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Generalized Cousin-I condition and intermediate pseudoconvexity
in a Stein manifold

Shun Sugiyama

Abstract

Let D be an open subset of an n-dimensional Stein manifold, where n ≥ 2. Assume that the
canonical map Hn−1(D,O) → Hn−1(D,M) is injective. Then, we prove that D is pseudoconvex
of order 1, which generalizes the well-known theorem of Cartan-Behnke-Stein. Moreover we
introduce a new proof of theorem of Eastwood–Vigna Suria.

1 Introduction

According to the well-known theorem of Cartan-Behnke-Stein [4, 6], every Cousin-I open subset of
C2 is Stein. Here, an open set D in an n-dimensional Stein manifold X is said to be Cousin-I if
any additive Cousin problem has a solution. This condition is equivalent to the injectivity of the
canonical map H1(D,O) → H1(D,M), where M denotes the sheaf of all germs of meromorphic
functions on D (see Grauert–Remmert [11, p. 137]).

On the other hand, there is an intermediate geometric notion which generalizes pseudoconvexity.
An open set D in an n-dimensional complex manifold X is said to be pseudoconvex of order n− q,
where 1 ≤ q ≤ n, if its complement X \ D has the same continuity as an analytic set of pure
dimension n− q.

The object of this paper is to generalize Cousin-I condition and describe its relation to pseudo-
convexity of order n− q. Precisely, we prove that an open set D in an n-dimensional Stein manifold
X is pseudoconvex of order 1 if the canonical map Hn−1(D,O) → Hn−1(D,M) is injective (Theo-
rem 5.1). In the case where n = 2, this result is nothing but the theorem of Cartan-Behnke-Stein
for an open set D in a Stein manifold X of dimension two (see Kajiwara–Kazama [13, Corollary 3]
and Berg [5, Corollary]). Moreover we introduce a new proof of theorem of Eastwood–Vigna Suria.

2 Preliminaries

We denote by ‖·‖ the Euclidian norm on Cn and by |·| the maximum norm on Cn. Let Bn(c, r) =
{z ∈ Cn ; ‖z − c‖ < r} and Pn(c, r) = {z ∈ Cn ; |z − c| < r} for every c ∈ Cn and r ∈ (0,∞].
We call the set Bn(c, r) the ball of radius r with center c in Cn and the set Pn(c, r) the polydisk of
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radius r with center c in Cn. Throughout this paper, X always stands for an n-dimensional complex
manifold. An upper semicontinuous function u is said to be subpluriharmonic on X if for every
open set D ! X and for every pluriharmonic function h which is defined on a neighborhood of D
and satisfies the inequality u ≤ h on ∂D, we have the inequality u ≤ h on D (see Fujita [9]). An
upper semicontinuous function u is q-plurisubharmonic on X, where 1 ≤ q ≤ n, if for every domain
D in Cq and for every holomorphic function f on D to X, the function u ◦ f is subpluriharmonic
on D. We obtain the following proposition which generalizes Lemma 1 in Yasuoka [21].

Proposition 2.1. Let D be an open subset of Cn and u an upper semicontinuous function. If u
is not subpluriharmonic on D, then there exist c ∈ D, ρ > 0, a function h : Bn(c, ρ) → R which
is real-analytic near Bn(c, ρ) and a constant K > 0 such that Bn(c, ρ) is relatively compact in D,
u(c) = h(c), u ≤ h on Bn(c, ρ) and

i∂∂̄h = −iK
n∑

ν=1

dzν ∧ dz̄ν

on Bn(c, ρ).

Proof. By Proposition 3 in Fujita [9], there exist a relatively compact open ball Q = Bn(a,R),
a function g : Q → R which is pluriharmonic near Q and b ∈ Q such that u ≤ g on ∂Q and
u(b) > g(b). Replacing g, we can assume that u < g on ∂Q and u(b) > g(b). Since the function
u− g is upper semicontinuous on Q, we can put M = maxz∈∂Q{u(z)− g(z)} < 0. Take an arbitrary
K ∈ (0,−M/R2). Because the function u − g + K ‖z − a‖2 is upper semicontinuous on Q, there
exists c ∈ Q such that

N = max
z∈Q

{u(z)− g(z) +K ‖z − a‖2} = u(c)− g(c) +K ‖c− a‖2 .

Since b ∈ Q and u(b)−g(b)+K ‖b− a‖2 > 0, we have N > 0. Moreover, u(z)−g(z)+K ‖z − a‖2 ≤
M +KR2 < 0 for every z ∈ ∂Q. Therefore, we obtain c ∈ Q. Take an arbitrary ρ > 0 such that
Bn(c, ρ) is relatively compact in Q. The function h(z) = g(z)−K ‖z − a‖2 +N is real-analytic on
Q. We see that u(c) = h(c), u ≤ h on Q and

i∂∂̄h = −iK
n∑

ν=1

dzν ∧ dz̄ν

on Q.

Proposition 2.2. Let c ∈ Cn, r > 0 and f ∈ O(Bn(c, r)) with *(f(c)) = 0. Set

P (z) =
∑

|ν|≤2

1

ν!

∂|ν|ef

∂zν
(c)(z − c)ν .
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Then, for every ε ∈ (0, e−$(f(c))), there exist ρ ∈ (0, r), δ > 0 and M > 0 such that

log |P (z)− t| ≤ +(f(z))− εt+M ‖z − c‖3

on Bn(c, ρ)× [0, δ].

Proof. We may assume that c = 0. As the function ef is holomorphic on Bn(0, r), we obtain the
Tayler series expansion

ef(z) =
∑

ν

1

ν!

∂|ν|ef

∂zν
(0)zν

of ef which converges on Bn(0, r). Put

R(z) =
∑

|ν|≥3

1

ν!

∂|ν|ef

∂zν
(0)zν .

