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PROJECTIVE PLANE CURVES WHOSE AUTOMORPHISM

GROUPS ARE SIMPLE AND PRIMITIVE

YUSUKE YOSHIDA

Abstract. We study complex projective plane curves with a given group of
automorphisms. Let G be a simple primitive subgroup of PGL(3,C), which
is isomorphic to A6,A5 or PSL(2,F7). We obtain a necessary and sufficient
condition on d for the existence of a nonsingular projective plane curve of
degree d invariant under G. We also study an analogous problem on integral
curves.

1. Introduction

Automorphism groups of algebraic curves have long been studied. For example,
Hurwitz found an upper bound on the order of the automorphism group of a curve
of a given genus ([6]). In the case of plane curves, there are more detailed studies
on automorphism groups. One important fact here is that an automorphism of a
smooth projective plane curve of degree greater than or equal to 4 uniquely extends
to an automorphism of the projective plane. Hence, the automorphism group of
such a curve is isomorphic to a subgroup of PGL(3,C).

Recently, Harui obtained the following result concerning the classification of
automorphism groups of smooth plane curves.

Theorem 1.1. ([4, Theorem 2.3]) Let C be a smooth plane curve of degree d ≥ 4,
and G a subgroup of AutC. Then one of the following holds:

(a-i) G fixes a point on C, and G is cyclic.
(a-ii) G fixes a point not lying on C, and up to conjugation there is a commutative

diagram

1 !! C× !!

⋃

PBD(2, 1)
π !!

⋃

PGL(2,C) !!

⋃

1

1 !! N !! G ! ! G′ !! 1

with exact rows where the subgroup PBD(2, 1) of PGL(3,C) is defined by

PBD(2, 1) :=

{[
A O
O α

]
∈ PGL(3,C)

∣∣∣∣A ∈ GL(2,C),α ∈ C×
}
,

N is cyclic and G′ is isomorphic to a cyclic group Z/mZ, a dihedral group
D2m, the tetrahedral group A4, the octahedral group S4 or the icosahedral
group A5.

(b-i) (C,G) is a descendant of the Fermat curve Fd defined by xd + yd + zd = 0.
(For the definition of a descendant, see [4, Definition 2.2].)

In particular, G is conjugate to a subgroup of AutFd.

2010 Mathematics Subject Classification. Primary 14H50 ; Secondary 14H37.
Key words and phrases. plane curves, invariant curves, automorphism groups, the icosahedral

group, the Valentiner group, the Hessian group.

1



2 YUSUKE YOSHIDA

(b-ii) (C,G) is a descendant of the Klein curve Kd defined by xd−1y + yd−1z +
zd−1x = 0.

In particular, G is conjugate to a subgroup of AutKd.
(c) G is a finite primitive subgroup of PGL(3,C). (For the definition of a

primitive subgroup of PGL(3,C) and more details, see Definition 2.5.)
In this case, G is conjugate to one of the following groups:
• The Valentiner group V, which is isomorphic to A6.
• The icosahedral group I, which is isomorphic to A5.
• The Klein group K, which is isomorphic to PSL(2,F7).
• The Hessian group H216 of order 216 or its subgroup of order 36 or 72.

There are also more concrete studies of the automorphism groups. For example,
the list of all automorphism groups of projective plane curves of degree 5 was given
by E. Badr and F. Bars ([1]). Beyond that, it seems that we still do not have the
list of the automorphism groups of projective plane curves of a given degree.

We look at the problem from a different point of view. Fix a group G in the clas-
sification, consider nonsingular (resp. integral) projective plane curves C invariant
under G. Then we want to find all possible values of the degree of such a curve C.

For a group G of type (a-i) or (a-ii) in the classification, invariant curves under
G are related with the study of Galois points and are actively studied. (See e.g.
[5].)

For a pair (C,G) as in (b-i) or (b-ii) in the classification, C is defined by

xd + yd + zd +
∑

i+j+k=d,max{i,j,k}<d

cijkx
iyjzk = 0

or
xd−1y + yd−1z + zd−1x+

∑

i+j+k=d,max{i,j,k}<d−1

cijkx
iyjzk = 0.

and G acts on C. Thus it can be said that we have a good understanding of these
cases.

In this paper, we focus on groups of type (c) in the classification and study
invariant curves under each of them except for subgroups ofH216 and its sub groups.
As the first main result, we determine all degrees of nonsingular projective plane
curves invariant under each of the groups V ∼= A6, I ∼= A5 and K ∼= PSL(2,F7):

Theorem 1.2. Let d be a positive integer.

(1) There exists a nonsingular projective plane curve of degree d whose auto-
morphism group is equal to V if and only if d ≡ 0, 6 or 12 mod 30.

(2) There exists a nonsingular projective plane curve of degree d invariant under
I if and only if d ≡ 0, 2 or 6 mod 10.

(3) There exists a nonsingular projective plane curve of degree d whose auto-
morphism group is equal to K if and only if d ≡ 0, 4 or 6 mod 14.

We note that if C is invariant under V or K then AutC is equal to V or K,
respectively.

Next, we give a result on integral (i.e. irreducible and reduced) curves invariant
under each of the groups above. We again find all degrees of such curves:

Theorem 1.3. Let d be a positive integer.

(1) There exists an integral projective plane curve of degree d invariant under
V if and only if d is a multiple of 6, d ̸= 18 and d ̸= 24.

(2) There exists an integral projective plane curve of degree d invariant under
I if and only if d is even and is neither 4, 8 nor 14.

(3) There exists an integral projective plane curve of degree d invariant under
K if and only if d is even and is neither 2, 8, 12, 16 nor 22.
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We prove these results in the following way. The groups V, I and K have
been classically well studied as reflection groups. (For example, some results are
summarized in [8].) The invariant rings were studied for A6 in [9] and for PSL(2,F7)
in [7] around the end of the 19th century. By regarding A5 as a subgroup of A6,
we can give the invariant ring of A5. In general, for a subgroup G of PGL(3,C),
we note that a G-invariant curve is defined by a semi-invariant polynomial under a
fixed lift G̃ of G in GL(3,C). If G is a simple primitive finite subgroup of PGL(3,C),
which is conjugate to V, I or K, then we can take a lift G̃ such that any G-invariant
curve is defined by a polynomial invariant under G̃.

For a given degree d, we can thus describe the linear system (dG)d of G-invariant
curves of degree d using explicitly given invariant polynomials FG, ΦG and ΨG. We
translate conditions on the base locus of (dG)d to congruence relations on d, and we
obtain all degrees of nonsingular invariant curves for each group G. Then we look
at singularities of a general element of (dG)d with the help of Bertini’s theorem and
study when it is nonsingular at the base points.

We next consider integral curves. The problem is to show that there exist integral
invariant curves of degree d in the theorem. In this case, it can be shown that a
general element C is reduced in the same way. Since any nonsingular plane curve is
integral, it suffices to consider degrees d for which (dG)d has only singular elements.
It turns out that the singular points form a G-orbit, hence are of the same type. We
can also give the number of singularities and the type of singularities of a general
member. From this information, we see, if a general element were reducible, it
would have too much singularity.

The organization of this paper is as follows. In Section 2, we recall a number
of facts needed for the discussion of invariant curves. We give a description of
homogeneous polynomials invariant under the group V, I or K following [2] and [3].
In Section 3, we first give a condition for the existence of a nonsingular invariant
curve in a form that is valid for any of V, I and K, and then translate these
conditions for each group. In Section 4, we study integral invariant curves. We
look at singularities of a general invariant curve of a degree where there is no
nonsingular invariant curve and prove that it cannot be reducible. In Appendix,
we give some codes in SINGULAR to check a few calculations in Section 2.

2. Simple primitive finite subgroups of PGL(3,C) and invariant curves

In this section, we give a description of the groups V, I and K, their invariant
rings and the invariant curves.

First, we give basic definitions related to invariant homogeneous polynomials.

Notation. Let x be the coordinate (x, y, z) in C3. We often identify x with the

row vector (x y z) or the column vector

⎛

⎝
x
y
z

⎞

⎠.

Definition 2.1. (1) For a matrix A ∈ GL(3,C) and a homogeneous polyno-
mial f(x, y, z) ∈ C[x, y, z], we set

(fA)(x, y, z) := f
(
xtA

)
= f (Ax) .

Note that this is an action from the right.
(2) Let G be a subgroup of GL(3,C). We say that a homogeneous polynomial

f is semi-invariant under G if there exists a group homomorphism χ : G →
C× such that (fA)(x, y, z) = χ(A)f(x, y, z) for any A ∈ G. In particular,
if χ is trivial, then we say that f is invariant under G (or G-invariant).
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(3) For an equivalence class of a matrix [A] ∈ PGL(3,C) and a point (a : b :
c) ∈ P2, we put

[A] · (a : b : c) :=

⎡

⎣A ·

⎛

⎝
a
b
c

⎞

⎠

⎤

⎦ .

Then we identify PGL(3,C) with the automorphism group AutP2.
(4) Let C be a projective plane curve, by which we mean a nonzero effective

divisor of P2. For a subgroup G < PGL(3,C), we say that C is invariant
under G (or G-invariant) if σ∗C = C for any σ ∈ G. In particular, if C is
reduced, then C is invariant under G if G · C = C as a subset of P2.

Notation. We write the zero set

V (f) := {P ∈ P2 | f(P ) = 0}
for a homogeneous polynomial f(x, y, z) ∈ C[x, y, z].

Remark 2.2. Let G be a subgroup of PGL(3,C) and π : SL(3,C) → PGL(3,C)
denote the natural homomorphism. If a subgroup G̃ of SL(3,C) satisfies π(G̃) = G,
then we call G̃ a lift of G.

Assume that C is a projective plane curve defined by a homogeneous polynomial
f ∈ C[x, y, z], i.e., C = V (f). Then C is invariant under G if and only if f is
semi-invariant under G̃.

The groups which we are going to consider are simple finite subgroups of PGL(3,C).
The following proposition holds.

Proposition 2.3. Let G be a finite subgroup of PGL(3,C) and π : SL(3,C) →
PGL(3,C) the natural surjective homomorphism.

