広島大学学術情報リポジトリ Hiroshima University Institutional Repository

Title	Formation of an ultracarbonaceous Antarctic micrometeorite through minimal aqueous alteration in a small porous icy body
Author(s)	Yabuta, Hikaru; Noguchi, Takaaki; Itoh, Shoichi; Nakamura, Tomoki; Miyake, Akira; Shinichi, Tsujimoto; Ohashi, Noriaki; Sakamoto, Naoya; Hashiguchi, Minako; Abe, Ken- ichi; Okubo, Aya; Kilcoyne, A. L. David; Tachibana, Shogo; Okazaki, Ryuji; Terada, Kentaro; Ebihara, Mitsuru; Nagahara, Hiroko
Citation	Geochimica et Cosmochimica Acta , 214 : 172 - 190
Issue Date	2017-10-01
DOI	10.1016/j.gca.2017.06.047
Self DOI	
URL	https://ir.lib.hiroshima-u.ac.jp/00048703
Right	© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/ licenses/by-nc-nd/4.0/ This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際 には出版社版をご確認、ご利用ください。
Relation	

1	Formation of an Ultracarbonaceous Antarctic
2	Micrometeorite through Minimum Aqueous Alteration in
3	a Small Porous Icy Body
4	
5	Hikaru Yabuta ^{1†} , Takaaki Noguchi ² , Shoichi Itoh ³ , Tomoki Nakamura ⁴ , Akira
6	Miyake ³ , Shinichi Tsujimoto ⁵ , Noriaki Ohashi ⁵ , Naoya Sakamoto ⁶ , Minako
7	Hashiguchi ⁷ , Ken-ichi Abe ⁶ , Aya Okubo ⁸ , A. L. David Kilcoyne ⁹ , Shogo
8	Tachibana ⁶ , Ryuji Okazaki ⁷ , Kentaro Terada ¹⁰ , Mitsuru Ebihara ¹¹ and Hiroko
9	Nagahara ⁸
10	
11	¹ Department of Earth and Planetary Systems Science, Hiroshima University, 1-3-1
12	Kagamiyama, Hiroshima 739-8526, Japan
13	² Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395,
14	Japan
15	³ Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto
16	606-8502, Japan
17	⁴ Department of Earth Science, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba, Sendai,

The Department of Later Science, Tonoka Chiverony, 6 5 Thanhair Tiza Tioba, Feba, Sen

- 18 Miyagi 980-8578, Japan
- ⁵College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, 310-8512, Japan
- ⁶ Department of Natural History Sciences, Hokkaido University, N10W8, Kita-ku, Sapporo
- 21 060-0810, Japan
- ⁷Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- 23 ⁸ Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo,
- 24 Bunkyo-ku, Tokyo 113-0033 Japan
- ⁹Advanced Light Source, Lawrence Berkeley National Laboratory, 6 Cyclotron Rd., Berkeley,
- 26 CA 94720, USA
- ¹⁰ Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka,
- 28 Osaka 560-0043, Japan
- 29 ¹¹ Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji,
- 30 Tokyo 192-0397, Japan
- 31
- 32 [†]Corresponding author: Tel: +81-82-424-7474; Fax: +81-82-424-0735
- 33 E-mail address: hyabuta@hiroshima-u.ac.jp
- 34

35 Keywords: Ultracarbonaceous Antarctic micrometeorites, organic matter, GEMS, aqueous

36 alteration, comet, shock, SIMS, XANES, TEM

37

38

39 Abstract

40 A comprehensive study of organic chemistry and mineralogy of an ultracarbonaceous 41micrometeorite (UCAMM D05IB80), collected from near the Dome Fuji Station, Antarctica, 42has been carried out in order to understand the genetic relationship among organic materials, 43silicates, and water. The micrometeorite is composed of a dense aggregate of $\sim 5-\mu$ m-sized 44hollow ellipsoidal organic material containing submicrometer-sized phases such as GEMS 45and mineral grains. There is a wide area of organic material (~15 x 15 µm) in its interior. 46 Low-Ca pyroxene is much more abundant than olivine and shows various Mg/(Mg+Fe) ratios 47from ~1.0 to 0.78, which is common to previous works of UCAMM. By contrast, GEMS 48grains in this UCAMM have unusual chemical compositions. They are depleted in both Mg 49and S, which suggests that these elements were leached out from the GEMS grains during 50very weak aqueous alteration without forming phyllosilicates. 51The organics show two types of texture, smooth and globular with an irregular outline,

52 and both of them are composed of imine, nitrile and/or aromatic nitrogen heterocycles, and

53	amide. The ratio of nitrogen to carbon (N/C) in the smooth region of the organics is ~0.15,
54	which is five times higher than insoluble organic macromolecules in types 1 and 2 chondritic
55	meteorites. In addition, the UCAMM organics is soluble in epoxy, and thus it has
56	hydrophilicity. These polar natures indicate that the organic material in the UCAMM is very
57	primitive. The surface of the organics is coated with an inorganic layer with a few nanometers
58	thickness, which consists of C, O, Si, S, and Fe. Sulfur is also contained in the interior,
59	implying the presence of organosulfur moieties. There is no isotopic anomaly of D, ¹³ C and
60	¹⁵ N in the organic material.
61	Since interstellar photochemistry alone would not be able to explain the N/C ratio of the
62	UCAMM organics, we suggest that very small amount of fluid on a comet must have been
63	necessary for the formation of UCAMM. The GEMS grains depleted in Mg and S in the
64	UCAMM prove a very weak degree of aqueous alteration, which is weaker than that of
65	carbonaceous chondrites. Short-duration weak alteration probably caused by planetesimal
66	shock locally melts cometary ice grains and releases water that dissolves organics, while the
67	fluid unlikely mobilizes because of very low thermal conductivity of the porous icy body.
68	This event allows formation of a large organic puddle of the UCAMM, as well as organic
69	matter sulfurization, formation of mineral membrane-like thin layers, and deformation of

70 organic nanoglobules.

71 (408 words (max. 500 words))

72

73 **1. Introduction**

74Interstellar dusts that accreted to form a protoplanetary disk are thought to be 75micron-sized particles consisting of an amorphous silicate core, a refractory organic mantle, 76and an outer mantle of ice (Greenberg and Li, 1997). Because of the large difference in the 77thermal stability of these three components, the grains are expected to change their 78composition according to thermal processing in a protoplanetary disk. The association of 79reactive components, amorphous silicates, organic materials, and water, in a single grain 80 suggests possible interactions among the three components. It has been recently well recognized that organic materials in chondrites were the aqueously and/or thermally 81 82 processed products in parent bodies and that their chemical and isotopic signatures were 83 modified (e.g., Alexander et al., 2007). It is, however, not known what the precursor materials 84 were and under what the conditions organics were processed in chondrite parent bodies. 85Therefore, it is important to trace back to the evolution and interactions among silicates and 86 organic materials, and ice in the proto-solar disk and their consequence in parent bodies. It 87 requires us to study organics as primitive as possible, which might correspond to the materials 88 other than those found in chondrites.

89 Interplanetary dust particles (IDPs) and Antarctic micrometeorites (AMMs) are one of the

90	most primitive Solar System materials available to us and one of the most suitable objects for
91	an <i>in-situ</i> study on the origin of and spatial relationship between organic and inorganic
92	materials formed in the early Solar System. Chondritic porous (CP)-IDPs are thought to have
93	a link with short period comets (Messenger et al. 2006), based on their fine-grained, porous,
94	and fragile structure (Bradley and Brownlee, 1986), high abundance of carbon (~12%,
95	Thomas et al. 1994), and the presence of sub-micron silicate glass with embedded metal and
96	sulfides (GEMS) (Bradley et al. 1999). It has been also known that D- and ¹⁵ N- enrichments
97	of the organics in CP-IDPs (e.g., Messenger, 2000; Floss et al. 2004) and IDPs from the
98	comet 26P/Grigg-Skjellerup dust stream (Busemann et al. 2009) resemble those found in the
99	primitive types 1 and 2 carbonaceous chondrites (Busemann et al., 2006;
100	Nakamura-Messenger et al. 2006). Recently, AMMs containing porous aggregates of GEMS
101	and enstatite whisker/platelets, which are similar morphology and mineralogy to CP-IDPs,
102	have been identified (Noguchi et al. 2015). Both IDPs and AMMs are thus the key
103	extraterrestrial materials to enhance our understanding of the relationship between comets and
104	meteorites.

105 Of the AMMs, ultracarbonaceous micrometeorites (UCAMMs) are unique extraterrestrial
106 materials that contain a large amount of carbonaceous materials. They were collected for the

107	first time by the 46th and 47th Japan Antarctic Research Expedition (JARE) teams from the
108	virgin surface snow near the Dome Fuji Station, Antarctica, and reported to have pristine
109	nature in terms of mineralogy and chemistry (Nakamura et al. 2005). One of the UCAMMs
110	contains light noble gases with solar wind origin, and two contain high abundance of presolar
111	grains (Yada et al. 2008; Floss et al. 2012). UCAMMs have been independently found in
112	Antarctica by the French-Italian team, which are characterized by D-enrichment in organic
113	matter (Duprat et al. 2010). The degree of D-enrichment is by factors to an order of
114	magnitude larger than the terrestrial value. Duprat et al. (2010) has discussed that organic
115	materials in UCAMMs could be produced in the outer protoplanetary disk, based on the
116	identification of crystalline minerals that are thought to be solar origin and are embedded in
117	the organic material. Dartois et al. (2013) have further reported ¹⁵ N- and D-rich
118	micrometeorites and have proposed that the nitrogen-rich organic material in UCAMM was
119	formed by irradiation of CH_4 - and N_2 -rich ice in the Oort cloud.
120	In the present study, we have made a comprehensive mineralogical and organic chemical
121	study of a UCAMM and suggest a new pathway for the formation of UCAMMs through the
122	interaction of organics, silicates, and water in the very early stage of alteration in a parent
123	body.

124

125 **2. Experimental**

126 The Antarctic snow, collected by the 51st JARE team of the National Institute of Polar 127Research (NIPR), was melted and filtered in a class 1000 clean room at Ibaraki University, 128and the residual particles were manually picked up under a binocular microscope. Details of 129the micrometeorite collecting method are described by Sakamoto et al. (2010). They were 130 observed with JEOL JSM-5600LV scanning electron microscope (SEM) equipped with 131 energy dispersive spectrometer (EDS) at Ibaraki University and micrometeorites were 132selected from terrestrial materials based on the morphology and EDS spectra with chondritic 133composition rich in Si, Mg, Fe, and O (see electronic supplementary data, S1). About 90 134 micrometeorites were identified from fine-grained particles collected from ~100 kg of the 135snow. When the intensity of C k α peak exceeds twice that of O k α , it was classified as an 136UCAMM in this study, and only one, D05IB80, was identified as an UCAMM. Bulk 137 mineralogy of D05IB80 was investigated by using synchrotron radiation X-ray diffraction 138 (SR-XRD) at the Photon Factory Institute of Materials Structure Science, High Energy 139Accelerator Research Organization, Tsukuba, Japan.