We have ef = P +R on Bn(0, r). Take an arbitrary ρ1 ∈ (0, r). Consider the expression of the form
R(z) =

∑
|ν|=3 gν(z)z

ν by holomorphic functions gν ∈ O(Bn(0, r)). Then there exists M1 > 0 such
that

|R(z)| ≤
∑

|ν|=3

|gν(z)| |zν | ≤ M1 ‖z‖3

on Bn(0, ρ1). Let h1 = +(f), h2 = *(f) and ε ∈ (0, e−h1(0)). We define the function F (z, t) on
Bn(0, r)× R by

F (z, t) =
(
eh1(z)−εt

)2
−
∣∣∣eh1(z)+ih2(z) − t

∣∣∣
2
.

By a simple calculation, we obtain the inequality

∂F

∂t
(0, 0) = 2e2h1(0)

(
−ε+ e−h1(0)

)
> 0.

It follows that there exist ρ2 > 0 and δ > 0 such that ∂F (z, t)/∂t > 0 on Bn(0, ρ2)× [−δ, δ]. Thus,
F (z, t) ≥ F (z, 0) = 0 on Bn(0, ρ2)× [0, δ]. It means that

∣∣∣eh1(z)+ih2(z) − t
∣∣∣ ≤ eh1(z)−εt

on Bn(0, ρ2)× [0, δ]. Let ρ = min{ρ1, ρ2}. Then, for every (z, t) ∈ Bn(0, ρ)× [0, δ], we have

|P (z)− t| ≤
∣∣∣eh1(z)+ih2(z) − t

∣∣∣+ |R(z)|

≤ eh1(z)−εt(1 +M ‖z‖3),

where M = M1max‖z‖≤ρ2 e
−h1(z)+εδ, and consequently

log |P (z)− t| ≤ h1(z)− εt+ log(1 +M ‖z‖3) ≤ h1(z)− εt+M ‖z‖3 .
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3 A characterization of pseudoconvexity of general order

In this chapter, we introduce the definition of intermediate pseudoconvexity and give a character-
ization of intermediate pseudoconvexity by Hartogs figures. This characterization is useful in the
calculation of the cohomology groups.

Definition 3.1 (see Tadokoro [19], Fujita [9] and Matsumoto [14]). Let 1 ≤ q ≤ n − 1. An open
set D in X is called pseudoconvex of order n− q if it satisfies the condition:

Let ξ ∈ E = X \ D, (U ; z1, . . . , zn) a coordinate neighborhood containing ξ and z1(ξ) =
ξ1, . . . , zn(ξ) = ξn. Suppose that there exists r > 0 such that




x ∈ U ; zi(x) = ξi (1 ≤ i ≤ n− q), 0 <
n∑

i=n−q+1

|zi(x)− ξi|2 < r






has no point of E. Then there exists s > 0 such that for every (η1, . . . , ηn−q) with |ηi − ξi| <
s (1 ≤ i ≤ n− q), the set




x ∈ U ; zi(x) = ηi (1 ≤ i ≤ n− q),
n∑

i=n−q+1

|zi(x)− ξi|2 < r






contains at least one point of E.

Moreover, we say that every open set in X is pseudoconvex of order 0.

An open set D in X is pseudoconvex in the original sense if and only if it is pseudoconvex of
order n − 1. Note that pseudoconvexity of general order is a boundary local condition, namely, if
for each ξ ∈ ∂D there exists a neighborhood U of ξ such that D ∩U is pseudoconvex of order n− q
in U , then D is pseudoconvex of order n− q.

Proposition 3.1 (Sugiyama [17, Propostion 3.1]). Let D be an open subset of Cn, q an integer such
that 1 ≤ q ≤ n− 1 and b, c ∈ (0, 1). Put He = {(ζ1, ζ2) ∈ Cq ×Cn−q ; |ζ1| < 1, |ζ2| < b}∪ {(ζ1, ζ2) ∈
Cq × Cn−q ; c < |ζ1| < 1, |ζ2| < 1}. The condition ()) implies that − log dD is q-plurisubharmonic
on D, where dD is the boundary distance function with respect to the Euclidian norm.

()) Let ϕ = (ϕ1, . . . ,ϕn) : Cn → Cn, (z1, . . . , zn) /→ (w1, . . . , wn), be a biholomorphic map which
satisfies the following two conditions:

• ϕ(He) ⊂ D.

• There exist polynomials Pj(z1, . . . , zn), Qj(w1, . . . , wn) of degree at most two such that
ϕj(z1, . . . , zn) = Pj(z1, . . . , zn) and (ϕ−1)j(w1, . . . , wn) = Qj(w1, . . . , wn) for every j =
1, . . . , n.
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Then we have that ϕ(Pn(0, 1)) ⊂ D.

Proof. We improve the argument in Yasuoka [21] and Sugiyama [17]. Seeking a contradiction,
suppose that − log dD is not q-plurisubharmonic on D. Because of Proposition 3.10 in Pawlaschyk–
Zeron [16], there exists w ∈ ∂B1(0, 1) such that − log dD(z : w) is not q-plurisubharmonic on D,
where dD(z : w) is distance to the boundary in direction w. According to Theorem 2 in Fujita
[10], there exists a q-dimensional complex affine subspace L of Cn such that − log dD(z : w) is
not subpluriharmonic on L ∩ D. Write 0k = (0, . . . , 0) ∈ Ck for every k ∈ N. Using a unitary
transformation, we can suppose that 0n ∈ L ∩ D and L = Cq × {0n−q}. Since the function
− log dD(z : w) is not subpluriharmonic on L∩D, it follows that w /∈ L. By a unitary transformation
again, we may assume w = eq+1, where eq+1 is the unit vector whose q + 1-th component is
1. Let d(ζ) = dD((ζ, 0n−q) : eq+1) for any ζ ∈ Cq. There exist (a, 0n−q) ∈ L ∩ D, r > 0, a

function g : Bq(a, r) → R which is real-analytic near Bq(a, r) and a constant K > 0 such that

− log d(a) = g(a), − log d ≤ g on Bq(a, r) and

i∂∂̄g = −iK
q∑

ν=1

dζν ∧ dζ̄ν

on Bq(a, r) by Proposition 2.1. The function h1 = −g −K
∑q

ν=1 |ζν |2 is pluriharmonic on Bq(a, r).
Therefore there exists f ∈ O(Bq(a, r)) such that h1 = +(f) and *(f(a)) = 0 (see Fritzsche–Grauert
[8, p. 318]). Without loss of generality we can assume a = 0q. From Proposition 2.2, there exist
ρ1 ∈ (0, r), δ > 0 and M > 0 such that

log |P (ζ)− t| ≤ h1(ζ)− εt+M ‖ζ‖3

on Bq(0, ρ1)× [0, δ], where

P (ζ) = P (ζ1, . . . , ζq) =
∑

|ν|≤2

1

ν!