If G is simple and nonabelian, then either there is no nontrivial group homomor-
phism π−1(G) → C× or π splits.

Proof. Since G is simple and nonabelian, it has no nontrivial abelian character. In
fact, the assertion holds under the latter condition. Let ι : Z/3Z → G̃ be the map
a '→ ρaI3 where ρ = e

2πi
3 and χ : π−1(G) → C× a homomorphism.

We define a homomorphism ϕ : Z/3Z → C× by ϕ = χ ◦ ι. Then we have a
commutative diagram

1 !! Z/3Z ι !!

ϕ

""■
■■

■■
■■

■■
π−1(G)

π !!

χ

##

G !! 1,

C×

where the first row is exact.
First, assume that ϕ is trivial. Then χ induces a group homomorphism χ : G →

C×. By assumption, χ is trivial. Hence, χ is trivial.
On the other hand, suppose that ϕ is nontrivial. This means Im ι ̸⊂ Kerχ,

hence, Im ι ∩ Kerχ = 1, and π|Kerχ is injective. The quotient group G/π(Kerχ)
is isomorphic to Imχ/ Imϕ which is abelian. Since G has no nontrivial abelian
quotient, we obtainG = π(Kerχ). Therefore, π induces an isomorphism Kerχ ∼= G,
and π is split. !

From this proposition, we obtain the following lemma.

Lemma 2.4. Let G be a simple and nonabelian finite subgroup of PGL(3,C).
There is a lift G̃ of G such that any invariant curve under G is defined by a
homogeneous polynomial invariant under G̃.
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Proof. Let π : SL(3,C) → PGL(3,C) be the natural surjective homomorphism. If
π−1(G) has no nontrivial abelian character, then we take G̃ to be π−1(G). Other-
wise, π−1(G) → G splits and there is a subgroup G̃ of π−1(G) such that G̃ ∼= G.
Then any G-invariant curve is defined by a homogeneous polynomial invariant un-
der G̃. !

Next, we recall the definition of a primitive subgroup of PGL(n,C).

Definition 2.5. (1) Let G be a subgroup of GL(n,C). Then G is called an
imprimitive subgroup of GL(n,C) if there exists a direct sum decomposition
Cn = V1⊕ · · ·⊕Vr with r > 1 and dimVi > 0 satisfying the following: Take
any transformation A ∈ G. Then there is a permutation σ ∈ Sr such that
A · Vs = Vσ(s) for any s. Otherwise, G is called a primitive subgroup of
GL(n,C).

(2) Let G be a subgroup of PGL(n,C). Then G is called a primitive subgroup
of PGL(n,C) if there exists a lift G̃ of G which G̃ is a primitive subgroup
of GL(n,C).

Remark 2.6. Let G is a finite primitive subgroup of PGL(3,C). Then G is con-
jugate to the Valentiner group V, the icosahedral group I, the Klein group K, the
Hessian group H216 of order 216 or its subgroup of order 36 or 72. In this groups,
V, K and H216 are maximal.

Let G′ be a group containing G. From the definition, we easily see that G′ is
also a finite primitive subgroup of PGL(3,C). Hence, if G′ contains V (resp. K or
H216), then G′ is equal to V (resp. K or H216).

In the following subsections, we recall basic facts on the Valentiner group V , the
icosahedral group I and the Klein group K. Specifically, we give generators of a
certain lift G̃ of G in GL(3,C) and describe the invariant ring for each of the groups
G = V, I or K.

2.1. The Valentiner group V. In this subsection, we give a description of the
Valentiner group and its invariant homogeneous polynomials according to [2].

First, we give generators of the Valentiner group. We define the matrices Z, T ,
Q and P by

Z :=

⎛

⎝
−1 0 0
0 1 0
0 0 −1

⎞

⎠ , T :=

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ ,

Q :=

⎛

⎝
1 0 0
0 0 ρ2

0 −ρ 0

⎞

⎠ and P :=
1

2

⎛

⎝
1 τ−1 −τ

τ−1 τ 1
τ −1 τ−1

⎞

⎠

where ρ = e
2
3πi and τ =

1 +
√
5

2
.

We define V to be the subgroup of PGL(3,C) generated by [Z], [T ], [Q] and
[P ]. We call this group V the (projective) Valentiner group. It is known that V is
isomorphic to the alternating group A6.

Remark 2.7. The matrices Z, T , Q and P are related to symmetry groups of
regular polyhedra. (See [2, Subsection 2B].) In particular, the group Ĩ generated
by the matrices Z, T and P in SL(3,R) is the symmetry group of an icosahedron
in R3. It is called the icosahedral group and is isomorphic to the alternating group
A5.

We define I to be the subgroup of PGL(3,C) generated by [Z], [T ] and [P ].
Then I is isomorphic to Ĩ.
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The matrices Z, T , Q and P are contained in SL(3,C) and generate the preimage
Ṽ of V in SL(3,C). We call this group Ṽ the linear Valentiner group.

Next, we study invariant curves under the Valentiner group.

Lemma 2.8. Any projective plane curve invariant under V is defined by a homo-
geneous polynomial invariant under Ṽ .

Proof. The alternating group A6 has no faithful 3-dimension representation. Thus
the natural homomorphism Ṽ → V cannot split, and Ṽ has no nontrivial abelian
character. By the arguments of Lemma 2.4, the assertion holds. !

By this lemma, we have only to consider homogeneous polynomials invariant
under Ṽ.

Let PṼ(t) be the Poincaré series of the invariant ring C[x, y, z]Ṽ . By Molien’s
theorem, we obtain

PṼ(t) =
1− t90

(1− t6)(1− t12)(1− t30)(1− t45)
.

Now, we give Ṽ-invariant and algebraically independent homogeneous polynomials
of degrees 6, 12 and 30 and a Ṽ-invariant homogeneous polynomial of degree 45.

First, we define six quadratic homogeneous polynomials:

C1(x) := x2 + y2 + z2,

C2(x) := C1(Q
−1x) = x2 + ρ2y2 + ρz2,

C3(x) := C2(P
−4x)

=
1

4

{
(−1−ρ+τ+2ρτ)x2 + (1−2τ−ρτ)y2 + (ρ+τ−ρτ)z2

+(−4−2ρ+2τ−ρτ)xy + (−2+2ρ−2τ−4ρτ)yz + (2+4ρ−4τ−2ρτ)zx} ,

C4(x) := C2(P
−3x)

=
1

4

{
(1−2τ−ρτ)x2 + (ρ+τ−ρτ)y2 + (−1−ρ+τ+2ρτ)z2

+(−2+2ρ−2τ−4ρτ)xy + (2+4ρ−4τ−2ρτ)yz + (−4−2ρ+2τ−2ρτ)zx} ,

C5(x) := C2(P
−2x)

=
1

4

{
(1−2τ−ρτ)x2 + (ρ+τ−ρτ)y2 + (−1−ρ+τ+2ρτ)z2

+(−2+2ρ−2τ−4ρτ)xy + (−2−4ρ+4τ+2ρτ)yz + (4+2ρ−2τ+2ρτ)zx}
and

C6(x) := C2(P
−1x)

=
1

4

{
(−1−ρ+τ+2ρτ)x2 + (1−2τ−ρτ)y2 + (ρ+τ−ρτ)z2

+(−4−2ρ+2τ−ρτ)xy + (2−2ρ+2τ+4ρτ)yz + (−2−4ρ+4τ+2ρτ)zx} .

Since Z, T and P are orthogonal matrices, C1(x, y, z) is invariant under I. We

have (V : I) = 6, and it turn out that, for any A ∈ Ṽ, there exist indices k and
j = 1, · · · , 6 such that CA

i
= ρkCj , and the Valentiner group V permutes the six

conics.
The Valentiner group V fixes the sextic homogeneous polynomial

FV(x, y, z) :=
6∑

n=1

(Cn(x, y, z))
3 .
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This is a homogeneous polynomial of degree 6 invariant under Ṽ. (See Appendix
A.1 for the explicit form in the “Wiman coordinate”.) We define the homogeneous
polynomial ΦV(x, y, z) of degree 12 as the Hessian of FV , i.e.,

ΦV(x, y, z) := detH(FV) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2FV
∂x2

∂2FV
∂x∂y

∂2FV
∂x∂z

∂2FV
∂y∂x

∂2FV
∂y2

∂2FV
∂y∂z

∂2FV
∂z∂x

∂2FV
∂z∂y

∂2FV
∂z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Furthermore, the homogeneous polynomial ΨV(x, y, z) of degree 30 is defined as
the border Hessian of FV and ΦV , i.e.,

ΨV(x, y, z) := detBH(FV ,ΦV) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ΦV
∂x

H(FV)
∂ΦV
∂y

∂ΦV
∂z

∂ΦV
∂x

∂ΦV
∂y

∂ΦV
∂z

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The homogeneous polynomial XV(x, y, z) of degree 45 is defined as the Jacobian of
(FV ,ΦV ,ΨV), i.e.,

XV(x, y, z) := det J(FV ,ΦV ,ΨV) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂FV
∂x

∂FV
∂y

∂FV
∂z

∂ΦV
∂x

∂ΦV
∂y

∂ΦV
∂z

∂ΨV
∂x

∂ΨV
∂y

∂ΨV
∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is easy to see that ΦV , ΨV and XV are invariant under Ṽ.

2.2. The icosahedral group I. In this subsection, we give the invariant ring for
the icosahedral group I.

First, from Remark 2.7, we recall the definition of the icosahedral group Ĩ,
isomorphic to A5 and that I is the isomorphic image of Ĩ in PGL(3,C).

Next, we look at invariant curves under I. It suffices to consider invariant
homogeneous polynomials under Ĩ by the following lemma.

Lemma 2.9. Any projective plane curve invariant under I is defined by a homo-
geneous polynomial invariant under Ĩ.

Proof. This follows from the arguments of Lemma 2.4 and the fact that Ĩ ∼= I ∼= A5

is simple and nonabelian. !

