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ABSTRACT

For comprehensive understanding of precise mor-
phological changes resulting from loss-of-function
mutagenesis, a large collection of 1 899 247 cell
images was assembled from 91 271 micrographs of
4782 budding yeast disruptants of non-lethal genes.
All the cell images were processed computationally
to measure �500 morphological parameters in indi-
vidual mutants. We have recently made this morpho-
logical quantitative data available to the public
through the Saccharomyces cerevisiae Morpho-
logical Database (SCMD). Inspecting the significance
ofmorphologicaldiscrepanciesbetween thewild type
and the mutants is expected to provide clues to
uncover genes that are relevant to the biological pro-
cesses producing a particular morphology. To facil-
itate such intensive data mining, a suite of new
software tools for visualizing parameter value distri-
butions was developed to present mutants with
significant changes in easily understandable forms.
In addition, for a given group of mutants associated
with a particular function, the system automatically
identifies a combination of multiple morphological
parameters that discriminates a mutant group
from others significantly, thereby characterizing
the function effectively. These data mining func-
tions are available through the World Wide Web at
http://scmd.gi.k.u-tokyo.ac.jp/.

MORPHOLOGICAL DATABASE

To study the global regulation of cell morphological
characteristics, a number of groups have recently reported
genome-wide screening data for yeast mutants with abnormal
morphology (1–5). Despite the relatively simple ellipsoidal
shape of yeast cells, in the past, cell morphology researchers
processed information on cells manually. These time consum-
ing, entirely subjective tasks motivated us to develop image-
processing software called CalMorph (6), which automatically
extracts yeast cells from micrographs and processes them to
measure morphological characteristics such as cell size,
roundness, bud neck position angle, nuclear position and
actin localization. Using our software, we have retrieved
1 899 247 cells from 91 271 micrographs of 4782 mutants,
which cover almost all of the yeast non-essential mutants
cultured from the deleted strains available from EURO-
SCARF. All cell images, micrographs and quantitative values
of morphological parameters are freely available from the
SCMD database (7), which presents information that is com-
plementary to the existing sequence and gene-expression data-
bases (8–12).

CELL IMAGE PROCESSING

Our software processes micrographs of cells stained with
fluorescein isothiocyanate–Concanavalin A (FITC-ConA)
for cell wall identification, with DAPI to localize nuclei
and with Rh-ph to visualize the actin distribution. The photos
in Figure 1A show three images stained with the respective
dyes. Figure 1B presents the result of combining three photos
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by superimposing images of the cell wall, nuclei and actin for
individual cells.

Figure 1C displays image-processing results. Our image-
processing software first identifies the cell wall, attempts to fit

an ellipse to each mother cell or bud and colors the cell wall
green. The yellow lines show the long and short axes of the
fitted ellipses. Bud necks that separate mother cells and buds
are illustrated by using two red bullets. Identifying the cell
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Figure 1. Workflow of image processing and data mining. (A) Input photos of cells strained with FITC–ConA, DAPI and Rh-ph to visualize the cell wall, nuclei and
actin distribution, respectively. (B) Superimposition of three micrographs for individual cells. (C) Image-processing results. (D) Several examples of �500
morphological parameters. (E) Data mining processes.
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wall makes it easier to determine information on the localiza-
tion of nuclei and actin patches relative to the cell wall. In
Figure 1C, nuclei and actin patches are represented using
yellow and light blue bullets, respectively.

Figure 1D shows the primary morphological parameters of
cells. The quantitative values of these parameters may change
slightly from cell to cell. To perform rigorous statistical ana-
lysis of the significance of morphological changes, we need to
know the distribution of morphological parameter values for
individual cells; this requires that we collect an ample number
of image-processed cells and their parameter values. More
than 200 image-processed cells were collected for each mutant
using a sufficient number of micrographs. Then, �500 mor-
phological parameters were calculated for the mutants.

DATA MINING

Since there are so many parameters and mutants, some tools
for assisting with data mining tasks will help users.

