previous research that tail regions transiently show 𝛼-helix formation
when interacting with DNA [300,301].
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Figure 19. Time Series of RMSD of Histone and DNA in Each Nucleosome.
Colors show different simulation trajectories (total 10).

Next, we evaluated RMSD (Root Mean Square Displacement) of histones and
DNA for each nucleosome model, to focus on the tertiary structure of these
molecules. At the time of RMSD computations, we eliminated histone tails
(Tab. 4) in removing translation and rotation of nucleosome molecules, because
histone tails (intrinsically disordered regions) show much unstable conforma-
tions [302, 303]. Atomic coordinates just after energy minimization were referred
to align the simulation trajectories, and we note those transformed coordinates
of atom 𝑖 as 𝒙̂ 𝑖 . The time series of RMSD of each molecule for each nucleosome
model was shown in Figs. 19 and S9. Regarding all histone proteins, there are
negligible differences between canonical nucleosomes and partially disassembled
nucleosomes. This result well agreed with experimental observations [304, 305].
On the other hand, only DNA in partially disassembled nucleosomes showed an
increase of RMSD, while DNA in the canonical nucleosome did not show. This
result (and including DSSP result) suggests that partial dissociation of histone
proteins affect only wrapping DNA.
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4.3.2 Structural Deformation of Nucleosomal DNA

According to the analysis above, partial dissociation of histone proteins only af-
fected DNA dynamics (Fig. 19). To evaluate the changes in DNA dynamics, we
evaluate RMSF (Root Mean Square Fluctuation) of DNA. At the time of RMSF
computations, we aligned simulation trajectories based on only core regions of
histone proteins (not the same as RMSD calculation part), and note the coordinate
of atom 𝑖 as 𝒙̂ 𝑖 . Then, with focusing on only C1’ atoms of nucleotides, RMSF is
defined as ⟨|𝒙̂ 𝑖 − ⟨𝒙̂ 𝑖⟩time |2⟩time, where ⟨⟩time means the averaging of all simulation
trajectories. RMSFs were calculated over ten simulation trials for each nucleosome
model (Fig. 20). Note that ⟨·⟩time means averaging over the latter half of simulation
trajectory (50.01 – 100 ns) and ten trials for the same nucleosome model. As over-
all trends, several nucleotides in partially disassembled nucleosomes, originally
interacted to dissociated histones, show higher RMSD scores than others.

Figure 20. Root Mean Square Fluctuation (RMSF) of DNA. Each graph shows
RMSF profiles of respective nucleosomal DNA. Horizontal axis shows nucleotide
indices 𝑖. Colors show different simulation trajectories (total ten). The nucleotide
indices are indicated in the bottom-left panel (each particle represents a nucleotide
or an amino acid); the indices in chains I and J (-73 to 73 each in the PDB file) are
shown in blue and red, respectively.

To evaluate not only magnitudes of non-directive fluctuation (RMSF; Fig. 20),
but also effective structural deformation of DNA, we employed PCA (Princi-
pal Component Analysis). PCA has been used in a similar case of protein dy-
namics analysis [306]. In particular, the coordinate vector of time 𝜏 : 𝑋(𝜏) =
(𝒙̂𝑇1 (𝜏), 𝒙̂𝑇2 (𝜏), · · · , 𝒙̂𝑇𝑁 (𝜏))𝑇 , which consists of nucleotides positions 𝒙̂ 𝑖 (eliminated
translation and rotation), was defined. Then, eigenvalue decomposition of the co-
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variance matrix of 𝑋(𝜏) was carried out. Note that in obtaining covariance matrix,
𝜏s in only the latter half of simulation trajectory over ten simulation trials were
used, to eliminate the dependency of the initial structure. The eigenvectors v𝑗
were sorted by descending order of eigenvalues, and the largest v𝑗 was expected
to correspond to the most drastic deformation. In fact, the two largest motions
mostly corresponded to the DNA breathing outward from the nucleosome (Figs.
21 and S10).

Figure 21. Effective Directions of DNA Deformation (Front View). Visualized
from the side of chains A to D (H3, H4, H2A, and H2B). Nucleotide (C1’ of each
nucleotide) and amino acid (C𝛼 of each amino acid) coordinates are shown by
spheres. Orange arrows show the vectors of the 1st and 2nd PC modes. Arrow
lengths indicate the norm of the vector.

