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ABSTRACT 

A facile method was successfully developed to prepare lanthanum oxycyanamide, 

La2O2CN2. Urea was selected as a cyanamidation agent, instead of gaseous NH3 with 

graphite containers, to achieve a safe and simple synthetic strategy. Through the 

optimization of reaction conditions, including content of urea and heat-treatment 

temperature, single-phase La2O2CN2 could be obtained without any impurities. We also 

prepared a La2O2CN2:Eu3+ phosphor. The Eu3+-doped La2O2CN2 matrix showed a red 

emission. Furthermore, in comparison with La2O3:Eu3+, the photoluminescence 

excitation bands corresponding to the Eu3+–ligand charge transfer region were 

broadened. These results suggested that La2O2CN2 prepared via the urea route will offer 

superb application prospects for photoluminescence materials such as white 

light-emitting diodes.  
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1. Introduction 

Mixed-anion compounds are solid-state inorganic materials containing more 

than one anionic species in a single phase, such as oxynitrides, oxysulfides, and 

oxyfluorides [1]. Incorporating different kinds of anions can give rise to unique 

physical and chemical properties. During the past two decades, rare earth (RE) 

mixed-anion compounds have emerged as a rapidly growing family of functional 

materials, finding use in, for example, display devices [2,3], (photo)catalysts [4,5], 

X-ray scintillators [5], and white light-emitting diodes (LEDs) [6]. Among these 

materials, RE2O2X (where X is a divalent anion such as S2−, Se2−, Te2−, CO3
2−, CN2

2−, 

and SO4
2−) is a novel class of luminescent matrices that has shown considerable promise 

in recent years [7,8]. The photoluminescence properties of RE2O2S:Eu3+and 

RE2O2CN2:Eu3+ are quite similar because the structures of RE2O2S and RE2O2CN2 are 

closely related, both consisting of a network of alternating layers of RE2O2
2+ and their 

interleaving anions [9,10]. Therefore, metal oxycyanamides can be considered as 

efficient host candidates for RE3+ activator ions such as Eu3+. It has been reported that 

La2O2CN2 is an excellent matrix for RE3+ [11]. La2O2CN2 is most commonly prepared 

by ammonolysis of La2O3 precursors. Gaseous NH3 is employed as a nitrogen source, 

with the aid of a graphite container serving as a carbon source, to prepare La2O2CN2 

[12]. Normally, such cyanamidation is carried out at temperatures between 700 and 

900 °C and requires a long duration to complete the diffusion of nitrogen and carbon 

atoms. However, the use of gaseous NH3 at such high temperatures incurs a relatively 

high risk and makes scaled-up synthesis difficult, and is thus a major drawback of this 

method [13]. Therefore, the development of ammonolysis-free preparation procedures 

of metal oxycyanamides, including La2O2CN2, is a current research goal.  



In this communication, we have demonstrated a facile preparation of La2O2CN2 

that addresses the obstacles associated with their conventional preparation route. We 

chose urea as a nitrogen source instead of gaseous NH3. Urea is cheap, non-toxic, and 

non-corrosive, and is easily handled because it is solid at ambient temperature [14]. In 

addition, urea acts as a carbon as well as a nitrogen source. This enables us to use 

conventional calcination containers, such as alumina crucibles, instead of graphite boats. 

Here, we have optimized the conditions for transformation of La(OH)3 to La2O2CN2, 

including the mixing ratio of urea and heat-treatment temperature. In addition, we have 

also attempted preparation of La2O2CN2:Eu3+ and investigated its photoluminescence 

properties. 