Search

Morphological data should be useful for identifying the mor-
phological changes in particular mutants. Users can query
a yeast mutant of interest using its open reading frame
name or its gene name. They can also browse average shapes
of the mutant, average morphological parameter values, raw
and processed micrographs and lists of individual cells asso-
ciated with morphological parameter values. Users can also

provide a typical morphological shape or a particular mutant
as a query and ask the system to search for mutants that are
similar in shape to the query. This function is called ‘morpho-
logy search’ (7).

Teardrop view—juxtaposition of morphological
parameter distributions

In order to understand which morphological parameters of a
particular mutant are abnormal, the system displays the dis-
tribution of all mutants for each parameter and highlights the
focal mutant value in pink (see Figure 2). The system juxta-
poses the distributions of all parameters in parallel, making it
easy for users to comprehend the overview of distributions
and abnormal parameters at a glance. Parameters are colored
blue or pink if their changes are statistically significant in
terms of their distributions.

Mutant classification in terms of morphological
parameters

Another promising application of morphological parameters
is to use them to predict gene functions. For instance, suppose
that one is interested in finding a group of genes involved in
a particular biological process such as DNA repairs and cell
wall construction. You can ask the system to look for a
combination of multiple morphological parameters that dis-
criminate disruptants of genes that are known to be relevant
to the biological process of interest (see Figure 3). These
morphological parameters allow us to define distances
between disruptants. If we identify disruptants that are not

Figure 2. Teardrop view juxtaposes the morphological parameter distributions of all parameters for all mutants and the wild-type HIS3 (YOR202w). For each
morphological parameter, the distribution of all mutants and that of the wild type are displayed back-to-back in the upper and lower halves, respectively. The thin
central line in each distribution represents the average. The pink dots in the distributions show the data for the focal mutant. Since some wild-type distributions are
abnormal and are difficult to fit to any established statistical distribution, the statistical significance of a particular parameter value for a mutant is not assessed in terms
of the P-value but is estimated using the SD-score (or Z-score), the difference between the parameter value and the average of the wild type divided by the standard
deviation of the wild-type distribution. The degree of each SD-score is represented by its color.
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known to be related to any particular biological process but are
closer to disruptants that are relevant to the focal biological
process, these disrupted genes are potentially involved in the
biological process.

CUSTOMIZATION AND DATA AVAILABILITY

To facilitate customization according to users’ interests for the
ease of browsing, a dialog-based interface for the parameter
selection page helps users choose parameters displayed in
datasheets and are memorized in the system. The system
also allows users to download the list of selected parameter

values for selected mutants in the XML format or in
tabular form. Users can also select particular mutants of
interest so that they are always shown in Teardrop View
and 2D plot.

UPDATES AND FUTURE DIRECTIONS

The web server currently presents morphological para-
meter values of disruptants of non-essential genes, but
mutants of lethal genes will be processed and available in
the future.

A

B

Figure 3. Mutant classification in terms of morphological parameters. (A) Select a group of mutants such that the disrupted genes are involved in a biological process
of interest. In the example, CAP1 (YKL007w) and CAP2 (YIL034c), capping protein and its beta subunit, are selected. (B) The system returns two morphological
parameters that best discriminate CAP1 and CAP2, which are represented by two pink dots in the 2D plot. Light blue spots represent mutants, while blue spots are
instances of the wild type. Each parameter dimension is associated with the Teardrop view of the morphological parameter distributions.
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et al. (2004) MIPS: analysis and annotation of proteins from whole
genomes. Nucleic Acids Res., 32, D41–D44.

11. Riffle,M., Malmström,L. and Davis,T. (2005) The Yeast Resource
Center Public Data Repository. Nucleic Acids Res., 33, D378–D382.

12. Lelandais,G., Crom,S., Devaux,F., Vialette,S., Church,G., Jacq,C. and
Marc,P. (2004) yMGV: a cross-species expression data mining tool.
Nucleic Acids Res., 32, D323–D325.

Nucleic Acids Research, 2005, Vol. 33, Web Server issue W757

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/33/suppl_2/W

753/2505633 by U
SAC

O
 N

Z62563 user on 13 M
arch 2020