Deformation level of 𝑋(𝜏) for the 𝑗-th largest deformation direction 𝑆(𝜏, 𝑗) was
defined as 𝑆(𝜏, 𝑗) := (𝑋(𝜏) − ⟨𝑋⟩time) · v𝑗 . Profiles 𝑆(𝜏, 𝑗) of two largest 𝑗 over ten
simulation trajectories for each model were shown in Fig. 22. The plots were
smoothed using Kernel Density Estimation (KDE). 𝑆(𝜏, 𝑗) of initial conformation
(𝑆(0, 1), 𝑆(0, 2)) was shown in magenta. Individual time series of simulation
trajectories were drawn simultaneously (Fig. 22).

Following different profiles depending on dissociated histone dimers were
observed from Fig. 22. In the case of H2A/H2B-lacking nucleosome models
(ΔH2A/H2B andΔH2A’/H2B’), initial coordinate (𝑆(0, 1), 𝑆(0, 2)) locates far from
high probability regions, i.e. DNA behavior in equilibrium is much different
from the initial histone-wrapping conformation. Individual simulation trajecto-
ries show drift and irreversible transition. Thus, H2A/H2B dissociation induces
high mobility and irreversible transition of DNA structure. In contrast, in the
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Figure 22. Free Energy Landscape of DNA Dynamics to 1st and 2nd PC Modes.
The axes correspond to deviations (𝑆(𝑡 ,mode)) to the 1st and 2nd PC vector
directions from the averaged structure (= 𝑆(𝑡 , 1) or 𝑆(𝑡 , 2)). The color (blue) shows
the probability density of 𝑆. Each profile was fitted by kernel density estimation
(KDE). Magenta dot corresponds to the initial conformation (𝑆(0, 1), 𝑆(0, 2)), and
each line (in different colors) shows a simulation trajectory (total ten; plotted at 10
ns intervals).

case of H3/H4-lacking nucleosome models (ΔH3/H4 and ΔH3’/H4’), initial co-
ordinate (𝑆(0, 1), 𝑆(0, 2)) locates near high probability regions. In other words,
DNA behavior in equilibrium is similar to initial histone wrapping conformation.
Many of simulation trajectories distribute around (𝑆(0, 1), 𝑆(0, 2)) location. Con-
trary to expectations, this result shows that dissociation of H3/H4 hardly induces
irreversible DNA deformation.

Overall, the following fact was shown: DNA deforming dynamics in partially
disassembled nucleosomes depends on dissociated histone proteins (Fig. 22).
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4.3.3 Interactions Between Histone Tails and DNA

Considering the result of PCA (Fig. 22), the following question was raised: What
causes the difference of DNA dynamics dependent on lacking histone proteins?
In the protein (secondary and tertiary) structure analysis (Figs. 18 and Fig. 19),
no apparent difference was observed, with excluding histone tails from targets.
Hence, we evaluated contact frequency between the DNA and histone tails in
canonical and partially disassembled nucleosomes (Fig. 23). It is to be noted that
the histone tails were not counted in aforementioned analysis.

Figure 23. Contact Matrix of DNA and Histone Tails. Contact frequency of
nucleotide of DNA and amino acid of histone tails.

In comparison among all types of nucleosomes, no apparent differences were
observed in the majority of components, which is consistent with a previous MD
simulation study showing that tails were trapped by the adjacent DNA [196].
Only in H3/H4-lacking nucleosomes (ΔH3/H4 and ΔH3’/H4’), most obvious
differences are interaction frequency between DNA and C-terminal tail of H2A
(H2A-C). Considering this result, we found the following trend by observations of
simulation trajectories: H2A-C invades the space induced by H3/H4 dissociation.
This invasion induces additional interaction of H2A-C and DNA, which originally
contacted with lacking H3/H4. Then, the mobility of that DNA was restricted
though fluctuation levels of that DNA increased. This restriction makes DNA
conformation similar to the initial histone wrapping DNA structure (Fig. 24).
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Figure 24. Histone Tail Dynamics in ∆H3/H4 and ∆H2A/H2B. Snapshots from
simulation trajectories and schematics of ΔH3/H4 and ΔH2A/H2B are shown.
Histone tails are represented by small circles in the schematics.
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4.4 Discussion and Conclusion
In this study, histone tail dynamics in partially disassembled nucleosomes, and
their biological roles were investigated [204, 205]. In the structural analysis of
histone proteins remaining in the nucleosomes, no significant deformation was
observed (Figs. 18 and 19). Specifically, the nucleosome models lacking an
H2A/H2B (ΔH2A/H2B andΔH2A’/H2B’; observed in experiments) show similar
RMSD to canonical one. We also confirmed that no significant differences were
found between the H2A/H2B-lacking structure and the hexasome part in the
overlapping di-nucleosome [307], (RMSD: 2.554 Å). Thus, it is suggested that
drastic structural deformation occurs only in the DNA in partially disassembled
nucleosomes. Structures of histones (remaining in nucleosomes) seem almost the
same as the canonical structure.