140 Raman spectroscopy of the UCAMM D05IB80 was performed by JASCO NRS-3100

141 Raman spectrometer equipped with the 785-nm excitation laser at Ibaraki University. The 142beam diameter of the laser was ~ 2 μ m, and the laser power was suppressed below 1 mW to 143 avoid decomposition of carbonaceous material. 144Next, UCAMM D05IB80 was embedded in epoxy resin and ultramicrotomed into 70-nm-thick sections. After ultramicrotomy, the potted butt of the micrometeorite was 145146 embedded again in epoxy resin and the surface was polished to make a flat epoxy disk (6 mm 147in diameter) for the isotopic mapping analysis with a SIMS at the Hokkaido University 148 (Cameca ims-1270 SIMS equipped with SCAPS) (Yurimoto et al. 2003). Schematic diagrams 149to show the 3D relationships among the ultrathin samples (ultramicrotomed sections and a 150FIB section) and the flat sample of this UCAMM is presented in Fig. A1. 151A ~100 - ~200 pA Cs⁺ primary beam in the aperture illumination mode of SIMS was used 152to achieve uniform secondary ion emission from a sample area of ~ $30 \times 40 \ \mu m^2$. A normal 153incident electron gun was used to compensate for sample charging and the exit slit was 154narrow enough to eliminate the contribution of interference ions to the isotope images. Isotopographs of ${}^{16}O^-$, ${}^{12}C^{14}N^-$, ${}^{32}S^-$, ${}^{1}H^-$, ${}^{2}D^-$, ${}^{1}H^-$, ${}^{16}O^-$, ${}^{12}C^{14}N^-$ and ${}^{32}S^-$ were acquired in this 155156order, where a 150-µm contrast aperture (CA) was applied for H and D isotopographs and a

157 50- μ m CA for ¹⁶O⁻, ¹²C¹⁴N⁻ and ³²S⁻ isotopographs in order to obtain high lateral spatial

and 40 s for ³²S⁻, respectively. We obtained secondary ion images of ¹²C¹⁴N⁻, ¹²C¹⁵N⁻, ¹²C¹⁴N⁻, ¹⁶⁰ 12 C⁻, ¹³C⁻ and ¹²C⁻ sequentially for the second session after FIB. A 50 µm CA was used for ¹⁶¹ 12 C¹⁴N⁻, ¹²C¹⁵N⁻, ¹²C⁻ and ¹³C⁻ isotopograph. The exposure time was 50 s for ¹²C¹⁴N⁻, 400 s for ¹⁶² 12 C¹⁵N⁻, 50 s for ¹²C⁻ and 500 s for ¹³C⁻.

resolution. The exposure time was 20 s for H⁻, 1,000 s for D⁻, 20 s for ${}^{16}O^{-}$, 20 s for ${}^{12}C^{14}N^{-}$

163 Hydrogen, nitrogen and carbon isotopic composition are represented by δ -value notation;

164
$$\delta D_{SMOW} = \left\{ \frac{(D/H)_{sample}}{(D/H)_{SMOW}} - 1 \right\} \times 1000$$

158

165
$$\delta^{15} N_{AIR} = \left\{ \frac{({}^{15}N/{}^{14}N)_{sample}}{({}^{15}N/{}^{14}N)_{AIR}} - 1 \right\} \times 1000$$

166
$$\delta^{13}C_{PDB} = \left\{ \frac{\binom{1^3C}{^{12}C}_{sample}}{\binom{1^3C}{^{12}C}_{PDB}} - 1 \right\} \times 1000$$

167where SMOW denotes the standard mean ocean water, and AIR denotes the Earth's 168atmosphere and PDB denotes Pee Dee Belemnite. The instrumental mass fractionations for the D/H, ${}^{15}N/{}^{14}N$ and ${}^{13}C/{}^{12}C$ ratios of epoxy were corrected by assuming that the δD , $\delta^{15}N$ 169 and $\delta^{13}C$ values are 0‰, respectively, and that the matrix effects are the same for epoxy and 170organic matters in the UCAMM. Therefore, the δ -values of the organic matters shown here 171172are the relative values to the epoxy. The isotope ratio image was obtained by averaging 5×5 pixels (corresponding to 1.0 x 1.0 μ m²) for δ D and 3 x 3 pixels (corresponding to 0.6 x 0.6 173 μ m²) for δ^{15} N and δ^{13} C in order to reduce the statistical error. Lateral resolutions of the 174

175 isotopographs are ~1 μ m for ¹H⁻, and ²D⁻ and ~0.6 μ m for ¹²C⁻, ¹³C⁻, ¹²C¹⁴N⁻, ¹²C¹⁵N⁻, ³²S⁻, and 176 ¹⁶O⁻.

177 The morphology of the UCAMM was observed by FE-SEM-EDS (JSM-7000F, Oxford 178 INCA Energy) system at Hokkaido University after the isotope microscope analyses, and a 179 thin section with 200-nm of thickness was prepared by the dual beam focused ion beam and 180 scanning electron microscope (FIB-SEM) JEOL JIB-4501 at Ibaraki University for further 181 analyses.

182Carbon (C)-, nitrogen (N)-, and oxygen (O)- X-ray absorption near edge structure 183 (XANES) spectra of the FIB section were acquired by using STXM at the beamline (BL) 184 5.3.2.2. of Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory 185(Kilcoyne et al. 2003). The beamline employs a bending magnet providing a useful photon 186 range spanning approximately from 250 to 800 eV with a flux of 10^7 photons per second. 187Energy selection on BL5.3.2 is performed with a low dispersion spherical grating 188 monochromator and affording an energy resolution (E/ Δ E) of 5000. Carbon-XANES 189transmission spectra were obtained in the stack scan mode with 0.1-eV resolution across the 190 near edge region and 0.5-eV resolution below and above the near edge absorption. Energy 191 calibration was conducted by measuring CO2 and N2 gas prior to the measurements. The

192	absorption spectra (optical density, OD) were obtained as $OD = -\ln(I/I_0)$, where I is X-ray
193	intensity transmitted from sample and I_0 is that recorded without samples. Leinweber et al.
194	(2007) and Cody et al. (2008) were referred for the absorption peak assignment.
195	The FIB section was observed under a polarized microscope to check the textural
196	relationships between the MM and the epoxy resin in the section. The section was further
197	observed with a JEOL JEM-2100F field emission TEM, equipped with JEOL JED SDD EDS
198	for detailed textural observation and elemental analysis, at JEOL Corporation and with a
199	JEOL JEM-2100, equipped with an Oxford INCA SDD EDS, at Ibaraki University.
200	
201	3. Results
202	3-1. Texture and mineralogy
203	Figure 1a shows a secondary electron image of an UCAMM D05IB80, which is about ~40
204	x 30 μ m in size. There are abundant sub- μ m-sized constituents on the surface of the upper
205	half of this UCAMM. By contrast, the other half is poor in the sub- μ m-constituents and has a
206	smooth surface. Ultramicrotomed sections of the UCAMM are shown in Fig. 1b. The sections
207	were selected out of every 3-5 serial sections. There are many mineral grains in the sections
201	were selected out of every 5.5 serial sections. There are many numeral grants in the sections

No. 1 and 2 (Fig. 1b), which may correspond to the sections of the upper half of the UCAMM 208

209	shown in Fig. 1a. There are voids in each section, which is composed of densely packed
210	hollow organic material with ~0.5- to ~2- μ m thick walls containing minerals.
211	TEM observation shows that this UCAMM contains glass with embedded metal and
212	sulfide (GEMS) (Figs. 2a, 2b), which is common to the chondritic porous (CS) IDPs (e.g.
213	Bradley and Dai, 2004), UCAMMs previously investigated (Nakamura et al., 2005; Duprat et
214	al., 2010; Dobrică et al., 2012), and CS MMs (Noguchi et al., 2015). Their typical size ranges
215	from ~200 to ~400 nm in diameter and contains tiny (< 30 nm) Fe sulfide as well as rare Fe
216	metal, which appear as S and Fe enriched spots in the elemental distribution maps (Fig. 2c).
217	Oxygen, aluminum, and silicon are homogeneously distributed and magnesium is
218	heterogeneously distributed in the glassy (amorphous silicate) matrix of this GEMS grain (Fig.
219	2c).
220	Olivine, low-Ca pyroxene, high-Ca pyroxene, amorphous silica, and pyrrhotite are major
221	inorganic phases in this UCAMM (Figs. 2d-2i), and low-Ca pyroxene and pyrrhotite are more
222	abundant than the other phases. Among these phases, amorphous silica containing no other
223	elements is not common in CP IDPs (e.g. Bradley and Dai, 2004), CP MMs (e.g. Noguchi et
224	al., 2015), and UCAMMs investigated previously (Dobrică et al., 2012). No hydrated silicate
225	was found in the UCAMM.

226Major element compositions of olivine, pyroxene, and pyrrhotite in the UCAMM 227D05IB80 are shown in Fig. 3 and Table 1. Majority of the GEMS grains in this UCAMM are 228 highly depleted in Mg relative to [Si+Al] and Fe and are plotted at the Mg-poor end of the 229GEMS grains in CP IDPs (Fig. 3a). In addition, sulfur is also depleted in the GEMS grains 230(Fig. 3b). These data strongly suggest that GEMS grains in this MM do not keep their original 231chemical compositions.

232

Olivine is minor in this MM, and the forsterite mol% ranges from ~100 to 89 (Fig. 3c). 233Low-Ca pyroxene shows a variation of enstatite mol% from ~100 to 78 (Fig. 3c). Because all 234the high-Ca pyroxene grains analyzed contain high Al_2O_3 contents from 14.7 to 27.8 wt%, 235they are plotted around the Di apex or outside the pyroxene quadrilateral due to the relative deficiency of Mg^{2+} and Fe^{2+} caused by substitution of Al^{3+} in high-Ca pyroxene (Fig. 3c). FeO 236237vs MnO and FeO vs Cr₂O₃ wt% diagrams show that some low-Ca pyroxene crystals have high 238MnO (up to 1.85wt%) and high Cr_2O_3 (up to 2.32wt%) contents relative to FeO contents (Figs. 2393e, f). Most pyrrhotite crystals are poor in Ni. Only two crystals have 2.8 and 3.2 Ni atomic% 240(Fig. 3d). These data are consistent with the chemical compositions of olivine, pyroxene, and 241pyrrhotite in CP IDPs, previously reported UCAMMs, and mineral grains recovered from 24281P/Wild 2 (Klöck and Stadermann, 1994; Zolensky and Barrett, 1994; Zolensky et al., 2006,

243 2008; Joswiak et al., 2009, 2012; Dobrică et al., 2012; Frank et al., 2014).

244

245 **3-2.** Organic material: size, texture, molecular and isotopic compositions

246 Size

Figure 4 shows the isotopograph of ¹²C¹⁴N⁻, ³²S⁻, and ¹⁶O⁻ along with the backscattered 247248electron (BSE) image of the UCAMM D05IB80. The distribution of ¹²C¹⁴N⁻ indicates the size 249of organic carbon is $\sim 15 \ \mu\text{m} \times 15 \ \mu\text{m}$. In comparison to the typical size of organic carbon in 250chondritic meteorites (a few hundreds nm) (e.g., Le Guillou et al., 2014) and that of comet 251Wild 2 dust particles (~ 1 - 2 μ m) (Cody et al. 2008), the organics in the present study is extraordinarily large. ${}^{32}S^{-}$ and ${}^{16}O^{-}$ are concentrated in the rim of the organic material (Fig. 4), 252253and ${}^{32}S^{-}$ is also distributed within the organic material, although its abundance is less than that 254in the rim. 255

256 Observation of soluble organics

UCAMM D05IB80 was originally almost opaque under a transmitted light, though a
translucent brown-color part seeped from the sample when it was embedded in epoxy (Fig.
5b). A certain degree of affinity between the UCAMM and epoxy seems to have taken place,

which is shown by the observation that the boundary between the embedding epoxy (light
brown) and the UCAMM (dark brown) is less clear in the transmitted optical image (Fig. 5d)
than in the high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) image (Fig. 5e).