The Poincaré series of Ĩ is

PĨ(t) =
1− t30

(1− t2)(1− t6)(1− t10)(1− t15)
.
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We explicitly give Ĩ-invariant and algebraically independent homogeneous polyno-
mials of degree 2, 6 and 10 and a Ĩ-invariant homogeneous polynomial of degree
15.

As we saw in the previous subsection, the homogeneous polynomial C1 is invari-
ant under I ⊂ V . We define the quadratic homogeneous polynomial

FI(x, y, z) := C1(x, y, z) = x2 + y2 + z2.

In addition, FV is invariant under V, hence under I. We define the sextic homoge-
neous polynomial

ΦI(x, y, z) := FV(x, y, z).

As in the case of the Valentiner group, the homogeneous polynomial ΨI of degree
10 is defined as the border Hessian of FI and ΦI , i.e.,

ΨI(x, y, z) := detBH(FI ,ΦI)

and the homogeneous polynomial XI of degree 15 is defined as the Jacobian of
(FI ,ΦI ,ΨI), i.e.,

XI(x, y, z) := det J(FI ,ΦI ,ΨI).

Then ΨI and XI are invariant under Ĩ.

2.3. The Klein group K. In this subsection, we describe an embedding K of
the Klein group PSL(2,F7) to PGL(3,C) and describe homogeneous polynomials
invariant under K following [3].

The group PSL(2,F7) has a faithful 3-dimensional representation PSL(2,F7) →
GL(3,C). By [3, Subsection 1.1], we may take an embedding for which the image
K̃ is generated by three matrices

S :=

⎛

⎝
ζ4 0 0
0 ζ2 0
0 0 ζ

⎞

⎠ , T :=

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

and

R := − 1√
−7

⎛

⎝
ζ − ζ6 ζ2 − ζ5 ζ4 − ζ3

ζ2 − ζ5 ζ4 − ζ3 ζ − ζ6

ζ4 − ζ3 ζ − ζ6 ζ2 − ζ5

⎞

⎠

where ζ := e
2πi
7 . Let K be the image of K̃ by the projection SL(3,C) → PGL(3,C).

Then K is isomorphic to K̃.
Next, we study invariant curves under K. We see the following lemma in the

same way of Lemma 2.9.

Lemma 2.10. Any projective plane curve invariant under K is defined by a ho-
mogeneous polynomial invariant under K̃.

The Poincaré series PK̃(t) is given by

PK̃(t) =
1− t42

(1− t4)(1− t6)(1− t14)(1− t21)
.

We explicitly give K̃-invariant and algebraically independent homogeneous polyno-
mials of degrees 4, 6 and 14 and a K̃-invariant homogeneous polynomial of degree
21.

The homogeneous polynomial FK of degree 4 is defined by

FK(x, y, z) := x3y + y3z + z3x.

Remark 2.11. The curve K4 defined by FK is called the Klein quartic. The
automorphism group of K4 is isomorphic to PSL(2,F7), which has been known
since [7]. The group PSL(2,F7) ∼= AutK4 is called the Klein group.
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We can give other invariant homogeneous polynomials as in the case of the
Valentiner group. We define the homogeneous polynomials ΦK, ΨK and XK of
degree 6, 14 and 21, respectively, by

ΦK(x, y, z) := − 1

54
detH(FK),

ΨK(x, y, z) := −1

9
detBH(FK,ΦK)

and
XK(x, y, z) := det J(FK,ΦK,ΨK).

One can see that FK, ΦK, ΨK and XK are invariant under K̃.

2.4. The invariant curves. In this subsection, we summarize some facts related
to invariant homogeneous polynomials in a form that is convenient for later use.

Let G be the Valentiner group V, the icosahedral group I or the Klein group K.
If G = V, for example, then FG denotes the V-invariant homogeneous polynomial
FV , and so on. Take G̃ to be the corresponding lift Ṽ, Ĩ or K̃.

First, we tabulate the order ofG and the degrees of the homogeneous polynomials
FG, ΦG, ΨG and XG for each group G.

Table 1. The degrees of invariants.

G #G degFG degΦG degΨG degXG

V 360 6 12 30 45
I 60 2 6 10 15
K 168 4 6 14 21

By Lemmas 2.8, 2.9 and 2.10, we obtain the following.

Lemma 2.12. Any projective plane curve invariant under G is defined by a ho-
mogeneous polynomial invariant under G̃.

Next, we have the following lemma on the invariant ring and invariant curves
for each group.

Lemma 2.13. For each of groups G = V, I and K, the homogeneous polynomials
FG, ΦG, ΨG and XG satisfy the following:

(0) C[x, y, z]G̃ = C[FG,ΦG,ΦG, XG].
(1) The homogeneous polynomials FG,ΦG and ΨG are algebraically indepen-

dent over C.
(2) The homogeneous polynomial X2

G is in C[FG,ΦG,ΨG].
(3) The curve V (XG) is a union of degXG lines. Thus it is reducible.
(4) V (FG) ∩ V (ΦG) ∩ V (ΨG) = ∅.
(5) The curves V (FG), V (ΦG) and V (ΨG) are nonsingular.
(6) The curves V (FG) and V (ΦG) meet transversally.
(7) The sets V (FG) ∩ V (ΦG) and V (FG) ∩ V (ΨG) are G-orbits.

Proof. First, we have the claims (0) to (3) for G = V by [2, Subsection 2E] and for
G = K by [3, Subsection 1.2].

We show the claims (0) to (3) for G = I.
The claim (1) follows from the fact the Jacobian of (FI ,ΦI ,ΨI) (i.e. XI) is

nonzero. We checked the latter using the computer algebra system SINGULAR.
(See Appendix A.2.) Moreover, from the Poincaré series, we also see the claim (0).

Any invariant homogeneous polynomial under ±Ĩ is contained in C[FI ,ΦI ,ΨI ]
by [ST, 5.1]. Since X2

I is invariant under ±Ĩ, we obtain the claim (2).
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Next, we prove the claim (3). There are 15 elements of order 2 in I. These
elements fix pairwise distinct lines in P2. Let C be the union of these 15 lines.
Then the curve C is invariant under I. On the other hand, since FI , ΦI and ΨI
are of even degrees, any invariant homogeneous polynomial of degree 15 under Ĩ is
αXI with α ∈ C. Therefore, the curve V (XI) is equal to C.

We can check the claims (4) to (6) using SINGULAR. (See Appendix A.1 to
A.3.) For the claim (4), we calculate the radical of the ideal generated by FG,
ΦG and ΨG. Then we see that it is equal to the ideal ⟨x, y, z⟩ generated by x,
y and z. Hence, the equation FG = ΦG = ΨG = 0 has only the trivial solution
(x, y, z) = (0, 0, 0).

For the claim (5), we can check that the radical of the ideal generated by the

derivatives

(
∂FG

∂x

)
,

(
∂FG

∂y

)
and

(
∂FG

∂z

)
is equal to the ideal ⟨x, y, z⟩. Thus

V (FG) is nonsingular. In the same way, we can check that V (ΦG) and V (ΨG) are
nonsingular.

For the claim (6), we compare the ideal generated by FG and ΦG with its radical.
We can check that two ideals are equal. Thus V (FG) and V (ΦG) meet transversally.

Finally, we prove the claim (7). Let C = V (FG), D1 = V (ΦG) and D2 = V (ΨG).
Since the curves C, D1 and D2 are invariant under G, G acts on each of the set
C ∩D1 and C ∩D2. Since the set (C ∩D1) ∩ (C ∩D2) is empty by (4), we may

write C ∩ D1 =
m∐

i=1

Oi and C ∩ D2 =
m+n∐

i=m+1

Oi where O1, · · · , Om+n are distinct

G-orbits. We can take a natural morphism C → C/G, and recall the Hurwitz’s

theorem. Then the ramification index at P ∈ Oi is

(
#G

#Oi
− 1

)
and we see

m∑

i=1

{
#Oi ·

(
#G

#Oi
− 1

)}
= m#G−#(C ∩D1)

and
m+n∑

i=m+1

{
#Oi ·

(
#G

#Oi
− 1

)}
= n#G−#(C ∩D2).

Hence, we obtain the inequality

2g(C)− 2 ≥ #G · (2g(C/G)− 2)

+ (m#G−#(C ∩D1)) + (n#G−#(C ∩D2))

≥ (m+ n− 2)#G− degFG(degΦG + degΨG)

since g(C/G) ≥ 0, #(C ∩D1) ≤ degFG degΦG and #(C ∩D2) ≤ degFG degΨG.
For each group G = V, I or K, the genus g(C) is 10, 0 or 3. If m+n−2 ≥ 1, then it
is straightforward to see that the inequality does not hold. Therefore, m = n = 1,
i.e., C ∩D1 and C ∩D2 are G-orbits. !
Remark 2.14. By [2, Subsection 4B], the set V (FV) ∩ V (ΦV) is a V-orbit O72 of
order 72 and the set V (FV)∩ V (ΨV) is a V-orbit O90 of order 90, which proves the
claims (4), (6) and (7) for G = V.

Furthermore, we can drop XG in considering irreducible invariant curves.

Proposition 2.15. If C is an irreducible curve invariant under G, then degC is
even. In particular, any integral curve invariant under G is defined by a homoge-
neous polynomial in C[FG,ΦG,ΨG].

Proof. Take a curve C of degree d invariant under G. By Lemma 2.12, C is defined
by a homogeneous polynomial H of degree d invariant under G̃. By Lemma 2.13
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(0), H is contained in C[FG,ΦG,ΨG, XG]. We note that the degrees of FG, ΦG

and ΨG are even and the degree of XG is odd. Assume that d is odd. Then H is
divisible by XG. By Lemma 2.13 (3), the curve V (H) is reducible. Hence, if V (H)
is irreducible, then d is even.

Finally, suppose that C = V (H) is integral. Since the degree of H is even, H is
contained in C[FG,ΦG,ΨG, X2

G] = C[FG,ΦG,ΨG] by Lemma 2.13 (2). !