On the other hand, dynamics of DNA were apparently different between the
partially disassembled nucleosomes lacking H2A/H2B and those lacking H3/H4
(Fig. 22). In the H2A/H2B-lacking models (ΔH2A/H2B and ΔH2A’/H2B’),
long H3 tails were trapped at the dyad parts and the ends of nucleosomal
DNA (Fig. 24). Because of the trapping of H3 tails, free space induced by
the loss of H2A/H2B was not filled. Then, DNA that interacted with the disso-
ciated H2A/H2B shows breathing spontaneously. In the H3/H4-lacking models
(ΔH3/H4 and ΔH3’/H4’), H2A-C region invades the space induced by the loss of
lacking H3/H4 (Fig. 24). Then, additional interaction of DNA and H2A-C occurs.
This interaction restricts DNA breathing.

The obtained result can be associated with biological experiments as follows.
H2A/H2B detachment seems effective modulation based on the dynamics of
H2A/H2B-lacking nucleosome. The H2A/H2B dissociation enhances mobility
of DNA which originally contacted with the H2A/H2B (Fig. 24). Actually, this
modulation process is employed in intra-cellular function [291]. On the other
hand, detachment of H3/H4 is considered inefficient, because H3/H4 dissociation
induces additional interaction of DNA and H2A-C, then increase of DNA mobility
cannot be expected (Fig. 24).

Contrary, let us suppose that how to restore partially disassembled nucle-
osomes to canonical (histone octamer) nucleosome. Insertion of H2A/H2B is
thought to be easy because the space enhanced by high DNA mobility remains
in the H2A/H2B-lacking nucleosomes (Fig. 25). On the other hand, the loss of
H3/H4 induces H2A-C invasion. Then, the space originated from H3/H4 disso-
ciation will be quickly filled (Fig. 25). It is inconvenient in the case of insertion of
H3/H4. Thus, H2A/H2B detachment and attachment are preferred by dynamic
features of molecular complexes [204,205].
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Figure 25. Suggested Schematics of Nucleosome Remodeling based on the Re-
sults. Schematics of histone dissociation and nucleosome remodeling by histone
chaperone (like FACT). The relationship between partially disassembled nucleo-
some dynamics and the process of nucleosome remodeling is suggested.
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5 Conclusion and Future Problems
In this thesis, the problem mentioned in the introduction part (Sec. 1) — physical
properties of molecular systems involving nucleic acids — was considered and
discussed.

In Section 2, dynamics of double-stranded DNA involving several methylation
patterns was simulated, and structural deformation was evaluated at base-pair
resolution (Fig. 5). The analysis was performed from physical viewpoint, i.e.
first-principles approach [202]. This strategy is employed in the field of soft
matter physics [308, 309]. Particularly, I could obtain DNA dynamics depend-
ing on chemically modified sites. This result is expected to be a basis of site-
specific nucleotide recognition by DNA binding proteins [206–208]. However,
these sequence-dependent dynamics of nucleic acids are considered as coopera-
tive dynamics of constituent atoms [202]. Then, the application of the analysis
method to further longer DNA should be an extremely difficult problem. For
example, coarse-grained models proposed by our group [157, 158] cannot in-
corporate atomic-scale structures. Of course, chemical modification cannot be
considered. Hierarchical molecular dynamics modeling and analysis of nucleic
acids are expected to be discussed and developed in the future (it is also my major
research theme).