 

2. Materials and methods 

2.1. Materials 

Lanthanum nitrate hexahydrate (La(NO3)3·6H2O; ≥99.0%) was purchased from 

Sigma-Aldrich Co. (St. Louis, MO, USA). Urea (CO(NH2)2; 99%), ammonia solution 

(NH3, 28% (w/w)), and ethanol (C2H5OH; ≥99.5%) were obtained from Nacalai Tesque, 

Inc. (Kyoto, Japan). Lanthanum hydroxide (La(OH)3; 99.9%) was purchased from 

Strem Chemicals, Inc. (Newburyport, MA, USA). Europium nitrate n-hydrate 

(Eu(NO3)3·nH2O) was obtained from FUJIFILM Wako Pure Chemical Co. (Osaka, 

Japan). All reagents were used as received without further purification. The water used 

in all experiments was deionized with a Milli-Q system (Merck Millipore, Billerica, 

MA, USA). 

 

2.2. Preparation of La2O2CN2 



La(OH)3 was mixed with urea using an agate mortar and pestle. The molar ratio 

of urea to La(OH)3 ([urea] / [La(OH)3] = R) was varied from 2.0 to 5.0. The mixture 

was heated under a nitrogen stream (300 mL min−1) in a horizontal tube furnace using 

an alumina crucible boat. The temperature of the furnace was raised to the final 

temperature at a heating rate of 15 °C min−1. The final heat-treatment temperature was 

varied from 600 to 1000 °C. The heat-treatment duration at the final temperature was 

fixed to 2 h.  

 

2.3. Preparation of La2O2CN2:Eu3+ 

Firstly, La(OH)3:Eu3+ was prepared by the hydrothermal method. 

La(NO3)3·6H2O (5.70 mmol) was dissolved in deionized water. The pH of the solution 

was adjusted to 9 by adding aqueous NH3 (28% (w/w)) solution. Then, Eu(NO3)3·nH2O 

(0.300 mmol) was added to this solution. After stirring for 1 h, the mixture was 

transferred to a Teflon vessel. The vessel was sealed in a stainless-steel autoclave and 

heated at 200 °C for 24 h. After heating, the obtained product was washed with ethanol 

twice and dried overnight in an oven at 50 °C. Next, La2O2CN2:Eu3+ was prepared using 

La(OH)3:Eu3+ in the same manner as La2O2CN2. The heat-treatment was carried out at 

800 °C for 2 h.  

 

2.4. Preparation of La2O3:Eu3+ 

La2O3:Eu3+ was prepared for comparison of its luminescence properties with 

those of La2O2CN2:Eu3+. La2O3:Eu3+ was prepared from La(OH)3:Eu3+ by 

heat-treatment using a muffle furnace (in air). The heat-treatment temperature and 

duration were 800 °C and 2 h, respectively. 



 

2.5. Characterizations 

The phase compositions of the obtained samples were determined by powder 

X-ray diffraction (XRD) (D8 Advance, Bruker AXS, Germany) using Cu-Kα radiation. 

The emission and excitation spectra of the Eu3+-doped samples were obtained by a 

fluorescent spectrophotometer (FP-8600, JASCO, Japan). 

 

3. Results and discussion 

3.1. Optimization of preparation conditions of La2O2CN2 using urea 

Initially, the mixing molar ratio of La(OH)3 and urea ([urea] / [La(OH)3] = R) 

was optimized. The XRD patterns of the products obtained from mixtures of La(OH)3 

and urea with various mixing ratios (R = 2.0, 2.5, 3.0, and 5.0) after calcination at 

800 °C for 2 h are presented in Fig. 1 within the 2θ range of 20° to 70°. Diffraction 

peaks indexed to the tetragonal phase of La2O2CN2 (space group: I4/mmm) can be found 

in all the patterns. In this crystalline structure, the linear anion [N-C-N]2− sandwiches 

between two La2O2
2+ layers in parallel and each La3+ ion is coordinated with four O and 

four N atoms in the tetragonal lattice [8]. In the case of the lowest urea-to-La(OH)3 ratio 

(R = 2.0), diffraction peaks assignable to the La2O3 phase co-existed with those of 