∂|ν|ef(0)

∂ζν
ζν , ν = (ν1, ν2, . . . , νq).

Take an arbitrary ρ ∈ (0,min{ρ1,K/M}). Put B = Bq(0, ρ). If ‖ζ‖ ≤ ρ and 0 < t ≤ δ then,

log |P (ζ)− t| ≤ h1(ζ)− εt+M ‖ζ‖ ‖ζ‖2

≤ h1(ζ)− εt+K ‖ζ‖2 = −g(ζ)− εt < −g(ζ).

If 0 < ‖ζ‖ ≤ ρ and 0 ≤ t ≤ δ then,

log |P (ζ)− t| ≤ h1(ζ)− εt+M ‖ζ‖ ‖ζ‖2

< h1(ζ)− εt+K ‖ζ‖2 = −g(ζ)− εt ≤ −g(ζ).
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It follows that

(1) |P (ζ)− t| < e−g(ζ) ≤ elog d(ζ) = d(ζ) = dD((ζ, 0n−q) : eq+1),

on B× [0, δ] \ {(0q, 0)}. On the other hand, we have

(2) |P (0q)| =
∣∣∣ef(0q)

∣∣∣ = eh1(0q) = d(0q) = dD(0n : eq+1).

By the definition of the function dD(z : eq+1), there exists s ∈ ∂B1(0, 1) such that sP (0q)eq+1 ∈ ∂D.
We define the holomorphic map ψ : Cq+1 × Cn−(q+1) → Cn by

ψ(z1, . . . , zn) =

{
zj 1 ≤ j ≤ n, j 1= q + 1,

s(P (z1, . . . , zq)− zq+1) j = q + 1.

Take an arbitrary polydisk P = Pq(0, ρ2) such that P ⊂ B. By inequalities (1) and (2), we obtain
ψ(∂P×[0, δ]×{0n−(q+1)}) ⊂ D and ψ(P×{t}×{0n−(q+1)}) ⊂ D for any t ∈ (0, δ]. We can choose ε0 >

0 such that ψ(∂P×B1(0, ε0)×{0n−(q+1)}) ⊂ D. Take an arbitrary δ0 ∈ (0, ε0/2), the set B1(δ0, ε0−
δ0) satisfies B1(δ0, ε0 − δ0) ⊂ B1(0, ε0) and 0 ∈ B1(δ0, ε0 − δ0). Set φ(z1, . . . , zq, zq+1, . . . , zn) =
ψ(z1, . . . , zq, δ0 − zq+1, . . . , zn). This holomorphic map φ is biholomorphic. In fact, we can get the
map φ−1 : Cn → Cn , (w1, . . . , wn) /→ (z1, . . . , zn),

φ−1(w1, . . . , wn) =

{
wj 1 ≤ j ≤ n, j 1= q + 1,

wq+1/s− P (w1, . . . , wq) + δ0 j = q + 1.

There exists ε > 0 such that φ(∂P×B1(0, ε0 − δ0)×Pn−(q+1)(0, ε)) ⊂ D, because ∂P×B1(0, ε0 − δ0)×
{0n−(q+1)} is a compact set. Moreover, we see that φ(P × {0n−q}) ⊂ D and φ(δ0 · eq+1) /∈ D.

Since ∂P × B1(0, ε0 − δ0) × Pn−(q+1)(0, ε) and P × {0n−q} are compact sets in Cn, we can define
a biholomorphic map ϕ which satisfies the condition (2) of the statement of lemma such that
ϕ(He) ⊂ D and ϕ(Pn(0, 1)) 1⊂ D. This is a contradiction.

The following theorem is a generalization of Lemmata 1 and 2 in Kajiwara–Kazama [13] (see
also Lemma 2.1 in Abe [1]).

Theorem 3.1 (Sugiyama [17, Theorem 3.1]). Let D be an open subset of Cn and q an integer such
that 1 ≤ q ≤ n. Then the following two conditions are equivalent.

(1) D is pseudoconvex of order n− q in Cn.

(2) D satisfies the condition ()).

Proof. In the case where n = q, the assertion is trivial. So we can assume that 1 ≤ q ≤ n − 1.
(1) → (2). This is a direct result of Theorem 2 in Fujita [9]. (2) → (1). According to Theorem 2 in
Fujita [9] and Theorem 3.1, this is trivial.
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4 Existence of meromorphically tirivial cocycles

The goal of this section is to organize the Kajiwara–Kazama’s method [13, p. 8]. In particular,
we will make an open covering that satisfies good conditions and a holomorphic cocycle that is
meromorphically trivial.

Proposition 4.1 (cf. Kajiwara–Kazama [13, p. 8]). Let X be an n-dimensional complex manifold
and D an open set in X. Assume that there exist a holomorphic map F : X → Cn, x /→ (w1, . . . , wn),
an open set U ⊂ X and a point a = (a1, . . . , an) ∈ Pn(0, 1 + 2ε) such that F (U) is biholomorphic
to a polydisk Pn(0, 1 + 2ε), U ∩D 1= ∅ and a /∈ F (U ∩D). Put T1 = {x ∈ X ; |w1(x)| < 1 + 2ε},
T2 = {x ∈ X ; |wj(x)| < 1+2ε (j = 2, . . . , n)}, T3 = T1∩T2∩U , T4 = {x ∈ T2 ; |w1(x)| > 1 + ε}∪
{x ∈ T2\T3 ; |w1(x)| < 1+2ε}, D1 = {x ∈ D∩T3 ; w1 1= a1}∪{D∩T4} and Dj = {x ∈ D ; wj 1= aj}
for j = 2, . . . , n. Then D = {Dj}nj=1 is an open covering of D.