In Section 3, dynamics of two RNA segments (mRNA and tRNA) involved
in the molecular complex of other RNAs (rRNAs) and proteins (eIFs) were simu-
lated, and multi-dimensional free energy profiles in terms of their base-pairs were
evaluated [203]. Distances of base-pairs (codon and anticodon) were employed
as reaction coordinates to discuss their cooperativeness. Practically, obtained
free energy profiles reproduced the difference of binging strength of base-pairs
(A:U and G:C). The difference of these profiles provided the sensitive changes of
binding affinity and transition path among AUG, GUG, and CUG. There are few
studies that focused on precise binding dynamics of nucleic acids, like this study.
Therefore, the following extension can be considered. First, the same molecular
dynamics analysis of additional codons and association with biological experi-
ments, are wanted. These additional works will be published in the future with
experimental researches. The mechanisms of precise translation initiation by var-
ious factors (eIFs) also should be evaluated in the same way [261, 310]. Next, the
proposed method (multi-dimensional ABF) of RNA binding is to be applied to
other environments. As mentioned in Section 1.4, bound and folded structures
of RNA are historically studied by not the dynamics (physical) but mathematical
estimation based on match/mismatch/gap score of base-pair [311–313]. Stud-
ies of secondary structure prediction of RNA are typical examples [184]. Of
course, structural predictions have been currently conducted from physical view-
points [314–316], analysis method of RNA dynamics based on reaction coordinate
may provide more appropriate physiological RNA conformations and their tran-
sient pathway. In the analysis of the biological function of non-coding RNA from
the viewpoint of interaction, the dynamics analysis method should be impor-
tant [165].

In Section 4, the statistical analysis method for the dynamics of DNA, which
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shows strong interaction with proteins, is considered by focusing on nucleo-
somes [204, 205]. PCA (Principal Component Analysis), which has been used
to obtain effective structural deformation of protein [306], was employed in this
study. Structural transition of DNA was detected through the analysis of long-time
DNA dynamics and their probability distributions using PCA. However, though
this PCA-based method revealed transitions, it is not assured that this method is
appropriate for other biomolecular systems. As a further development, statistical
dynamics analysis methods to detect effective structural deformations should be
discussed. To evaluate effective structural changes from simulation data, classifi-
cation method by time-scale of deformations based on ICA (Independent Compo-
nent Analysis) [317–319] is developed in the recent years [111,320–322], although
PCA (covariance-based method) is often used. In the equilibrium state, slower
vibration has a larger amplitude assuming the law of equipartition of energy [323].
With assuming that low frequency and slower structural motion is expected to
be larger. Therefore, long time simulation trajectories should provide further ef-
fective dynamics by the ICA method, along with the development of computer
science.

It is much important to distinguish sequence-dependent structural affinity
and sequence-independent electrostatic affinity from the interaction of DNA and
proteins in the molecular complex [179, 180]. This would be a breakthrough in
the field of structural biology. For example, that may reveal mechanisms of the
determination of nucleosome positioning and its stability [288, 324–326], which
is a major, completely unsolved problem in chromatin biology. It may assist in
designing nucleotide recognizing proteins (e.g. TALEN [327, 328] and CRISPR
[329–331]) as their recognition is based on molecular dynamics of proteins and
nucleic acids. Its application is not limited to those molecules but also to studies
on biological information processing and network analysis based on molecular
interactions [332–334]. Efficient structural sampling method may be appropriate
and solve that problem. For example, REST2 considers only systematic regulation
of electrostatic interaction [114,335].

Currently, in the field of life science, research methods except experiment are
largely classified into two types; numerical calculation-based molecular simula-
tion and informatics (and sequencing) based bioinformatics [184,336–338]. In the
bioinformatics field, though dynamics and energy profiles are hardly discussed,
an exhaustive analysis of molecular systems involving nucleic acids is enabled
based on mathematical science [31, 32]. Although these computational and in-
formational sciences cannot be considered closely related, I consider that both
advantages should be utilized simultaneously. Particularly, in macroscopic chro-
mosomal scale, polymer physics and sequencing analysis have cooperated with
each other, and discovered additional knowledge [339–342]. In microscopic few-
molecular systems, many experimentally measured biological phenomena that
might be associated with molecular dynamics are suggested [343–345]. The im-
portance of model (dynamics) and data-driven computational biology is expected
to be recognized in the future.
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7 Additional Information

7.1 Procedures of Molecular Modeling
In this thesis, molecular dynamics (MD) simulation was employed (Secs. 2 ∼ 4).
Following execution programs and datasets were employed.

• VMD: Visual Molecular Dynamics [226]. VMD is developed by Theo-
retical and Computational Biophysics group in Illinois University (https:
//www.ks.uiuc.edu). VMD provides molecular structure modeling, molec-
ular dynamics analysis, and molecular structure visualization. VMD is used
before and after numerical simulation using NAMD. Solvation and ioniza-
tion also can be done by VMD.