264

265 Molecular compositions

266 A Raman spectrum of carbonaceous material in UCAMM D05IB80 is shown in Fig. 6. 267The spectrum is broad, and the centers and full width at half maximum (FWHM) of D₁ and G are 1338 cm⁻¹ (ω_{D1}) and 369 cm⁻¹ (Γ_{D1}), and 1569 cm⁻¹ (ω_G) and 109 cm⁻¹ (Γ_G), respectively. 268269Although the analytical conditions were different from those of the other studies which 270investigated CP IDPs, MMs, and carbonaceous chondrites (e.g., Rotundi et al., 2008; 271Busemann et al., 2009; Dobrică et al. 2011; Dartois et al. 2013), the peak broadness and the 272wave parameters indicate that the carbonaceous material is very disordered. 273Combining carbon- and nitrogen-XANES maps of the FIB section, we can distinguish the 274organic nitrogen-rich regions of the UCAMM from the epoxy that does not contain N (Fig. 7a, 275b). Nitrogen-XANES spectra of N-rich regions 1 and 2 (Fig. 7d) exhibit intense peaks of 1s-π* transitions of imine (C=N*) at 398.8 eV (peak E), aromatic nitrogen heterocycles 276

277(C-N*=C) and/or nitrile (C=N*) at 399.7 eV (peak F), and amide (N*Hx(C=O)C) at ~401.5 278eV (peak G). The N-XANES spectra provided a sufficient signal- to-noise (S/N) ratio, which 279 has not been generally observed in chondritic insoluble organic matter and even in organic 280matter in IDPs (Cody et al. 2011). The relative peak intensity of nitrogen heterocycles in the region 2 is higher than that in the region 1. The nitrogen speciation helps the characterization 281282of carbon functional groups in C-XANES spectra (Fig. 7c). The peak A at ~ 285 eV is 283assigned to 1s- π^* transitions of aromatic/unsaturated carbon (C=C*), which probably includes 284aromatic nitrogen heterocycles (e.g., pyridine) in the regions 1 and 2, due to the presence of imine in their N-XANES. The peak B at ~286.6 eV are derived from $1s-\pi^*$ transitions of 285286nitrile/aromatic N or vinyl-keto carbon. The presence of nitrile/aromatic N is very likely 287because of the intense peaks (peak G) in N-XANES of the regions 1 and 2, while the same 288peak in the epoxy region would be assigned to vinyl-keto group due to the absence of N. A 289broad peak ranging 287-288 eV for the regions 1 and 2 includes a peak of 1s-3p/ σ * 290transition to aliphatic carbon (peak C) and a peak D at ~288.3 eV assigned to $1s-\pi^*$ 291transitions of carboxyl carbon (C*=O) and/or amidyl carbon (NHx(C*=O)C). The N/C ratio is 292calculated from the spectral fitting using the aXis 2000 software to be 0.15±0.03, and the O/C 293ratio is 0.27±0.02, for the region 1. There is a possibility that the XANES results in the

294	present work may be affected by FIB-induced damage, such as an increase of the aromatic
295	carbon (De Gregorio et al. 2010; Bassim et al. 2012). In that case, an original peak intensity
296	of imine may have been relatively lower and those of nitrile and carboxyl groups may have
297	been higher than the acquired spectra. Nevertheless, the possible modification of functional
298	group compositions by FIB should not affect the elemental ratios. Sulfur-XANES
299	measurement was carried out at the BL 5.3.2.1. with a photon energy range of 600-2000 eV,
300	ALS, but the sulfur abundance in the FIB section was below the detection limit of XANES.
301	
302	Texture
303	TEM observation of the organic N-rich material reveals the presence of two N-rich
304	regions: the region 1 is smooth and the region 2 is entirely globular (Fig. 8). The two regions
305	
	are connected at the bottom-left corner of the FIB section (Fig. 5e), indicating that these
306	are connected at the bottom-left corner of the FIB section (Fig. 5e), indicating that these regions were made of the same organic material as shown in the similar C- and N-XANES
306 307	
	regions were made of the same organic material as shown in the similar C- and N-XANES
307	regions were made of the same organic material as shown in the similar C- and N-XANES spectra (Fig. 7c, d). The globules in the region 2 look similar in size (a few hundred nm) to

311	(Busemann et al. 2009) and the comet Wild 2 dust particles (De Gregorio et al. 2010; 2011).
312	However, the organic nanoglobules in UCAMM D05IB80, forming aggregates, have more
313	irregular shapes compared to rounded globules in most carbonaceous chondrites. The
314	nanoglobules appear to contain fillings in their interiors (Fig. 8b, c). The high resolution TEM
315	image of the globule filling is shown in Fig. 9(c), which is an aggregate of tiny crystals.
316	Although EDS spectrum of the aggregate suggests that it is composed of low-Ca pyroxene, it
317	was impossible to determine the phase of the crystals due to their small sizes.
318	TEM images (Fig. 8b, c) revealed that the globular region has three very thin (< 5 nm)
319	surface layers and the smooth region has two (Fig. 8d, e), and the surface layer is less
320	electron-transparent than the interior. The less electron-transparent material is estimated to be
321	amorphous due to the absence of lattice fringes, and is rich in C, O, Si, S, and Fe (Fig. 9),
322	suggesting the presence of silicate and sulfide. High resolution TEM image of the thin layer
323	in the globular region revealed that the layers contain nanocrystals. Although 0.24 and 0.28
324	nm lattice fringes were observed (Fig. 8f), we could not obtain diffraction spots in the
325	selected area electron diffraction (SAED) patterns, which only gave halo patterns. This is
326	probably due to the minute volumes of these nanocrystals. Therefore, we could not identify
327	phases of these nanocrystals. By contrast, we could not find any nanocrystals at the smooth

boundaries (Fig. 8g). The thin layers are thought to be indigenous, and are neither reaction products with epoxy resin nor reaction products with filtrated water in the Antarctica, because the layers is specifically present only in the present UCAMM. If the layers were the secondary products on the Antarctic snow, similar layers should be found in other micrometeorites. The layers are also distinct from a magnetite rim at the surface of micrometeorites formed during heating by atmospheric entry and oxidation (Toppani et al., 2001).

335 Sodium, K, and Cl are uniformly observed in the smooth region and sporadically in the 336 globular region (Fig. 9). Halite was also identified by XRD (see electronic supplementary 337 data, S2). Although it is difficult to evaluate whether they are indigenous or terrestrial 338 contamination, the homogeneous distributions of these elements as well as N and S do not 339 look like crystal particles of sea salts. The globular region contains a grain consisting of O, 340 Mg, and Si (Fig. 9b). High resolution TEM image of the grain shows that the grain is a 341 polycrystalline aggregate of tiny crystals. 0.46- and 0.24- nm lattice fringes could be assigned 342as lattice spacing of (200) (~0.46 nm) and (002) (~0.25 nm) of clinoenstatite by considering O, 343 Mg, and Si are major elements (Fig. 9c).

344

We found no isotopic hot spots in the organic matter in the UCAMMs (Fig. 10). The H, C and N isotopic ratios of the UCAMM D05IB80 are in the range of terrestrial values and not clearly distinguished from those of epoxy ($<2\sigma_{OM}+3\sigma_{epoxy}$). We conclude that the H, C and N isotopic compositions are at the same level as those of terrestrial organics (Fig. 10).

350

```
4. Discussion
```

352 4-1. Primitive Nature of UCAMM Organics

The highly resolved N-XANES spectra of UCAMM D05IB80 are significantly different 353 354from the less characteristic, low signal-to-noise N-XANES spectra of insoluble organic 355 macromolecules (IOM) from chondritic organic materials (e.g., Cody et al., 2008). 356 According to the spectral fitting, the ratio of nitrogen to carbon in the smooth region of the 357UCAMM organics (N/C = ~ 0.15) is five times higher than that of insoluble organic 358 macromolecules in types 1 and 2 chondritic meteorites (N/C = ~ 0.03 , Alexander et al. 2007) 359 (Fig. 11). The high nitrogen abundance and most of the identified functional groups (imine 360 C=N, aromatic nitrogen heterocycles C-N=C, nitrile C \equiv N, amide NHx(C=O)C, and 361 carbonyls COOR) indicate that the UCAMM organic material has high polarity, which

362	indicates its hydrophilic nature and is consistent with the fact that the organic soluble phase
363	was dissolved into epoxy (i.e., polar solvent) (Fig. 5).
364	In prebiotic organic chemistry, any materials become insoluble, tar-like, hydrophobic
365	macromolecules when energy is continuously provided to molecules (Benner et al. 2012).
366	Considering this general chemical phenomema, the nitrogen- and oxygen-bearing polar
367	functional group compositions and the solvent solubility indicate that the UCAMM organic
368	material is extremely primitive compared to those in carbonaceous chondrites.
369	
370	4-2. Formation of UCAMM Organics and the Role of Small Degree of Aqueous
370 371	4-2. Formation of UCAMM Organics and the Role of Small Degree of Aqueous Alteration
371	Alteration
371 372	Alteration Nitrogen-rich and oxygen-bearing complex organic molecules were synthesized by UV
371 372 373	Alteration Nitrogen-rich and oxygen-bearing complex organic molecules were synthesized by UV photolysis of ices with simulated interstellar/precometary compositions (e.g., H ₂ O, CH ₃ OH,
371 372 373 374	Alteration Nitrogen-rich and oxygen-bearing complex organic molecules were synthesized by UV photolysis of ices with simulated interstellar/precometary compositions (e.g., H ₂ O, CH ₃ OH, CO, NH ₃) (e.g., Bernstein et al. 1995; Dworkin et al. 2001; Nuevo et al. 2011), and they were
371 372 373 374 375	Alteration Nitrogen-rich and oxygen-bearing complex organic molecules were synthesized by UV photolysis of ices with simulated interstellar/precometary compositions (e.g., H ₂ O, CH ₃ OH, CO, NH ₃) (e.g., Bernstein et al. 1995; Dworkin et al. 2001; Nuevo et al. 2011), and they were mostly soluble and/or oily (Bernstein et al. 1995; Dworkin et al. 2001; Nuevo et al. 2011)

23

379	et al. (2011). The photochemical reaction of ices in the interstellar or pre-stellar environments
380	may have played a role in forming the organic macromolecules in the UCAMM, but the
381	XANES spectrum of the experimentally synthesized organic matter is not completely the
382	same as the present UCAMM. Furthermore, the bulk N/C (= 0.28) and O/C (= 0.51) ratios of
383	the synthesized materials (Nuevo et al. 2011) are much higher than those of the UCAMM.
384	Therefore, photochemistry alone would not be the process responsible for the formation of
385	UCAMM and an additional process(es) would be necessary.
386	Here we propose that very weak aqueous alteration in the parent body of the UCAMM
387	was responsible for the chemical, structural, mineralogical and morphological characteristics
388	of the UCAMM. Accretion of the organics, ice, submicron-sized mineral particles is a
389	necessary process for forming a certain size of cometary body to retain liquid water, i.e., a
390	meter to kilometer-sized object. In a comet, short-term heating such as planetesimal shock
391	could have locally melted ice grains and released water, which dissolved organic material.
392	Unlike meteorite parent bodies where aqueous fluid mobilizes due to high thermal
393	conductivity with compact mineral structure, it is improbable that aqueous fluid mobilizes in
394	a comet parent body due to very low thermal conductivity of the porous ice structure (40- 80%
395	in average) (e.g., Kouchi et al. 1992; Asphaug and Benz, 1996; Farnham and Cochran, 2002;

Kofman et al. 2015). Accordingly, the aqueous fluid on a porous icy body allowed formationof a large sized organic puddle.

398 Very low degree of melting of ice in a comet or an icy planetesimal causing low 399 mobilization of the fluid well explains the following observations in the present study;

400 i) Sulfurization of organics. UCAMM D05IB80 contains a considerable amount of sulfur, of which source is easily explained if it was formed in a comet or an icy body. H₂S is a 401 402 typical component of cometary volatiles (Bockelee-Morvan et al., 2004) and also an aqueous 403 alteration product of sulfide. Thus, the icy parent body of UCAMM D05IB80 may have 404 contained it. Nucleophilic attack of H₂S could have taken place on the partially positive 405 carbonyl carbon of the UCAMM organics (Fig. 7c) and/or their precursor molecule in 406 aqueous fluid. For instance, ketones and aldehydes experimentally gave high yields of organic 407 sulfides (R-S_x-R') via a reaction with reduced inorganic sulfur (e.g., HS⁻) in aqueous solution 408 at relatively low temperature (20-50°C) for short-duration (e.g., 22 hrs to 4 weeks) (Schouten 409 et al., 1994; van Dongen et al., 2003).

ii) Formation of inorganic nanolayers at the surface of organic material. The organics
in UCAMM D05IB80 is covered with a thin inorganic layer as shown in Fig. 8, which can be
explained by the adsorption of mineral nanoparticles to an ice-fluid interface. When a fluid

413	was frozen, the partition imbalance of anions and cations between ice and liquid occurs,
414	which is relaxed by the transfer of H^+ and OH^- to each phase, resulting in disproportionate pH
415	between the two phases (Watanabe et al. 2014). The ion-transfer current changes at the
416	interface between organics and salt-bearing ice (Qu et al. 2015). At the interface of two
417	phases with strong contrast of pH and redox-potential, silicate and sulfide membranes
418	osmotically precipitate from the dissolved ions in a fluid (Cairns-Smith, 1982; Russel et al.
419	1994). The interaction of particles at the ice-fluid interface occurs instantaneously at a cooling
420	rate of -10 \sim -15 K/min from room temperature (Körber et al. 1985). The organic
421	nanoglobules in Tagish Lake meteorite displays similar layers that contain predominantly
422	carbon with minor amounts of O, Si, S, Cl and Fe (Nakamura et al. 2002), which may be also
423	because of the behaviors of ions and mineral particles in a frozen aqueous environment of its
424	parent body.
425	iii) Formation of irregular-shaped nanoglobule aggregates. The organics in UCAMM
426	D05IB80 shows different textures (smooth and globular textures) (Fig. 8), but their similar
427	chemical compositions suggest simultaneous formation from a common precursor material
428	(Fig. 7). The organic nanoglobules, which would have been originally round, deformed their
490	shapes (a.g., hudding) via pU gradient and/or shapes of sematic pressure by the concretion of