3. Nonsingular curves whose automorphism groups are simple and
primitive

In this section, we consider nonsingular curves invariant under G = V, I or K.
By Proposition 2.15, any such curve is defined by a homogeneous polynomial in
C[FG,ΦG,ΨG].

The space of homogeneous polynomials of degree d corresponds to the complete
linear system of degree d curves. Since a G-invariant curve is defined by a homo-
geneous polynomial invariant under G̃ by Lemma 2.4, the set of G-invariant curves
of degree d is a linear system. We denote this linear system by (dG)d.

When a group G is fixed, we put a = degFG, b = degΦG and c = degΨG. For
any group G, we see that a < b < c.

Remark 3.1. By Proposition 2.15, it suffices to consider the case of an even degree
d. In this case, the linear system (dG)d corresponds to the linear space generated
by F iΦjΨk with d = ai + bj + ck. We often identify an element of (dG)d with
a homogeneous polynomial defining the curve, which can be written as a linear
combination of F iΦjΨk with d = ai+ bj + ck.

In this section, we find a necessary and sufficient condition on d for the exis-
tence of nonsingular elements of (dG)d. First, we translate the condition to an
arithmetical one.

Proposition 3.2. Let d ≥ c. There is a nonsingular element of (dG)d if and only
if all of the following hold:

(1) There is a pair of nonnegative integers (j, k) such that d = bj + ck.
(2) There is a pair of nonnegative integers (i, k) such that d = ai+ ck.
(3) There is a pair of nonnegative integers (i, j) such that d = ai+ bj.
(4) d ≡ 0, a or b mod c.
(5) d ≡ 0, a or c mod b.
(6) d ≡ 0, b or c mod a.

If these conditions are satisfied, then a general member of (dG)d is nonsingular.

To prove this proposition, we show that each of the conditions (1) to (6) is
equivalent to a certain condition on the singularity of a general element of the
linear system.

Notation. In this section, when G is fixed, we define F1 := FG, F2 := ΦG and
F3 := ΨG. Then take an := degFn for n = 1, 2 and 3, i.e., a1 = a, a2 = b and
a3 = c.

Lemma 3.3. Let d be a positive integer and take indices l, m and n such that
{l,m, n} = {1, 2, 3}. There exists an element of (dG)d which is not divisible by Fl

if and only if there is a pair of nonnegative integers (s, t) such that d = ams+ ant.

Proof. First, we clearly see the assumption if (dG)d is empty.
Assume that there exists an element of (dG)d which is not divisible by Fl. Then

F s
mF t

nF
0
l = F s

mF t
n belongs to (dG)d for some s, t ≥ 0. Thus there is a pair of

nonnegative integers (s, t) with ams+ ant = d. Conversely, if a pair of nonnegative
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integers (s0, t0) satisfies d = ams0 + ant0, then F s0
m F t0

n belongs to (dG)d, and is not
divisible by Fl. !

Lemma 3.4. Take indices l,m and n such that {l,m, n} = {1, 2, 3} and let d ≥
max{am, an} be an integer. Then the linear system (dG)d has an element of the
form F s

mF t
nF

u
l satisfying s+ t ≤ 1 if and only if d ≡ 0, am or an mod al.

Proof. First, assume that an element of the form F s
mF t

nF
u
l satisfying s+ t ≤ 1 is in

(dG)d. Since ams+ ant+ alu = d, we see that d ≡ ams+ ant mod al. Therefore,
d ≡ 0, am or an mod al

Conversely, if d is divisible by al, then (dG)d clearly has an element of the form

F
d
al
l . If d satisfies the condition (i) or (ii), then there is an integer u such that

d = alu + am or d = alu + an for each case, and u ≥ 0 since d ≥ max{am, an}.
Thus an element of the form FmFu

l or FnFu
l is contained in (dG)d for such u. !

By Lemma 3.3, we can translate the conditions (1), (2) and (3) into conditions
on the base points of (dG)d. Moreover, by Lemma 3.4, we can also translate the
conditions (4), (5) and (6). Now we can prove Proposition 3.2.

Proof. (The proof of Proposition 3.2.)
First, we assume that one of the conditions (1) to (6) does not hold. Suppose

that (dG)d is nonempty and show that any element of (dG)d is singular. (If it is
empty, then there is no nonsingular element.)

If d = c, then it is easy to see the conditions (1) to (3) by calculation for each
group. Suppose that d > c. By Lemma 3.3, if d does not satisfy one of the
conditions (1), (2) and (3), then any element of (dG)d is divisible by FG,ΦG or ΨG.
Since d > c, any element of (dG)d is reducible or nonreduced, hence it’s singular.

Assume that one of the conditions (4), (5) and (6) does not hold. Then we can
take a set of indices {l,m, n} = {1, 2, 3} such that d does not satisfy d ≡ 0, am or
an mod al. Let x1 = x, x2 = y and x3 = z. The homogeneous polynomial H is a
linear combination of

Ts,t,u := F s
l F

t
mFu

n

with d = als+ amt+ anu. The derivative of Ts,t,u is

∂

∂xr
Ts,t,u = s

(
∂Fl

∂xr

)
Ts−1,t,u + t

(
∂Fm

∂xr

)
Ts,t−1,u + u

(
∂Fn

∂xr

)
Ts,t,u−1

for r = 1, 2 and 3. By the assumption on d and Lemma 3.4, H is a linear combi-

nation of Ts,t,u with t + u ≥ 2. It is easy to see that H and its derivatives
∂

∂xr
H

vanishes on V (Fm)∩ V (Fn). Therefore, the curve V (H) is singular at any point in
V (Fm) ∩ V (Fn).

Now we assume that all of the conditions (1) to (6) hold and show that a general
element of (dG)d is nonsingular. By Bertini’s theorem, a general member of the
linear system (dG)d can have singular points only at the base points. We will prove
that it is also nonsingular there.

By the conditions (1) to (3) and Lemma 3.3, the base locus Λ satisfies

Λ ⊂ (V (ΦG) ∪ V (ΨG)) ∩ (V (FG) ∪ V (ΨG)) ∩ (V (FG) ∪ V (ΦG))

= (V (FG) ∩ V (ΦG)) ∪ (V (FG) ∩ V (ΨG)) ∪ (V (ΦG) ∩ V (ΨG)).

Thus take any pair {m,n} and any point P ∈ V (Fm) ∩ V (Fn), and we show that
a general element H of (dG)d either does not certain P or is nonsingular at P .

Let l be an index satisfying {l,m, n} = {1, 2, 3}. By Lemma 3.4 and the condi-
tions (4), (5) and (6), (dG)d has an element of the form E := F s

l F
t
mFu

n with t+u ≤ 1.
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If t+ u = 0, i.e., an element of the form F
d
al
l is contained in (dG)d, then a general

member is nonsingular does not pass through P since V (FG)∩V (ΦG)∩V (ΨG) = ∅.
Suppose that t + u = 1. Let p be m or n according as t = 1 or u = 1. The

derivative of E is

∂

∂xr
E =

(
∂Fp

∂xr

)
F

d−ap
al

l +
d− ap
al

(
∂Fl

∂xr

)
FpF

d−ap
al

−1

l

for r = 1, 2 and 3. By Lemma 2.13 (4), Fl(P ) is nonzero. Moreover, since V (Fp)

is nonsingular by Lemma 2.13 (5), there is an index r such that
∂Fp

∂xr
is nonzero at

P . Hence, the derivative
∂

∂xr
E does not vanish at P for an index r. Therefore, a

general element is nonsingular at P . !
From the proof, we also see the next lemma, which will be used in Section 4.

Lemma 3.5. Let d ≥ c. If the conditions (1), (2), (3), (5) and (6) hold of Propo-
sition 3.2, then a general member of (dG)d can be singular only at the any point in
V (FG) ∩ V (ΦG).

Fix G = V, I or K. From the explicit values of a, b and c, we obtain a necessary
and sufficient condition on d ≥ c for which there exists a nonsingular element of
(dG)d invariant under G by Proposition 3.2. In the following subsections, we look
at the result for each group G in detail.

3.1. The Valentiner group V. In this subsection, we find degrees d of nonsingular
curves whose automorphism groups are the Valentiner group V. We note that d
must be a multiple of 6 for a V-invariant irreducible curve of degree d to exist. We
first consider the case d ≤ 30.

Notation. Let f1, · · · , fr be homogeneous polynomials of the same degree. We
write the linear system generated by f1, · · · , fr as ⟨f1, · · · , fr⟩.

Lemma 3.6. If d is 18 or 24, then any element of (dV)d is reducible or nonreduced.

Proof. We have
(dV)18 =

〈
F 3
V , FVΦV

〉

and
(dV)24 =

〈
Φ2

V , F
2
VΦV , F

4
V
〉
.

We see that any element of (dV)18 is divisible by FV . On the other hand, a general
element of (dV)24 is defined by a homogeneous polynomial which can be factorized
as

α(ΦV − σ1F
2
V)(ΦV − σ2F

2
V).

Therefore, any element of (dV)24 is reducible. !
Theorem 3.7. There exists a nonsingular projective plane curve of degree d in-
variant under the Valentiner group V if and only if d ≡ 0, 6 or 12 mod 30.

Furthermore, if C is a nonsingular projective plane curve whose automorphism
group contains the Valentiner group V, then the automorphism group of C is V.

Proof. For d = 6, 12 and 30, we have the nonsingular curves V (FV), V (ΦV) and
V (ΨV) by Lemma 2.13 (5). By Lemma 3.6, the theorem is satisfied for d ≤ 30.

Let d > 30. By Proposition 3.2, there is a nonsingular element of (dV)d if and
only if all of the following hold:

(1) There is a pair of nonnegative integers (j, k) such that d = 12j + 30k.
(2) There is a pair of nonnegative integers (i, k) such that d = 6i+ 30k.
(3) There is a pair of nonnegative integers (i, j) such that d = 6i+ 12j.
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(4) d ≡ 0, 6 or 12 mod 30.
(5) d ≡ 0, 6 or 30 mod 12.
(6) d ≡ 0, 12 or 30 mod 6.