• NAMD: Scalable Molecular Dynamics [137, 138]. Numerical molecular
simulation program package developed in the same place as VMD. NAMD
is famous for providing the fast numerical simulation of large-scale systems
by efficient parallel computing. Accommodating tutorials can be obtained
from the web site (https://www.ks.uiuc.edu/Training/Tutorials/).

• CHARMM Force Fields: Chemistry at HARvard Macromolecular Me-
chanics [129, 130]. Parameters of molecular structures and interaction force
fields developed by chemistry laboratory in Harvard University (https:
//www.charmm.org). CHARMM force-field includes not only typical atomic
interaction functions but also an additional potential function of restraining
peptide bond surface of the protein. Though mainly employed in studies
of proteins and lipids in the past, CHARMM has been employed in stud-
ies of nucleic acids and complex with proteins after a major update to c36
version [142,143].

Therefore, target molecules were modeled by VMD and simulated by NAMD, em-
ploying CHARMM36 force-field in the study in this thesis. NAMD also provides
Adaptive Biasing Force (ABF) method [113,262] in Collective Variables (CV) mod-
ules (https://colvars.github.io/colvars-refman-namd/colvars-refman-namd.
html). Furthermore, elimination of translate and rotate motions of molecules, and
RMSD calculation can be performed by loading NAMD outputs trajectories us-
ing VMD. VMD also extracts and outputs the data of coordinates, velocities, and
potential energies of molecules, then these data can be analyzed by our own
scripts.
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7.2 Analysis of DNA Conformation Using X3DNA
Structure analysis using fully atomic scale methods is included in VMD. However,
these are typically appropriate to proteins, and not very suitable for DNA. Then, to
analyze DNA at atomic scale, we employed X3DNA (http://x3dna.org). X3DNA
can construct atomic coordinates of DNA with selected base-pair and base-step
parameters, and analyze structural degrees of DNA (http://home.x3dna.org/
highlights/schematic-diagrams-of-base-pair-parameters). In this research
[158,202], atomic DNA coordinates were constructed using the helical parameter
[43, 346, 347]. Typical structural degrees of DNA are shown in Fig. S1.

Figure S1. Base-Pair and Base-Step Parameters [232, 233]. Schematics of base-
pair and base-step parameters are drawn. Bases are shown by planes.
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7.3 Theory of Adaptive Biasing Force (ABF) Method
In Section 3, adaptive biasing force (ABF) method was employed to estimate
free energy profiles in terms of defined reaction coordinates [113, 262, 263]. The
procedure of ABF is briefly explained below [262].

In multi-body systems (e.g. biomolecular systems), their correlating dynamics
often play essential roles in molecular dynamics. The dynamics are character-
ized by "order parameters", "reaction coordinates" etc. in statistical physics of
biomolecular dynamics. Dynamic behavior of the reaction coordinates, noted as
𝝃 in the following discussion, is characterized by free energy profile 𝐺(𝝃∗) obeying

𝐺(𝝃∗) = −𝑘𝐵𝑇
∫

exp
(−ℋ(𝒑,𝒙)

𝑘𝐵𝑇

)
𝛿(𝝃(𝒙) − 𝝃∗)𝑑𝒑𝑑𝒙 (7.1)

and then, by separation of hamiltonian ℋ(𝒑,𝒙) into kinetic energy term and
enthalpy term 𝐻(𝒙) assuming that integration covers enough phase space (𝒙 , 𝒑),
Eq. 7.1 is regarded as

𝐺(𝝃∗) = −𝑘𝐵𝑇
∫

exp
(−𝐻(𝒙)

𝑘𝐵𝑇

)
𝛿(𝝃(𝒙) − 𝝃∗)𝑑𝒙. (7.2)

This equation is an enthalpy-based (potential-based) free energy evaluation. How-
ever, this formula is often not useful. Therefore, to obtain a free energy profile
𝐻(𝝃∗) based on its derivative function is better. The formula is as follow.

𝑑𝐺
𝑑𝝃

(𝝃∗) =
∫

𝑑𝐻
𝑑𝝃 exp

(
−𝐻
𝑘𝐵𝑇

)
𝛿(𝝃(𝒙) − 𝝃∗)𝑑𝒙∫

exp
(
−𝐻
𝑘𝐵𝑇

)
𝛿(𝝃(𝒙) − 𝝃∗)𝑑𝒙

:=
〈
𝜕𝐻
𝜕𝝃

����𝝃∗〉 (7.3)

Eq. 7.3 means that derivative function of 𝐴 can be evaluated as potential of mean
force function (average of 𝑑𝐻/𝑑𝝃). Then, the potential of mean force is equivalent
to the average of acting force on 𝝃 as Eq. 7.4.