429 shapes (e.g., budding) via pH gradient and/or change of osmotic pressure by the generation of

430	the small amount of fluid. For instance, the charge state of an organic molecule changes under
431	different pH, such as a protonated carboxylic acid (R-COOH) at lower pH and an ionized
432	carboxylate (R-COO ⁻) at higher pH. Vesicles are produced around at neutral pH where the
433	molar ratio of the protonated and ionized forms is equal (e.g., Nawa et al. 2013). However,
434	the fluid in a cometary body could have been basic because of the redistributions of ions
435	(Watanabe et al. 2014) and/or high concentration of NH_3 (Nakamura-Messenger et al. 2011).
436	At the high pH, the vesicles are rapidly deformed (in several seconds) due to dissolution of an
437	ionized form (Nawa et al. 2013). Similarly, textural variations of nanoglobules in insoluble
438	organic residues (De Gregorio et al. 2013; Changela et al. 2013) and matrices (Ivuna, Orgueil
439	and Tagish Lake, see electronic supplementary data, S3) from the aqueous altered
440	carbonaceous chondrites imply the exposure to basic fluid that were generated through the
441	formation of phyllosilicates during the aqueous alteration on their meteorite parent bodies.
442	
443	4-3. Mineralogical Evidence of Small Degree of Aqueous Alteration
444	Although GEMS grains in D05IB80 contain Fe-Ni metal and Fe sulfide tiny crystals (Fig.
445	2), they are rarer than those in GEMS in CP IDPs (e. g. Keller and Messenger, 2011) and CP

446 MMs (Noguchi et al. 2015). Mg in the amorphous silicate in GEMS grains are

447	heterogeneously distributed and on average highly depleted (Fig. 2c). By contrast, Si is
448	enriched in the Mg-depleted areas in GEMS (Fig. 2c). Heterogeneous distribution of Si and
449	Mg within each GEMS grain in IDPs has already been reported (e.g., Keller and Messenger,
450	2011). In the case of D05IB80, Si-rich areas are predominant and amorphous silicate is
451	enriched in Fe (Figs. 2, 3).
452	Because Fe-Ni metal is among the first phase to alter by aqueous alteration (Zolensky et al.
453	1993; Hanowski and Brearley 2000, 2001; Chizmadia et al. 2008), the rarity of nano Fe metal
454	in GEMS indicates a slight degree of aqueous alteration. It has been already reported that rare
455	Fe-Ni metal phases were found from the UCAMMs and their GEMS-like objects collected by
456	the French-Italian team (Dobrică et al. 2012). The depletion of metal may be a common
457	feature of UCAMMs. The GEMS grains with rare nanophase Fe metal particles in the Acfer
458	094 carbonaceous chondrite (Vollmer et al., 2009a, b) have been thought to be the results of
459	oxidation of Fe metal due to nascent aqueous alteration of the amorphous silicates (Keller et
460	al. 2009). Le Guillou and Brearley (2014) reported the absence of metal grains associated
461	with the amorphous silicate material in MET 00426 CR3 chondrite, and discussed that the
462	absence was due to hydration of the amorphous silicate.

463 In the case of D05IB80, nano Fe sulfide is also depleted in GEMS. It does not necessarily

464 mean that D05IB80 experienced slightly higher degrees of aqueous alteration than the 465 primitive meteorites because hydrous phyllosilicates are not identified in the UCAMM. A 466 slightly oxidizing condition of aqueous alteration might have promoted dissolution of nano Fe 467 sulfide in GEMS of the UCAMM. There is no Ni-bearing pyrrhotite in the UCAMM (< 3.2 atomic% Ni) (Fig. 3d), which is 468 consistent with the idea that the UCAMM experienced very weak aqueous alteration. The 469 470 minimal degree of aqueous alteration is also consistent with that aqueous alteration products 471were not found on olivine and pyroxene (Fig. 6). 472Based on the chemical and mineralogical features described above, we conclude that the 473 UCAMM experienced a very weak degree of aqueous alteration on a cometary nucleus or an 474icy asteroid, which are not seen on the typical types 1 and 2 chondritic meteorite parent 475bodies. Possible heat source for the generation of liquid water in icy small bodies is i) 476 short-lived radioactive nuclides, ii) perihelion passage (Nakamura-Messenger et al. 2011), iii) 477collisions of planetesimals (Cody et al. 2011), or iv) reduction of the freezing point by the 478presence of solutes, e.g., ammonia (Pizzarello et al. 2011) and methanol. 479 The condition of aqueous alteration of the UCAMM can be estimated by the experiments 480 by Nakamura-Messenger et al. (2011). They have conducted a hydrothermal experiment of

481	anhydrous IDPs and reported the rapid formation of hydrated silicates at 25-160°C for 12-24
482	hours under basic pH conditions (pH=12), that is, alteration of amorphous silicate into
483	hydrous phyllosilicate possibly proceeds extremely quickly. UCAMM DO05IB80 does not
484	contain hydrous silicates but Mg and S leached out from GEMS grains instead, which
485	indicates a shorter duration reaction at lower temperature, lower pH and/or slightly oxidizing
486	conditions compared to their experiments. Considering that the degree of alteration should
487	have been much lower than aqueous alteration in the major CM and CI carbonaceous
488	chondrites that lasted for several million years (e.g., Fujiya et al. 2013), planetesimals
489	collisions are most likely to produce a very weak degree of aqueous alteration in a short
490	duration. The large $P \Delta V$ irreversible energy deposition during compaction of pore spaces of
491	cometary ices initiates melting at very low shock pressures of 0.1-0.5 GPa between 250 and
492	150K (Stewart and Ahrens, 2004). The pressure range is comparable to the typical impact
493	velocities of comets generating the peak pressures of ~ 1 GPa (Stewart and Ahrens, 2004).
494	Although there may be a possibility that the UCAMM had suffered terrestrial weathering
495	in Antarctic snow, the possibility would be low because iron hydroxide, which is easily
496	formed by weathering of pyrrhotite (Taylor et al. 2002), is not identified. The residence time
497	of the micrometeorites at the Antarctic snow is much shorter (ca. a year) than the lifetime of

the Antarctic ice (ca. thousands years), and the average temperatures near the Dome Fuji
station is -54°C (Shiraishi, 2012), which would prevent the weathering reaction.

500

4-4. Comparison with Other UCAMMs, AMMs, IDPs, Comets, and Chondritic
502 Meteorites

503UCAMM D05IB80 consists of large (tens of micrometers) organic material with 504submicron-sized mineral species such as crystalline silicate, sulfide, and GEMS grains. 505Similarly, UCAMMs investigated by Duprat et al. (2010) and Dobrica et al. (2012) have 506continuous large areas composed of carbonaceous material, and minerals and GEMS grains 507are embedded in the carbonaceous material. The nitrogen chemical characteristics of organic 508material in the UCAMM D05IB80 is consistent with those described by Dartois et al. (2013), 509who identified C=N and C≡N from their non-FIB UCAMM samples. The similarity suggests 510that the organic chemistry and mineralogy identified in the present study are common for 511UCAMMs, although GEMS grains in their UCAMMs are enriched in Fe sulfide nanocrystals 512and do not show depletion of Mg and S.

513 The isotopic compositions of UCAMMs appear to be highly variable; D, ¹³C, and ¹⁵N 514 isotopic compositions are normal in this study, which is also the case for a UCAMM

31

515	containing abundant presolar grains (Floss et al., 2012). On the contrary, extreme enrichments
516	of D and ¹⁵ N are found in two UCAMMs by the French-Italian team (Duprat et al. 2010;
517	Dartois et al. 2013). Duprat et al. (2010) showed that one UCAMM had an area of larger D
518	excess ($\delta D > \sim 10000\%$) than another ($\delta D > 5400\%$) with a clear boundary. Indeed, the
519	stratosphere IDPs (Messenger, 2000) and the comet Wild 2 dust particles (Matrajt et al. 2012)
520	show a wide range of the H and N isotopic compositions from values extremely rich in
521	heavy-isotopes to normal values with the terrestrial levels. Thus, it is difficult to determine
522	the origin of the samples only with the presence or absence of the isotopic anomalies.
523	An anhydrous interplanetary dust particle (IDP) L2006LB23 is comprised mainly of
524	carbonaceous material (~90%) (Thomas et al. 1994). The IDP is regarded as an
525	ultracarbonaceous IDP. The ultramicrotomed section (Figs. 1 and 2 in Thomas et al. 1994)
526	has a bubble-wall structure made by organic material containing minerals grains, which is
527	quite similar to the sections of the UCAMM D05IB80. Not only the internal structure, but
528	also mineralogy of the ultracarbonaceous IDP is similar to the UCAMM D05IB80. The IDP
529	contains Si-rich glass containing Fe sulfide and Fe-Ni metal grains, Si-rich glass, pyroxene,
530	olivine, and Fe sulfide. In addition to pyroxene, olivine, and Fe sulfide, the UCAMM
531	D05IB80 contains amorphous SiO_2 and GEMS grains that are highly depleted in Mg and S

532	(Figs. 2, 3). It is likely that these two phases correspond to Si-rich glass and Si-rich glass
533	containing Fe sulfide and Fe-Ni metal grains in L2006LB23. These data suggest that there is a
534	genetic relationship between these objects.
535	Mineralogy and nitrogen-rich organic functional group chemistry were common to the
536	UCAMM D05IB80 and one of the anhydrous AMMs (D10IB009) collected from the
537	Antarctic snow near Dome Fuji station (Noguchi et al. 2017). On the other hand, a difference
538	is that D10IB009 contains GEMS including Fe-metal, and thus it is likely that the UCAMM
539	D05IB80 is aqueously more altered than the anhydrous AMM. Another difference is that the
540	organic material in D10IB009 has D- and $^{15}N\text{-enrichments}$ (δD = $\sim\!200010000\%$, $\delta^{15}N$ =
541	~300-1000‰) (Noguchi et al. 2017), similarly to CP-IDPs (e.g., Messenger et al. 2000),
542	although it is unlikely that the lack of isotopic anomalies in the UCAMM be due to the
543	aqueous alteration, based on the facts that a number of aqueous altered carbonaceous
544	chondrites retain organics enriched in the heavy isotopes (e.g., Busemann et al. 2006;
545	Nakamura-Messenger et al. 2006; Hashiguchi et al. 2013).
546	It should be noted that the N-XANES spectra of the regions 1 and 2 in the UCAMM
547	D05IB80 (Fig. 7d) are very similar to those of three particles of comet Wild 2 with N/C ratios
548	of 0.08-0.16, one of which was an organic nanoglobule with the nitrogen isotopic

549	composition indistinguishable from the terrestrial values (De Gregorio et al., 2010). Other
550	particles of comet Wild 2 have lesser amounts of imine, nitrile, and amidyl groups than amino,
551	urea, and carbamoyl (NHx(C=O)OR) groups in their N-XANES spectra (Cody et al., 2008),
552	but the N/C (~ 0.12) and O/C (0.22 – 0.28) ratios of some of the spectra are comparable to
553	those in this study (Fig. 11). Moreover, the appearance of the organic soluble phase in
554	UCAMM D05IB80 extracted from epoxy (Fig. 5) is similar to those of the epoxy-soluble
555	organic matter in the comet Wild 2 dust particles (Cody et al. 2008; De Gregorio et al. 2011).
556	The chemical and isotopic characteristics of UCAMM-D05IB90 are significantly different
557	from the organic materials in types 1 and 2 carbonaceous chodrites (e.g., Cody et al., 2011),
558	while they are similar to some of the primitive CR3 chondrites. The large smooth organic
559	material connected with globular organics in the UCAMM is similar to that in a CR3
560	chondrite, MET 00426, observed by Le Guillou and Brearley (2014), which is an elongated
561	vein 3–4 μ m in length and up to 1 μ m width, with a sharp boundary between surrounding
562	silicates and sulfides. They observed a single organic nanoglobule embedded in the main
563	organic mass and an aggregate of rounded particles connected to the main vein. Peeters et al.
564	(2012) also found a several micron-sized organic vein containing a number of nanoglobules in
565	QUE 99177 CR3 chondrite, of which N-XANES spectrum is similar to our observation. The

566	comet Wild 2 is estimated to have experienced little or no aqueous alteration on the basis of
567	the absence of phyllosilicates (Zolensky et al. 2006). CR3 chondrites contain abundance
568	amorphous silicates (e.g., Abreu and Brearley, 2010; Le Guillou and Brearley, 2014) and are
569	thought to have experienced the earliest stage of parent body aqueous alteration. Therefore,
570	the similarities among the organics in the UCAMM D05IB80, the comet Wild 2, and CR3
571	chondrites corroborate that the UCAMM are more primitive than most of the
572	aqueously-altered carbonaceous chondrites.
573	The recent results by the Rosetta mission unveiled the presence of organic-rich, dark
574	dehydrated surface of the comet 67P/Churyumov-Gerasimenko by the Visible, Infrared and
575	Thermal Imaging Spectrometer (VIRTIS) (Capaccioni et al. 2015). The evolved gas analyzer
576	Cometary Sampling and Composition (COSAC) mass spectrometry identified a number of
577	nitrogen-bearing organic molecules, such as nitriles, amines, amides, and isocyanates, but no
578	sulfur species on the comet 67P/C-G (Goesmann et al. 2015). The high abundance and
579	chemical compositions of organics on the comet 67P/Churyumov-Gerasimenko may be
580	related to the precursor material of large N-rich organics of the UCAMM, prior to organic
581	sulfurization under aqueous condition.