La2O2CN2. This indicates that a deficiency of urea causes the formation of La2O3 as a 

by-product. In contrast, a number of unknown diffraction peaks were observed in the 

patterns of products prepared at higher urea-to-La(OH)3 ratios (R ≥ 3.0) in addition to 

the peaks of La2O2CN2. Therefore, excess urea also causes the formation of by-products 

during the calcination process. Both the diffraction peaks of La2O3 and the unknown 

peaks were completely absent from the pattern of the product prepared at R = 2.5. Under 



this condition, single-phase La2O2CN2 could be obtained. Judging from these results, 

the optimal mixing ratio to obtain La2O2CN2 is R = 2.5, and this ratio was used in 

subsequent experiments.  

The influence of the reaction temperature on the formation of La2O2CN2 was 

investigated. Fig. 2 displays the XRD patterns of the products obtained from mixtures of 

La(OH)3 and urea (R = 2.5) after calcination at various temperatures (600, 700, 800, 900, 

and 1000 °C). The calcination duration was fixed to 2 h. Even in the case of the sample 

prepared at 600 °C, diffraction peaks assignable to La2O2CN2 were found. This 

indicates that the cyanamidation reaction from La(OH)3 to La2O2CN2 could be initiated 

below 600 °C. However, the formation of a by-product, La2O2CO3, was also evident 

from this pattern. There are several reports that La2O2CO3 can be prepared by 

calcination of hydrothermally prepared La(OH)3 in air [15–17]. In most of those studies, 

La(OH)3, which has a high capacity for adsorbing CO2 and H2O, was transformed to 

La2O2CO3 by calcination at 400–500 °C in air containing CO2. Thermal decomposition 

of urea can be written as follows [18,19]: 

 

H2NCONH2        NH3   +   HCNO   (140°C)   (1) 

  H2NCONH2        H2O   +   H2CN2   (140 °C)  (2) 

 

The HCNO formed by the reaction of eq. (1) reacts with H2O on the surface of metal 

oxides and hydroxides, producing another NH3 molecule and CO2 [20]. This suggests 

that CO2 molecules were present during the calcination process herein, even though the 

calcination was carried out under a nitrogen stream. Therefore, La2O2CO3 was 

generated as a by-product when the calcination was carried out at 600 °C. The peak 



intensity of La2O2CO3 decreased with increasing calcination temperature and these 

peaks completely disappeared for the sample prepared at 800 °C. However, diffraction 

peaks attributable to a La2O3 phase were found in addition to those of La2O2CN2 for the 

sample prepared at 1000 °C. Therefore, we determined that the optimal calcination 

temperature was 800–900 °C and used this range in subsequent experiments. Recently, 

we have reported the preparation of GaN:ZnO solid solution from Zn–Ga layered 

double hydroxide using urea as a nitriding agent [21]. By investigations using the X-ray 

absorption and infrared spectroscopies, we have discovered that C and N components in 

urea are converted to [NCN]2− species after decomposition around 150 °C (the reaction 

is known as eq. (2)) and ZnCN2-like species generate as intermediates. Therefore, it 

seems that [NCN]2− species formed by the decomposition of urea concern the formation 

of La2O2CN2 in the current process. The detailed cyanamidation mechanism is currently 

being investigated by our research group. 

 

3.2. Preparation and photoluminescence properties of La2O2CN2:Eu3+ 

Metal oxycyanamide compounds, including La2O2CN2, are considered to be 

promising host candidates for lanthanide activator ions such as Eu3+ [11]. Here, we 

focus on the photoluminescence properties of La2O2CN2:Eu3+ prepared from the 

corresponding precursor, La(OH)3:Eu3+. Firstly, La(OH)3:Eu3+ was prepared by the 

hydrothermal method using a mixture of La(NO3)3 and Eu(NO3)3. Fig. 3a presents the 