Then the condition (4) is exactly the arithmetic condition we are considering, and
so we have d ≡ 0, 6 or 12 mod 30 if there is a nonsingular element of (dV)d.

Assume the condition (4). Then we show that the conditions (1), (2), (3), (5)
and (6) hold and hence that there is a nonsingular element of (dV)d. Each of the
conditions (2), (3), (5) and (6) is equivalent to the condition that d is divisible by
6, and so is satisfied. Thus it suffices to show that the condition (4) implies (1).

If d ≡ 0 mod 30, then there is a positive integer k0 such that d = 30k0. If d ≡ 12
mod 30, then there is a positive integer k1 such that d = 12 · 1 + 30k1. If d ≡ 6

mod 30, then k2 :=
d− 36

30
is a nonnegative integer and d satisfies d = 12 ·3+30k2.

Therefore, the condition (1) also holds.
Finally, we assume that C be a nonsingular projective plane curve of degree d

invariant under V. Then V is a subgroup of the automorphism group AutC. By
Remark 2.6, AutC is equal to V. !

3.2. The icosahedral group I. In this subsection, we find the necessary and
sufficient condition on d for the existence of a nonsingular curve of degree d invariant
under I. By Proposition 2.15 and Table 1, we note that d must be even for an I-
invariant irreducible curve of degree d to exist. First, we look at the case of low
degrees. (For d = 14, we will use in Section 4.)

Lemma 3.8. (1) Any element of (dI)4 is nonreduced.
(2) If d = 8 or 14, then any element of (dI)d is reducible or nonreduced.

Proof. We have

(dI)4 =
〈
F 2
I
〉
,

(dI)8 =
〈
FIΦI , F

4
I
〉

and

(dI)14 =
〈
F 2
IΨI , FIΦ

2
I , F

4
IΦI , F

7
I
〉
.

For d = 8 or 14, we clearly see that any element of (dI)d is divisible by FI . Thus
the claims holds. !

Using Proposition 3.2, we show the following theorem:

Theorem 3.9. There exists a nonsingular projective plane curve of degree d in-
variant under the icosahedral group I if and only if d ≡ 0, 2 or 6 mod 10.

Proof. For d = 2, 6 and 10, we have the nonsingular curves V (FI), V (ΦI) and
V (ΨI) by Lemma 2.13 (5). By Lemma 3.8, this theorem holds for d ≤ 10.

Assume that d ≥ 10. By Proposition 3.2, there is a nonsingular element of (dI)d
if and only if all of the following hold:

(1) There is a pair of nonnegative integers (j, k) such that d = 6j + 10k.
(2) There is a pair of nonnegative integers (i, k) such that d = 2i+ 10k.
(3) There is a pair of nonnegative integers (i, j) such that d = 2i+ 6j.
(4) d ≡ 0, 2, 6 mod 10.
(5) d ≡ 0, 2, 10 mod 6.
(6) d ≡ 0, 6, 10 mod 2.

Then the condition (4) is exactly the arithmetic condition we are considering.
Hence, if there is a nonsingular element of (dI)d, then d satisfies that d ≡ 0, 2
or 6 mod 10.
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Assume the condition (4). Then we show that the other conditions (1), (2), (3),
(5) and (6) holds. If d is even, then d clearly satisfies the conditions (2), (3), (5)
and (6). We need to show the condition (1).

If d ≡ 0 mod 10, then there is a positive integer k0 such that d = 10k0. If
d ≡ 6 mod 10, then there is a nonnegative integer k1 such that d = 6 + 10k1.

If d ≡ 2 mod 10, then k2 :=
d− 12

10
is a nonnegative integer and d satisfies that

d ≡ 6 · 2 + 10k2. Therefore, the condition (1) holds. !

Remark 3.10. By Remark 2.6, the icosahedral group I is not a maximal finite
primitive subgroup of PGL(3,C). Therefore, the automorphism group AutC of a
nonsingular curve invariant under I can be bigger than I. In particular, since K,
H216 and its subgroup of order 36 and 72 do not contain a group which is conjugate
to I, AutC is I or is conjugate to V.

3.3. The Klein group K. In this subsection, we consider the case of the Klein
group G = K. By Proposition 2.15 and Table 1, we note that d must be even for
a K-invariant irreducible curve of degree d to exist. First, we obtain the following
lemma for low degrees. (For d = 16 and 22, we will use in Section 4.)

Lemma 3.11. (1) (dK)2 is empty.
(2) Any element of (dK)8 is nonreduced.
(3) If d is 10, 16 or 22, then any element of (dK)d is reducible or nonreduced.
(4) Any element of (dK)12 is singular.

Proof. First, since the minimal degree of K-invariant homogeneous polynomials is
4, the claim (1) clearly holds.

We prove the claim (2). Suppose that d = 8. The linear system (dK)8 is generated
only by F 2

K. Thus any element of (dK)8 is nonreduced.
Next, let d be 10, 16 or 22. Then there is no pair of nonnegative integers (j, k)

such that d = 6j+14k. By Lemma 3.3, any element of (dK)d is divisible by FK. In
particular, it is reducible or nonreduced, and the claim (3) holds.

Finally, we show the claim (4). We can see

(dK)12 =
〈
Φ2

K, F
3
K
〉
.

Thus its element is singular on V (FK) ∩ V (ΦK). !

From Lemma 3.11 and Proposition 3.2, we show the following theorem for the
Klein group.

Theorem 3.12. Let d be a positive integer. There exists a nonsingular projective
plane curve of degree d invariant under the Klein group K if and only if d ≡ 0, 4 or
6 mod 14.

Moreover, if C is a nonsingular projective plane curve whose automorphism
group contains the Klein group K, then the automorphism group of C is K.

Proof. For d = 4, 6 and 14, we have the nonsingular curves V (FK), V (ΦK) and
V (ΨK) by Lemma 2.13 (5). By Lemma 3.11, the claim holds for d ≤ 14.

Let d > 14. By Proposition 3.2, there exists a nonsingular curve of degree d
invariant under K if and only if d satisfies the following conditions:

(1) There is a pair of nonnegative integers (j, k) such that d = 6j + 14k.
(2) There is a pair of nonnegative integers (i, k) such that d = 4i+ 14k.
(3) There is a pair of nonnegative integers (i, j) such that d = 4i+ 6j.
(4) d ≡ 0, 4, 6 mod 14.
(5) d ≡ 0, 4, 14 mod 6.
(6) d ≡ 0, 6, 14 mod 4.
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Then the condition (4) is exactly the arithmetic condition we are considering. If
there is a nonsingular element of (dK)d, then the condition (4) holds.

Assume the condition (4). We show that the other conditions (1), (2), (3), (5)
and (6) hold. First, we easily see that the conditions (3), (5) and (6) hold for even
d ≥ 4.

If d ≡ 0 or 6 mod 14, then there clearly exists a pair of nonnegative integers

(j, k) with d = 6j + 14k. If d ≡ 4 mod 14, then k1 :=
d− 18

14
is a nonnegative

integer and d satisfies d = 3 · 6 + 14k1. Thus the condition (1) holds.
If d ≡ 0 or 4 mod 14, then there clearly exists a pair of nonnegative integers

(i, k) such that d = 4i+ 14k. If d ≡ 6 mod 14, then k2 :=
d− 20

14
is a nonnegative

integer and d satisfies d = 5 · 4 + 14k2. Hence, the condition (2) holds.
Finally, we assume that C is a nonsingular projective plane curve invariant under

the Klein group K. Then K is a subgroup of AutC. By Remark 2.6, we have
AutC = K. !

4. Integral curves invariant under a simple primitive group

In this section, we find integral (i.e. irreducible and reduced) curves invariant
under G = V, I or K. By Theorem 3.7, Theorem 3.9 and Theorem 3.12, we know
in which degree there is a nonsingular curve invariant under G. Such a curve is in
particular integral. Thus we have only to consider the case where (dG)d is nonempty
and any member of (dG)d is singular: Such a degree d satisfies

d ≡

⎧
⎪⎨

⎪⎩

18 or 24 mod 30 for G = V,
4 or 8 mod 10 for G = I,
2, 8, 10 or 12 mod 14 (d ≥ 8) for G = K.

First, we study the type of singularities of a general invariant curve of a given
degree.

Notation. When positive integers a, b and c are fixed (i.e. we fix the group G),
we define the set

Id :=

{
(i, j)

∣∣∣∣i, j ≥ 0 and
d− (ai+ bj)

c
is a nonnegative integer.

}

for a positive integer d.

Lemma 4.1. Let P be a point in V (FG)∩V (ΦG). Take a general element of (dG)d
defined by a homogeneous polynomial

H(x, y, z) =
∑

(i,j)∈Id

cijFG(x, y, z)
iΦG(x, y, z)

jΨG(x, y, z)
d−(ai+bj)

c .

Then the singularity of the curve V (H) at the point P is analytically equivalent to
the singularity of the formal curve V (h) ⊂ A2 at the origin where the power series
h ∈ C[[s, t]] is defined by

h(s, t) =
∑

(i,j)∈Id

cijλij(s, t)s
itj

where λij is an analytic function such that λij(0, 0) ̸= 0.

Proof. Put x1 = x, x2 = y and x3 = z and suppose that the point P is in {xr ̸= 0}
for an index r = 1, 2 or 3. Take regular functions s :=

FG

xa
r

and t :=
ΦG

xb
r

. By

Lemma 2.13 (6), since the curves V (FG) and V (ΦG) meet transversally at P , this
pair (s, t) is an analytic coordinate system in an affine neighborhood of the origin
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in A2. Since the homogeneous polynomial ΨG dose not vanish on V (FG) ∩ V (ΦG)
by Lemma 2.13 (4), we can take an analytic function λij(s, t) such that

λij(s(x, y, z), t(x, y, z)) =

(
ΨG(x, y, z)

(xr(x, y, z))c

) d−(ai+bj)
c

for any (x, y, z) near P , and λij(0, 0) ̸= 0. Then the formal curve defined by

h(s, t) :=
∑

(i,j)∈Id

cijλij(s, t)s
itj

passes the origin and on a neighborhood at the origin is isomorphic to the curve
V (H) on a neighborhood at P . In particular, since the curve V (H) is a general
element, the singularity type of V (H) at the point P is equal to the singularity
type of V (h) at the origin. !