582 Moreover, our work reports the first finding of organic materials retaining C, H, O, N and

583	S elements all together from micrometeorites. Another finding of CHONS organics has been
584	reported from the polar solvent extracts from Murchison meteorite (Schmitt-Kopplin et al.
585	2010). Because of the unusual similarity in the organic elemental compositions and polar
586	nature between the UCAMM and Murchison, the possibility that the UCAMM organics
587	contains the precursor of the meteoritic CHONS compounds is expected, and could be a key
588	indicator of the comet-asteroid continuum. In order to trace back and determine the precursors
589	of organic materials in the early Solar System, further analyses and comparative studies of the
590	most primitive extraterrestrial materials we can obtain, such as anhydrous micrometeorites,
591	IDPs and the least altered carbonaceous chondrites through the comprehensive inorganic and
592	organic analytical strategies without discrimination between soluble and insoluble, will be
593	necessary.
594	
595	5. Summary
596	An ultracarbonaceous micrometeorite (UCAMM D05IB80), collected from near the
597	Dome Fuji Station, Antarctica, has been investigated by coordinated in-situ analyses.

- 598 According to the following unique features of organics and minerals that are different from
- 599 chondritic meteorites, we conclude that the UCAMM was formed by small amount of

600 fluid-induced interaction of organics and minerals in a porous ice-rich cometary body.

1. A major part of the organic materials in the UCAMM shows a smooth texture to which 601 602 globular aggregates are connected, and includes an epoxy-soluble phase. The UCAMM 603 shows nitrogen-rich organic chemistry (N/C = 0.15). Its organic functional groups include 604 a variety of nitrogen-bearing groups; heterocyclic nitrogen, nitrile, imine, and amide. The 605 polar functional group compositions and the solvent solubility indicate very primitive 606 nature of the organic material in the UCAMM. 2. GEMS grains are depleted in Mg and S. This is an evidence for incipient aqueous 607 alteration in the UCAMM parent body. Shock heating in an icy planetesimal 608 609 instantaneously melted ice grains and released water, which dissolved organic material. 610 Due to the high porosity and low density of a cometary body, the fluid did not diffuse but 611 formed a large-size organic puddle (15 x 15 μ m). The locally generated fluid sulfurized 612 organic material, formed mineral thin layers (C, O, Si, S, and Fe) at the surface of 613 organics, and deformed the shape of organic nanoglobules.

614

615 Acknowledgements

616 We appreciate Christine Floss, anonymous reviewer, and associate editor Eric Quirico for

617	their constructive comments and helpful editorial handling. This work is supported by a
618	Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports
619	Science and Technology (No. 22224010, PI: H. Nagahara). The STXM facility at the
620	beamline 5.3.2.2, ALS, is supported by the Department of Energy, Basic Energy Sciences
621	program.

622

623 References

624 Abreu N. M. and Brearley A. J. (2010) Early solar system processes recorded in the matrices

of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. 625

- 626 *Geochim. Cosmochim. Acta* **74**, 1146–1171.
- 627 Alexander C. M. O'D., Fogel M., Yabuta H. and Cody G. D. (2007) The origin and evolution
- 628 of chondrites recorded in the elemental and isotopic compositions of their
- 629 macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380-4403.
- 630 Asphaug E. and Benz W. (1996) Size, Density, and Structure of Comet Shoemaker-Levy 9
- 631 Inferred from the Physics of Tidal Breakup. Icarus 121, 225-248.
- 632 Bassim N. D., De Gregorio B. T., Kilcoyne A. L. D., Scott K., Chou T., Wirick S., Cody G.
- and Stroud R. M. (2012) Minimizing damage during FIB sample preparation of 633

- 634 softmaterials. J. Microscopy **245**, 288–301.
- 635 Benner S. A., Kim, H-J. and Carrigan M.A. (2012) Asphalt, water, and prebiotic synthesis of
- ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025-2034.
- 637 Bernstein M. P., Sandford S. A., Allamandola L. J., Chang S. and Scharberg M. A. (1995)
- 638 Organic Compounds Produced by Photolysis of Realistic Interstellar and Cometary Ice
- 639 Analogs Containing Methanol. *Astrophys. J.* **454**, 327–344.
- Bockelée-Morvan D., Crovisier J., Mumma M. J., and Weaver H. A. (2004) The composition
- of cometary volatiles. In Comets II (eds. Festou M. C., Keller H. U., and Weaver H. A.)
- 642 Tucson, AZ: The University of Arizona Press. pp. 391–423.
- 643 Bradley J. P. and Brownlee D. E. (1986) Cometary particles: Thin sectioning and electron
- 644 beam analysis. *Science* **231**, 1542-1544.
- 645 Bradley J. P. and Dai Z. R. (2004) Mechanism of formation of glass with embedded metal
- 646 and sulfides. *The Astrophysical Journal* **617**, 650-655.
- 647 Bradley J. P., Keller L. P., Snow T. P., Hanner M. S., Flynn G. J., Gezo J. C., Clemett S. J.,
- Brownlee D. E. and Bowey J. E. (1999) An infrared spectral match between GEMS and
- 649 interstellar grains. *Science* **285**, 1716-1718.
- 650 Busemann H., Young A. F., Alexander C. M. O'D., Hoppe P., Mukhopadhyay S. and Nittler

- 651 L. R. (2006) Interstellar chemistry recorded in organic matter from primitive meteorites.
- 652 *Science* **314**, 727–730.
- Busemann H., Nguyen A. N., Cody G. D., Hoppe, P., Kiloyne, A. L. D., Stroud, R. M., Zega
- T. J. and Nittler L. R. (2009) Ultra-primitive interplanetary dust particles from the comet
- 655 26P/Grigg–Skjellerup dust stream collection. *Earth Planet. Sci. Lett.* **288**, 44–57.
- 656 Cairns-Smith A. G (1982) Genetic takeover and the mineral origins of life. Cambridge
- 657 University Press, Cambridge, England.
- 658 Capaccioni, F., Coradini, A., Filacchione, G., et al. (2015) Science 349, aab0628-1659 aab0628-4.
- 660 Changela H. G., Cody G. D., Alexander C. M. O'D., Nittler L. R., Peeters Z., De Gregorio B.
- 661 T. and Stroud R. M. (2013) TEM Study of insoluble organic matter in primitive
- 662 chondrites: Unusual textures associated with organic nanoglobules. Lunar Planet. Sci.
- 663 **XLIV**, #3101.
- 664 Chizmadia L. J., Xu Y., Schwappach C. and Brearley A. J. (2008) Characterization of
- 665 micron-sized Fe,Ni metal grains in fine-grained rims in the Y-791198 CM2 carbonaceous
- 666 chondrite: Implications for asteroidal and preaccretionary models for aqueous alteration.
- 667 *Meteor. Planet. Sci.* **43**, 1419–1438.

- 668 Cody G. D., Ade H., Alexander C. M. O'D., Araki T., Butterworth A., Fleckenstein H., Flynn
- 669 G., Gilles M. K., Jacobsen C., Kilcoyne A. L. D., Messenger K., Sandford S. A.,
- Tyliszczak T., Westphal A. J., Wirick S. and Yabuta H. (2008) Quantitative organic and
- 671 light-element analysis of comet 81P/Wild 2 particles using C-, N-, and O- XANES.
- 672 *Meteor. Planet. Sci.* **43**, 353–365.
- 673 Cody G. D., Heying E., Alexander C. M. O. D., Nittler L. R., Kilcoyne A. L. D., Sandford S.
- A. and Stroud R. M. (2011) Establishing a molecular relationship between chondritic and
- 675 cometary organic solids. *Proc. Natl. Acad. Sci. USA* **108**, 19171–19176.
- 676 Dartois E., Engrand C., Brunetto R., Duprat J., Pino T., Quirico E., Remusat L., Bardin N.,
- Briani G., Mostefaoui S., Morinaud G., Crane B., Szwec N., Delauche L., Jamme F.,
- 678 Sandt Ch. and Dumas P. (2013) Ultracarbonaceous Antarctic micrometeorites, probing
- the Solar System beyond the nitrogen snow-line. *Icarus* **224**, 243–252.
- 680 De Gregorio B. T., Stroud R. M., Nittler L. R., Alexander C. M.O'D., Kilcoyne A. L. D. and
- 681 Zega T. J. (2010) Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2:
- 682 Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial
- 683 organics by electron irradiation. *Geochim. Cosmochim. Acta* **74**, 4454-4470.
- 684 De Gregorio B. T., Stroud R. M., Cody G. D., Nittler L. R., Kilcoyne A. L. D. and Wirick S.

- 685 (2011) Correlated microanalysis of cometary organic grains returned by Stardust. *Meteor*.
 686 *Planet. Sci.* 46, 1376-1396.
- 687 De Gregorio B. T., Stroud R. M., Nittler L. R., Alexander C. M.O'D., Bassim N. D., Cody G.
- 688 D., Kilcoyne A. L. D., Sandford S. A., Milam S. N., Nuevo M. and Zega T. J. (2013)
- 689 Isotopic and chemical variation of organic naoglobules in primitive meteorites. *Meteor*.
- 690 *Planet. Sci.* **48**, 904-928.
- 691 Dobrica E., Engrand C., Quirico E., Montagnac G. and Duprat J. (2011) Raman
- 692 characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites.
- 693 *Meteor. Planet. Sci.* **46**, 1363-1375.
- 694 Dobrica E., Engrand C., Leroux H., Rouzaud J.-N. and Duprat J. (2012) Transmission
- 695 electron microscopy of CONCORDIA ultracarbonaceous Antarctic micrometeorites
- 696 (UCAMMs): Mineralogical properties. *Geochim. Cosmochim. Acta* **76**, 68–82.
- 697 Duprat J., Dobrica E., Engrand C., Aléon J., Marrocchi Y., Mostefaoui, S., Meibom A.,
- 698 Leroux H., Rouzaud J.-N., Gounelle M., Robert F. (2010) Extreme deuterium excesses in
- 699 ultracarbonaceous micrometeorites from central Antarctic snow. *Science* **328**, 742-745.
- 700 Dworkin J. P., Deamer D. W., Sandford S. A. and Allamandola L. J. (2001) Self-assembling
- amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. *Proc. Natl.*

- 702 *Acad. Sci. USA* **98**, 815-819.
- Farnham T. L. and Cochran A. L. (2002) A McDonald Observatory Study of Comet
 19P/Borrelly: Placing the Deep Space 1 Observations into a Broader Context. *Icarus* 160,
 398-418.
- 706 Floss C., Noguchi T. and Yada T. (2012) Ultracarbonaceous Antarctic micrometeorites:
- 707 Origins and relationships to other primitive extraterrestrial materials. *Lunar Planet. Sci.*
- 708 **XLIII**, #1217.
- Floss C., Stadermann F. J., Bradley J., Dai Z. R., Bajt S., and Graham G. (2004) Carbon and
- nitrogen isotopic anomalies in an anhydrous interplanetary dust particle. Science 303,
- 711 1355-1358.
- 712 Frank D. R., Zolensky M. E. and Le L. (2014) Olivine in terminal particles of Stardust
- aerogel tracks and analogous grains in chondrite matrix. *Geochim. Cosmochim. Acta* 142,
- 714 240–259.
- Fujiya W., Sugiura N., Sano Y. and Hiyagon H. (2013) Mn-Cr ages of dolomites in CI
- chondrites and the Tagish Lake ungrouped carbonaceous chondrite. *Earth Planet. Sci.*
- 717 *Lett.* **362**, 130–142.
- 718 Garvie L. A. J. and Buseck P. R. (2004) Nanosized carbon-rich grains in carbonaceous

chondrite meteorites. *Earth Planet. Sci. Lett.* **224**, 431–439.