Proof. Take an arbitrary point x ∈ D. If wj(x) 1= aj for some j = 2, . . . , n, then x ∈ Dj . So we may
assume that wj(x) = aj for every j = 2, . . . , n. Then x ∈ T2. If |w1(x)| > 1 + ε, then we can get
x ∈ D1 because x ∈ T4. In the case where |w1(x)| ≤ 1 + ε and x /∈ T3, then we have that x ∈ D1.
In the case where |w1(x)| ≤ 1 + ε and x ∈ T3. If w1(x) 1= a1, we obtain x ∈ D1. If w1(x) = a1, this
contradicts a /∈ F (U ∩D). Thus we can get D =

⋃n
j=1Dj .

Proposition 4.2 (cf. Kajiwara–Kazama [13, p. 8]). Let T1, T2, T3, T4, Dj (j = 1, . . . , n) and D be
the same as in Proposition 4.1. Assume that X is Stein. Then there exist ρ ∈ M(T2) such that

(1) f =
ρ

(w2 − a2) · · · (wn − an)
∈ Zn−1(D,O) ∩ δ

(
Cn−2(D,M)

)
,

(2) ρ =
1

w1 − a1
+ ρ3 on T3, where ρ3 ∈ O(T3).

Proof. Notice that 1/(w1 − a1) ∈ O(T3 ∩ T4). Since X is Stein, T2 is Stein. The set {T3, T4} is an
open covering of T2. So we can find holomorphic functions ρj ∈ O(Tj) for j = 3, 4 which satisfies
1/(w1 − a1) = ρ4 − ρ3 on T3 ∩ T4. We define

ρ =





ρ4 on T4,

ρ3 +
1

w1 − a1
on T3.

This function ρ is a meromorphic function on T2. Since f ∈ O(D1 ∩ · · · ∩ Dn), we can define
f ∈ Zn−1(D,O). Moreover D1 ⊂ T2, so we have that f ∈ M(D1 ∩ · · · ∩ Dn−1). Thus f ∈
δ
(
Cn−2(D,M)

)
.
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5 Generalized Cartan-Behnke-Stein’s theorem

We introduce a generalized Cousin-I condition. An open set D in X is called q-Cousin-I, where
1 ≤ q ≤ n − 1, if the canonical map Hq(D,O) → Hq(D,M) is injective. Note that D is 1-
Cousin-I if and only if D is Cousin-I (see Grauert–Remmert [11, p. 137]). Let b ∈ (0, 1). We put
Tn−1 = {z ∈ Cn ; b < |z| < 1} =

⋃n
j=1 Uj . Here, Uj = {z ∈ Pn(0, 1) ; b < |zj | < 1} (j = 1, . . . , n).

It follows from 0 /∈ Tn−1 that we can define 1
z1···zn ∈ Hn−1(Tn−1,O).

Lemma 5.1. Let n ≥ 2, then Tn−1 is not (n− 1)-Cousin-I. Moreover 1
z1···zn 1= 0 in Hn−1(Tn−1,O)

but 1
z1···zn = 0 in Hn−1(Tn−1,M).

Proof. We obtain Hk(Tn−1,F) ∼= Hk(U ,F) for any k ≥ 0 and for any analytic coherent sheaf F
because U = {Uj} is a Stein open covering of Tn−1. Assume that g = 1

z1···zn = 0 inHn−1(Tn−1,O) ∼=
Hn−1(U ,O). There exist gj ∈ O(Vj) (j = 1, . . . , n) such that δ({gj}) = g, where Vj = U1∩ · · ·∩ Ûj∩
· · · ∩ Un and δ is the coboundary operator. The set Vj is a Reinhardt domain with a center origin.
Therefore the function gj can be expanded into the Laurent series with a center origin. It follows
from the uniqueness of the representation of the Laurent series that there exists a j ∈ {1, . . . , n}
such that gj has the term of 1

z1···zn . It is a contradiction from gj ∈ O(Vj). Moreover, we define

fj ∈ Cn−2(U ,M) by

fj =






1

z1 · · · zn
on V1,

0 otherwise.

We obtain δ(fj) = g. Thus g = 0 in Hn−1(Tn−1,M).

Lemma 5.2. (cf. Watanabe [20, Lemma 4]) Let n ≥ 2, b, c ∈ (0, 1) and b < |d| < 1. Put
He = {(z1, . . . , zn−1, zn) ∈ Cn ; |(z1, . . . , zn−1)| < 1, |zn − d| < b} ∪ {(z1, . . . , zn−1, zn) ∈ Cn ; c <
|(z1, . . . , zn−1)| < 1, |zn − d| < 1}. Then the set He is not (n− 1)-Cousin-I. Moreover 1

z1···zn 1= 0 in

Hn−1(He,O) but 1
z1···zn = 0 in Hn−1(He,M).

Proof. Let Uj = {(z1, . . . , zn) ∈ Pn((0, . . . , 0, d), 1) ; c < |zj | < 1} (j = 1, . . . , n − 1) and Un =
{(z1, . . . , zn) ∈ Cn ; |(z1, . . . , zn−1)| < 1, |zn − d| < b}. The set U = {Uj} is a Stein covering of
He. To obtain a contradiction, we assume that g = 1

z1···zn = 0 in Hn−1(He,O) ∼= Hn−1(U ,O). In
the case where n = 2, there exist fj ∈ O(Uj) (j = 1, 2) such that g = f2 − f1 on U1 ∩ U2. We
notice that f2 = g + f1 is holomorphic on (U1 \ {z2 = 0}) ∪ U2. Moreover the function f1 = f2 − g
is holomorphic on (U2 \ {z1 = 0})∪U1. Thus function f1 can be extended to P2((0, d), 1) \ {z1 = 0}
and also the function f2 can be extended to P2((0, d), 1) \ {z2 = 0} (see Jarnicki–Pflug [12, p. 182]).
P2((0, d), 1) is an open neighborhood of (0, 0) and put G = P2((0, d), 1) \ {(0, 0)}. So we can choose
ε > 0 such that T =