⟨𝑭𝝃 | 𝝃∗⟩ = −𝑑𝐻(𝝃∗)
𝑑𝝃

(7.4)

Thus, the force acting on 𝝃 averaged over enough sampling is expected to be
close to 0 when reverse force −⟨𝑭𝝃 | 𝝃∗⟩ is applied. In other words, to estimate the
profile of 𝐴, enough sampling with acting reverse force makes 𝝃 as diffusion-like
motion. This is an essential logic of ABF.

The averaged force (Eq. 7.4) is estimated as follows. First, the phase space of
𝝃∗ was divided (each bin is labeled by 𝑘). In the bin 𝑘, mean force is historically
evaluated as
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𝑭𝝃(𝑁step, 𝑘) = 1
𝐿(𝑁step, 𝑘)

𝐿(𝑁step ,𝑘)∑
𝑖=1

𝑭 𝑖(𝑡𝑘𝑖 ) (7.5)

and

𝑭 𝑖(𝑡𝑘𝑖 ) =
𝑑
𝑑𝑡

(
𝑀𝝃

𝑑𝝃
𝑑𝑡

)����
𝑡𝑘𝑖

(7.6)

where 𝑀𝝃 is mass matrix of generalized coordinates 𝝃, 𝐿(𝑁step, 𝑘) is count at
bin 𝑘 obtained from simulation trajectory, and 𝑁step is threshold (i.e. necessary
count to start to apply biasing force). After the integration of 𝑭𝝃, deviation of 𝐴 is
estimated [262].

For the detailed settings of ABF, please see Collective Variables (CV) modules
of NAMD [137,138].
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7.4 Supplemental Figures of Section 2

Figure S2. Profiles of Overall Geometry of DNA. The distribution of (
√
𝜆1,

√
𝜆2)

summed over ten trials is shown.
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Figure S3. Profiles of 𝜎•𝑖 . Colors show different simulation trials and the black
line shows the overall flexibility (structural variation) in ten trials. In the hori-
zontal axis, odd and even numbers correspond to base-steps of C→G and G→C,
respectively (Fig. 1 (c)). Purple lines show mC→G (C→G in the case of mC)
base-steps.
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Figure S4. Profiles of 𝜎•𝑙 for the Repeat Unit. 𝜎•𝑖 (Fig. S3) are aligned and
averaged in terms of the repeat unit (Tab. 1); shown in the same way as in Fig. 6.
Nucleotides at both ends (shown with * in the horizontal axis) are identical.
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Figure S5. Orientation of Methyl Groups. The average ± the standard deviation
(S.D.) of 𝜃𝑛 for each methyl group are shown.
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Figure S6. Interaction Between Methyl Groups and DNA. The average ± the
standard deviation (S.D.) of contact frequency for all methyl groups is shown.
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7.5 Supplemental Figures of Section 3

Figure S7. Estimated Free Energy of Bound and Unbound States. Red and blue
bars correspond to 𝐺bound and 𝐺unbound (Eq. 3.5), respectively (see the schematics
in Fig. 11). The scores were obtained from 𝑃(𝑑1, 𝑑2, 𝑑3) and 𝐺(𝑑1, 𝑑2, 𝑑3) profiles
(Eq. 3.2) over five simulation trials for each model.
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7.6 Supplemental Figures of Section 4

Figure S8. Secondary Structure Stability of Histones in Each Nucleosome.
Horizontal and vertical axes of each graph show amino acid index and ratio of
𝛼-helix formation in each histone, respectively. Colors show different simulation
trajectories (total ten).
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Figure S9. Time Series of RMSD of Histone in Each Nucleosome. Colors show
different simulation trajectories (total ten).
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Figure S10. Effective Directions of DNA Deformation (Back View). Visualized
from the side of chains E to H (H3’, H4’, H2A’, and H2B’). Nucleotide (C1’ of each
nucleotide) and amino acid (C𝛼 of each amino acid) coordinates are shown by
spheres. Orange arrows show the vectors of the 1st and 2nd PC modes. Arrow
lengths indicate the norm of the vector.
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