XRD pattern of the samples hydrothermally prepared using the mixture of La(NO3)3 

and Eu(NO3)3 at 200 °C for 24 h. All of the diffraction peaks can be assigned to those of 

pure La(OH)3 [22]. No other diffraction peaks arising from impurities can be detected at 

the studied doping concentrations. Meanwhile, the positions of the observed peaks 



shifted to higher 2θ angles than those of pure La(OH)3. These results suggest that the 

Eu3+ ions completely inserted into the La(OH)3 lattice in place of the La3+ ions, with the 

Eu3+ ions having a smaller ionic radius. In addition, the sample exhibits red 

fluorescence under short-wave UV light (λex = 254 nm) (figure not shown). This result 

further supports that Eu3+ was doped into the structure of La(OH)3. Next, the 

transformation of La(OH)3:Eu3+ to La2O2CN2:Eu3+ was performed by cyanamidation 

using urea. For comparison, the transformation of La(OH)3:Eu3+ to La2O3:Eu3+ was also 

carried out by calcination in the absence of urea. The XRD patterns of the samples after 

calcination of La(OH)3:Eu3+ at 800 °C for 2 h with and without urea are displayed as (b) 

and (c) in Fig. 3, respectively. All the diffraction peaks of the samples were readily 

assigned to the pure hexagonal phase of La2O3 [22] when the La(OH)3:Eu3+ was 

calcined alone (without urea) at 800 °C for 2 h, as shown in Fig. 3b. Only slight peak 

shifts and no other impurity phases were detected, indicating the high purity and 

crystallinity of the La2O3:Eu3+ product obtained. On the other hand, for the product of 

calcination of the mixture of La(OH)3:Eu3+ and urea ([urea] / [La(OH)3:Eu3+] = 2.5), the 

characteristic diffraction peaks can be readily ascribed to the tetragonal phase of 

La2O2CN2 (Fig. 3c). Only negligible impurity phase can be detected. Doping Eu3+ does 

not result in any phase transformation and only has a minor influence on the crystalline 

structure of the obtained La2O2CN2:Eu3+ sample. Fig. 4 shows the emission and 

excitation spectra of the La2O2CN2:Eu3+ samples. For comparison, the emission and 

excitation spectra of the La2O3:Eu3+ samples are also given in Fig. 4. As displayed in 

Fig. 4a, the excitation of Eu3+ ions in the La2O2CN2 and La2O3 hosts at 284 nm induced 

emission spectra containing the characteristic transitions of Eu3+, corresponding to its 

4f6 configuration undergoing the 5Dj (j = 0, 1, and 2) → 7Fj (j = 0, 1, 2, and 4) transitions 



[8]. In the spectrum for La2O2CN2:Eu3+, the strongest peak is split into two peaks at 613 

and 621 nm, as a result of the forced electric dipole transition (5D0 → 7F2), indicating 

that the Eu3+ ions are incorporated at sites with no inversion center low symmetry [23]. 

This transition is very sensitive to the chemical surroundings and crystalline structures. 

The dominant emission of La2O3:Eu3+ is observed at 626 nm, and also corresponds to 

the 5D0 → 7F2 transition of Eu3+ ions. The predominant emission bands at 613 and 621 

nm in the spectrum for La2O2CN2:Eu3+ confirm the formation of the oxycyanamide host 

[23]. It is notable that the emission peak at 579 nm, which corresponds to the 5D0 → 7F0 

transition in the spectrum of La2O2CN2:Eu3+, is rather intense, because the transition 

from J = 0 to J = 0 is strictly forbidden, as the total orbital momentum does not change 

[24]. The emission bands at 586 and 594 nm arise from the 5D0 → 7F1 magnetic dipole 

transition and the peak at 706 nm corresponds to the 5D0 → 7F4 transition [23,24]. As 

shown in Fig. 4b, when monitoring the emission of Eu3+ ions in the La2O2CN2 (λem = 