{
z ∈ C2 ; 0 < |z1| < ε, |z2| < ε

}
∪
{
z ∈ C2 ; |z1| < ε, 0 < |z2| < ε

}
⊂ G. Thus

{g} = 0 ∈ H1(T,O). This contradicts Lemma 5.1.
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In the case where n ≥ 3, there exist gj ∈ O(Vj) (j = 1 . . . , n) such that δ({gj}) = g, where

Vj = U1 ∩ · · · ∩ Ûj ∩ · · · ∩ Un and δ is the coboundary operator. G(n)
ν1···νn−1 ∈ Cn−2(U ,O) defined by

G(n)
1···n−1 = −zngn − (−1)2+n 1

z1 · · · zn−1
,

G(n)
ν1···νn−1 = −zngl,

where ν1 · · · νn−1 = 1 · · · l̂ · · ·n and l 1= n. By a simple calculation, we have δ(G(n)
ν1···νn−1) = 0.

There exists an element G ∈ Cn−3(U ,O) such that δ(G) = G(n)
ν1···νn−1 according to the lemma of

Andreotti–Grauert [3, p. 218]. In detail,

n−1∑

k=1

(−1)k−1G1···k̂···n−1(z) = G(n)
1···n−1(z) = −zngn − (−1)2+n 1

z1 · · · zn−1

for any z ∈ Vn = U1 ∩ · · · ∩ Un−1. By restricting the above equation to {zn = 0}, we get

n−1∑

k=1

(−1)k−1G1···k̂···n−1(z1, . . . , zn−1, 0) = (−1)n−1 1

z1 · · · zn−1
.

On the other hand, the set {zn = 0} ∩ He = {(z1, . . . , zn−1, 0) ∈ Cn ; c < |(z1, . . . , zn−1)| < 1}
is identified with the set Tn−2. This contradicts Lemma 5.1. In particular we see that g = 0 in
Hn−1(He,M) because of the proof of Lemma 5.1. Therefore He is not (n− 1)-Cousin-I.

Theorem 5.1 (Sugiyama [17, Theorem 5.1]). Let n ≥ 2, X an n-dimensional Stein manifold and
D an open subset of X. If D is (n− 1)-Cousin-I, then D is pseudoconvex of order 1.

Proof. We use the argument in Kajiwara–Kazama [13, pp. 7–9] and Mori [15, pp. 186–191]. To
obtain a contradiction, suppose that D is not pseudoconvex of order 1. There exists a point
x0 ∈ ∂D such that for any neighborhood U of x0, then D ∩ U is not pseudoconvex of order 1 in U .
Since X is Stein, we can take holomorphic functions ψj ∈ O(X) (j = 1, . . . , n) which satisfies the
following two conditions:

• ψj(x0) = 0 (j = 1, . . . , n).

• The family {ψ1, . . . ,ψn} forms a coordinate system in the connected component U of {x ∈
X ; |ψj(x)| < K (j = 1, . . . , n)} containing x0 for some K > 0.

Define a holomorphic mapping ψ : X → Cn, x /→ (ψ1(x), . . . ,ψn(x)) = (z1(x), . . . , zn(x)). Then we
have that ψ(U) = {z ∈ Cn ; |zj | < K (j = 1, . . . , n)}. By Theorem 3.1, there exist a biholomorphic
map ϕ : Cn → Cn,(w1, . . . , wn) /→ (z1, . . . , zn) and ε > 0 such that
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• Put H = {w ∈ Cn ; |wi| < 1 (i = 1, . . . , n)}
∪ {w ∈ Cn ; 1− 2ε < |wj | < 1 + 2ε (j = 1, . . . , n− 1), |wn| < 1 + 2ε}.

Then we heve ϕ(H) ⊂ ψ(D ∩ U).

• ϕ(E) ⊂ ψ(U), where E = {w ∈ Cn ; |wj | < 1 + 2ε (j = 1, . . . , n)}.

• There is a point a = (a1, . . . , an−1, an) ∈ Cn such that aj = 0 (j = 1, . . . , n − 1), 1 < |an| <
1 + 2ε and ϕ(a) /∈ ψ(D ∩ U).

Put ϕ−1 ◦ψ : X → Cn x /→ (w1, . . . , wn). The family {w1, . . . , wn} forms a coordinate system in U .
By Proposition 4.1 and Proposition 4.2, we can take open sets T1, T2, T3, T4, an open covering D of
D and ρ ∈ M(T2). Let f , g and h be the functions given by

f =
ρ

w2 · w3 · · ·wn−1(wn − an)
,

g =
1

w1 · w2 · · ·wn−1(wn − an)
,

h =
ρ3

w2 · w3 · · ·wn−1(wn − an)
.

By Proposition 4.2, we obtain f ∈ Zn−1(D,O) ∩ δ
(
Cn−2(D,M)

)
. As D is (n − 1)-Cousin-I, it

follows that {f} = 0 in Hn−1(D,O). We can take a refinement U = {Uα}α∈A of D which holds the
following two properties:

• A = A1 ∪ · · · ∪An, Ai ∩Aj is empty if i 1= j.

• {Uαj}αj∈Aj is a Stein covering of Dj and U is a Stein covering of D.

From f = 0 ∈ Hn−1(D,O) ∼= Hn−1(U ,O), it is concluded that there exists f (0) ∈ Cn−2(U ,O) such
that f = δ

(
f (0)

)
. The function h(x) is holomorphic on T3 ∩D2 ∩ · · · ∩Dn. By setting

h(0) =

{
−h on T3 ∩ Uν2 ∩ · · · ∩ Uνn , νj ∈ Aj (j = 2, . . . , n),

0 otherwise,

we can define h(0) ∈ Cn−2(T3 ∩ U ,O). Here T3 ∩ U = {T3 ∩ Uα}α∈A is an open covering of T3 ∩D.
The cochain h(0) + f (0) ∈ Cn−2(T3 ∩ U ,O) satisfies that

g = δ
(
h(0) + f (0)

)
on T3 ∩ Uν1 ∩ · · · ∩ Uνn ,

where νj ∈ Aj (j = 1, . . . , n). Thus g = 0 in Hn−1(T3 ∩ U ,O). Since H′ = ψ|−1
U ◦ ϕ(H) ⊂ D ∩ U , it

follows that g|H′ = 0. This contradicts Lemma 5.2.