Assume that d is a positive integer such that there is no nonsingular curve
invariant under G and the linear system(dG)d is nonempty. Let H be a general
homogeneous polynomial of degree d invariant under G.

Lemma 4.2. For each group and any degree d in the following list, all singularities
of the curve V (H) belong to V (FG)∩V (ΦG), and are of the same type given in the
list.

G the condition on d type of singularities
V d ≥ 48 d ≡ 18 mod 30 A1 (node)

d ≥ 54 d ≡ 24 mod 30 A3 (tacnode)
I d ≥ 24 d ≡ 4 mod 10 A3 (tacnode)

d ≥ 18 d ≡ 8 mod 10 A1 (node)
K d ≥ 30 d ≡ 2 mod 14 D5

d ≥ 36 d ≡ 8 mod 14 A5

d ≥ 24 d ≡ 10 mod 14 A1 (node)
d ≥ 12 d ≡ 12 mod 14 A2 (cusp)

Proof. First, a general element of (dK)12 is singular only on V (FK)∩V (ΦK) by the
proof of Lemma 3.11 (4). For the other cases in the list, we have d ≥ c. Let us
prove that the curve V (H) has singular points only on V (FG) ∩ V (ΦG) in these
cases. We recall the conditions (1) to (6) in the proof of Theorem 3.7, Theorem
3.9 and Theorem 3.12. We know that the condition (4) does not hold. By Lemma
3.5, it suffices to show the conditions (1), (2), (3), (5) and (6) hold for each group
G = V, I or K.

Let G = V. Since d is a multiple of 6, the conditions (2), (3), (5) and (6) (cf.
the proof of Theorem 3.7) are satisfied. We prove the condition (1), i.e., there is a
pair of nonnegative integers (j, k) such that d = 12j+30k. If d ≡ 18 mod 30, then

the pair of integers (j, k) =

(
4,

d− 48

30

)
satisfies d = 12j+30k. If d ≡ 24 mod 30,

then (j, k) =

(
2,

d− 24

30

)
satisfies d = 12j + 30k. Hence, the degree d satisfies the

condition (1).
Let G = I. Since d is even, the conditions (2), (3), (5) and (6) (cf. the proof of

Theorem 3.9) hold. We show the condition (1), i.e., there is a pair of integers (j, k)

such that d = 6j + 10k. If d ≥ 24 and d ≡ 4 mod 10, then (j, k) =

(
4,

d− 24

10

)

satisfies d = 6j + 10k. If d ≡ 8 mod 10, then (j, k) =

(
3,

d− 18

10

)
satisfies

d = 6j + 10k. Thus the degree d satisfies the condition (1).
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Let G = K. If the integer d is even and greater than 4, then the conditions
(3), (5) and (6) (cf. the proof of Theorem 3.12) hold. We check the conditions
(1) and (2). To show the condition (1), i.e., that there is a pair of nonnegative
integers (j, k) such that 6j + 14k = d for d ≡ 2, 8, 10 or 12 mod 14, we can take

(j, k) =

(
5,

d− 30

14

)
,

(
6,

d− 36

14

)
,

(
4,

d− 24

14

)
or

(
2,

d− 12

14

)
, respectively. To

show the condition (2), i.e., that there is a pair of nonnegative integers (i, k) such

that 4i+ 14k = d for d ≡ 2, 8, 10 or 12 mod 14, we can take (i, k) =

(
4,

d− 16

14

)
,

(
9,

d− 36

14

)
,

(
6,

d− 24

14

)
or

(
3,

d− 12

14

)
, respectively.

Next, we look at singularities of the curve V (H). Let P be a point in V (FG) ∩
V (ΦG). By Lemma 4.1, the singular type of V (H) at P is analytically equivalent
to the singularity of the formal curve V (h) at the origin where

h(s, t) =
∑

(i,j)∈Id

cijλij(s, t)s
itj

such that cij is general and λij(0, 0) ̸= 0.
We consider the case of nodes. If (1, 1) ∈ Id, then a general element V (h) has a

node at the origin. Since

d− (a+ b)

c
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d− 18

30
(d ≥ 48, d ≡ 18 mod 30 and G = V),

d− 8

10
(d ≥ 18, d ≡ 8 mod 10 and G = I),

d− 10

14
(d ≥ 24, d ≡ 10 mod 14 and G = K)

is a nonnegative integer, a general element of (dV)d is nodal.
We consider the case of cusps. If (3, 0) and (0, 2) ∈ Id and any (i, j) ∈ Id

satisfies 2i + 3j ≥ 6, then we can transform the curve V (h) to the curve defined
by s3 + t2 = 0 by a suitable change of variables. Assume that G = K and d ≡ 12

mod 14. For (i, j) = (3, 0) and (0, 2),
d− (4i+ 6j)

14
is a nonnegative integer, so

(3, 0) and (0, 2) ∈ Id. If (i, j) ∈ Id, then 2i + 3j ≡ 6 mod 7, and we see that
2i+ 3j ≥ 6.

We consider the case of tacnodes. If (4, 0) and (0, 2) ∈ Id and any (i, j) ∈ Id
satisfies i + 2j ≥ 4, then we can transform the curve V (h) to the curve define
by s4 + t2 = 0 by a suitable change of variables. We can obtain this fact if we
interchange i and j. Assume that G = V , d ≥ 54 and d ≡ 24 mod 30. For (i, j) =

(4, 0) or (0, 2),
d− (6i+ 12j)

30
is a positive integer. Thus (4, 0) and (0, 2) ∈ Id.

For any (i, j) ∈ Id, since i + 2j ≡ 4 mod 5, we see i + 2j ≥ 4. Assume that

G = I, d ≥ 24 and d ≡ 4 mod 10. For (i, j) = (2, 0) or (0, 4),
d− (2i+ 6j)

10
is a

nonnegative integer, i.e., (2, 0) and (0, 4) ∈ Id. Any (i, j) ∈ Id satisfies i + 3j ≡ 2
mod 5. By multiplying both side by 2, we have 2i+ j ≡ 4 mod 5, and 2i+ j ≥ 4.

We consider the case of type A5. If (2, 0) and (0, 6) ∈ Id and any (i, j) ∈ Id
satisfies 3i + j ≥ 6, then we can transform the curve V (h) to the curve define by
s2 + t6 = 0 by a suitable change of variables. Assume that G = K, d ≥ 36 and

d ≡ 8 mod 14. For (i, j) = (2, 0) and (0, 6),
d− (4i+ 6j)

14
is a nonnegative integer.

Any (i, j) ∈ Id satisfies 2i+3j ≡ 4 mod 7. By multiplying both side by 5, we have
3i+ j ≡ 6 mod 7, and 3i+ j ≥ 6.



CURVES WHOSE AUTOMORPHISM GROUPS ARE SIMPLE AND PRIMITIVE 19

We consider the case of type D5. If (4, 0) and (1, 2) and any (i, j) ∈ Id satisfies
2i+3j ≥ 8, then we can transform the curve V (h) to the curve define by s4+st2 = 0
by a suitable change of variables. Assume that G = K, d ≥ 30 and d ≡ 2 mod 14.

For (i, j) = (4, 0) and (1, 2),
d− (4i+ 6j)

14
is a positive integer. Any (i, j) ∈ Id

satisfies 2i+ 3j ≡ 1 mod 7. We see 2i+ 3j ≥ 8. !

If any singularity of the curve V (H) is a cusp, then V (H) is irreducible. We
have the following if a general invariant curve V (H) is reducible.

Lemma 4.3. For d as in Lemma 4.2, if the curve V (H) is reducible, then the
following hold.

(1) We can write H = H1 · · ·Hn ∈ C[x, y, z] where V (H1), V (H2), · · · , V (Hn)
are pairwise distinct integral curves for n ≥ 2.

(2) As a set, we have

Sing V (H) = V (FG) ∩ V (ΦG) =
∐

i<j

(V (Hi) ∩ V (Hj)).

Furthermore, the intersection multiplicity is the same integer m at any
point in this set where

m =

⎧
⎪⎨

⎪⎩

1 if the singularity is a node,

2 if the singularity is a tacnode or of type D5,

3 if the singularity is of type A5.

(3) Let di = degHi. Then we obtain the formula
∑

i<j

didj = m degFG degΦG.

In particular, for any k and l with k ̸= l, we have the inequalities

(∗) dk(d− dk) ≤ m degFG degΦG

with equality only for n = 2 and

(∗∗) dl((d− dk)− dl) ≤ m degFG degΦG − dk(d− dk).

Proof. First, since the singular locus V (FG) ∩ V (ΦG) of (dG)d is finite, V (H) is
reduced. Thus we can write H = H1 · · ·Hn ∈ C[x, y, z] as in (1).

Next, we prove the claim (2). By Lemma 4.2, we have Sing V (H) = V (FG) ∩
V (ΦG). Any intersection point P ∈ V (Hi)∩V (Hj) is a singular point of V (H), i.e.,⋃

i<j

(V (Hi)∩V (Hj)) ⊂ Sing V (H). Conversely, take any P ∈ Sing V (H) and a point

Q ∈ V (H1)∩V (H2) (since n ≥ 2). Then P and Q are contained in V (FG)∩V (ΦG).
By Lemma 2.13 (7), since V (FG) ∩ V (ΦG) is a G-orbit, there is an action A ∈ G
which send Q to P . In addition, A induces the permutation of the curves V (H1),
V (H2), · · · , V (Hn). Thus P is an intersection point of V (Hi) and V (Hj) where
A send V (H1) to V (Hi) and V (H2) to V (Hj). Finally, since any singularity of
V (H) has a 2 analytic branch by Lemma 4.2, only two curves intersect at any

intersection point. Therefore,
⋃

i<j

(V (Hi) ∩ V (Hj)) is disjoint. In particular, since

the singularities are a same type, the intersection multiplicity is a same integer m
which holds as in (2) by Lemma 4.2.