720	Goesmann F., Rosenbauer H., Bredehoft J. H., Cabane M., Ehrenfreund P., Gautier T., Giri
721	Chaitanya, Kruger H., Le Roy L., MacDermott A. J., McKenna-Lawlor S., Meierhenrich
722	U. J., Munoz Caro G. M., Raulin F., Roll R., Steele A. Steininger H., Sternberg R., Szopa
723	C., Thiemann W. and Ulamec S. (2015) Organic compounds on comet
724	67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349,
725	aab0689-1- aab0689-3.
726	Greenberg J. M. and Li A. (1997) Silicate core-organic refractory mantle particles as
727	interstellar dust and as aggregated in comets and stellar disks. Adv. Space Res. 19, 981-
728	990.
729	Hanowski N. P. and Brearley A. J. (2000) Iron-rich aureoles in the CM carbonaceous
730	chondrites, Murray, Murchison and ALH81002: Evidence for in situ alteration. Meteor.
731	<i>Planet. Sci.</i> 35 , 1291–1308.
732	Hanowski N. P. and Brearley A. J. (2001) Aqueous alteration of chondrules in the CM
733	carbonaceous chondrites, Allan Hills 81002. Geochim. Cosmochim. Acta 65, 495-518.
734	Hashiguchi M., Kobayashi S. ad Yurimoto H. (2013) In situ observation of D-rich
735	carbonaceous globules embedded in NWA 801 CR2 chondrite. Geochim. Cosmochim.

44

736 *Acta* **122**, 306-323.

737	Joswiak D. J., Brownlee D. E., Matrajt G., Westphal A. J. and Snead C. J. (2009)
738	Kosmochloric Ca-rich pyroxenes and FeO rich olivines (Kool grains) and associated
739	phases in Stardust tracks and chondritic porous interplanetary dust particles: possible
740	precursors to FeO-rich type II chondrules in ordinary chondrites. Meteorit. Planet. Sci. 44,
741	1561–1588.
742	Joswiak D. J., Brownlee D. E., Matrajt G., Westphal A. J., Snead C. J. and Gainsforth Z.
743	(2012) Comprehensive examination of large mineral and rock fragments in Stardust
744	tracks: mineralogy, analogous extraterrestrial materials, and source regions. Meteorit.
745	Planet. Sci. 47, 471–524.
746	Keller L. P. and Messenger S. (2011) On the origins of GEMS grains. Geochim. Cosmochim.
747	<i>Acta</i> 75 , 5336–5365.
748	Keller L. P., Nakamura-Messenger K. and Messenger S. (2009) Amorphous silicates in
749	primitive meteoritic materials: Acfer 094 and IDPs. 72nd Annual Meteoritical Society

- 750 Meeting 44. #5371 (abstract).
- 751 Kilcoyne A. L. D., Tyliszczak T., Steele W. F., Fakra S., Hitchcock P., Franck K., Anderson
- E., Harteneck B., Rightor E. G., Mitchell G. E., Hitchcock A. P., Yang L., Warick T. and

753	Ade, H. (2003) Interferometer controlled scanning transmission microscopes at the
754	Advanced Light Source. J. Synchrotron Rad. 10, 125–136.
755	Klöck W. and Stadermann F. J. (1994) Mineralogical and chemical relationships of
756	interplanetary dust particles, micrometeorites and meteorites. In Analysis of
757	Interplanetary Dust (eds. M. E. Zolensky et al.,), pp. 51-87. AIP Conference Proceedings
758	310, New York.
759	Kofman et al. (2015) Properties of the 67P/Churyumov-Gerasimenko interior revealed by
760	CONSERT radar. Science 349 , aab0639-1 – aab0639-6.
761	Körber C., Rau G., Cosman M. D. and Cravalho E. G. (1985) Interaction of particles and a
762	moving ice-liquid interface. J. Cryst Growth 72, 649-662.
763	Kouchi A., Greenberg J. M., Yamamoto T., and Mukai T. (1992) Extremely low thermal
764	conductivity of amorphous ice: relevance to comet evolution. Astrophys. J. 388,
765	L73-L76.
766	Le Guillou C. and Brearley, A. J. (2014) Relationships between organics, water and early
767	stages of aqueous alteration in the pristine CR3.0 chondrite MET00426. Geochim.
768	Cosmochim. Acta, 131, 344-367.
769	Le Guillou C., Bernard S., Brearley, A. J. and Remusat L. (2014) Evolution of organic matter
	46

770	in Orgueil, Murchison and Renazzo during parent body aqueous alteration: In situ
771	investigations. Geochim. Cosmochim. Acta, 131, 368-392.
772	Leinweber P., Kruse J., Walley F. L., Gillespie A., Eckhardt K-U., Blyth R. I. R. and Regier T.
773	(2007) Nitrogen K-edge XANES – an overview of reference compounds used to identify
774	'unknown' organic nitrogen in environmental samples. J. Synchrotron Rad. 14, 500–511.
775	Matrajt G., Messenger S., Brownlee D. and Joswiaki D. (2012) Diverse forms of primordial
776	organic matter identified in interplanetary dust particles. Meteor. Planet. Sci. 47,
777	525-549.
778	Matsumoto T., Tsuchiyama, A., Nakamura-Messenger, K., Nakano, T., Uesugi, K., Takeuchi,
779	A. and Zolensky, M. E. (2013) Three-dimensional observation and morphological
780	analysis of organic nanoglobules in a carbonaceous chondrite using X-ray
781	micro-tomography. Geochim. Cosmochim. Acta 116, 84-95.
782	Messenger S. (2000) Identification of molecular-cloud material in interplanetary dust particles.
783	<i>Nature</i> 404 , 968-971.
784	Messenger, S., Sandford, S. and Brownlee, D. (2006) The population of starting materials
785	available for Solar System construction. In: Meteorites and the Early Solar System II (eds.
786	Lauretta D. S. and McSween, H. Y., Jr.) Univ. of Arizona, USA, pp. 187-208.
	47

787	Nakamura K., Zolensky M. E., Tomita S., Nakashima S. and Tomeoka K. (2002) Hollow
788	organic globules in the Tagish Lake meteorite as possible products of primitive organic
789	reactions. International Journal of Astrobiology 1, 179-189.
790	Nakamura T., Noguchi T., Ozono Y., Osawa T. and Nagao K. (2005) Mineralogy of
791	ultracarbonaceous large micrometeorites. Meteor. Planet. Sci. 40, A110.
792	Nakamura-Messenger K., Messenger S., Keller L. P., Clemett S. J. and Zolensky M. E.
793	(2006) Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk.
794	<i>Science</i> 314 , 1439–1442.
795	Nakamura-Messenger K., Clemett S. J., Messenger S. and Keller L. P. (2011) Experimental
796	aqueous alteration of cometary dust. Meteor. Planet. Sci. 46, 843-856.
797	Nawa E., Nishigaki Y., Yamamoto D. and Shioi A. (2013) Rhythmic shape change of a
798	vesicle under a pH gradient. Soft Matter 9, 7832-7842.
799	Noguchi T., Ohashi N., Tsujimoto S., Mitsunari T., Bradley J. P., Nakamura T., Toh S.,

- 800 Stephan T., Iwata N. and Imae N. (2015) Cometary dust in Antarctic ice and snow: Past
- 801 and present chondritic porous micrometeorites preserved on the Earth's surface. *Earth*
- 802 Planet. Sci. Lett. **410**, 1-11.
- 803 Noguchi T., Yabuta H., Itoh S., Sakamoto N., Mitsunari T., Okubo A., Okazaki R., Nakamura

804	T., Tachibana S., Terada K., Ebihara M., Imae N., Kimura M. and Nagahara H. (2017)
805	Variation of mineralogy and organic material during the early stages of aqueous activity
806	recorded in Antarctic micrometeorites. Geochim. Cosmochim. Acta 208, 119-144.
807	Nuevo M., Milam S. N., Sandford S. A., De Gregorio B. T., Cody G. D. and Kilcoyne A.L.D.
808	(2011) XANES analysis of organic residues produced from the UV irradiation of
809	astrophysical ice analogs. Adv. Space Res. 48, 1126–1135.
810	Peeters Z., Changela H. G., Stroud R. M., Alexander C. M. O'D. and Nittler L. R. (2012)
811	Coordinated analysis of in situ organic material in the CR chondrite QUE 99177. Lunar
812	<i>Planet. Sci.</i> XLIII , #2612.
813	Pizzarello S. Williams L. B., Lehman J., Holland G. P. and Yarger J. L. (2011) Abundant
814	ammonia in primitive asteroids and the case for a possible exobiology. Proc. Nat. Acad.
815	<i>Sci. USA</i> 108 , 4303-4306.
816	Qu H., Harada M. and Okada T. (2015) Ion-transfer voltammetry at the interface between
817	organic and salt-doped ice phases. ChemElectroChem 2, 1249-1253.
818	Rotundi A., Baratta G. A., Borg J., Brucato J. R., Busemann H., Colangeli L., d'Hendecourt
819	L., Djouadi Z., Ferrini G., Franchi I. A., Fries M., Grossemy F., Keller L. P., Mennella V.,
820	Nakamura K., Nittler L. R., Palumbo M. E., Sandford S. A., Steele, A. and Wopenka, B.

- 821 (2008) Combined micro-Raman, micro-infrared, and field emission scanning electron 822 microscope analyses of comet 81P/Wild 2 particles collected by Stardust. Meteorit. 823 Planet. Sci. 43, 367-397. 824 Russell M. J., Daniel R. M., Hall A. J. and Sherringham J. A. (1994) A hydrothermally 825 precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 826 231-243. 827 Sakamoto K., Nakamura T., Noguchi, T. and Tsuchiyama, A. (2010) A new variant of 828 saponite-rich micrometeorites recovered from recent Antarctic snowfall. Meteorit. Planet. Sci. 45, 220–237. 829
- 830 Schmitt-Kopplin P., Gabelica Z., Gougeon R. D., Fekete A., Kanawati B., Harir M.,
- 831 Gebefuegi I., Eckel G. and Hertkorn N. (2010) High molecular diversity of
- extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall.
- 833 *Proc. Natl. Acad. Sci. USA* **107**, 2763–2768.
- 834 Schouten S., de Graaf W., Sinninghe Damsté J. S., van Driel G. B., de Leeuw J. W. (1994)
- 835 Laboratory simulation of natural sulphurization: II. Reaction of multi-functionalized
- 836 lipids with inorganic polysulphides at low temperatures. Org. Geochem. 22, 825-834.
- 837 Shiraishi K. (2012) Dome fuji station in east antarctica and the Japanese antarctic research

expedition. Proceedings of the International Astronomical Union 8, 161-168.

- 839 Stewart S. T. and Ahrens T. J. (2004) A new H₂O ice Hugoniot: Implications for planetary
- 840 impact events. *AIP Conf. Proc.* **706**, 1478-1483.
- 841 Taylor L. A., Nazarov M. A., Shearer C. K., McSween H. Y., Cahill J., Neal C. R., Ivanova
- 842 M. A., Barsukova L. D., Lentz R. C., Clayton R. N. and Mayeda T. K. (2002) Martian
- 843 meteorite Dhofar 019: A new shergottite. *Meteor. Planet. Sci.* **37**, 1107–1128.
- 844 Thomas K., Keller L.P., Blanford G. E. and McKay D. S. (1994) Quantitative analyses of
- 845 carbon in anhydrous and hydrated interplanetary dust particles. in: Analysis of
- 846 interplanetary dust, (M. E. Zolensky, T. L. Wilson, F. J. M. Rietmeijer, G. J. Flynn eds),
- 847 165-172.
- 848 Toppani A., Libourel G., Engrand C. and Maurette M. (2001) Experimental simulation of
- atmospheric entry of micrometeorites. *Meteor. Planet. Sci.* **36**, 1377-1396.
- van Dongen B. E., Schouten S., Baas M., Geenevasen J. A. J. and Sinninghe Damsté J. S.
- 851 (2003) An experimental study of the low-temperature sulfurization of carbohydrates. *Org.*
- 852 *Geochem*. **34**, 1129–1144.
- 853 Vollmer C., Brenker F. E., Hoppe P. and Stroud R. M. (2009a) Direct laboratory analysis of
- silicate stardust from rRed giant stars. *Astrophys. J.* **700**, 774–780.