Corollary 5.1 (Kajiwara–Kazama [13, Corollary 3] and Berg [5, Corollary]). Let X be an 2-
dimensional Stein manifold and D an open set in X. Then D is Stein if and only if D is Cousin-I.
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6 A new proof of theorem of Eastwood–Vigna Suria

In this section, we shall extend Theorem 5.1. Moreover we give a new proof of theorem of Eastwood–
Vigna Suria. Firstly, we state this theorem.

Theorem (Eastwood–Vigna Suria [7, Theorem 3.8]). Let D be an open set in an n-dimensional
Stein manifold and q an integer with 1 ≤ q ≤ n. If D satisfies Hk(D,O) = 0 for every k =
q, . . . , n− 1, then D is pseudoconvex of order n− q.

For our purposes, we introduce two lemmata. The original two lemmata were proved by Abe
[2]. Here we shall prove in an intermediate case. Let D be an open set in X. Let D1 and D2 be
open sets in D. If n ≥ 3, then we take w3, . . . , wn ∈ O(D) and put Dν = {wν 1= 0} for 3 ≤ ν ≤ n.
In addition, we assume that D =

⋃n
ν=1Dν . Let h ∈ O(D1 ∩D2). Then we can define

η =
h

w3 · · ·wn
∈ Zn−1({Dν}nν=1,O)

For any 2 ≤ s ≤ n − 1 and 3 ≤ k1 < · · · < ks−1 ≤ n, let η(k1···ks−1)
ν1···νn−s+1 ∈ Cn−s({Dν}nν=1,O) be the

cochain defined by

η(k1···ks−1)
ν1···νn−s+1 =

{
(−1)(s−1)+k1+···+ks−1 h

wν3 ···wνn−s+1
if {ν1, . . . , νn−s+1, k1, . . . , ks−1} = {1, . . . , n},

0 otherwise,

on Dν1 ∩ · · · ∩Dνn−s+1 , where 1 ≤ ν1 < · · · < νn−s+1 ≤ n.

Lemma 6.1 (Abe [2, Lemma 5.1]). For every 2 ≤ s ≤ n− 1 and 3 ≤ k1 < · · · < ks−1 ≤ n, then we
have that

δη(k1···ks−1) =
s−1∑

j=1

(−1)j−1wkjη
(k1···k̂j ···ks−1).

Proof. This lemma was proved by Abe [2]. For reader’s convenience, we present a proof of this
lemma. Take arbitrary numbers 1 ≤ ν1 < · · · < νn−s+2 ≤ n. Firstly we consider the case
where {ν1, . . . , ν̂i, . . . , νn−s+2, k1, . . . , ks−1} ! {1, . . . , n} for every i ∈ {1, . . . , n − s + 2}. Since

η(k1···ks−1)
ν1···ν̂i···νn−s+2

= 0 for every i ∈ {1, . . . , n− s+ 2}, we have that

(
δη(k1···ks−1)

)

ν1···νn−s+2

=
n−s+2∑

i=1

(−1)iη(k1···ks−1)
ν1···ν̂i···νn−s+2

= 0

on Dν1 ∩ · · · ∩Dνn−s+2 .

If there exists q ∈ {1, . . . , s−1} such that {ν1 . . . , νn−s+2, k1, . . . , k̂q, . . . , ks−1} = {1, . . . , n}, then
there exists p ∈ {1, . . . , n−s+2} such that νp = kq and we have {ν1, . . . , ν̂p, . . . , νn−s+2, k1, . . . , ks−1}
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= {1, . . . , n}. This is a contradiction. It follows that {ν1, . . . , νn−s+2, k1, . . . , k̂j , . . . , ks−1} !
{1, . . . , n} for every j ∈ {1, . . . , s− 1} and therefore we have that

s−1∑

j=1

(−1)j−1wkjη
(k1···k̂j ···ks−1)
ν1···νn−s+2 = 0 =

(
δη(k1···ks−1)

)

ν1···νn−s+2

on Dν1 ∩ · · · ∩Dνn−s+2 .
Next we consider the case where there exists p ∈ {1, . . . , n − s + 2} such that {1, . . . , n} =

{ν1, . . . , ν̂p, . . . , νn−s+2, k1, . . . , ks−1}. Then there exists q ∈ {1, . . . , s − 1} such that νp = kq. If

i 1= p, then {ν1, . . . , ν̂i, . . . , νn−s+2, k1, . . . , ks−1} ! {1, . . . , n} and therefore η(k1···ks−1)
ν1···ν̂i···νn−s+2

= 0. It
follows that

(
δη(k1···ks−1)

)

ν1···νn−s+2

=
n−s+2∑

i=1

(−1)i−1η(k1···ks−1)
ν1···ν̂i···νn−s+2

= (−1)p−1η(k1···ks−1)
ν1···ν̂p···νn−s+2

= (−1)p−1 (−1)(s−1)+k1+···+ks−1h

wν3 · · · ŵνp · · ·wνn−s+2

= (−1)(p+s−2)+k1+···+ks−1
wνph

wν3 · · ·wνn−s+2

If j 1= q, then {ν1, . . . , νn−s+2, k1, . . . , k̂j , . . . , ks−1} ! {1, . . . , n} and therefore η
(k1···k̂j ···ks−1)
ν1···νn−s+2 = 0.