Finally, we show the claim (3). By Bézout’s theorem, the degrees d1, d2, · · · , dn
satisfy the first formula in (3). (Note that #(V (FG)∩ V (ΦG)) = degFG degΦG by
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Lemma 2.13 (6) and (7).) Fix dk and dl with k ̸= l. We see the inequality

dk(d− dk) = dk
∑

i≠k

di

=
∑

i ̸=k

didk ≤
∑

i<j

didj .

Hence, the inequality (∗) holds. Since didj > 0 for any i and j with i ̸= j, the two
sides are equal if and only if n = 2. On the other hand, we have

∑

i<j,i̸=k,j ̸=k

didj = m degFG degΦG −
∑

i ̸=k

didk

from the first equality in (3) and the inequality

dl((d− dk)− dl) = dl
∑

i ̸=k,i ̸=l

di

=
∑

i ̸=k,i ̸=l

didl ≤
∑

i<j,i̸=k,j ̸=k

didj .

Therefore, the inequality (∗∗) also holds. !
In the following subsections, we prove the irreducibility of curves for each group

by a contradiction: If there are at least 2 irreducible components, then the inter-
section numbers of the components imply that the curve has too much singularity.

4.1. The Valentiner group V. In this subsection, we deal with the case of the
Valentiner group. We show the following theorem related to integral curves under
the Valentiner group V.

Theorem 4.4. There exists an integral projective plane curve of degree d invariant
under the Valentiner group V if and only if d is a multiple of 6, d ̸= 18 and d ̸= 24.

Proof. There is a possibly reducible or nonreduced curve of degree d invariant
under the Valentiner group V if and only if d is divisible by 6. By Theorem 3.7,
if d ≡ 0, 6, 12 mod 30, then the linear system (dV)d has a nonsingular element.
On the other hand, by Lemma 3.6, the linear system (dV)d has only reducible or
nonreduced curves for d = 18 or 24. We have to show that there is an irreducible
element of (dV)d if the degree d satisfies d > 30 and d ≡ 18 or 24 mod 30.

Take a general member H of the linear system (dV)d. We assume that the
homogeneous polynomial H is reducible and derive a contradiction. By Lemma
4.3 (1), we can write H = H1 · · ·Hn where the curves V (Hi) are pairwise distinct
integral curves with n ≥ 2.

Let di = degHi. We may assume that d1 ≤ d2 ≤ · · · ≤ dn. By Lemma 4.3 (3)
(∗), for the degree d1, we obtain

(∗) d1(d− d1) ≤ 72m

where m is an integer as in Lemma 4.3 (2). We note that the left hand side is

monotonically increasing for 1 ≤ d1 ≤ d

2
, in particular, and it is greater than or

equal to d− 1.
Suppose that d ≡ 18 mod 30. Then m = 1 by Lemma 4.2. If d ≥ 18+2·30 = 78,

then the inequality (∗) does not hold. Thus d is only 48. For 2 ≤ d1 ≤ 24, the
inequality (∗) is not satisfied. Let d1 = 1. If n = 2 (i.e. d2 = 47), then both sides
of (∗) are equal; however, 1 · 47 ̸= 72 · 1. If n > 2, by Lemma 4.3 (3) (∗∗), we have

46 ≤ d2(47− d2) ≤ (1 · 72)− (1 · 47) = 25

since d2 ̸= 47. This is a contradiction.
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Suppose that d ≡ 24 mod 30. Then m = 2 by Lemma 4.2. Thus any intersec-
tions of the curve V (H1) and the curve V (H2 · · ·Hn) is a tacnode, and we see

d1(d− d1) = 2 ·#(V (H1) ∩ V (H2 · · ·Hn))

by Bézout’s theorem. Hence, we note that the degree d1 is even if d is even. If
d ≥ 24+ 5 · 30 = 174, then the inequality (∗) does not hold. Hence, d is 54, 84, 114

or 144. Let d = 84, 114 or 144. Since d1 is even, 2 ≤ d1 ≤ d

2
and the inequality (∗)

does not hold. Let d = 54. Since the inequality (∗) is not satisfied for 3 ≤ d1 ≤ 27
and the degree d1 is even, we see that d1 = 2. If n = 2, then both sides of (∗) are
equal; however, 2 · 52 ̸= 72 · 2. If n > 2, by Lemma 4.3 (3) (∗∗), we have

51 ≤ d2(52− d2) ≤ (2 · 72)− (2 · 52) = 40

since d2 ̸= 52. This is also a contradiction. !

4.2. The icosahedral group I. In this subsection, we see the case of the icosa-
hedral group in the same way as Subsection 4.1.

Theorem 4.5. Let d be a positive integer. There exists an integral projective
plane curve of degree d invariant under I if and only if d is even and neither 4, 8
nor 14.

Proof. There is a possibly reducible or nonreduced curve of degree d invariant under
I if and only if the degree d is even. By Theorem 3.9, the linear system (dI)d has
a nonsingular element if d ≡ 0, 2, 6 mod 10. On the other hand, for d = 4, 8 or 14,
the linear system (dI)d has no integral member by Lemma 3.8.

We assume that d satisfies d ≥ 18 and d ≡ 4 or 8 mod 10. Take a general
element H of the linear system (dI)d (where the curve V (H) is singular only at
points in V (FI)∩V (ΦI)). Assume that the homogeneous polynomialH is reducible,
and derive a contradiction. By Lemma 4.3 (1), we can write H = H1 · · ·Hn where
the curves V (Hi) are pairwise distinct integral curves for n ≥ 2.

Let di = degHi. We may assume that d1 ≤ d2 ≤ · · · ≤ dn. By Lemma 4.3 (3)
(∗), for the degree d1, we obtain

(∗) d1(d− d1) ≤ 12m

where m is an integer as in Lemma 4.3 (2). We note that the left hand side is

monotonically increasing for 1 ≤ d1 ≤ d

2
, in particular, and it is greater than or

equal to d− 1.
Suppose that d ≡ 8 mod 10. Then m = 1 by Lemma 4.2. Then the inequality

(∗) does not hold for d ≥ 18.
Suppose that d ≡ 4 mod 10. Then m = 2 by Lemma 4.2. If d ≥ 4+ 3 · 10 = 34,

then the inequality (∗) does not hold. Take d = 24. Since the inequality (∗) is not
satisfied for 2 ≤ d1 ≤ 12. Let d1 = 1. If n = 2 (i.e. d2 = 23), both sides of (∗) are
equal; however, 1 · 23 ̸= 12 · 2. If n > 2, by Lemma 4.3 (3) (∗∗), we have

22 ≤ d2(23− d2) ≤ (2 · 12)− (1 · 23) = 1.

since d2 ̸= 23. This is a contradiction. !

4.3. The Klein group K. In this subsection, we consider irreducible curves in-
variant under the Klein group K.

Theorem 4.6. Let d be a positive integer. There exists an integral projective
plane curve of degree d invariant under K if and only if d is even and neither 2, 8,
10, 16 nor 22.
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Proof. There is a possibly reducible or nonreduced element of the linear system
(dK)d if and only if the degree d is even and d ≥ 4. By Theorem 3.12, if d ≡ 0, 4 or
6 mod 14, then there is nonsingular curves of degree d invariant under the Klein
group K. On the other hand, there is no integral elements of the linear system
(dK)d for d = 8, 10, 16 and 22 by Lemma 3.11.

We show that there is an integral element of the linear system (dK)d for given
degree d. Take a general element H of the linear system (dK)d (where the curve
V (H) has the singularities only at the points in V (FK) ∩ V (ΦK)).

First, if d ≡ 12 mod 14, then any singularity of the curve V (H) is a cusp by
Lemma 4.2. In this case, V (H) is integral.

We consider the case of other degrees. Assume that V (H) is reducible, and
derive a contradiction. By Lemma 4.3 (1), we can write H = H1 · · ·Hn where the
curves V (Hi) are pairwise distinct integral curves for n ≥ 2. Let di = degHi. We
may assume that d1 ≤ d2 ≤ · · · ≤ dn. By Lemma 4.3 (3), for the degree d1, we
obtain

(∗) d1(d− d1) ≤ 24m

where m is an integer as in Lemma 4.3 (2). We note that the left hand side is

monotonically increasing for 1 ≤ d1 ≤ d

2
, in particular, and it is greater than or

equal to d− 1.
Suppose that d ≡ 2 mod 14. Then m = 2 by Lemma 4.2. For d ≥ 2+4·14 = 58,

the inequality (∗) does not hold. Thus d = 30 or d = 44. For 2 ≤ d1 ≤ d

2
, the

inequality (∗) is not satisfied. Let d1 = 1. Since all intersections of the line V (H1)
and the curve V (H2 · · ·Vn) is of type D5, by Bézout’s theorem, we see

1 · (d− 1) = 2 ·#(V (H1) ∩ V (H2 · · ·Hn)) .

The left hand side is odd, while the right hand side is even. This is a contradiction.
Suppose that d ≡ 8 mod 14. Then m = 3 by Lemma 4.2. For d ≥ 8+5·14 = 78,

the inequality (∗) does not hold. Take d = 50 or d = 64. For 2 ≤ d1 ≤ d − 2, the
inequality (∗) is not satisfied. Let d1 = 1. If n = 2 (i.e. d2 = d− 1), both sides of
(∗) are equal; however, 1(d− 1) ̸= 24 · 3. If n > 2, by Lemma 4.3 (3) (∗∗), we have

d− 2 ≤ d2((d− 1)− d2) ≤ (3 · 24)− (d− 1) = 73− d

since d2 ̸= d − 1. For d = 50 and 64, this inequality does not hold. Take d = 36.
For 3 ≤ d1 ≤ 18, the inequality (∗) is not satisfied. Let d1 = 2. If n = 2, then both
sides of (∗) are equal; however, 2 · 34 ̸= 24 · 3. If n > 2, by Lemma 4.3 (3) (∗∗), we
have

33 ≤ d2(34− d2) ≤ (3 · 24)− (2 · 34) = 4

since d2 ̸= 34. This is a contradiction. Let d1 = 1. If n = 2, then both sides of (∗)
are equal; however, 1 · 35 ̸= 3 · 24. If n > 2, in the same way, we have

d2(35− d2) ≤ (3 · 24)− (1 · 35) = 37.