855	Vollmer C., Hoppe P., Stadermann F. J., Floss C. and Brenker F. E. (2009b) NanoSIMS
856	analysis and Auger electron spectroscopy of silicate and oxide stardust from the
857	carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 73, 7127–7149.
858	Watanabe H., Otsuka T., Harada M. and Okada T. (2014) Imbalance between anion and
859	cation distribution at ice interface with liquid phase in frozen electrolyte as evaluated by
860	fluorometric measurements of pH. J. Phys. Chem. C. 118, 15723-15731.
861	Yada T., Floss C., Stadermann F. J., Zinner E., Nakamura T., Noguchi T. and Lea S. (2008)
862	Stardust in Antarctic micrometeorites. Meteorit. Planet. Sci. 43, 1287-1298.
863	Yurimoto H., Nagashima K. and Kunihiro T. (2003) High precision isotope micro-imaging of
864	materials. Appl. Surf. Sci. 203-204, 793-797.
865	Zolensky M. E., Barrett B. and Browning L. (1993) Mineralogy and composition of matrix
866	and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3123-
867	3148.
868	Zolensky M. E. and Barrett R. A. (1994) Composition variations of olivines and pyroxenes in
869	chondritic interplanetary dust particles. Meteoritics 29, 616-620.
870	Zolensky M. et al. (2006) Mineralogy and petrology of comet Wild 2 nucleus samples.
871	<i>Science</i> 314 , 1735–1739.
872	
	52

873 Figure captions:

874

875 Figure 1. (a) Secondary electron image of an ultracarbonaceous micrometeorite (UCAMM) 876 D05IB80 placed on a platinum plate. The upper half of the UCAMM is porous and covered 877 by fine-grained (typically sub µm) particles, whereas the lower half is smooth. (b) Bright-field 878 (BF) TEM images of ultramicrotomed sections of the UCAMM D05IB80. Each section was 879 selected out of every three to five serial sections. Abbreviations: LPx , low-Ca pyroxene; PO, 880 pyrrhotite; Ol, Olivine. 881 882 Figure 2. (a, b) BF-TEM images of GEMS grains in the UCAMM D05IB80. (c) 883 HAADF-STEM image and elemental distribution maps of the same GEMS grains in (b). (d-i) 884 BF TEM images of minerals in a FIB section and ultrathin sections of D05IB80. (d) olivine 885 crystal in the FIB sections, (e-i) olivine, low-Ca pyroxene, high-Ca pyroxene, amorphous 886 silica, and pyrrhotite in ultrathin sections. An inset in each TEM image is a selected area 887 electron diffraction (SAED) pattern of each phase. 888

Figure 3. Chemical compositions of phases in the UCAMM D05IB80. (a) [Si + Al]-Mg-Fe

890	ternary diagram and (b) Si-S-Fe ternary diagram of GEMS grains. (c) Pyroxene quadrilateral
891	showing chemical compositions of low- and high-Ca pyroxenes and Forsterite (Fo) mol.%
892	histogram of olivine. (d) S-Fe-Ni ternary diagram of pyrrhotite. (e) FeO vs MnO and (f) FeO
893	vs Cr ₂ O ₃ diagrams of olivine and low-Ca pyroxene.

Figure 4. BSE image after SIMS analysis and ¹²C¹⁴N⁻, ¹⁶O⁻ and ³²S⁻ isotopographs of UCAMM
D05IB80.

897

898 Figure 5. (a) Back-scattered electron image, (b) optical image by a transmitted light, and (c) 899 that by a reflected light of the surface of the polished cross-section of the UCAMM D05IB80. 900 Tungsten deposition shown in (a) is the position where the focused ion beam (FIB) section 901 was lifted out. (c) Transmitted optical image of the FIB section of the UCAMM D05IB80. 902 The dark brown and the light brown area are contacted with a sinuous boundary. (d) 903 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) 904 image of the FIB section of D05IB80, where parallel grooves running from upper right to 905 lower left are tracks formed by Cs⁺ ion implantation during the SIMS mapping analysis. The 906 two morphologies (smooth and globular) are indicated by arrows. Two box areas indicate 907 where elemental maps and high-resolution observation were performed (Fig. 9). Two GEMS908 grains and a polycrystalline olivine are also indicated.

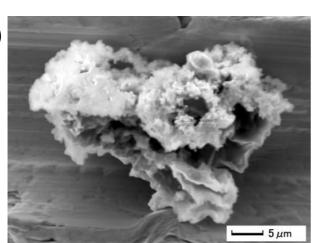
909

Figure 6. Raman spectrum of the organic material in the UCAMM D05IB80. Background was subtracted. Peak position and full width at the half maximum (FWHM) of D_1 and G bands are shown as ω_{D1} , Γ_{D1} , ω_G , and Γ_G , respectively. In this spectrum, D_1 (red line), D_2 (green line), and G (blue line) bands were used to fit the spectrum. The residual graph is a difference between the raw spectrum and fitted spectrum.

916 Figure 7. (a) Carbon- and (b) nitrogen- distribution maps of the UCAMM D05IB80 obtained 917 by STXM, and (c) carbon- and (d) nitrogen-XANES spectra of the regions 1, 2, and epoxy 918 indicated in (b). Peak assignments are based on Leinweber et al. (2007) and Cody et al. 919 (2008); peak A: 1s- π^* transition for aromatic carbon (C=C*) at 285.1 eV, peak B: 1s- π^* 920 transition for N-heterocycles (C-N*=C), nitrile (C \equiv N*) or vinyl-keto carbon (C=C-C*=O) at 921~286.6 eV, peak C: 1s-3p/s* transition for aliphatic carbon at CHx-C at ~287.5 eV, peak D: 922 1s-π* transition for carbonyl carbon in amide (NHx(C*=O)C) at ~288.0-288.2 eV and/or 1s- π^* transition for carbonyl carbon in carboxyl or ester (OR(C*=O)C) at ~288.4-288.7 eV, 923

924 peak E: $1s-\pi^*$ transition for imine (C=N*) at 398.8 eV, peak F: $1s-\pi^*$ transition for 925 N-heterocycles (C-N*=C) and/or nitrile (C=N*) and/or at ~399.7 eV, and peak G: $1s-\pi^*$ 926 transition for amide (N*Hx(C=O)C) or $1s-3p/s^*$ transition for amino (C-N*Hx) at 401.5 eV.

927


928 Figure 8. (a) BF TEM images obtained by in-situ observation of organic nanoglobules in the 929 UCAMM D05IB80. (b) Moderate- and (c) high-resolution BF TEM images of the globular 930 boundaries. (d) Moderate- and (e) high-resolution BF TEM images of the smooth boundary. 931 Thin (< 2 nm) less-electron transparent layers indicated by arrows exist on the both kinds of 932 boundaries shown in (c) and (e). (f) High-resolution TEM image of the thin layer in the 933 globular boundary shows nanocrystals indicating 0.24- and 0.28- nm lattice fringes. (g) 934 High-resolution TEM image of the thin layer in the smooth region shows there are no 935 nanocrystals in the boundary.

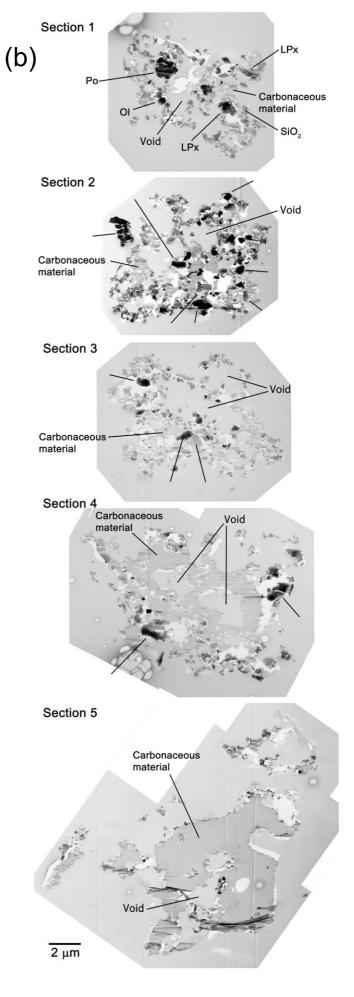
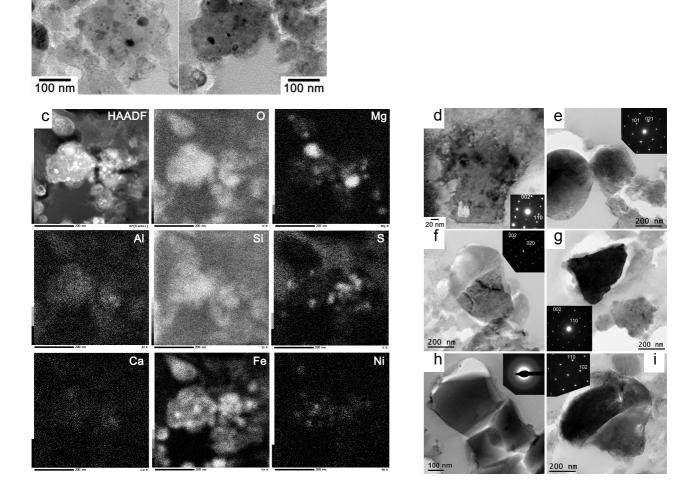
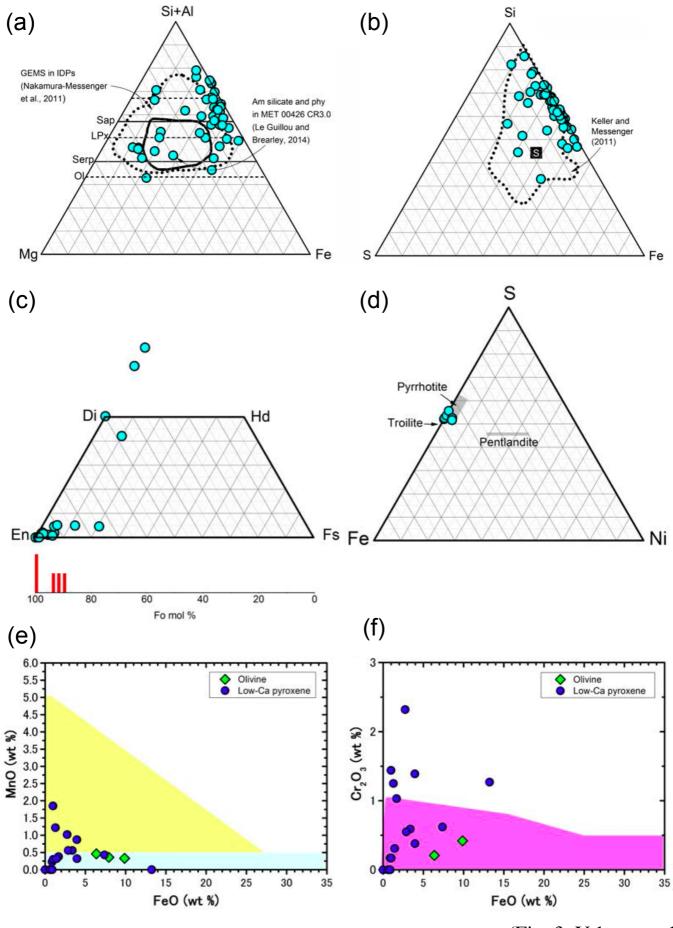

936

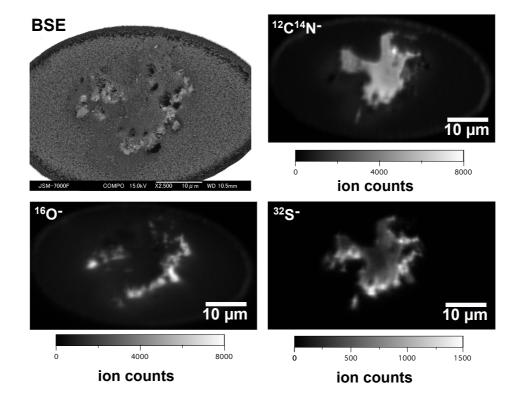
Figure 9. (a) Elemental distribution maps of the smooth boundary shown as "Map 1" in Fig.
5e. The area near the boundary is enriched in C, O, Na, Si, S, K, and Fe. (b) Elemental
distribution maps of the globular boundary shown as "Map 2" in Fig. 5e. The area near the
boundary is enriched in C, O, Si, S, and Fe. The less electron transparent material is enriched


941	in O, Si, S, and Fe. A GEMS grain appears as an O, Mg, and Si enriched area in the lower
942	right corner. (c) High resolution TEM image of a polycrystalline aggregate of tiny crystals
943	included in a globule. The tiny crystals show 0.46- and 0.24- nm lattice fringes.
944	
945	Figure 10. (a) The ${}^{12}C^{14}N^{-}$ and δD isotopographs before preparing a FIB thin section. Scale
946	bars are 10 μ m. Color bars are secondary ion counts for ${}^{12}C^{14}N^{-1}$ isotopograph and isotope ratio
947	with delta-value for δD isotopograph. (b) BSE image, ${}^{12}C^{14}N^{-}$, $\delta^{13}C$ and $\delta^{15}N$ isotopographs
948	after making FIB thin section. Scale bars are 10 μ m. Color bars are secondary ion counts for
949	$^{12}C^{14}N^{-}$ isotopograph and isotope ratio with delta-value for $\delta^{13}C$ and $\delta^{15}N$ isotopograph.
950	
951	Figure. 11. N/C versus O/C ratios of organics in the UCAMM D05IB80 (●, this study), the
952	comet Wild 2 dust particles (□, Cody et al. 2008), the anhydrous IDP L20211R11 (■, Cody
953	et al. 2008), types 1 and 2 chondritic insoluble organic solids (, Alexander et al. 2007), and
954	the UV irradiation products from interstellar analogues (O, Nuevo et al. 2011) (UV1
955	$H_2O:CH_3OH:CO:NH_3 = 100:50:1:1, UV2 H_2O:CH_3OH:CO:NH_3:C_3H_8 = 100:50:1:1:10).$ The
956	ratios were estimated from fitting of C-, N-, and O-XANES spectra.