We can get

s−1∑

j=1

(−1)j−1wkjη
(k1···k̂j ···ks−1)
ν1···νn−s+2 = (−1)q−1wkqη

(k1···k̂q ···ks−1)
ν1···νn−s+2

= (−1)q−1wνp
(−1)(s−2)+k1+···+k̂q+···+ks−1h

wν3 · · ·wνn−s+2

= (−1)(q+s−3)+k1+···+k̂q+···+ks−1
wνph

wν3 · · ·wνn−s+2

on Dν1 ∩ · · ·∩Dνn−s+2 . Since kq = (p− 1)+ (q− 1)+ 1 = p+ q− 1, we have that {(p+ s− 2)+ k1+

. . .+ ks−1}− {(q+ s− 3)+ k1+ · · ·+ k̂q + · · ·+ ks−1} = p− q+1+ kq = p− q+1+(p+ q)− 1 = 2p.
So we can obtain

(
δη(k1···ks−1)

)

ν1···νn−s+2

=
s−1∑

j=1

(−1)j−1wkjη
(k1···k̂j ···ks−1)
ν1···νn−s+2

on Dν1 ∩ · · · ∩Dνn−s+2 .
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Let q be an integer with 1 ≤ q ≤ n − 3 and U = {Uλ}λ∈Λ a Stein open covering of D which is
a refinement of {Dν}nν=1. Let α : Λ → {1, . . . , n} be a map such that Uλ ⊂ Dα(λ) for any λ ∈ Λ.
Then α indues the canonical homomorphisms

α∗ : Ck({Dν}nν=1,O) → Ck(U ,O)

for any k ≥ 0.
Next, we assume that Hk(D,O) = 0 for every k = q + 1, . . . , n− 2. The following lemma is an

intermediate version of lemma of Abe [2].

Lemma 6.2 (cf. Abe [2, Lemma 5.2]). Assume that F (k0) = α∗(η) is trivial in Hn−1(U ,O). Then
there exist cochains f (k1···ks−1) ∈ Cn−s−1(U ,O), 1 ≤ s ≤ n− q− 1, q+ 2 ≤ k1 < · · · < ks−1 ≤ n, and
cocycles F (k1···ks−1) ∈ Zn−s(U ,O), 1 ≤ s ≤ n− q, which satisfy the following two conditions:

• For every 1 ≤ s ≤ n− q − 1 and q + 2 ≤ k1 < · · · < ks−1 ≤ n, we have that

δf (k1···ks−1) = F (k1···ks−1).

• For every 2 ≤ s ≤ n− q and q + 2 ≤ k1 < · · · < ks−1 ≤ n, we have that

F (k1···ks−1) = −
s−1∑

j=1

(−1)j−1wkjf
(k1···k̂j ···ks−1) + α∗

(
η(k1···ks−1)

)
.

Proof. Since F (k0) = 0 in Hn−1(U ,O), there exists f = f (k0) ∈ Cn−2(U ,O) such that δf = F (k0).
Next we consider the case where s = 2 ≤ n− q. We put F (k) = −wkf + α∗(η(k)) ∈ Cn−2(U ,O) for
every k ∈ {q + 2, . . . , n}. By Lemma 6.1, we have that δη(k) = wkη on D1 ∩ · · · ∩Dn. Therefore,

δ
(
F (k)

)
= δ

(
−wkf + α∗(η(k))

)
= −wkδ(f) + α∗

(
δη(k)

)

= −wkF
(k0) + α∗(wkη) = wk(−F (k0) + α∗(η)) = 0

It follows that F (k) ∈ Zn−2(U ,O). Now Hn−2(U ,O) = 0 therefore there exists f (k) ∈ Cn−3(U ,O)
such that δf (k) = F (k) for every k ∈ {q+2, . . . , n}. Finally we consider the case where 3 ≤ s ≤ n−q.
By induction hypothesis, we already have f (k1···kt−1) ∈ Cn−t−1(U ,O) and F (k1···kt−1) ∈ Zn−t(U ,O)
for 1 ≤ t ≤ s− 1 and q + 2 ≤ k1 < · · · < kt−1 ≤ n. Let

F (k1···ks−1) =
s−1∑

j=1

(−1)j−1wkjf
(k1···k̂j ···ks−1) + α∗

(
η(k1···ks−1)

)
∈ Cn−s(U ,O)

for q + 2 ≤ k1 < · · · < ks−1 ≤ n.
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We have that

δF (k1···ks−1) = −
s−1∑

j=1

(−1)j−1wkjδf
(k1···k̂j ···ks−1) + α∗

(
δη(k1···ks−1)

)

= −
s−1∑

j=1

(−1)j−1wkj

{
−

j−1∑

i=1

(−1)i−1wkif
(k1···k̂i···k̂j ···ks−1)

−
s−1∑

i=j+1

(−1)i−2wkif
(k1···k̂j ···k̂i···ks−1) + α∗

(
η(k1···k̂j ···ks−1)

)}
+ α∗

(
δη(k1···ks−1)

)

=
∑

i<j

(−1)i+jwkiwkjf
(k1···k̂i···k̂j ···ks−1) −

∑

j<i

(−1)j+iwkjwkif
(k1···k̂j ···k̂i···ks−1)

ɹ −
s−1∑

j=1

(−1)j−1wkjα
∗
(
η(k1···k̂j ···ks−1)

)
+ α∗

(
δη(k1···ks−1)

)

= α∗



−
s−1∑

j=1

(−1)j−1wkjη
(k1···k̂j ···ks−1) + δη(k1···ks−1)





Since δη(k1···ks−1) =
∑s−1

j=1(−1)j−1wkjη
(k1···k̂j ···ks−1) by Lemma 6.1, we have that δF (k1···ks−1) = 0. It

follows that F (k1···ks−1) ∈ Zn−s(U ,O). If 3 ≤ s ≤ n− q− 1, then we have that Hn−s(U ,O) = 0 and
therefore there exists f (k1···ks−1) ∈ Cn−s−1(U ,O) such that δf (k1···ks−1) = F (k1···ks−1).

Theorem 6.1. Let X be an n-dimensional Stein manifold, q an integer such that 1 ≤ q ≤ n and
D an open subset of X. If D satisfies the following two conditions:

• D is (n− 1)-Cousin-I.

• Hk(D,O) = 0 for every k = q, . . . , n− 2.

Then D is pseudoconvex of order n− q.