The left hand side is monotonically increasing for 1 ≤ d2 ≤ 35

2
and the inequality

is not satisfied for 2 ≤ d2 ≤ 35

2
. Let d2 = 1. Then any intersection of the two

lines V (H1) and V (H2) is a node, while any singularity is of type A5. This is a
contradiction.

Suppose that d ≡ 10 mod 14. Thenm = 1 by Lemma 4.2. For d ≥ 4+3·10 = 34,
the inequality (∗) does not hold. Take d = 24. For 2 ≤ d1 ≤ 12, the inequality (∗)
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is not satisfied. Let d1 = 1. If n = 2, then both sides of (∗) are equal; however,
1 · 23 ̸= 24 · 1. If n > 2, by Lemma 4.3 (3) (∗∗), we have

22 ≤ d2(23− d2) ≤ (1 · 24)− (1 · 23) = 1

since d2 ̸= 23. This is a contradiction. !

Appendix A. Used codes

In this section, we explain the SINGULAR code used in the proof of Lemma
2.13. We recall the claims which we need to check:

(4) The radical of the ideal generated by FG, ΦG and ΨG is the maximal ideal
⟨x, y, z⟩.

(5) For f = FG, ΦG or ΨG, the radical of the ideal generated by the derivatives
of f is the maximal ideal ⟨x, y, z⟩.

(6) The ideal generated by FG and ΦG is equal to its radical.

In addition, for G = I, we will look at the following claim.

(1) The Jacobian of (FI ,ΦI ,ΨI) is nonzero.

A.1. The Valentiner group. We check the claims in almost the same way for
all groups. In this subsection, we take G = V as an example. First, we note the
following.

Remark A.1. It is known that the curve defined by

W (x, y, z) := 10x3y3 + 9x5z + 9y5z − 45x2y2z2 − 135xyz4 + 27z6

is invariant under the alternative group A6 in a suitable coordinate system ([9]).
This curve is called the Wiman curve.

We define the matrix

R :=

⎛

⎜⎜⎜⎜⎜⎜⎝

α(1− τ) α(1− τ)
1

2
+ ρ+

1

2
ρτ

α
√
τ − 3 −α

√
τ − 3 0

α α −1

2
− 1

2
ρ+

1

2
τ + ρτ

⎞

⎟⎟⎟⎟⎟⎟⎠

where ρ = e
2π
3 i =

−1 +
√
−3

2
, τ =

1 +
√
5

2
and α =

1

6
+

1

3
ρ+

1

3
τ +

1

6
ρτ . Then we

can see that the homogeneous polynomial FR is a constant multiple of W . We call
the coordinates (x′ : y′ : z′) = [R]−1 · (x : y : z) the Wiman coordinates.

We denote the conjugate [R]−1V[R] by V ′. We define

FV′(x, y, z) := W (x, y, z).

In the Wiman coordinates, the homogeneous polynomials ΦV and ΨV are replaced
by ΦV′ and ΨV′ where we define

ΦV′(x, y, z) := detH(FV′)(x, y, z)

and

ΨV′(x, y, z) := detBH(FV′ ,ΦV′)(x, y, z).

Since the homogeneous polynomials FV′ , ΦV′ and ΨV′ only have integer coeffi-
cients, the calculations for the claims is more easily and quickly done in the Wiman
coordinates than in the former coordinates.
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Put F = FV′(x, y, z) and let JF be the ideal generated by its derivatives. Next,
set Phi = ΦV′(x, y, z)(i.e., the determinant of the Hessian of F). Then we define
JPhi to be the ideal generated by the derivatives of Phi. Let BH be the border Hesse
matrix of F and Phi. Then we define Psi = ΨV′(x, y, z) (i.e. the determinant of
BH) and JPsi the ideal generated by the derivatives of Psi.

LIB "primdec.lib";
ring R = 0,(x,y,z),dp;

poly F = 10x3y3+9x5z+9y5z -45x2y2z2 -135 xyz4 +27z6;
ideal JF = jacob(F);

poly Phi = det(jacob(jacob(F)));
ideal JPhi = jacob(Phi);

matrix HF = jacob(jacob(F));
matrix BH [4][4] = HF[1,1],HF[1,2],HF[1,3],JPhi[1],

HF[2,1],HF[2,2],HF[2,3],JPhi[2],
HF[3,1],HF[3,2],HF[3,3],JPhi[3],
JPhi[1],JPhi[2],JPhi [3],0;

poly Psi = det(BH);
ideal JPsi = jacob(Psi);

For the claim (4) and (5), we calculate the radicals of the ideal generated by F,
Phi and Psi and the ideal generated by the derivatives of each of the homogeneous
polynomials.

//(4)
radical(ideal(F,Phi ,Psi));

//(5)
radical(JF);
radical(JPhi);
radical(JPsi);

Each of these lines returns the following answer:

_[1]=z
_[2]=y
_[3]=x

Thus each ideal is generated by x, y and z.
Finally, we consider the claim (6). We check the (standard basis of) ideal gen-

erated by F and Phi and its radical.

//(6)
std(ideal(F,Phi ));
std(radical(ideal(F,Phi )));

Each of these lines returns the same 5 generators.

A.2. The icosahedral group. In this subsection, we give the code for G = I. We
again use the Wiman coordinates in the calculation.
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Remark A.2. We define I ′ := [R]−1I[R]. In the Wiman coordinates, FI is trans-
formed to a constant multiple of

FI′(x, y, z) := xy + ηz2

where η =
−3 + 3

√
−15

8
. Since ΦI = FV , we define ΦI′ := W (x, y, z). In addition,

the homogeneous polynomial ΨI is replaced by

ΨI′ := detBH(FI′ ,ΦI′)(x, y, z).

As in the case of the Valentiner group, the calculation is more easily and quickly
finished in the Wiman coordinates than in the former coordinates.

We consider the ring generated by the variables x, y, z and e. Set g the polyno-
mial defined by 4e2 + 3e+ 9. Note that one of the roots of g is η. We replace the
constant η by the variable e, and take the reduction modulo g from time to time.

The code is almost the same as the one for G = V. We first define F, Phi and
Psi and their Jacobian ideals.

LIB "primdec.lib";
ring R = 0,(x,y,z,e),dp;
poly g = 4e2 + 3e + 9;

poly F = xy + ez2;
ideal JF = jacob(F);

poly Phi = 10x3y3+9x5z+9y5z -45x2y2z2 -135 xyz4 +27z6;
ideal JPhi = jacob(Phi);

matrix HF = jacob(jacob(F));
matrix BH [4][4] = HF[1,1],HF[1,2],HF[1,3],JPhi[1],

HF[2,1],HF[2,2],HF[2,3],JPhi[2],
HF[3,1],HF[3,2],HF[3,3],JPhi[3],
JPhi[1],JPhi[2],JPhi [3],0;

poly Psi = det(BH);
ideal JPsi = jacob(Psi);

We check the claim (1). We define X to be the Jacobian of (F, Phi, Psi). Let f be
the homomorphism C[x, y, z, e] → C[x, y, z, e] which sends a polynomial P (x, y, z, n)
to P (1, 0, 0, e). Sends X with f and reduce the resulting polynomial by g.

matrix J[3][3] = JF[1],JF[2],JF[3],
JPhi[1],JPhi[2],JPhi[3],
JPsi[1],JPsi[2],JPsi [3];

poly X = det(J);
map f = R,1,0,0,e;
reduce (f(X),g);

This return value is the nonzero constant 7290. Thus we obtain that the Jacobian
is nonzero at (x, y, z) = (1, 0, 0).

For the claims (4) to (6), we may use almost the same code as in Subsection A.1
except that we have to add g to the ideals.

For the claim (4) and (5), we use the following code.

//(4)
radical(ideal(F,Phi ,Psi) + ideal(g));
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//(5)
radical(ideal(JF[1],JF[2],JF[3]) + ideal(g));
radical(ideal(JPhi[1],JPhi[2],JPhi [3]) + ideal(g));
radical(ideal(JPsi[1],JPsi[2],JPsi [3]) + ideal(g));

Each of these lines returns the following answer:

_[1]=z
_[2]=y
_[3]=x
_[4]=4e2+3e+9

Since the forth generator is equal to g, each ideal is generated by x, y and z.
We consider the claim (6). We use the following code.

//(6)
std(ideal(F,Phi) + ideal(g));
std(radical(ideal(F,Phi) + ideal(g)));

Each of these lines returns the 9 generators including g.

A.3. The Klein group. In this subsection, we check the claims for G = K. The
code is the same except for the definition of F, Phi and Psi. Note that Phi is
−54ΦK and Psi is −26244ΨK.

LIB "primdec.lib";
ring R = 0,(x,y,z),dp;

poly F = x3y + y3z + z3x;
ideal JF = jacob(F);

poly Phi = det(jacob(jacob(F)));
ideal JPhi = jacob(Phi);

matrix HF = jacob(jacob(F));
matrix BH [4][4] = HF[1,1],HF[1,2],HF[1,3],JPhi[1],

HF[2,1],HF[2,2],HF[2,3],JPhi[2],
HF[3,1],HF[3,2],HF[3,3],JPhi[3],
JPhi[1],JPhi[2],JPhi [3],0;

poly Psi = det(BH);
ideal JPsi = jacob(Psi);

We check the claims (4) to (6). This is done with the same code as in Subsection
A.1.

//(4)
radical(ideal(F,Phi ,Psi));

//(5)
radical(JF);
radical(JPhi);
radical(JPsi);

//(6)
std(ideal(F,Phi ));
std(radical(ideal(F,Phi )));
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For the claims (4) and (5), we also get the same answers for each of these lines and
can see that each ideal is generated by x, y and z. For the claim (6), for the ideal
generated by F and Phi and its radical, we obtain the same 4 generators.
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