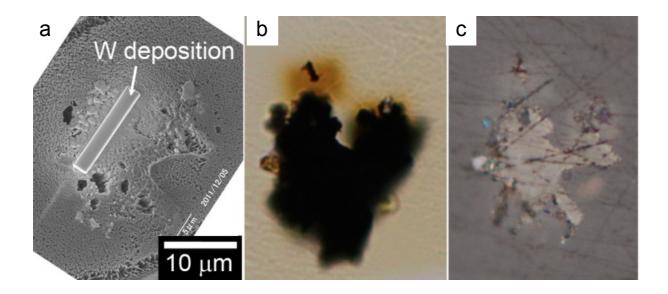
(a)

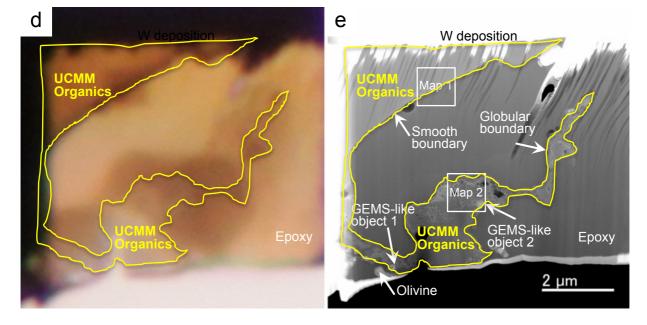


(Fig. 1. Yabuta et al.)

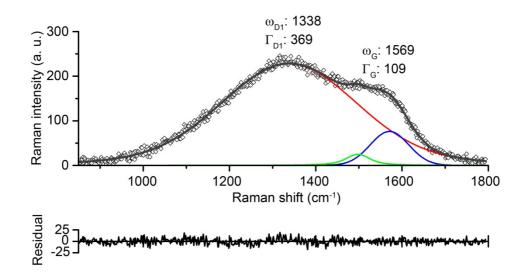


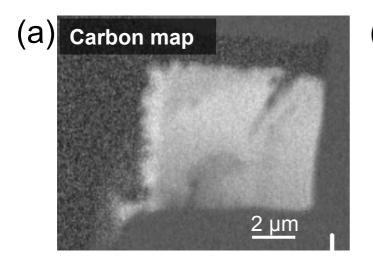
а


(Fig. 2. Yabuta et al.)

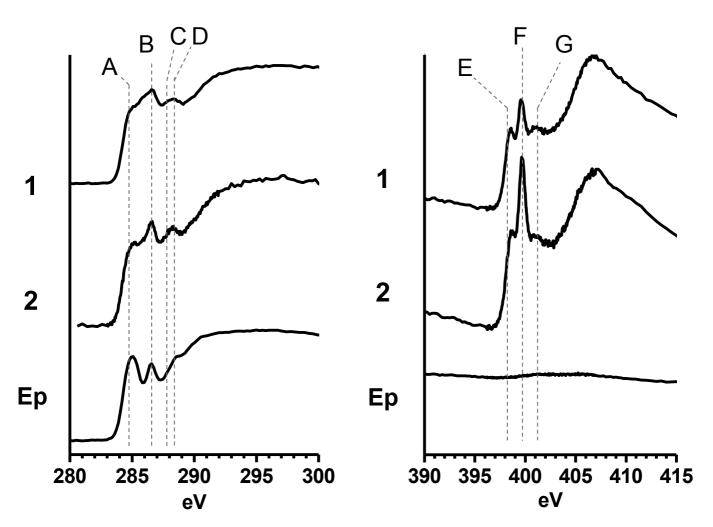


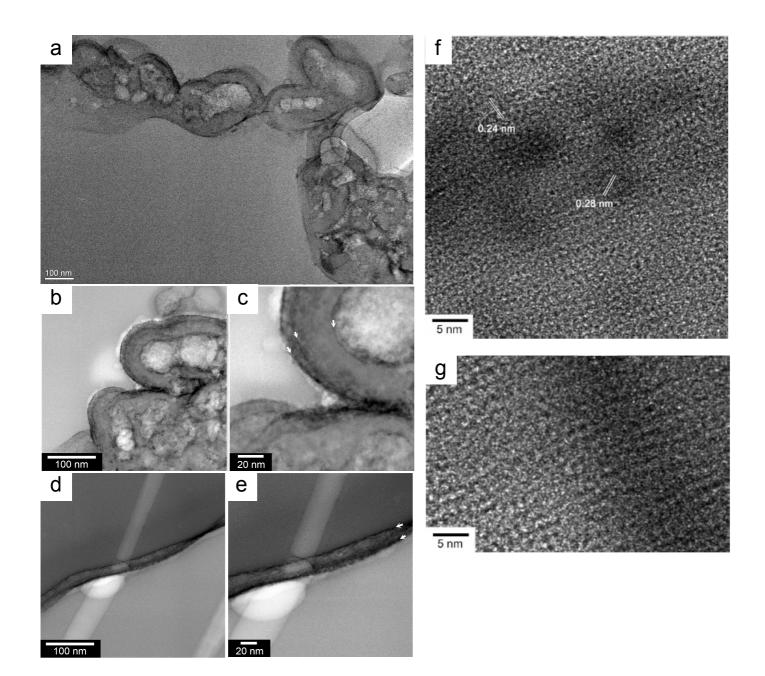
⁽Fig. 3. Yabuta et al.)



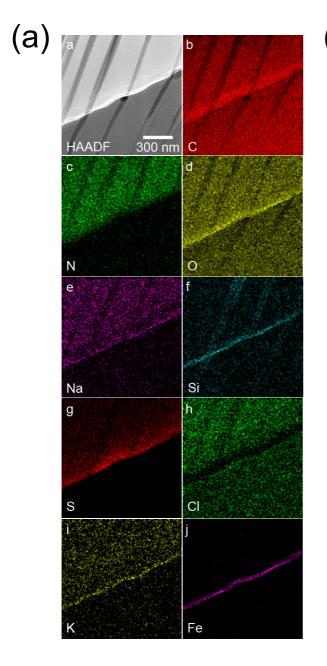

(Fig. 4. Yabuta et al.)

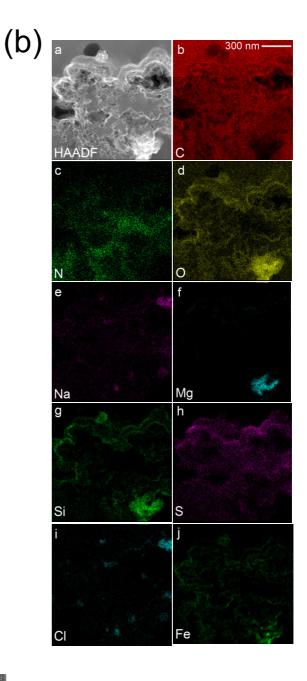
(Fig. 5. Yabuta et al.)



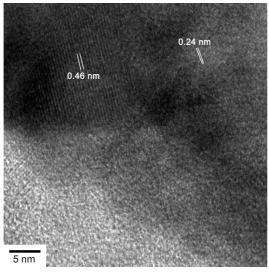

(c) C-XANES

(b) Nitrogen map
 1
 Epoxy
 2 μm

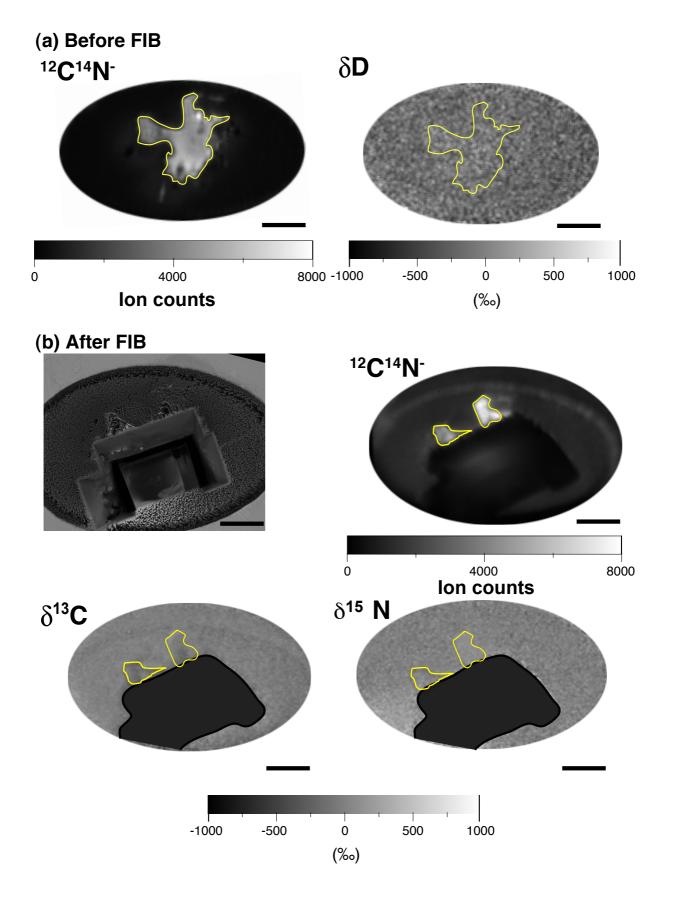

(d) **N-XANES**

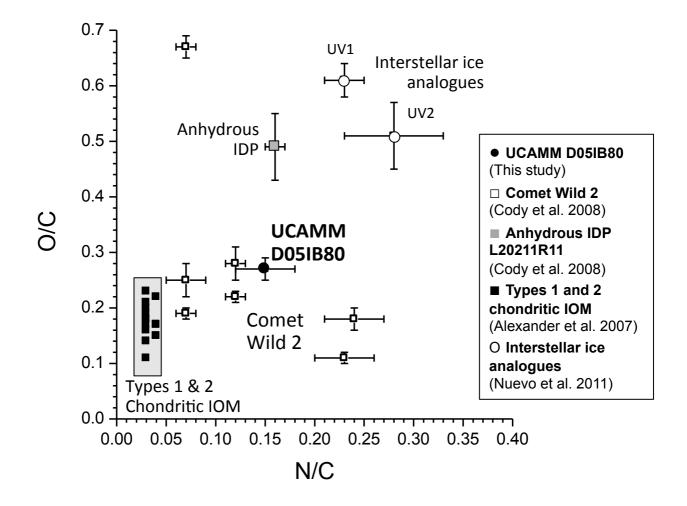


(Fig. 7. Yabuta et al.)



(Fig. 8. Yabuta et al.)




(C)

(Fig. 9. Yabuta et al.)

(Fig. 10. Yabuta et al.)

(Fig. 11. Yabuta et al.)