621 nm) and La2O3 (λem = 626 nm) hosts, the excitation spectra of both the 

La2O2CN2:Eu3+ and La2O3:Eu3+ samples exhibit broad and intense bands with a 

maximum located around 280–290 nm. These bands are ascribed to the ligand-to-metal 

charge transfer band (CTB) between Eu3+ ions and anions (O2− and/or CN2
2−) [24]. The 

broad band in the spectrum of La2O3:Eu3+ located from 250 to 330 nm is ascribed to the 

Eu3+–O2− CTB. It is noteworthy that the CTB in the spectrum of La2O2CN2:Eu3+extends 

to ca. 370 nm. This contribution of longer wavelengths to the broad band of 

La2O2CN2:Eu3+ can be attributed to the Eu3+–CN2
2− CTB. These results indicate that 

metal oxycyanamide hosts extend the excitation wavelength of CTBs, compared with 

metal oxide hosts, through the presence of mixed-anion ligands.  

 



4. Conclusions 

In summary, La2O2CN2 has been successfully prepared via the cyanamidation of 

La(OH)3 using urea. The previously reported processes for preparation of La2O2CN2 

required high-temperature calcination using harmful gaseous NH3 with the aid of a 

graphite container as a carbon source. The preparation developed in this work is much 

simpler and safer because urea acts as both a nitrogen and a carbon source and has low 

toxicity. Following the optimization of reaction conditions including heat-treatment 

temperature and ratio of urea to La(OH)3, single-phase La2O2CN2 without impurities 

was efficiently obtained by calcination at 800–900 °C for 2 h using a mixture of 

La(OH)3 and urea (R = 2.5). We have also prepared La2O2CN2:Eu3+, for potential 

application as a phosphor, using La(OH)3:Eu3+ and urea as starting materials. 

La2O2CN2:Eu3+ exhibits a characteristic red emission with strong peaks at 613 and 621 

nm arising from the forced electric dipole transition (5D0 → 7F2) under excitation of the 

CTB. The CTB of the excitation spectrum of La2O2CN2:Eu3+ is broader than that of 

La2O3:Eu3+, because a Eu3+–CN2
2− CTB exists in addition to that of Eu3+–O2−. This 

indicates that La2O2CN2:Eu3+ is efficiently excitable at the near-ultraviolet wavelength 

region and can be expected to be a versatile candidate as a red phosphor for white LEDs. 

Therefore, metal oxycyanamides should be recognized as a promising family of 

mixed-anion compounds, in addition to metal oxynitrides and metal oxysulfides. 

Because of the safety, low cost, and simplicity of this process, we believe that 

cyanamidation using urea will open up opportunities for facile synthesis of various 

metal oxycyanamide phosphors. 
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Figure captions: 

 

Fig. 1. XRD patterns of products obtained from mixtures of La(OH)3 and urea with 

various mixing ratios (R = (a) 2.0, (b) 2.5, (c) 3.0, and (d) 5.0) after calcination at 

800 °C for 2 h. 

 

Fig. 2. XRD patterns of products obtained from mixtures of La(OH)3 and urea (R = 2.5) 

after calcination at (a) 600, (b) 700, (c) 800, (d) 900, and (e) 1000 °C for 2 h. 

 

Fig. 3. XRD patterns of products obtained via (a) hydrothermal treatment at 200 °C for 

24 h of a mixture of La(NO3)3·6H2O and Eu(NO3)3·nH2O, (b) calcination of (a) alone at 

800 °C for 2 h, and (c) calcination of a mixture of (a) and urea ([urea] / [(a)] = 2.5) at 

800 °C for 2 h. 

 

Fig. 4. (a) Emission and (b) excitation spectra of La2O2CN2:Eu3+ and La2O3:Eu3+. The 

excitation wavelength is 284 nm (a). The emission wavelengths for La2O2CN2:Eu3+ and 

La2O3:Eu3+ are 621 and 626 nm, respectively (b). 

 

 