Proof. In the case where n = q, the assertion is trivial. So we can assume that 1 ≤ q ≤ n − 1. To
obtain a contradiction, suppose that D is not pseudoconvex of order n − q. There exists a point
x0 ∈ ∂D such that for any neighborhood U of x0, then D ∩ U is not pseudoconvex of order n − q
in U . Since X is Stein, we can take holomorphic functions ψj ∈ O(X) (j = 1, . . . , n) which satisfies
the following two conditions:

• ψj(x0) = 0 (j = 1, . . . , n)

• The family {ψ1, . . . ,ψn} forms a coordinate system in the connected component U of {x ∈
X ; |ψj(x)| < K (j = 1, . . . , n)} containing x0 for some K > 0.
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We define a holomorphic mapping ψ : X → Cn, x /→ (ψ1(x), . . . ,ψn(x)), then ψ maps U biholo-
morphically onto {z ∈ Cn ; |zj | < K (j = 1, . . . , n)}. By Theorem 3.1, there exist a biholomorphic
map ϕ : Cn → Cn, (w1, . . . , wn) /→ (z1, . . . , zn), ε > 0, and a = (a1, . . . , an) ∈ Cn such that
ϕ(Hq(2ε)) ⊂ ψ(U ∩ D), ϕ(Pn(0, 2ε)) ⊂ ψ(U), a1 = a2 = · · · = aq = aq+2 = · · · = an = 0,
1 ≤ |aq+1| ≤ 1 + 2ε and ϕ(a) /∈ ψ(U ∩D). Here

Hq(2ε) =
{
(ζ1, ζ2) ∈ Cq × Cn−q ; 1− 2ε < |ζ1| < 1 + 2ε , |ζ2| < 1 + 2ε

}

∪
{
(ζ1, ζ2) ∈ Cq × Cn−q ; |ζ1| < 1, |ζ2| < 1

}
.

We can put φ = ϕ−1◦ψ : X → Cn, x /→ (w1(x), w2(x), . . . , wn(x)). The family {w1, · · · , wn} forms a
coordinate system in U . Moreover we have Hq(2ε) ⊂ φ(U ∩D), Pn(0, 2ε) ⊂ φ(U) and a /∈ φ(U ∩D).
By Proposition 4.1 and Proposition 4.2, we can take open sets T1, T2, T3, T4, an open covering D of
D and ρ ∈ M(T2). Let f, g and h be functions defied by

f =
ρ

w2 · w3 · · ·wq · (wq+1 − aq+1) · wq+2 · · ·wn
,

g =
1

w1 · w2 · · ·wq · (wq+1 − aq+1)
,

h =
ρ3

w2 · w3 · · ·wq · (wq+1 − aq+1)
.

We can define f ∈ Zn−1(D,O) and get f = 0 ∈ Hn−1(D,M). Since Hn−1(D,O) → Hn−1(D,M)
is injective, so we have that f is trivial in Hn−1(D,O). We can take a refinement U = {Uλ}λ∈Λ of
D which holds the following two properties:

• Λ = Λ1 ∪ · · · ∪ Λn, Λi ∩ Λj is empty if i 1= j.

• {Uλj}λj∈Λj is a Stein covering of Dj and U is a Stein covering of D.

By applying Lemma 6.2, we can take F (q+2···n)
ν1···νq+1 ∈ Zq(U ,O). Since Hq(U ,O) = 0, there exists

fν1···νq ∈ Cq−1(U ,O) such that F (q+2···n)
ν1···νq+1 = δ(fν1···νq). By a simple calculation,

F (q+2···n)
ν1···νq+1 = −

n∑

j=q+2

(−1)j−q−2wjf
(q+2···ĵ···n)
ν1···νq+1 + (−1)(n−q−1)+(q+2)+···+n ρ

w2 · · ·wq(wq+1 − aq+1)

=
q+1∑

j=1

(−1)j−1fν1···ν̂j ···νq+1 ,

on Uν1 ∩ · · · ∩ Uνq+1 . By putting Lq = {wq+2 = · · · = wn = 0} ⊂ X, we obtain

q+1∑

j=1

(−1)j−1fν1···ν̂j ···νq+1 = (−1)n−q+···+n+1 ρ

w2 · · ·wq(wq+1 − aq+1)

= (−1)n−q+···+n+1 (h+ g)
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on Lq ∩ T3 ∩ Uν1 ∩ · · · ∩ Uνq+1 , where νj ∈ Λj (j = 1, . . . , q + 1). The set {Dj ∩ Lq}q+1
j=1 is an open

covering of D ∩T3 ∩Lq and U ∩Lq ∩T3 = {Uνj ∩Lq ∩T3 ; νj ∈ Λj , j = 1, . . . , q+1} is a refinement
of it. By setting

h(0)(x) =

{
−h(x) if x ∈ T3 ∩ Uν2 ∩ · · · ∩ Uνq+1 , νj ∈ Λj (j = 2, . . . , q + 1)

0 otherwise,

we can define h(0) ∈ Cq−1(U ∩ Lq ∩ T3,O), since h ∈ O(T3 ∩ D2 ∩ · · · ∩ Dq+1). And also we can
define g ∈ Zq(U ∩ Lq ∩ T3,O). In addition, we can get

q+1∑

j=1

(−1)j−1fν1···ν̂j ···νq+1 + h(0) = g

on T3∩Uν1∩ · · ·∩Uνq+1 , where νj ∈ Λj (j = 1, . . . , q+1). It follows that g = 0 in Hq(T3∩U ∩Lq,O).

Recall that Hq(2ε) ⊂ φ(U∩D), so we can get g = 0 in Hq(φ|−1
U (Hq(2ε))∩U∩Lq,O). This contradicts

Lemma 5.2. Thus D is pseudoconvex of order n− q.

Corollary 6.1. Let X be an n-dimensional Stein manifold and D an open set in X. Then D is
Stein if and only if D satisfies the following two conditions:

• D is (n− 1)-Cousin-I.

• Hk(D,O) = 0 for every k = 1, . . . , n− 2.

Corollary 6.2 (Eastwood–Vigna Suria [7, Theorem 3.8]). Let X be an n-dimensional Stein mani-
fold, q an integer with 1 ≤ q ≤ n and D an open set in X. If D satisfies Hk(D,O) = 0 for every
k = q, . . . , n− 1, then D is pseudoconvex of order n− q.
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